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A Comparison of Autoregressive Hidden Markov
Models for Multi-Modal Manipulations with

Variable Masses
Oliver Kroemer1, and Jan Peters2

Abstract—In contact-based manipulations, the effects of the
robot’s actions change as contacts are made or broken. For
example, if a robot applies an increasing upward force to an
object, then the force will eventually overcome the object’s weight
and break the object-table contact. The robot can subsequently
raise or lower the height of the object. The transition from resting
on the table to not being in contact with the table is an example
of a mode switch. The conditions for this mode switch depend
on the mass of the object being manipulated. By modeling the
mode switch, the robot can estimate the mass of the object based
on the conditions when the mode switch occurs. The robot can
also use the model to predict when the object will break contact
given its mass.

We evaluated four different autoregressive hidden Markov
models for representing manipulations with mass-dependent
mode switches. The models were successfully evaluated on
pushing and lifting tasks. The evaluations show that the predicted
object trajectories and estimated object masses are more accurate
when using models that interpolate between different masses, and
that consider the observed state for estimating the mode switches.

Index Terms—Learning and Adaptive Systems, Model Learn-
ing for Control, Perception for Grasping and Manipulation

I. INTRODUCTION

CONTACT-BASED manipulations are inherently discon-
tinuous. As contacts are made or broken, the effects of

the robot’s actions change. For example, in order to push an
object, a robot first has to place its hand on the side of the
object. Making contact with the object constrains the hand’s
movements, but it allows the robot to apply a force onto
the object. Applying a sufficiently large force will overcome
the object’s static friction and allow the robot to slide the
object. The robot thus begins moving the object as the contact
between the object and the supporting surface starts slipping.

The described pushing task consists of three parts: ap-
proaching the object with the hand, loading up the force on
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Fig. 1. The robots estimate the boxes’ masses by (left) pushing or (right)
lifting them and detecting the contact state changes, i.e., the mode switches.

the object, and sliding the object. Each of these three parts
is referred to as a mode [1], [2]. Modes are sometimes also
referred to as phases or action phases in the literature [3],
[4]. The effects of the robot’s actions within each mode are
continuous. The robot switches between the different modes
by fulfilling certain conditions, i.e., making contact with the
object and applying a sufficiently large force.

The conditions required to switch from one mode to another
often depend on the mass of the object, e.g., the pushing
force required to overcome the object-surface static friction
depends on the object’s weight. Larger forces will often need
to be applied to manipulate more massive objects, and some
mode switches may not be feasible if an object is too heavy
or too light. The conditions for switching between modes thus
provide information regarding the object’s mass. The robot
should therefore be capable of estimating the mass of an object
based on the conditions when the mode switches occur. The
robot could use this information to, for example, estimate the
latent mass of an object by pushing it. Conversely, given the
mass of an object, the robot should also be able to predict
when mode switches will occur.

In this paper, we explore different models for representing
mode switches for manipulating objects with variable masses,
e.g., containers. The manipulations are modeled using different
types of autoregressive hidden Markov models (ARHMMs),
wherein the mode is represented by the model’s latent state.
We compare two standard types of ARHMMs, as well as two
observed state-based transitions ARHMMs (STARHMMs),
which estimate the probability of a mode switch based on
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the observed state. The four models are described in Section
III. The models were evaluated on a box pushing task and
a box lifting task as shown in Fig. 1. The experiments
are explained and discussed in Section IV. The experiments
evaluated the accuracy of the models’ predicted trajectories
given the object’s mass. The experiments also evaluated the
models’ ability to estimate the latent mass of a container based
on an observed trajectory.

II. RELATED WORK

Manipulation tasks are often modeled using multiple modes
for planning and control. The conditions for switching between
modes generally represent sensory subgoals for the overall
manipulation tasks. Similar to human grasping [3], Romano
et al. [5] proposed a robust pick-and-place controller that
switches between discrete modes based on tactile and haptic
signals. Hauser et al. [1] and Barry et al. [2] proposed
multi-modal planning methods for manipulation tasks. Mode
switches included making contact with the side of an object to
then be able to push the object. Kroemer et al. [4] presented
a method for decomposing manipulations into modes and
subsequently learning motor primitive skills for transitioning
between these modes. Koval et al. [6] proposed a robust
and computationally efficient policy for pushing objects that
consists of pre- and post-contact parts. The policy uses tactile
feedback to localize the object in the robot’s hand. Instead
of using mode switches as subgoals for a skill, we are inves-
tigating models to capture the dependency of the switching
conditions on the object’s mass and using these models to
estimate the latent mass of manipulated objects.

