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Abstract. Manipulation skills need to adapt to the geometric features
of the objects that they are manipulating, e.g. the position or length of
an action-relevant part of an object. However, only a sparse set of the
objects’ features will be relevant for generalizing the manipulation skill
between different scenarios and objects. Rather than relying on a human
to select the relevant features, our work focuses on incorporating feature
selection into the skill learning process. An informative prior over the
features’ relevance can guide the robot’s feature selection process. This
prior is computed using a meta-level prior, which is learned from previous
skills. The meta-level prior is transferred to new skills using meta fea-
tures. Our robot experiments show that using a meta-level prior results
in better generalization performance and more efficient skill learning.

Keywords: Manipulation, reinforcement learning, imitation learning,
feature selection, transfer learning, skill generalization, meta priors

1 Introduction

Robots need to manipulate objects in their environment to perform a variety of
different tasks. Manipulation skills can be learned in an efficient manner using
imitation and reinforcement learning [1, 2]. In order to be versatile and generalize
between different scenarios, these skills need to adapt to the features of the
objects being manipulated. Although there will be many features describing the
set of objects, only a few of them will be relevant to adapting the skill. The
robot should therefore select a sparse set of relevant features for generalizing the
manipulation skill.

Most of the work on skill learning has used manual feature selection by a
human [3, 4]. In some cases, features are learned to localize task-relevant elements
in the scenes [5, 6]. However, these approaches tend to focus on a fixed set of
objects and the features are not learned to generalize between objects. Rather
than relying on prior knowledge from a human, the robot should select the
relevant features based on its own experiences and prior knowledge.

In this paper, we explore the use of meta-level priors [7] for efficiently selecting
features in an imitation and reinforcement learning framework. The meta prior
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Fig. 1. An overview of the proposed framework. A new skill is initialized from demon-
strations using imitation learning (green). The a priori feature relevance is computed
using a meta-level prior, which is learned from previously learned skills (blue). The
robot refines the skill by using policy search reinforcement learning (orange).

allows the robot to predict the relevance of a feature based on the feature’s
properties, i.e., its meta features [8]. We use meta features that describe the
proximity and alignment of the features to the robot’s hand. As part of a transfer
learning framework, the meta prior is learned from the features of previously
acquired skills.

Multi-task transfer learning for robot skills has often focused on tasks that
involve similar manipulations and feature spaces [9, 10], e.g., throwing a ball to
different locations. In our experiments, the robot learns skills for tasks with dis-
tinct feature spaces: placing, tilting, cutting, pouring, and wiping. We compare
the performance of skills learned using the proposed meta-prior approach versus
a standard uniform prior. The experiments show that the meta-level prior results
in improved generalization performance and more efficient skill learning.

2 Technical Approach

The goal of our proposed approach is to learn a mapping from object features to
the skill’s shape parameters. The object features and the parameterized skill rep-
resentation are described in Section 2.1. Only a sparse set of the object features
will be relevant for generalizing the skill between different scenarios. The robot
must therefore select a set of relevant object features for each skill component.
Prior knowledge of each feature’s relevance can be used to guide the feature
selection process. This prior knowledge is transferred from previously learned
skills using meta features and a meta-level prior, as explained in Section 2.2.
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The robot uses stochastic search variable selection (SSVS), with a meta prior,
to select a set of relevant features for generalizing each component of the skill,
as described in Section 2.3.

Section 2.4 describes how the robot can learn to improve the skill’s per-
formance through experience. Each new skill is initially learned through imi-
tation learning and subsequently improved through reinforcement learning. As
the robot learns to perform the skill in new scenarios, the corresponding shape
parameters are used as training samples for selecting the relevant features and
computing the sparse skill parameters. Similarly, once a skill has been mastered
and its relevant features have been extracted, it can be used to learn an improved
meta prior for learning future skills.

An overview of the proposed framework is shown in Fig. 1. The learning
framework consists of imitation learning (green), learning a meta-level prior
(blue), and policy search reinforcement learning (orange). The feature selection
(black) is at the core of the framework.

2.1 Object Features and Skill Representations

In order to execute a skill in a given scenario, the robot must first extract a set
of object features describing the scene and the objects within it. These features
describe the geometry of the objects that the robot is manipulating, e.g., a
feature may define the x position of a container’s opening or the width of the
opening in the y direction. We assume that we have 3D point cloud models that
capture the coarse shapes of the manipulated objects. These object models are
first segmented into parts based on demonstrations of the skill using the GrabCut
algorithm [11]. The segmentation process is initialized by detecting points that
are in close proximity to other objects during the demonstrations [12]. Examples
of object parts extracted for different tasks are shown in Fig. 2.

