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Pilot Surveys for Adaptive Informative Sampling

Stephanie Kemna!, Oliver Kroemer'? and Gaurav S. Sukhatme'

Abstract— Adaptive sampling has been shown to be an
effective method for modeling environmental fields, such as
algae concentrations in the ocean. In adaptive sampling, a robot
adapts its sampling trajectory based on data that it is collecting.
This data is often aggregated into models, using techniques such
as Gaussian Process (GP) regression. The (hyper-)parameters
for these models need to be manually set or, ideally, estimated
from data. For GP regression, hyperparameters are typically
estimated using prior data. This paper addresses the case where
initial hyperparameters need to be estimated, but no prior data
is available. Without prior data or accurately pre-defined hy-
perparameters, adaptive sampling techniques may fail, because
there is no good model to base path planning decisions on.
One method of gathering data is to perform a pilot survey.
This survey needs to select informative samples for initiating
the model, but without having a model to determine where
best to sample. In this work, we evaluate four pilot surveys,
which use a softmax function on the distance between waypoints
and previously sampled data for waypoint selection. Simulation
results show that pilot surveys that maximize waypoint spread
over randomization lead to more stable estimation of GP
hyperparameters, and create accurate models more quickly.

I. INTRODUCTION

Robotic approaches to environmental sampling and moni-
toring can speed up sampling times, provide more data, and
enable frequent and persistent monitoring. One application
of robotic use for environmental sampling is in spatial
modeling, where the robot has to create a spatial model of a
field, such as a temperature field or Chlorophyll distribution.
One standard method of sampling a field is to run an off-
line coverage approach over the area, such as a lawnmower
survey, to then reconstruct the field after the survey. Off-line
approaches are planned before execution, and the survey does
not adapt to collected data. When the vehicle plans its own
paths during execution, incorporating newly sampled data
to select future waypoints, then the approach is known as
an on-line approach, i.e. adaptive sampling. When paths are
planned using information-theoretic metrics for optimization,
we speak of informative sampling.

In adaptive informative sampling, the vehicle typically
learns a model during execution. This model is used by
the vehicle to decide where to sample next. Model hyper-
parameters, such as a kernel length scale, can be estimated
from prior data, but this data may not be available. We are
interested in the problem of adaptive informative sampling
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where no prior data is available. If the hyperparameters are
estimated poorly, then the adaptive sampling approach will
optimize for a wrong model and fail to collect good samples.
To overcome the model initialization problem, one can run a
pilot survey. A pilot survey is a short survey that is executed
before running any actual survey and adaptive sampling
approaches. However, it is not clear which pilot survey is
the most suitable for collecting representative samples that
lead to reasonable estimates of the hyperparameters.

In this work, we evaluate four pilot surveys for adaptive
sampling. We call these ‘integrated pilots’ because the pilot
has been integrated into the adaptive sampling mission,
subtracted from the overall survey time. This is done to
provide a fair comparison to non-adaptive sampling meth-
ods that do not require hyperparameter optimization before
running the mission. The pilots we evaluate use a softmax
distribution over the distance between the chosen waypoints
and previously sampled locations, for waypoint selection.
The four pilot surveys roughly correspond to a cross tra-
jectory, random waypoints, and two intermediary solutions.
As a baseline, we compare the performance of adaptive
sampling to running a standard lawnmower survey, and find
that in general the adaptive sampling surveys provide a good
model more quickly. Simulation results further show that the
pilot surveys that focus more on spreading out the initial
waypoints, rather than randomizing waypoint locations, on
average lead to better estimation of the hyperparameters.