Estimating the mass of an object from pushes is a form
of interactive perception, wherein the robot uses actions to
observe specific aspects of its environment. Interactive per-
ception is commonly used to segment scenes into objects [7]
and to extract articulation models [8], [9]. It can also be
used to estimate the contents of containers from feedback
during manipulations. Saal et al. [10] proposed a method
for actively estimating the viscosity of a bottle’s liquid using
tactile signals from different shaking actions. Chitta et al. [11]
presented a method for detecting liquids in containers, and
determining whether the containers were open or closed, from
tactile signals during grasping and rolling actions. Sinapov
et al. [12] proposed a framework for learning categories of
objects based on visual, audio, and proprioceptive signals from
ten exploratory actions. The categories included single-object
categories, e.g., the color or contents of a container, as well
as categories on pairs and groups of objects, e.g. objects
varying by weight. Sinapov et al. [13] proposed a method
for learning to order sets of objects according to their weight
based on sensory feedback during exploratory behaviors. Our
work focuses on estimating the mass of a container based
on the mode switches. This information could be fused with
additional estimates of the mass and object properties.

The models evaluated in this paper are types of hidden
Markov models (HMMs). Different types of HMMs have
been widely used in robotics. The models are often used
to segment demonstrations of manipulation tasks into skills.

Niekum et al. [14] proposed using beta process autoregressive
HMMs to segment demonstrations into motion categories.
They demonstrated their approach on a complicated assembly
task. Kulic et al. [15] presented a segmentation and motion
primitive learning framework that uses HMMs to model the
motion primitives. Patel et al. [16] use a hierarchical HMM to
segment human manipulation tasks. Rozo et al. [17] proposed
using a parametric HMM to model a pouring skill that adapts
to the initial weight of the bottle. While most of the related
work has focused on segmenting demonstrations into skills,
we use the HMMs to learn multi-modal transition models that
capture the effects of the robot’s actions and the conditions
for switching between modes.

Identifying the dynamic properties and state transitions of
objects and robots is an important aspect of robotics [18], [19],
[20]. Wu et al. [21] recently proposed using deep learning and
a realistic physics engine to estimate the latent masses and
friction coefficients from observed object interactions. Finn et
al. [22] proposed a deep learning approach to directly predict
the effects of pushing actions on cluttered objects in the vision
domain. While most of the work in this research area focuses
on modeling the effects within each mode, our evaluation
investigates different models for switching between the modes.

The main contribution of this paper is an evaluation of four
different models for representing mode switches in manipu-
lation tasks. These models can be used to estimate the latent
mass of an object based on an observed trajectory, or to predict
a trajectory for a given mass. Our experiments evaluate both of
these applications of the models on pushing and lifting tasks.

III. MULTI-MODAL MANIPULATION MODELS

In this section, we present the four manipulation models
evaluated in our experiments. The first two models are au-
toregressive hidden Markov models (ARHMMs), with mass
independent and mass dependent mode switches. The other
two models are observed state-based autoregressive hidden
Markov models (STARHMMs). The graphical models of the
four models are shown in Fig. 2.

A. Model Components

In all four models, the manipulation is modeled as a partially
observable Markov decision process, wherein the discrete
mode is the latent state. We denote the latent mode at time
step t as ρt ∈ {1, ..., κ} and the observed part of the state as
st ∈ S, where S is the space of observed states.

In the pushing experiment, the observed state st ∈ R3

consists of the hand position, the object position, and the
desired hand position along the direction of the pushing
motion. For the lifting experiment, the robot used the vertical
components of the hand position and the desired hand position
to create a R2 observed state space. The object position is
redundant given the hand position, as the robot used the
same top grasp for all of the trials. As the robot is using
an impedance controller, it can use the difference between the
actual and desired hand positions to estimate the force being
applied to the object.
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Fig. 2. The graphical models for the four evaluated models. The orange nodes indicate observed variables, while the white nodes indicate hidden variables.
The mass is red as it can be either observed or hidden depending on the context.