Each of the objects’ parts is used to compute a generic set of object features φ.
In our experiments, the six object features for each part consist of the 3D position
of the part and the 3D size of its axis-aligned bounding box. The positions of
the parts are defined relative to the robot’s hand. The features from all of the
parts are concatenated into a single set of M features φji = φj(Si)∀j ∈ {1, ...M}
to represent scene Si. The number of features M and the types of features may
vary between different tasks. It is therefore usually not possible to define a 1-to-1
mapping between features of different tasks.

The manipulation skills are represented using dynamic movement primitives
(DMPs) [13]. The task-space DMPs are defined relative to the initial position of
the robot’s hand. We focus on learning the three x-y-z translational components
of the skill’s movement. The standard DMP formulation uses a set of shape pa-
rameters w̃k∀k ∈ {1, ...,K} and a goal offset g−y0 = w̃0 to define the shape of the
skill’s trajectory. In our reformulation, these shape parameters are represented
as linear combinations of the object features w̃ik =

∑M
j=1 wjkφji∀k ∈ {0, ...,K}.

Thus, each feature φj has its own set of skill parameters wjk, which define
how the trajectory is adapted to the feature’s value. For example, if the knife’s
length φj is doubled, then the amplitude of the cutting movement described by
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Fig. 2. Examples of object parts extracted from demonstrations of manipulations. The
points show the objects’ point cloud models, and the colors indicate different parts.

the corresponding skill parameters wj0:K will also double. The ultimate goal of
our framework is to learn the skill parameters wjk that map from the object
features φji to the shape parameters w̃ik.

2.2 Meta Features and Meta Priors

The majority of the extracted features φj will not be relevant for generalizing the
skill between different scenarios. The robot therefore needs to perform feature
selection to select a sparse set of relevant features. We define a binary relevance
variable γj ∈ {0, 1} as γj = 1 iff φj is a relevant feature. An informative prior over
the feature’s relevance p(γj) can guide the feature selection process and, thus,
improve the skill’s generalization performance. Rather than manually defining
this prior, the robot should predict the relevance of individual features based on
knowledge from previously learned skills.

The robot predicts the relevance of a feature φj using meta features ϕjh∀h ∈
{1, ...,H}, which are extracted from the initial skill demonstrations. Meta fea-
tures model characteristics of the object features and how they relate to the skill
being learned. For example, each of our features φj is associated with a part of
an object. We therefore define meta features that represent the initial and fi-
nal distances between the position of the feature’s part pjf and the robot’s hand
ph. These meta features represent the proximity of the feature. Using these meta
features, the robot can predict that a feature is more relevant if the hand is near,
or moves towards, the feature’s part during the demonstrations. Each feature φj
is also associated with a direction djf in which the length or position feature is
computed. We include the inner product between the feature’s direction and the
skill component’s axis da as another meta feature. These meta features represent
the features’ alignment. They can be used to predict the relevance of features for
each x-y-z component of the DMPs. The first six meta features are illustrated in
Fig. 3a. The seventh meta feature ϕj7 has a value of ϕj7 = 1 if the object feature
describes the position of a part and ϕj7 = 0 if it describes a part’s length.
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Given a set of meta features ϕjh for a new skill, the prior over the feature’s
relevance is computed as p(γj) = (1+exp(

∑
h θhϕjh))−1. The parameters θh are

known as the meta prior [7]. The meta prior is learned from the meta features and
feature relevances of previous skills using iteratively reweighted least squares.

2.3 Feature Selection

The robot selects a set of relevant features using stochastic search variable selec-
tion (SSVS) [14] with a meta-level prior. The graphical model for this framework
is shown in Fig. 3b. A separate set of relevant features is selected for each x-y-z
component of the skill.

The relevance variable γj of each feature φji determines the prior variance
over the feature’s skill parameters wjk such that p(wjk|γj = 0, š, ŝ) = N (0, š2)
and p(wjk|γj = 1, š, ŝ) = N (0, ŝ2), where š2 and ŝ2 define narrow and broad
Gaussians respectively. In this manner, an irrelevant feature’s skill parameters
are more likely to have values close to zero. In our experiments, we set š2 =
0.0225 and ŝ2 = 1.125. The prior over the feature relevance is given by the
distribution p(γj) = (1 + exp(

∑
h θhϕjh))−1, as explained in Section 2.2

The distribution over the skill parameters is inferred from a set of N train-
ing samples. The ith sample includes a set of values for the object features
φji∀j ∈ {1, ..M} and a set of shape parameter values w̃ik∀k ∈ {0, ..K} that
define the desired trajectory of the hand. The object features and shape param-
eters are normalized during the data preprocessing. The distribution over the
shape parameters is modelled using a Gaussian distribution such that w̃ik =∑M

j=1 wjkφji + εik, where εik ∼ N (0, σ2
k). We model the distribution over the

output variances σ2
k using an inverse gamma distribution with constant shape

and scale parameters set to three in our experiments.
In order to select a set of relevant features, the robot estimates the posterior

distribution over the relevance variables γj using a Gibbs sampling approach [15,
12]. For details on using Gibbs sampling for SSVS, we refer the reader to the
paper of George and McCulloch [14].