II. RELATED WORK

Informative sampling was pioneered by Krause, Guestrin
and Singh [1]-[3]. Low et al. [4] and Singh et al. [5]
extended these informative sampling methods into adaptive
informative sampling approaches. In all these papers, and
many thereafter, Gaussian Process (GP) regression is used
for modeling the spatial fields. The GP is fully specified by
its prior mean and covariance function [6]. A common choice
for the mean function is zero mean, and a common choice
of covariance function is the isotropic squared exponential
(SE) function, i.e. the Gaussian kernel. The kernel specifies
the smoothness assumption between data points. While the
GP model has no direct parameters, it does have hyperpa-
rameters: the kernel’s parameters, as further explained in
Section IIl. These hyperparameters can be estimated from
data using, for example, maximum likelihood estimation [6].

For off-line methods, e.g. [2], [3], [7]-[9], the hyperpa-
rameters can be estimated after all of the data has been
collected. For example, the works in [2], [3], [9] use a subset
of all collected data for hyperparameter optimization. For on-
line estimation of the model, i.e. in active learning and for
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adaptive sampling, the hyperparameters should be estimated
before or during execution.

Some previous works estimate the hyperparameters be-
fore running their adaptive sampling path planning: Hitz et
al. [10] estimated hyperparameters based on prior data for the
sampling region. Binney et al. [8] estimated hyperparameters
by using data from an “initial run”, what we call a pilot sur-
vey, which was executed prior to running any other sampling
routines. However, their paper does not specify the shape
or length of the pilot survey [8]. Other works estimate the
hyperparameters during the sampling: Thompson et al. [11]
estimated the hyperparameters initially by starting every
adaptive mission with a 10—20 s straight line drive, and then
periodically re-estimated the hyperparameters during adap-
tive sampling. Their approach assumes that the data collected
within this straight line drive is representative for the whole
field and leads to reasonable hyperparameters. For some
of the scenarios we are considering, this assumption does
not hold, see for example Figure 3. Garg and Ayanian [12]
estimated the hyperparameters during execution by keeping
a belief distribution over the hyperparameters, initialized
randomly, and using particle filtering for determining the hy-
perparameters at any time. This approach also allowed them
to account for spatio-temporally varying fields. However, the
random initialization could still lead to problems with model
learning. To the best of our knowledge, there are no other
works that explicitly use pilot surveys and/or investigate how
best to design a pilot survey for model initialization.

We are interested in developing approaches that assume no
prior data is available. This means that we cannot estimate
the hyperparameters off-line, prior to running our sampling
routines. If possible, the hyperparameters should be set to
reasonable values based on expert knowledge, or knowledge
about the area size or phenomena. An initial guess can de-
crease chances of estimating the hyperparameters incorrectly,
e.g. by avoiding local maxima. We recommend the following
steps for estimating the hyperparameters during an adaptive
sampling survey:

1) Start adaptive sampling with an integrated pilot sur-
vey, to estimate the hyperparameters and initialize the
model.

2) Re-estimate the hyperparameters every X minutes, to
update the model based on new data.

We make the case for using an integrated pilot, where the
pilot is an integral part of the adaptive sampling routine. This
is recommended because adaptive sampling methods will not
work well without a good estimation of the hyperparameters.
The pilot should be integrated into the mission and subtracted
from the overall mission time, rather than being a separate
mission, when comparing to approaches that do not need a
pilot survey, e.g. lawnmower surveys. The data from the pilot
is kept in the model and used for the subsequent adaptive
selection of waypoints for further sampling.

In this paper we evaluate four integrated pilots created
using the softmax function, with a ‘temperature’ parameter 7,
which is set to 7 = {1, 6,30, 100}. This roughly corresponds
to a cross trajectory over the sampling area, two intermediary

solutions, and one pilot of randomly drawn waypoints, re-
spectively. Simulation results show that the pilots with lower
values of 7, which spread out the waypoints more, are on
average more successful in obtaining a good estimate on the
hyperparameters of the model.

III. THEORY

In this section, we discuss the theory behind our adaptive
informative sampling approach, and the choice of pilots. This
theory follows explanations in prior works, e.g. [13], [14]:
The robot internally constructs a model of environmental
phenomena, e.g. Chlorophyll abundance, using Gaussian
Process regression. This model is used to pick waypoints
with maximum entropy for further sampling. The contribu-
tions in this paper lie in the development of the pilot surveys
and methods of handling hyperparameter estimation.