The state also includes the mass of the object m, which
we assume to be constant throughout the manipulation. The
mass is latent when the robot is estimating the mass from an
observed trajectory, and observed when predicting a trajectory
given the mass. Although the object’s mass can take any
positive real value, one of the evaluated models assumes a
discrete number of mass settings.

In addition to the state, the robot also performs an action
at ∈ A, where A is the action space. In our experiments,
the robot used a Cartesian impedance controller to perform
the manipulations. The actions were defined as the horizontal
pushing or vertical lifting shifts in the desired hand position,
resulting in R action spaces. The shifts were the same for each
time step, resulting in a constant action across time.

The robot’s actions will have different effects depending
on the current mode. The models represent the effects using
the observed state transition distribution p(st+1|st, at,m, ρt).
We use linear Gaussian models of the form st+1 ∼
N (Aρt [m at 1]T + st,Σρt) to represent the transition dis-
tribution. Each of the κ modes has its own set of matrices
Aρt and Σρt to model the effects of different masses and
actions. The parameters for all four of the models are estimated
using standard message passing and expectation maximization
methods [23], [24].

The models are evaluated on quasi-static pushing and lifting
tasks. The state space therefore does not include the acceler-
ations of the object or hand. The observed state transitions
should also not rely on the mass of the object in this setting.
However, we include the mass in the transition distribution as
it may provide additional information for some models. For

example, a one-mode model κ = 1 could capture that lighter
objects are lifted higher or pushed further when given the same
initial state and action sequences.

The difference between the four evaluated models is their
representation of the mode transitions from ρt to ρt+1. The
mode switches are important because they correspond to
events such as when an object makes or breaks contact with
another object, or when it begins to slip. The conditions for
these events often depend on the mass of the object being
manipulated.

B. Autoregressive Hidden Markov Models

The first two models that we evaluate are ARHMMs. Their
graphical models are shown on the left of Fig. 2. The first
ARHMM assumes that the mode transitions are independent
of the mass and only depend on the previous latent mode
p(ρt+1|ρt). Given the mass independence of the model’s mode
transitions, we refer to this model as ARHMM-MassIndep.
The transition model is represented by a single transition
matrix T ∈ Rκ×κ, where the probability of transitioning from
mode i to j is given by the element in the ith row and jth
column p(ρt+1 = j|ρt = i) = [T ]ij . The distribution over the
first mode p(ρ1) is modeled as a discrete distribution over the
κ modes.

The second model assumes that the transitions depend
on the mass p(ρt+1|ρt,m), and we denote this model as
ARHMM-MassDep. For this model, we assume that the mass
can only take one of a discrete set of values. The robot learns a
separate transition matrix Tm ∈ Rκ×κ for each of these mass
values. In our experiments, the robot learned a single transition
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matrix for the ARHMM-MassIndep and five for the ARHMM-
MassDep, which correspond to the five discrete mass settings.
The distribution over the first mode p(ρ1|m) is modeled as a
separate discrete distribution over the κ modes for each mass
setting.

C. Observed State-based Transitions Autoregressive HMMs
The remaining two models are observed state-based tran-

sitions autoregressive hidden Markov models (STARHMMs).
These models differentiate themselves from the previous mod-
els by having the mode transitions depend on the observed
state p(ρt+1|ρt, st,m).

The first of the STARHMMs uses the standard logistic
regression model to represent the transitions between the
modes [25]. We refer to this model as STARHMM-STD. The
probability of transitioning from mode ρt = i to ρt+1 = j is
given by

p(ρt+1 = j|ρt = i, st+1,m) =
exp(θTijφt+1)∑κ
k=1 exp(θTikφt+1)

,

where θik with k ∈ {1, ..., κ} are vectors of learned parameters
that determine the transition conditions from the ith mode,
and φt+1 is a vector of features describing the observed state
st+1 and mass m. The features φt for the lifting and pushing
tasks include the distance between the actual and desired
hand positions, the distance between the hand and the box
for pushing, and the mass of the box. The distribution over
the first mode p(ρ1|s1,m) is modeled as an additional logistic
regression over the κ modes.

The final model is a variant of the STARHMM that models
the entry and exit conditions of the modes [4]. We refer to this
model as STARHMM-EE. The model introduces an additional
binary termination variable εt ∈ {0, 1}. The distribution over
the termination variable is given by

p(εt = 1|ρt = i, st+1,m) =
(

1 + exp
(
θ̂Ti φt+1

))−1

,

where θ̂i is a vector of parameters that define the termination
probability for different conditions in the ith mode.

