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t. Grasping is one of the most important abilities needed for fu-ture servi
e robots. In the task of pi
king up an obje
t from between 
lut-ter, traditional roboti
s approa
hes would determine a suitable graspingpoint and then use a movement planner to rea
h the goal. The plannerwould require pre
ise and a

urate information about the environmentand long 
omputation times, both of whi
h are often not available. There-fore, methods are needed that exe
ute grasps robustly even with impre-
ise information gathered only from standard stereo vision. We proposete
hniques that rea
tively modify the robot's learned motor primitivesbased on non-parametri
 potential �elds 
entered on the Early Cogni-tive Vision des
riptors. These allow both obsta
le avoidan
e, and theadapting of �nger motions to the obje
t's lo
al geometry. The methodswere tested on a real robot, where they led to improved adaptability andquality of grasping a
tions.1 Introdu
tionConsider grasping an obje
t at a spe
i�
 point in a 
luttered spa
e, a 
ommontask for future servi
e robots. Avoiding 
ollisions is easy for humans, as is pre-shaping the hand to mat
h the shape of the obje
t to be grasped. Most adultsperform these a
tions qui
kly and without ex
essive planning. All of these a
-tions o

ur before the hand 
omes into 
onta
t with the obje
t, and 
an thereforebe a

omplished using stereo vision [1,2℄. In 
ontrast, robots often struggle withexe
uting this task, and rely on spe
ially designed sensors (e.g., laser s
anner,ERFID) to get a

urate and 
omplete representations of the obje
t and environ-ment [3, 4℄, followed by lengthy planning phases in simulation [5℄.To avoid ex
essive planning, a robot 
an employ a sensor-based 
ontroller,whi
h adjusts its motions online when in the proximity of obsta
les or other ex-ternal stimuli [6℄. Sensors su
h as time-of-�ight 
ameras, ultrasoni
 sonar arrays,and laser range �nders are favored for these purposes due to their relatively densesampling abilities [7,8℄. Stereo vision systems, while usually giving sparser read-ings, have also been used for obsta
le dete
tion, espe
ially in the �eld of mobilerobots. However, these methods often rely on task-spe
i�
 prior knowledge (e.g,assume the ground is �at) and are designed to avoid obsta
les 
ompletely [8,9℄,while the robot must get 
lose to the obje
t for grasping tasks. In terms of robot
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A. S
ene B. ECV RepresentationFig. 1. A) The robot used in our experiments and an example of a grasping task in a
luttered environment. B) The green ECVDs represent the obje
t to be grasped, whilethe surrounding ECVDs in the s
ene are 
lutter. The 
oordinate frame of one of therobot's �ngers and variables used in se
tion 2 are shown. The x-y-z 
oordinate systemis lo
ated at the base of the �nger, with z orthogonal to the palm, and y in the dire
tionof the extended �nger. The marked ECVD on the left signi�es the jth des
riptor, withits position at vj = (vjx, vjy , vjz)
T , and edge dire
tion ej = (ejx, ejy, ejz)

T of unitlength. The position of the �nger tip is given by p = (px, py, pz)
T .manipulators, the resear
h has fo
used on 
oarse obje
t representations of novelobje
ts [10�13℄ and using additional sensor arrays when in 
lose proximity tothe obje
t [14, 15℄.In this paper, we propose a sensor-based robot 
ontroller that 
an performhuman inspired grasping motions, in
luding preshaping of the hand, smooth andadaptive motion traje
tories, and obsta
le avoidan
e, using only stereo vision todete
t the environment. The 
ontroller uses potential �eld methods [6℄, whi
htreat the robot's state as a parti
le in a for
e-�eld; i.e. the robot is attra
ted toa goal state, and repelled from obsta
les.The system uses the dynami
al systemmotor primitive (DMP) framework [16,17℄ for the attra
tor �eld, whi
h are 
apable of en
oding 
omplex traje
toriesand adapting to di�erent grasp lo
ations. These DMPs are implemented as apassive dynami
al system superimposed with an external for
e; i.e.,