Given the posterior distribution over the relevance parameters computed
using Gibbs sampling, the robot computes the maximum a posteriori estimate
of the relevance parameters. Hence, the robot selects a feature φj to be relevant
iff the majority of the samples from the Gibbs sampling were γj = 1. Once the
robot has selected a set of relevant features, the final skill parameters wjk for the
relevant features are learned using linear ridge regression. The skill parameters
for the irrelevant features are set to zero. In this manner, the robot obtains a
sparse set of parameters for generalizing the skill between different scenarios.

2.4 Learning from Experience

In order to master a skill and adapt to novel situations, a robot should be capable
of learning from its own experiences.The robot can learn better estimates of
the skill parameters wjk by obtaining additional sets of object features φji and
corresponding shape parameters w̃ik.
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Fig. 3. The figure on the left (a) illustrates the meta features ϕjh computed for an
object feature φj and hand position ph at the start (top) and end (bottom) of a
demonstrated trajectory. The figure on the right (b) shows the SSVS graphical model
with the meta-level prior. Shaded nodes correspond to observed variables. Best viewed
in color.

The robot extracts a new set of object feature values when it is presented
with a novel scene in which to perform the skill. The robot can then also compute
an initial estimate of the shape parameters w̃0

ik for this scenario using the cur-
rent skill parameters. However, this initial estimate may perform poorly given
that the robot is in the process of learning the skill. The robot can improve
the shape parameters through trial and error learning. In particular, the robot
uses a relative entropy policy search (REPS) approach to locally optimize the
shape parameters [16]. We assume that the robot can attempt the skill execution
multiple times in the same scenario, i.e., the object features are constant. This
assumption allows the robot to optimize the shape parameters for the particular
scene w̃ik rather than the larger set of skill parameters wjk for generalization.

The robot creates an initial Gaussian policy over the shape parameters
w̃i ∼ N (w̃0

i , Σ
0), where the RK+1 vector w̃0

i =
∑M

j=1 wjφji contains the initial

estimates of the shape parameters, and Σ0 is an initial exploratory covariance
matrix. In our experiments, we assumed diagonal covariance matrices and ini-
tialized the diagonal elements with 50. The robot uses the policy to sample skill
parameters from he policy and evaluates them on the task. After performing
multiple executions with the current policy N (w̃q, Σq), the robot computes an
updated policy N (w̃q+1, Σq+1) based on the task rewards obtained for the sam-
pled skill executions. REPS maximizes the expected reward of the new policy
while limiting the Kullback-Leibler divergence between the previous and new
policies, which leads to improved policy convergence behaviour.

Once the robot has learned to perform the skill for a given scenario, the final
mean values of the Gaussian policy w̃Q

ik and the object feature values φji are
used as additional training data for selecting relevant features and learning the
skill parameters wjk. Similarly, once the robot has obtained a sufficient number
of training samples and learned the relevant features for the skill, it can use the
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skill as additional training data for learning the meta-level prior. Determining the
relevance of features with small variances across different scenarios is difficult, as
they are prone to noise and their influence can often be incorrectly represented
by a constant value. We therefore omitted features with standard deviations of
less than 0.015 from the meta-prior training data.

3 Experiments

The proposed framework was evaluated in two experiments using a PR2 robot.
The first experiment required the robot to learn skills using imitation and re-
inforcement learning. In the second experiment, the robot learned a meta prior
based on the skills from the first experiment in order to predict the relevant fea-
tures for new skills. In both experiments, we compared the robot’s performance
when using the meta-prior approach versus a standard uniform prior over the
features’ relevance.

3.1 Skill Learning Experiment

In the first experiment, the robot had to learn two skills: placing an object
on another object (place), and tilting a box from one side to an adjacent side
(tilt). The skills were learned through imitation and reinforcement learning, as
described in Section 2. The PR2 robot was initially provided with six demon-
strations of each skill using kinaesthetic teaching. Each skill was demonstrated
with three sets of different objects, with two demonstrations per object set. We
set K = 5. The rotation trajectories were consistent between demonstrations
and could be modelled using constant shape parameters. The robot therefore
only needed to learn the skills’ translational components.