A. Gaussian Process Regression for Model Creation

Gaussian Process (GP) regression is a standard method for
spatial field modeling [6]. The GP is specified by its prior
mean and covariance function. We use a zero mean prior
and for the covariance function a combination of an isotropic
squared exponential (SE) kernel, and white noise covariance
function. The SE covariance function is given by [6]:

1
k(x,x') = of exp{— 5 x = x'[*} (1)

where x and x’ are two training sample locations, x € X,
X C R?, GJ% is the signal variance (or amplitude), and [ is
the kernel’s length scale. a}% and [ are hyperparameters. We
combine the SE kernel with a white noise kernel, to better
model the expected noise in the data. This kernel has one
hyperparameter 2, noise variance. Following Low [13], we
use a log Gaussian Process (/GP) to model the field: the ve-
hicle takes the log of the measurements before incorporating
them into the GP. This approach considers that biological
data from fields with ‘hotspots’ tend to follow a log-normal
distribution, due to large areas with low values and small
areas with high values [15].

We follow previously introduced notation for the ¢(GP
model [13], [14]: Let Y, denote an ¢GP, which is used
to model the sensor value yx at location x € X. Let
Z, =InY,, denote a GP. Then we can create the /GP using
GP regression by utilizing the fact that zx = In yx. The GP’s
posterior mean and variance, fiz_ |4, and U%A 4, for sampled
data d;, are used to calculate the posterior mean and variance
of the /GP [13] as:

1y, |a, = exp{piz, 4, + 0% 14,/2} 2)
010, = Hyja, (€xpl0%, 10,1 = 1) (3)

The vehicle thus creates an /GP model on board, while it is
sampling the environment.

The hyperparameters of the /GP are estimated every 500 s.
To reduce computational complexity for hyperparameter op-
timization, we downsample the data by a factor of four,
keeping every fourth sample, for the optimization only. The
model created on the vehicle contains all measurements. We
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test four pilot surveys that gather data for initial hyperpa-
rameter estimation, as further explained in section III-C. We
use the libgp library [16] and the conjugate gradient method
for hyperparameter optimization, with 100 iterations.

B. Path Planning

The vehicle uses the ¢/GP model to decide where to
sample next. We take a state-independent approach to path
planning: based on the measurements made so far, we find
the most informative sampling location across the whole
space, which is then chosen as the next waypoint. The vehicle
makes straight line movements between these waypoints via
a standard waypoint behavior. We measure informativeness
using the posterior entropy on the model, as derived in [13]:

H [Y“‘H |dz] - log \/ QWeU%mHIM + 'uZ%'H\dz: (4)

The next waypoint is thus an (unvisited) location with the
highest posterior map entropy, anywhere in the sampling
space, regardless of the distance from the current location.
For the log-GP this sampling approach means that we
maximize both for locations with high posterior variance,
as well as locations with high expected sensor values. For
example, if we are sampling for algae abundance, then high
sensor values are measured in areas where algae blooms
exist. These areas are likely to be most interesting to the
data customer, e.g. biologists or oceanographers.

C. Integrated Pilot Surveys

To estimate the initial hyperparameters of the /GP model,
we use an integrated pilot survey. We want to collect data that
is representative of the field, i.e. including the full spectrum
of data values, but we have to choose sampling locations
without having prior data from the field. To optimize for
coverage and spread over the area, one can use the area’s
corners as waypoints. However, this may leave large gaps
between sampling locations, which could mean missing out
on small hotspot areas. Alternatively, one can visit random
locations in the area. However, the risk then is that only part
of the field may be covered, and features in other parts of the
field will be missed. Therefore, we want to balance between
random sampling and maximizing the spread of waypoints.