ÿ = αz(βzτ
−2(g − y) − τ−1ẏ) + aτ−2f(x), (1)where αz and βz are 
onstants, τ 
ontrols the duration of the primitive, a is anamplitude, f(x) is a nonlinear fun
tion, and g is the goal for the state variable y.The variable x ∈ [0, 1] is the state of a 
anoni
al system ẋ = −τx, whi
h ensuresthat the di�erent hand and arm motions are syn
hronized. The fun
tion f(x)is used to en
ode the traje
tory for rea
hing the goal state, and takes the form

f (x) = (
∑M

i=1
ψi)

−1
∑M

j=1
ψj(x)wjx, where ψ(x) are M Gaussian basis fun
-tions, and w are weights. The weights w 
an be programmed through imitationlearning [18℄. The DMPs treat the goal state g as an adjustable variable andensure that this �nal state is always rea
hed.



Grasping with ECVDs and DMPs 3The s
ene's visual representation is used to augment the DMP motions andform the basis of the repelling �eld. The s
ene des
ription needs to be in 3D, workat a �ne s
ale to maintain geometri
 details, and represent the s
ene sparsely toredu
e the number of 
al
ulations required per time step. The Early CognitiveVision system of Pugeault et al. [19, 20℄ (see Fig. 1) ful�lls these requirementsby extra
ting edge features from the observed s
ene. The system subsequentlylo
alizes and orientates these edges in 3D spa
e [21℄, with the resulting featuresknown as early 
ognitive vision des
riptors (ECVD) [19℄. By using a large numberof small ECVDs, any arbitrary obje
t/s
ene 
an be represented.The methods for generating the DMP and ECVD based potential �elds aredetailed in Se
tion 2. In Se
tion 3, the system is tested on a real robot andshown to be 
apable of avoiding obsta
les and adapting the �ngers to the lo
algeometry of the obje
t for improved grasps using only stereo vision.2 Methods for Rea
tive GraspingThe methods proposed in this se
tion were inspired by human movements. Hu-man grasping movements 
an be modeled as two linked 
omponents, transporta-tion and preshaping, syn
hronized by a shared timer or 
anoni
al system [22,23℄.Transportation refers to the a
tions of the arm in moving the hand, while thepreshaping 
ontrols the opening and subsequent 
losing of the �ngers [24℄.Humans perform the rea
hing/transportation 
omponent in a task-spe
i�

ombination of retina and hand 
oordinates [25℄, whi
h allows for easier spe
i�-
ation of obje
t traje
tories in a manipulation task than joint 
oordinates wouldand also results in a redu
tion in dimensionality.Similar to the transportation 
omponent, the main purpose of the �ngerposture 
omponent is to preshape the hand by extending the �ngers su�
ientlyfor them to pass around the obje
t upon approa
h, and then 
lose on the obje
tsimultaneously for a good grasp [22,24℄. Over-extending the �ngers is undesirableas it makes 
ollisions with the environment more likely and is usually restri
tedto situations where the shape of the obje
t is un
ertain [22, 26℄.The DMP and ECVD based potential �eld implementations are des
ribed inSe
tions 2.1 and 2.2. Se
tion 2.3 proposes methods that improves the interpola-tion of grasping movements to new grasp lo
ations.2.1 Regular Dynami
al Motor Primitives for GraspingThe �rst step towards spe
ifying the grasping movements is to de�ne an attra
tor�eld as a DMP that en
odes the desired movements given no obsta
les. Theprin
ipal features that need to be de�ned for these DMPs are the goal positions,and the generi
 shape of the traje
tories to rea
h the goal.Determining the goal posture of the hand using the ECVDs has been investi-gated in a previous paper [27℄. Possible grasp lo
ations were hypothesized fromthe geometry and 
olor features of the ECVDs, and subsequently used to 
reatea kernel density estimate of suitable grasps. It was then re�ned by evaluatinggrasps on the real system. However, this grasp synthesizer only gives the desiredlo
ation and orientation of the hand and not the exa
t �nger lo
ations.