If the termination variable is low εt = 0 at time t, then the
mode does not switch p(ρt+1 = ρt|ρt, st,m, εt = 0) = 1. If
the termination variable is high εt = 1, then the distribution
over the next mode is given by the initiation distribution

p(ρt+1 = j|ρt, st+1,m, εt = 1) =
exp(θ̌Tj φt+1)∑κ
k=1 exp(θ̌Tk φt+1)

,

where θ̌j is a vector of parameters that determine the initia-
tion conditions for the jth mode. The initiation distribution
is shared amongst all modes and does not depend on the
previously terminated mode. The robot can transition to the
same mode ρt+1 = ρt even if the termination variable is
high εt = 1. The initiation distribution is used to define the
distribution over the first mode p(ρ1|s1, ε0 = 1,m). Given
the termination and initiation distributions, one can compute
the phase transition distribution for the STARHMM-EE by
marginalizing out the termination variable

pEE(ρt|st, ρt−1,m) =∑1
εt−1=0p(ρt|ρt-1, εt-1,m)p(εt-1|st, ρt-1,m).

p(s1:N+1, a1:N , ρ1:N ,m) =

p(m)p(s1|m)pinit
N∏
t=1

p(st+1|st, at, ρt,m)p(at)

N∏
t=2

pmode
t

pinit pmode
t

ARHMM-MassIndep p(ρ1) p(ρt|ρt-1)
ARHMM-MassDep p(ρ1|m) p(ρt|ρt-1,m)
STARHMM-STD p(ρ1|s1,m) p(ρt|st, ρt-1,m)

STARHMM-EE p(ρ1|s1, ε0 = 1,m) pEE(ρt|st, ρt-1,m)

TABLE I
THE FOUR MODELS’ JOINT DISTRIBUTIONS OVER THE STATES, ACTIONS,

MODES, AND MASS FOR A TRAJECTORY WITH N STEPS.

While the STARHMM-STD learns a separate mapping from
the observed state and mass to the next mode for each
mode, the STARHMM-EE learns a single mapping that is
shared across all modes, i.e., the initiation distribution. The
termination variable allows the model to suppress this mapping
to remain in the current mode until the additional mode-
specific termination conditions are fulfilled.

The joint probability p(s1:N+1, a1:N , ρ1:N ,m) for a trajec-
tory of N steps is given in Table I for each of the models.
This table highlights the different mode switching models.

D. Model Initialization

To initialize the expectation maximization (EM) algorithm
for computing the model parameters, we cluster the samples
of the trajectories using spectral clustering [26]. Spectral
clustering requires a similarity value for each pair of samples.
We compute the similarity using a squared exponential kernel
function with the inputs given by the samples’ changes in the
observed state st+1 − st. The kernel’s length scales for each
dimension are given by the standard deviations of the input
data. The actions do not need to be taken into consideration
as they are constant for all of the samples. The cluster assign-
ments were subsequently used as the initial mode assignments
of the samples and the initial model parameters were computed
accordingly. For the STARHMM-EE, we initially assumed a
low termination probability of 0.01 when consecutive samples
were assigned to the same mode.

E. Trajectory Prediction

Given an initial observed state s1, the object mass m, and
a sequence of actions a1:N , the robot uses the models to
predict the states for the next N steps of the sequence. The
robot begins by sampling the initial mode ρ1. It subsequently
samples the next observed state s2 from the observed state
transition distribution, followed by the mode ρ2 based on the
mode transition distribution. The robot continues to iterate
between sampling the variables st+1 and ρt+1 until the end of
the sequence. For the STARHMM-EE, the robot samples the
termination variable εt according to the termination distribu-
tion before sampling the next mode ρt+1 from the initiation
distribution if εt = 1.

To evaluate the accuracy of the predicted trajectories, we
compare the predicted sequence of states to the ones that
the robot observed during the actual execution of the full
sequence. For each test trajectory, 50 prediction trajectories
were sampled as described above. The prediction performance
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was then defined by the root mean squared error (RMSE) in
the hand and box positions across all of the time steps for all
50 prediction trajectories and all of the trajectories in the test
set.

F. Mass Estimation

Given a sequence of observed state s1:N+1 and actions
a1:N , the robot can use the models to estimate the latent
mass m of the manipulated object. We want to compute the
Maximum a posteriori (MAP) estimate of the mass m∗ given
the observations, which is equivalent to computing

m∗ = arg max
m

[p(s1:N+1, a1:N |m)p(m)].