To obtain a pilot with points spread across the area,
we evaluate a utility function D. This function D is the
minimum distance between waypoints and previously visited
paths, which we want to maximize:

D(XZ) = min(d(xi,sj)) s VS]' es 4)

where x; is the location of a waypoint candidate, d is the
distance function for the Euclidean distance between possible
waypoints and previous line segments, and s; is a line
segment from the set S of line segments between previously
chosen waypoints.

To choose waypoints, we evaluate the probability of
choosing a possible waypoint location using a softmax
equation [17] on the utility function:

eDOxi)/

G ©

p(xi) =

where 7 is the ‘temperature’ factor [17]. If 7 is high, all
actions become nearly equally probable and we have a uni-
form random sampling approach. For 7 = 1, it maximizes the
minimum distance between potential waypoints and sampled
paths, choosing waypoints at corners of the area. Paths are
generated using a maximum length equal to the path length
for 7 = 1. The number of waypoints is unconstrained.

Choosing Parameter T: In order to use equation 6, we
need to choose a value for the ‘temperature’, 7. Therefore we
evaluated different metrics for the value function for the field.
Remember that the value function considers the minimum
distance between possible waypoints and previously sampled
locations. Because the softmax sampling is probabilistic,
we ran 500 trials for every value of 7. For every run, we
calculated the minimum distance of all grid points to the
chosen pilot path. Based on this, we calculated the expected
minimum distance for each grid point location (expected
min distances) over all runs, and we calculated the maxi-
mum minimum distance for each field (maximum of min
distances). The metrics are, for each 7, the maximum (max)
and average (avg) over the expected minimum distances, and
the average of all maxima, as shown in Figure 1. Figure 1
also shows the average number of waypoints, which is not
used for deciding 7. However, it shows a general trend of
increasing number of waypoints with increasing values of
7. This means that waypoints often end up being closer
together, and more waypoints can be chosen within the same
path length budget.

We want to choose a value for 7 that both reduces the
chance of leaving large areas systematically unvisited for
7 = 1, or not covering the whole area for 7 — inf. Based on
Figure 1 we chose 7 = 6, which corresponds to a minimum
in the graphs for average over expected minimum distances
(black dash-dot) and average over maxima (magenta dashed).
We also chose 7 = 30, which corresponds to one of the

| —max(expected min distances)
== avg(expected min distances)*2
[ ==-avg(maximum of min distances)
140 "'avg(number of waypoints) * 10 AT ]
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Fig. 1: Determining 7: The maximum (green solid) and
average (black dash-dot) over the expected minimum dis-
tances, the average over all maxima (magenta dashed), and
the average number of waypoints (blue dotted), for 500 runs
per choice of 7. Y axis as per labels: (scaled) distance or
(scaled) number waypoints. Best viewed in color.
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minima in the graph for maximum over expected minimum
distances (green solid). By choosing these values, we aim
to balance between spreading out waypoint locations and
randomizing sampling locations. A value of 7 = 6 is a
conservative minima, and corresponds to pilots that are still
very similar to the cross pilot. A value of 7 = 30 is closer to
uniform random sampling, but would still try and spread out
the waypoints to some extent. Figure 2 shows an example of
waypoints and paths chosen by the vehicle for the different
pilot survey cases; 7 = 1 (cross), 6,30, and 100 (random).

=1 1=6
200 200 P
R L
150 ; d 150 R P
S AP
>100 >100 Pt N§

200
150
>100
50

100 200 300 400
X

Fig. 2: Example trajectories for 7 = 1 (top left), 7 = 6 (top
right), 7 = 30 (bottom left) and 7 = 100 (bottom right).

IV. EXPERIMENTAL SET-UP

For our evaluation of the integrated pilots, we ran sim-
ulation studies. We briefly explain the implementation and
set-up details, for each type of experiment, in this section.