4 Oliver Krömer, Renaud Detry, Justus Piater, Jan PetersUsing the ECVDs, the goal position of ea
h �nger is determined by �rstestimating a lo
al 
onta
t plane for the obje
t in the �nger 
oordinate systemshown in Fig. 1. If the region to be grasped is not planar, it 
an still be linearlyapproximated as su
h for ea
h �nger to give good results. To ensure the approx-imation is a

urate in the proximity of the �nger, the in�uen
e of the ith ECVDis weighted by wi = exp(−σ−2
x v2

ix − σ−2
y v2

iy − σ−2
z v2

iz), where σx, σy, and σz arelength s
ale 
onstants that re�e
t the �nger's length and width, and vi is theposition of the ECVD in the �nger referen
e frame. The hand orientation was
hosen su
h that the Z dire
tion of the �nger should be approximately parallelto the 
onta
t plane, whi
h redu
es the problem to des
ribing the plane as aline in the 2D X-Y spa
e. The X-Y gradient of the plane is approximated by
φ = (

∑N

i=1
wi)

−1
∑N

i=1
wi arctan(eiy/eix), where N is the number of vision de-s
riptors, and ei is the dire
tion of the ith edge. The desired Y position of the�ngertip is then given by p̃y = (

∑N

i=1
wi)

−1
∑N

i=1
(wiviy − tan(φ)wivix), whi
h
an be 
onverted to joint angles using the inverse kinemati
s of the hand.Many of the bene�
ial traits of human movements, in
luding smooth motionsand small overshoots for obsta
le avoidan
e [23, 24, 28℄, 
an be transferred toDMPs through imitation learning. To demonstrate grasping motions, we used
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g

A. Proposed DMP 
oordinate system B. Example Traje
toriesFig. 2. A)The above diagram shows the the 
oordinate systems for the transportationDMPs. The axes Xw-Yw-Zw are the world 
oordinate system, while Xp-Yp-Zp is the
oordinate system in whi
h the DMP is spe
i�ed. The traje
tory of the DMP is shownby the pink line, starting at the green point, and ending at the red point. Axis
Xp is parallel to the approa
h dire
tion of the hand (the bla
k arrow a). Axis Yp isperpendi
ular to Xp, and pointing from the start s towards the goal g.B) The plot shows rea
hing traje
tories, wherein the x and y values are governedby two DMPs sharing a 
anoni
al system. The standard DMPs and the augmentedDMPs des
ribed in Se
tion 2.3 are presented along with their respe
tive �nal approa
hdire
tions.a VICON motion tra
king system to re
ord the movements of a human testsubje
t during a grasping task. It is not ne
essary for the obje
t used for thedemonstration to mat
h that grasped by the robot later. VICON markers wereonly required on the ba
k of the hand and �nger tips. As the rea
hing traje
toriesare en
oded in task spa
e rather than joint spa
e, the 
orresponden
e problemof the arm was not an issue for the imitation learning step. Details for imitationlearning of DMPs using lo
ally weighted regression 
an be found in [18℄.



Grasping with ECVDs and DMPs 5As DMPs are provably stable [17℄, they are safe to exe
ute on a robot andalso ensure that the �nal arm and �nger postures will also always be a
hievedwhen physi
ally possible. The repelling �eld must maintain this stability.2.2 Adapting the Motor Primitives with Vision Des
riptorsHaving spe
i�ed the basi
 grasping movements, a repelling �eld re�nes the mo-tions in order to in
lude obsta
le avoidan
e for the transportation and ensurethat the �nger tips do not 
ollide with the obje
t during the hand's approa
h.The repelling �eld is based on ECVDs, whi
h 
an be understood as small linesegments of an obje
t's edges lo
alized in 3D (see Fig. 1).
A. Preshaping B. Grasping

C. LiftingFig. 3. The three main phases of a basi
grasp are demonstrated. The preshap-ing of the hand (A) tries to pose the�ngers to mat
h the obje
t's geometry.The grasping (B) then 
loses the three�ngers at the same rate until they se-
ure the obje
t. Finally (C) the obje
t islifted. The obje
ts on the bottom A andB are 
lutter that had to be avoided.