In our experiments, the prior over the mass p(m) is a uni-
form distribution. This problem is equivalent to finding the
mass that maximizes the joint distribution p(s1:N+1, a1:N ,m).
We can compute this distribution from the joint distribution
p(s1:N+1, a1:N , ρ1:N ,m), as given in Table I, by marginalizing
out the latent mode variables ρ1:N . The marginalization can
be performed efficiently using a forward message passing
algorithm [23], [24]. In our evaluations, we use a discrete set
of possible mass settings. The robot therefore evaluates the
probability density p(s1:N+1, a1:N ,m) for each of the mass
settings and selects the one with the highest value as the
estimate m∗. The STARHMMs are not restricted to discrete
mass settings. The robot could therefore perform a 1D search
over the mass value to find the estimate. However, we restrict
the search to discrete sets of mass settings for our evaluations.

Given a model and a set of test trajectories, the robot
computes the MAP estimate of the mass for each trajectory
individually. If two or more mass settings had equal posterior
probabilities, we used the average mass as the estimate. The
performance of the mass prediction is then given by the root
mean squared error between the estimated masses and the true
masses across all of the trajectories in the test set.

IV. EVALUATIONS

The four models were evaluated on a pushing task using
the robot shown on the left in Fig. 1. The robot consists of
two Kuka light-weight robot arms, and two compliant five-
fingered DLR hands [27]. We also evaluated the models on
a lifting task using a PR2 robot as shown on the right in
Fig. 1. The robot does not have tactile sensors or wrist-
mounted force torque sensors. For both tasks, the robots’
arms were controlled using Cartesian impedance control. The
experiments evaluated how accurately the models predict the
hand and object trajectories over multiple time steps. We also
evaluated the models’ accuracy when estimating the latent
mass of a container based on an observed trajectory.

A. Pushing Experiment - Experimental Setup

For the pushing task, the robot moved its hand across the
table in a straight line using an impedance controller with
a proportional gain of 20N/m in the pushing direction. The
desired trajectory moved at a constant speed of 2cm/s and
samples were extracted at 1cm increments. A box was placed

in the path of the robot’s hand at the start of each pushing
trial, such that the hand pushed the box across the table. The
box weighs 100g and was tracked using a set of OptiTrack
markers. Additional masses were added to the box in 500g
increments, up to a maximum of 2kg, resulting in five different
mass settings. The mass alters the amount of static friction
between the box and the table and thus changes the mode
transition conditions. For each of the five mass settings, the
box was initially placed over a 48cm range at 2cm increments
giving a total of 125 pushing trajectories, i.e., 25 trajectories
per mass setting.

The observed state st ∈ R3 included the box position,
the hand position, and the desired hand postion along the
pushing direction. For each mode, the models learned a linear
Gaussian mapping from the box’s mass and the constant action
to the change in the hand and box positions. The change
in the desired hand position was excluded, as it is known.
The STARHMMs used three features for the mode transition
distributions: the distance between the box and the hand, the
distance between the hand and the desired hand position, and
the object’s mass.

The trajectory prediction and mass estimation evaluations
were performed using five-fold-cross validation. Each test
set contained 5 samples per mass setting with the initial
box positions spaced 10cm part. The training sets were then
sampled from the remaining 100 samples with equal numbers
of samples per mass setting, and samples with the same initial
box positions across the mass settings.

We evaluated varying the number of training samples and
modes κ. The standard values for the fixed parameters were
15 training samples and κ = 3 modes. The results for
the trajectory prediction and the mass estimation are shown
in Fig. 3 and Fig. 4 respectively. The prediction errors for
different prediction steps is shown on the right of Fig. 3.
The plot on the right of Fig. 4. shows the mass estimation
performance when excluding the mass m from the observed
state transition distribution p(st+1|st, at, ρt).

B. Pushing Experiment - Discussions

The STARHMM-STD achieved the best performance when
using κ = 3 modes. These modes tend to correspond to the
approaching, loading, and sliding modes, as shown in Fig. 5,
that one would expect for this task. The performance tends
to decrease when using more modes. For the STARHMM-
EE, κ = 6 modes resulted in the best performance values.
However, the performance for this model tends to plateau
between κ = 3 and κ = 7. Based on the marginal probabilities
p(ρt), we computed the proportion of samples assigned to each
mode for the κ = 7 STARHMM-EE. Even though the model
includes seven modes, 85.5% of the samples are assigned to
only three of the modes. The model is therefore effectively
only using three modes.