We simulate algae abundance for six scenarios, as shown
in Figure 3. The first two scenarios were used in prior
work [14], [18]. The other four scenarios were added to
test performance in case there would be less pronounced
blooms, or non-Gaussian shapes. Work is underway to create
scenarios from data obtained in the field. All scenarios
assume a rectangular sampling region, i.e. a 2-D grid space,
of 400x200 m. Data are simulated at 10 m grid spacing with
output values ranging from 0 — 40ug/L, as a proxy for high
Chlorophyll values. Random Gaussian noise is added, with
a noise amplitude up to 10 — 20% of the data range. The
simulated vehicle takes samples with added Gaussian noise
(signal variance = 1.5). The vehicle is not given information
about the sensor noise.

We ran simulations for five different surveys:

o lawnmower survey (non-adaptive)

« adaptive survey, 7 = 1, ‘cross pilot’

« adaptive survey, 7 =6

« adaptive survey, 7 = 30

« adaptive survey, 7 = 100, ‘random waypoints pilot’
The lawnmower survey is a composite of both a vertical and
horizontal lawnmower over the survey area, with 20 m track
spacing, implemented via a waypoint behavior. The other
pilot surveys use equations 5 and 6 for waypoint selection.

For every simulation run, the vehicle starts in the bottom
left corner of the field. Variability in scenarios approximately
covers for potential different starting locations, though future
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Fig. 3: Six scenarios with generated data. Theoretically the
data can represent anything, in this paper the ‘data value’ is
Chlorophyll, pg/L.

studies could investigate the effects of vehicle starting po-
sitions. For a real world scenario, the starting location may
also be restricted by possible deployment locations.

We ran 30 simulations for each survey type for each
scenario. Each simulation was time-limited to the duration
of the lawnmower survey. Our focus is on improving initial
sampling performance to provide an anytime prediction
capability. During every simulation, we recorded the latest
model created on the vehicle every 10 minutes (600 s).

For our implementation we used the MOOS-IvP middel-
ware [19], which incorporates a behavior-based autonomy.
We use standard behaviors such as; waypoint, loiter, and
constant depth. For the simulations, we use a simple vehicle
dynamics model with PID control to simulate an autonomous
underwater vehicle (AUV), and the biological data (Chloro-
phyll) simulator described at the start of this section.

V. RESULTS

We evaluate performance in terms of Root Mean Squared
Error (RMSE) between the model and the ground truth,
and in terms of the estimated hyperparameters versus their
ground truth values.

A. Root Mean Squared Error

We ran 30 simulations for each survey type for each
scenario. Figure 4 shows the simulation results in terms of
the RMSE between the vehicle’s model and the generated
data, i.e. the ground truth (Figure 3). Each subfigure shows
the results for a single scenario, for all five surveys. RMSE is
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Fig. 4: Boxplots (median, 25th and 75th percentiles) on RMSE for scenario a) - f), 30 simulations per survey. Crosses are
outliers. Evaluations are done based on models that were saved every 10 minutes (600 s).
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simulations per approach. Crosses are outliers. Evaluations are done based on models that were saved every 500 seconds.
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Survey type t=2 t=3 t=4 t=12
lawnmower 0.67 1.17 0.33 0.33
T=1 1.67 2 2.67 2
T=26 2 0.67 1.83 0.67

T =230 2 2.17 1.67 1.83

7 =100 2.83 2.33 2.5 1.17

TABLE I: Average number of RMSE outliers per time step,
averaged over all scenarios, for every type of survey.

plotted against time steps of 600 s, where time step ¢t = 1 cor-
responds to the start of the survey. We show boxplots, rather
than averages with standard deviations, to better visualize
outliers and general trends. In general, outliers correspond to
the runs when no good model was created, and for scenario
e) the runs that did not create a good model created a bimodal
RMSE performance graph. Our main focus in the evaluation
is on the early stages of model creation, to evaluate the pilot
surveys, and not the other path planning method.