The repelling potential �elds forECVDs are 
hara
terized by two mainfeatures; i.e., the repelling for
es ofmultiple ECVDs des
ribing a singleline do not superimpose, and the �eldshould not stop DMPs from rea
h-ing their ultimate goals. The systemtherefore uses a Nadaraya-Watsonmodel [29℄ of the form
ua = −s(x)

∑N

i=1
ricai

∑N

j=1
rj

,to generate a suitable repelling �eld,where ri is a weight assigned to the ithECVD, s is the strength of the over-all �eld, x is the state of the DMPs'
anoni
al system, and cai is the re-pelling for
e for a single des
riptor.Subs
ript a spe
i�es if the detra
tor�eld is for the �nger motions �f � orthe rea
hing movements �h�.The weight of an ECVD for 
ol-lision avoidan
e is given by ri =
exp(−(vi − p)Th(vi − p)), where viis the position of the ith ECVD in thelo
al 
oordinate system, h is a ve
tor of width parameters, and p is the �n-ger tip position, as shown in Fig. 1. A suitable set of width parameters are
h = 2[w, l, l]T, where w and l are the width and length of the �nger respe
-tively.The rea
hing and �nger movements rea
t di�erently to edges and employ dif-ferent types of basis fun
tions cfi and chi for their potential �elds. For the �ngers,the individual potential �elds are logisti
 sigmoid fun
tions about the edge ofea
h ECVD of the form ρ(1+exp(diσ

−2

c ))−1, where di =
∥

∥(p− vi) − ei(p − vi)
Tei

∥

∥is the distan
e from the �nger to the edge, ρ ≥ 0 is a s
aling parameter, and
σc ≥ 0 is a length parameter. Di�erentiating the potential �eld results in a
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e term of cfi = ρ exp
(

diσ
−2

c

) (

1 + exp
(

diσ
−2

c

))

−2. As the logisti
 sigmoid ismonotoni
ally in
reasing, the repelling always for
es the �ngers open further tomove their tips around the ECVDs and thus ensure that they always approa
hthe obje
t from the outside. Similarly, a symmetri
al potential fun
tion 
an beemployed to for
e the hand 
losed when near ECVDs pertaining to obsta
les.The rea
hing motion uses basis fun
tions of the form ̺ exp(−0.5dT

i diσ
−2

d ),where di = (q−vi)−ei(q−vi)
Tei is the distan
e from the end e�e
tor position,

q, to the edge, and ̺ ≥ 0 and σd ≥ 0 are s
ale and length parameters respe
tively.Di�erentiating the potential with respe
t to di gives a for
e term in the Ydire
tion of chi = ̺(di.Y)σ−2

d exp(−0.5dT

i diσ
−2

d ), whi
h 
an be interpreted as aradial for
e from the edge with an exponentially de
aying magnitude.To syn
hronize the repelling �eld with the DMPs and ensure the repellingstrength is zero at the end of a motion, the strength s is 
oupled to the 
anoni
alsystem of the DMPs. Hen
e, s(x) = (
∑M

j=1
ψj(x))

−1
∑M

i=1
ψi(x)wix, where x isthe value of the 
anoni
al system, ψ are the DMP basis fun
tions, and w spe
ifythe varying strength of the �eld during the traje
tory. To re�e
t the human ten-den
y towards more pre
ise movements during the last 30% of a motion [28℄, thestrength fun
tion was set to give the highest strengths during the �rst 70% of themotion for the rea
hing traje
tories, and the last 30% for the �nger movements.The repelling �elds of both the grasping and rea
hing 
omponents have nowbeen de�ned, and 
an be superimposed into the DMP framework as

ÿ =
(

αz(βzτ
−2(g − y) − τ−1ẏ) + aτ−2f(x)

)

− τ−2ua,whi
h then represents the 
omplete ECVD and DMP based potential �eld.2.3 Generalizing Dynami
al Motor Primitives for Grasping

Fig. 4. Examples of di�erent approa
hdire
tions are presented, all based o� ofa single human demonstration.