When using more than κ = 3 modes, the STARHMM-
STD’s error increase, while the performance of the
STARHMM-EE stays level. This difference suggests that the
STARHMM-EE’s mode transition model pEE(ρt|st, ρt−1,m)
is better at handling superfluous modes in the model. The
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Fig. 3. The plots show the trajectory prediction performance of the four models when using different numbers of (left) modes κ and (middle) training samples.
The plot on the right shows the error over different prediction horizons. The error bars indicate +/− two standard errors.

PUSH - MASS ESTIMATION
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Fig. 4. The plots show the mass estimation performance of the four models when using different numbers of (left) modes κ and (middle) training samples.
The plot on the right shows the errors when excluding the mass from the observed state transitions. The error bars indicate +/− two standard errors.

STARHMM-STD’s model is more complicated, as it learns
a separate mapping from each mode. By contrast, the
STARHMM-EE shares the initiation distribution p(ρt+1 =
j|ρt, st+1,m, εt = 1) between all of the modes and is
therefore easier to learn.

The extra modes in the models tend to capture ei-
ther outlier samples or redundant modes, i.e., multiple
modes that have similar observed state transition distribu-
tions p(st+1|st, at, ρt,m). For the outlier samples, the model
transitions to the extra mode for one or two samples before
switching back to one of the main three modes. These outliers
may be due to variations in the action executions or the friction
between the box and the table. The outlier samples’ modes and
the redundant modes are visually similar the modes in Fig. 5.

The results of excluding the mass from the observed state
transitions p(st+1|st, at, ρt) are shown in Fig. 4C. The differ-
ence in the ARHMM-MassIndep’s performance indicates that
including the mass in the transition distribution does provide
some additional information. The overall performances of the
STARHMMs are similar between the two transition models.
The κ = 3 ARHMM-MassDep performs better when exclud-
ing the mass. The κ = 2 ARHMM-MassDep performs worse
as it tends to capture only the first mode switch, which does
not depend on the mass.

Both of the ARHMMs performed poorly for predicting the
hand and object trajectories. As the mode transitions of the
ARHMMs rely mainly on the previous mode, the models will
often predict a mode transition before the hand has made
contact with the object or when the hand is already inside of
the object. The STARHMMs tend to avoid these mistakes by
incorporating the observed state into the mode transitions. This
result shows the importance of capturing the mode transition
conditions for predicting trajectories.

The ARHMMs performed worse than the STARHMMs
when estimating the mass of the box. The ARHMM-MassDep
achieved an RMSE of 0.479kg, while the STARHMM-EE
achieved an RMSE of 0.298kg. These mass estimation errors
may seem large. However, through empirical evaluations we
estimated the coefficient of static friction between the table
and box to be 0.274. A mass difference of 0.5kg therefore
corresponds to only 1.34N of horizontal pushing force. The
robot could potentially further increase the accuracy of the
mass estimate by incorporating dynamic tactile sensing to
determine precisely when the mode switch occurs [28], [29].

The evaluated models assume a constant coefficient of static
friction between the table and the box. The learned models
would therefore over estimate the weight of the box if the table
were given a high-friction rubber coating. If the robot has an
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1: Approach 2: Load 3: Slide
Fig. 5. The figure shows the three modes of the pushing task. The three modes correspond to the hand approaching the object, loading up the force on the
stationary object, and sliding the object over the table. The transition from the second to the third mode depends on the box’s mass.

estimate of the friction coefficient, then it can use the product
of the coefficient and the mass as the input to the model. If
the coefficient and mass are both varying between trails and
unknown, then the robot can only recover their product and
not the mass. Another limitation of the models is that they
assume constant gains for the impedance controller. Higher
gains would result in the second mode switch occurring earlier
and with a smaller distance between the hand and desired hand
positions. The robot would therefore underestimate the mass
of the box. This problem could be alleviated by incorporating
an explicit force estimate into the mode transition features
φt for the STARHMMs. The models currently also employ
linear transition models for the individual modes. In the future,
we will explore using Gaussian processes, with mode-specific
hyperparameters, to model the observed state transitions.