Figure 4 shows that for most scenarios, the RMSE quickly
drops for adaptive sampling. Scenarios b) and f) see a
more gradual decline for all methods. For most scenarios,
differences between the pilot surveys’ performances are not
statistically significant, given that all boxplots overlap. We
briefly note: For scenarios a) - d) and f), all adaptive sampling
surveys get a significantly better model more quickly than
the lawnmower survey. The lawnmower performance in most
cases drastically improves after 5 time steps at ¢ = 6, which
approximately corresponds to when the vehicle is executing
the second lawnmower pattern (horizontal) and revisits areas.
In terms of pilot survey performance, we see: For scenario
b), 7 =1 and 7 = 6 do better than the softmax surveys with
high values of 7. For scenario c), there is a wide spread
on the initial estimate. Values of 7 = {1,6} do a little
better initially. For scenario e), softmax survey 7 = 1 clearly
outperforms high 7 values from timestep t = 3 — 5.

RMSE outlier analysis: From Figure 4 it is clear that: For
scenario a), the softmax surveys with high values of 7 have
more outliers. For scenario d), 7 = {1,100} initially have
more outliers. For scenario e), high 7 surveys have more
outliers. Table I shows the average number of outliers, for
each survey type, averaged over all scenarios, for four time
steps: 2, 3,4 and the final, 12. Time step ¢ = 2 corresponds
to the predictions that are saved after the first hyperparameter
estimation, and time step ¢ = 12 corresponds to predictions
saved after the final hyperparameter estimation. The number
of outliers is initially highest for 7 = 100 and lowest for
1. From ¢t = 2 to t = 3 the number of outliers
drops the most for 7 = 6, which also ends with the fewest
outliers. This indicates more consistent performance across
simulations and across scenarios.

T =

B. Hyperparameters

We further investigate performance in terms of the es-
timation of the hyperparameters, which mainly determine
the quality of the model, in particular the kernel’s length
scale. As previously mentioned, when the hyperparameters
are misestimated, the adaptive sampling approach will not

work as well. Therefore, we want to make sure that we
choose a good initial sampling approach to start the adaptive
sampling survey off with. Data that are collected initially
should be representative for the field, and lead to good
estimation of hyperparameters.

Figure 5 shows the estimated log length scale over time,
stored after every hyperparameter optimization (every 500
seconds). As previously mentioned, ¢ = 1 corresponds to
the start of the mission. Note that all values are distances
in longitude-latitude degrees and therefore quite small. The
ground truth values of the hyperparameters are calculated
from all data in the simulated data files, using the GPML
Matlab libraries [20]. These are indicated as dashed grey
lines. The dash-dot light-grey lines are error bounds. These
error bounds are determined by averaging the final error
across all simulations and all scenarios, and taking the
average error plus one standard deviation. If the log length
scale value of a single simulation is more (or less) than the
true length scale plus (or minus) the error bound, then we
consider it a misestimation of the hyperparameters.

The results show that the poor performance for scenario e)
corresponds to badly estimated length scales. For scenario a),
where 7 = 30 has one bad run, with a corresponding outlier
in the log length scale plot. For the lawnmower surveys, the
initial poor estimations are also due to incorrect estimation
of the length scale, which does not change from its initial
value until ¢ = 7. The performance between the different
pilot surveys is quite similar. The hyperparameters start to
settle down after the second hyperparameter estimation, at
timestep ¢ = 3. For scenario b) and e), we see that with
7 = {30,100}, it takes longer for the log length scale to get
close to the correct value. For scenario c¢), we see that for
all surveys the log length scale is slightly underestimated,
which corresponds to a length scale that is approximately
20-40 meters shorter than the actual value.