Having de�ned the potential �eld for asingle grasping motion, we must gen-eralize the movements to new targetgrasps. By interpolating the traje
-tories in a task-spe
i�
 manner, thenumber of example traje
tories re-quired from the demonstrator for im-itation learning 
an be greatly de-
reased. While the goal states ofDMPs 
an be set arbitrarily, the ap-proa
h dire
tion to the grasp 
annotbe easily de�ned and the amplitudeof the traje
tory 
an be unne
essarilysensitive to 
hanges in the start posi-tion y0 and the goal position g.The 
orre
t approa
h dire
tion
an be maintained by using a task-spe
i�
 
oordinate system. We pro-pose the Xp-Yp-Zp 
oordinate system
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A. Flat B. Slanted C. Cylindri
al Handle

D. Ar
hed Handle E. Knob F. Extreme PointFig. 5. Pi
tures A and B show the system adjusting to di�erent plane angles. ImagesC and D demonstrate the preshaping for di�erent types of handles. Pi
ture E showsthe preshaping for a 
ir
ular dis
 stru
ture, su
h as a door knob, and manages to getits �ngers 
losely behind the obje
t. Pi
ture F shows a preshape where the obje
t wastoo far away to be rea
hed by two of the �ngers, but still hooks the obje
t with 1 �nger.shown in Fig. 2, whi
h dedi
ates one axis xp spe
i�
ally to the approa
h dire
-tion. The majority of the unobstru
ted rea
hing motion will lie in a plane de�nedby the starting point, the goal lo
ation, and the �nal approa
h dire
tion, whi
hwe use to de�ne our se
ond axis yp. The �nal axis zp is given by zp = xp × yp.The se
ond problem relates to the sensitivity of s
aling motions with rangesgreater than ‖y0−g‖, whi
h grasping motions require to move around the outsideof obje
ts. The system 
an be desensitized to variations in y0 − g by employingthe amplitude term a = ‖η(g − y0) + (1 − η)(gT − y0T )‖ instead of the standard
a = (g−y0) [16℄, where gT and y0T are the goal and start positions of the trainingdata respe
tively, and η ∈ [0, 1] is a weighting hyperparameter that 
ontrols how
onservative the generalization is. By taking the absolute value of the amplitude,the approa
h dire
tion is spe
i�ed solely by the 
hoi
e of Xp-Yp-Zp 
oordinatesystem and not the amplitude term. This amplitude term is a generalization ofthe amplitude proposed by Park et al. [12℄, whi
h 
orresponds to the spe
ial 
aseof η = 0. Example interpolations of a transportation traje
tory 
an be seen inFig. 2.3 Grasping ExperimentsThe methods des
ribed in Se
tion 2 were implemented and evaluated on a realrobot platform 
onsisting of a Videre stereo 
amera, a Barrett hand, and a 7-degrees-of-freedom Mitsubishi PA10 arm, as shown in Fig. 1.3.1 Grasping Experiment Pro
edureTo test the system's obsta
le avoidan
e ability, the robot was given the task ofgrasping an obje
t without hitting surrounding 
lutter (see Fig. 1). Ea
h trialbegins with an estimate of the pose of the obje
t relative to the robot [30℄ and
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ation. The model's ECVD are then proje
ted intothe s
ene, and the robot attempts to perform the grasp and lift the obje
t o�the table.If the hand 
ollides with an obsta
le or kno
ks the obje
t down during itsapproa
h, the trial is marked as a failure. Grasp lo
ations on the obje
t wereprede�ned, and all su