C. Lifting Experiment - Experimental Setup

In this experiment, the PR2 robot raised its hand 30cm,
in 1cm increments, to lift a box as shown in Fig. 1. The
robot used an impedance controller with a proportional gain
of 80N/m for this task. The box has a mass of 0.114kg and we
added additional weights at 0.206kg increments up to 0.938kg,
resulting in five mass settings. The desired trajectory always
started at the table height. However, to vary the trials, we
placed the object on the table or on stacks of books that
increased the height by 3.5cm, 6.0cm, or 9.5cm, resulting in
four height settings. The robot executed the lifting skill three
times for each of the 20 combinations of mass and height
settings, resulting in a total of 60 samples.

The observed state st includes the hand position, and the
desired hand position. The mode transition distributions for
the STARHMMs used two features: the difference between
the observed and desired hand positions, and the mass of
the object. Given the impedance controller, the first feature
provides the robot with an estimate of the applied force.

The evaluations were performed using four-fold cross vali-
dation, such that each test set contains the 15 samples for one
height setting. The robot sampled 15 training samples from the
remaining 45 samples, with three training samples per mass
setting. The trajectory prediction and mass estimation results
for different numbers of modes κ are shown in Fig. 6.

As an additional evaluation of the STARHMMS, we col-
lected an additional five samples for each height setting. The
masses for these five samples are 0.103kg more than for the
original five mass settings. Given these additional samples,
the test sets now contain 20 samples and the robot evaluates
10 mass settings. The training sets for this experiment are the

same as for the main evaluation and only include samples from
the original five mass settings. The results for this evaluation
are shown in Fig. 6 and indicated by Mass10.

D. Lifting Experiment - Discussions

The prediction and estimation errors drop for the
STARHMMs when the number of modes is increased from
κ = 1 to κ = 2, as the models can then capture both the
loading and the lifting modes of the task shown in Fig. 6C.
The STARHMMs’ prediction performances are slightly better
when using a third mode κ = 3, which tends to correspond to
the first one or two samples after liftoff that exhibit slightly
shorter translations. Including multiple modes again decreases
the prediction performance for the ARHMMs, as they do not
capture the mode switching conditions.

The mass estimates are overall more accurate for the lifting
task than the pushing task, with the STARHMMs correctly
estimating all of the masses of the test trajectories when using
κ = 2 or κ = 3 modes. Friction is inherently difficult to model,
which results in coarser estimates for the pushing task. Given
a firm grasp, the mode switch in the lifting task allows the
robot to estimate the mass of the object independent of the
coefficient of friction between the object and the table.

The increased performance of the STARHMMs over the
ARHMM-MassDep can be partially attributed to the fact
that the STARHMMs interpolate between the mass values.
For example, training trajectories for the 0.114kg box and
the 0.938kg box also provide information about the mode
switching conditions for the 0.526kg box. By contrast, the
ARHMM-MassDep learns a separate mode transition model
for each mass setting and no information is shared between
these five transition models.

The evaluations with the 10 mass settings show that the
STARHMMs can interpolate between mass values. There is a
small drop in performance for estimating the object’s mass,
but the difference in the prediction performance is negligible.

V. CONCLUSION

We explored the use of four different autoregressive hidden
Markov models for representing mode transitions in manipu-
lation tasks. The models were used to capture the dependency
of mode switches, such as slipping and breaking contact, on
the mass of the manipulated objects. Using these models, the
robot predicted the trajectories of the manipulated object given
its mass. The robot also used the models to estimate the latent
mass of a container based on the observed mode switches.
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Fig. 6. The plots show (left) the trajectory prediction performance and (middle) the mass estimation performance for different numbers of modes κ. The
error bars indicate +/− two standard errors. The plot on the right shows the two main modes for the box lifting task: loading and lifting.

The evaluations on the pushing and lifting tasks showed that
models that interpolate between different mass values achieved
better prediction and estimation performances. Including the
observed states in the mode transition distributions also im-
proved the prediction and estimation accuracies. The best per-
formances were achieved by the STARHMM-EE model, which
additionally shares transition information between modes.

In the future, we will explore using the mass estimates from
the initial pushing and lifting skills to adapt and predict the
effects of subsequent mass-dependent manipulation skills. We
will also explore estimating object masses based on other types
of multi-modal manipulation skills using the STARHMMs.
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