Length scale outlier analysis: From Figure 5 it is clear
that: For scenario a), there is one outlier for 7 = 30. For
scenario e), there are many outliers. While there are some
outliers for 7 = {1,6}, these are fewer than for 7 =
{30,100}, meaning that overall they were more successful.
For scenario d), 7 = {1,100} have more outliers at the end.
For scenario f), 7 = 30 initially has more outliers. Table II
shows the average number of outliers for the length scale
log-hyperparameter (IHP) boxplots, for each survey type,
averaged over all scenarios, for four time steps: 2,3,4 and
the final, 14. Note that, in comparison to the RMSE plots,
because hyperparameter optimization happens every 500 sec-
onds rather than every 600, there are 2 more time steps. Time
step t = 2 corresponds to the first hyperparameter estimation,
and time step ¢ = 14 corresponds to the final hyperparameter
estimation. Note that while there are no outliers for the
lawnmower performance during ¢ = 2 to ¢t = 4, the length
scale is consistently misestimated during this time. We see
that after the first hyperparameter estimation, ¢ = 2, the
number of outliers reduces on average for 7 = {6, 30}. This
downwards trend continues for 7 = 6.



FINAL DRAFT

Survey type t=2 t=3 t=4 t=14
lawnmower 0 0 0 1.17
T=1 1.33 3 2.33 0.83
T=6 3.17 2.67 1.83 0.67

T =230 2.83 2.17 1.33 2.33

T =100 4 1.5 2.33 2

TABLE 1II: Average number of IHP outliers per time step,
averaged over all scenarios, for every type of survey.

VI. DISCUSSION & FUTURE WORK

The simulation results confirmed that adaptive sampling
can improve modeling performance during the early stages
of model creation. We investigated four pilot surveys for
obtaining representative data for model initialization. Results
confirmed that an initial poor estimation of the hyperparame-
ters can be detrimental to the overall modeling performance.
We found that for lower values of 7, we obtained better
estimated hyperparameters on average and lower model
error early on, than for higher values. This suggests that
spreading out waypoints is to be preferred over randomly
picking waypoints. We recommend using the softmax-based
waypoint selection method for pilots, using 7 = 6, which on
average provided the best and most stable performance.

For the lawnmower surveys, we saw the RMSE greatly
reduce after 6 time steps. This approximately corresponded
to the second pass over the area, leading to more samples
through the blooms. From Figure 5 we concluded that the ini-
tial bad performance was due to bad estimates of the kernel
length scale. This highlights the need for quickly collecting
representative samples when the actual hyperparameters are
not known. Furthermore, if anytime prediction capability is
desired for an off-line survey approach, it may be necessary
to also run a pilot survey before the main survey.

For future work, there are many possible avenues for
further investigations. For one, we did not find theoretical
proofs yet to guarantee an initial good model creation, when
no prior information is available. For the softmax approach,
it is impossible to set the temperature based on the scenario,
if the scenario is not known. However, if one allows, for
example, for some expert knowledge to guide sampling, this
may become feasible. Therefore we recommend investigating
approaches for best incorporating expert knowledge. Fur-
thermore, we have chosen a utility function that maximizes
minimum distance between sampled points, optimizing for
coverage. Again, this is based on the fact that no prior data
is available. It would be interesting to explore other utility
functions. Finally, in our evaluation of pilots we have chosen
to use a set length for the pilot, equal to the distance of
a cross trajectory over the area. It would be interesting to
evaluate whether representative data could be obtained in a
shorter amount of time, i.e. a shorter path.

VII. CONCLUSIONS

In this paper we evaluated four pilot surveys for adaptive
informative sampling. These pilots are essential at the start
of any adaptive mission where no prior data is available, to
collect representative data for hyperparameter estimation. An

initial bad estimate on hyperparameters can lead a vehicle
to construct a bad model and thus collect non-informative
samples. One method of running a pilot is to travel between
all corner locations of a sampling area. We explored whether
adding a degree of randomness to this approach improves its
performance. We evaluated a softmax function for waypoint
selection, which balances between spreading out waypoints
and uniform random sampling. We showed that, for the given
value function, low values of 7, e.g. 7 = 6 with spread out
waypoints, lead to the most stable performance in terms of
initial hyperparameter estimation.
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