essful trials had to lift the obje
t from its stand (seeFig. 3). After ea
h grasp attempt, the hand reverses along the same approa
hdire
tion, but with a stati
 preshaping of the hand in order to determine if
ollisions would have o

urred if the proposed 
ontroller had not been used. Theexperiment 
onsisted of 50 trials and were varied to in
lude di�erent approa
hdire
tions and lo
ations around the obje
t.Additional trials were performed on another obje
t to further explore how thesystem's preshaping ability adapts to di�erent obje
t geometries. The 
lutter wasremoved in these trials to demonstrate the range of grasps that a single humandemonstration 
an easily be generalized to.3.2 Experimental Results
A. Preshaping
B. GraspingFig. 6. The preshaping allows for more
ontrolled grasping. (A) The preshapehas mat
hed the lo
al geometry of theobje
t. When grasping, the two �ngerson the left immediately pin
h the pad-dle, while the �nger on the right turnsthe paddle about the pin
hed point. (B)The grasping ends when the paddle hasbe
ome aligned with all three �nger tips.

The repelling �eld and preshaping ofthe hand allowed the system to han-dle the 
luttered environment that theobje
t had been pla
ed in, whi
h wasnot a trivial task. The hand 
ameinto 
onta
t with the 
lutter for anestimated 8% of the grasp attempts,but never more than a glan
ing 
on-ta
t. When the proposed 
ontrollerwas dea
tivated and a stati
 preshapewas used, the hand 
ollided with oneor more pie
es of 
lutter in 86% ofthe trials. Thus, the proposed sensor-based 
ontroller led to a fa
tor of tende
rease in the number of 
onta
tswith the 
lutter. The few instan
eswhen the hand did 
ollide with theobsta
les were the result of obsta
lesbeing partially o

luded, and thus notfully represented by the ECVDs. Thisproblem represents the main restri
-tion of the 
urrent method, whi
h 
anbe over
ome by simply using multipleviews to a

umulate the ECVD rep-resentation of the s
ene, as des
ribedin [19, 20℄. The repelling �elds of the�ngers ensured that the hand alwaysopened su�
iently to a

ept the obje
t without 
olliding with it.



Grasping with ECVDs and DMPs 9Using only a single human demonstration, the robot 
ould perform a widerange of rea
hing movements with varied approa
h dire
tions, as demonstratedin Fig. 4. Requiring fewer demonstrations hastens the imitation learning pro
ess,while still allowing the robot to perform smooth and natural rea
hing motions.The in
orporation of ECVDs allowed the �ngers to adapt to a wide varietyof di�erent obje
t geometries, as shown in Fig. 5, and pla
e the �nger tips very
lose to the obje
t before applying the grasp. This 
lose proximity to the obje
trestri
ts how mu
h the obje
t 
an move during the �nal grasping phase, as the�ngers make 
onta
t with the obje
t at approximately the same time, and leadsto grasps being applied in a more 
ontrolled manner. An example of a 
ontrolledgrasp is shown in Fig. 6, whi
h would not be possible without the proposedpreshaping, as the �nger on the right would have made �rst 
onta
t with thepaddle and simply kno
ked it down.The results ultimately show that our hypothesis was 
orre
t and the proposedmethods represent a suitable basis for avoiding obsta
les without relying on a
ompli
ated path planner, and using only stereo vision information.4 Con
lusionsThe proposed methods augment dynami
al system motor primitives to in
or-porate Early Cognitive Vision des
riptors by using potential �eld methods, andrepresent important tools that a robot needs to exe
ute preshaped grasps of anobje
t in a 
luttered environment using stereo vision. The te
hniques allow forpreshaping the �ngers to mat
h the geometry of the obje
t and shaping the tra-je
tory of the hand around obje
ts. The 
ontroller was tested on a real robot,and was not only su

essful at performing the task, but also requires very fewdemonstrations for imitation learning, improves obsta
le avoidan
e, and allowsfor more 
ontrolled grasps to be performed.Referen
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