For each task, the robot was presented with nine novel scenarios in which to
perform the skill. The scenarios included different sets of objects and different
object locations. Each scenario included three objects, with at least one irrelevant
object. In each scenario, the robot learned a set of shape parameters, as explained
in Section 2.4. Between each scenario, the robot reselected the relevant features
and recomputed the corresponding skill parameters using the new data.

In the placing task, the robot received a quadratic cost for the final distance
between the middle of the bottom of the grasped object and the middle of the
supporting surface, and for the distance that the supporting object was moved.
For the tilting task, we defined two points along the pivotal edge of each box. The
robot incurred a quadratic cost for deviations of these points from their initial
locations, as well as a linear cost for the difference in rotation angle from the
desired 90 degrees. The robot performed three policy updates for each scenario,
with five skill executions between each update. The objects in the scenes were
replaced at the end of each skill execution. The first skill execution after each
update used the policy’s mean parameters to evaluate the learning progress.

We evaluated the performance of the robot using both a uniform relevance
prior p(γj) = 0.1∀j ∈ {1, ...,M} and a meta-level prior. In order to learn the
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Fig. 4. The top and bottom plots show the results for the placing and tilting exper-
iments respectively. Lower values indicate better performance. The plots on the left
show the reinforcement learning curves averaged over the nine different task scenarios.
The plots on the right show the performance between the initial three (yellow and
purple) and the final three (green and red) scenarios. The yellow and green correspond
to zero policy updates, while the purple and red bars correspond to the performance
after three policy updates in the given scenario.

meta prior, the robot was also provided with 15 demonstrations of a pushing
task. The task was divided into two skills: making contact with the side of
the object, and pushing the object. The relevant features for these skills were
manually labelled. The robot learned the meta prior using these relevance labels
and the meta features extracted from the demonstrations.

The results of the placing and tilting experiments are shown in Fig. 4. The
plots show the expected costs observed during the experiments, with lower values
indicating better performance.

3.2 Skill Learning Experiment Discussion

The plots on the left of Fig. 4 show that the reinforcement learning improved the
shape parameters for the individual scenarios, as the expected cost is decreasing
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in both tasks and for both priors. The plots on the right show the performance
improvement across the different scenarios. The differences between the yellow
and green bars is particularly important, as they show the initial performance
of the DMPs before they are improved for the specific scenarios. These results
show that the robot’s ability to predict suitable skill parameters w̃ik improves
as it obtains more training examples through reinforcement learning.

The meta-prior and uniform-prior approaches had similar performance levels
for the tilting task. However, the meta-level prior performed considerably better
than the uniform prior for the placing task. This performance gain is due to the
similarity between the pushing and placing tasks. These two skills both involve
moving a held object into contact with another object. The relevant features are
also aligned with the skills’ components, i.e., the skills’ x components depend
on x positions and not y or z positions. In contrast to the placing and pushing
tasks, the tilting task involves a 90 degree rotation of the objects. As a result, the
goal for the vertical z component of the DMP depends on the initial y position
and length of the bottom surface. The prior computed for these features is lower
than for the aligned features. However, the meta-prior approach still favours
features associated with the grasped boxes due to their proximity to the robot’s
hand. The robot should therefore ideally use a meta prior that has been trained
on a wide variety of different tasks. The robot should use more samples and a
Gaussian policy with a larger variance to learn these initial skills.

In some cases, the shape parameters acquired through reinforcement learning
did not fulfill the task requirements, e.g., the object was placed above the support
surface and not on it. These shape parameters still performed better than the
initial estimates w̃0

ik and were included as training samples for predicting shape
parameters for future scenarios. However, as the robot masters the skill, it should
remove samples that performed poorly compared to other samples in similar
situations. In the future, we will explore methods of reweighting samples for the
SSVS based on their performance.

Detecting relevant features that correspond to constraints on the robot’s
movements presented a challenge to the feature selection framework. For exam-
ple, when using the uniform prior approach, the robot learned to use constant
shape parameters for the vertical z-component of the placing skill. Rather than
explicitly adapting the skill to the height of the supporting object, the robot
learned to exploit the compliance in its arm to place the objects. These ap-
proaches could potentially be avoided by including a penalty based on the forces
exerted on the objects. In the future, we will explore selecting the relevant fea-
tures based on the observed trajectories rather than the desired trajectories.

The experiment showed that the robot can use reinforcement learning to
acquire new training samples for selecting relevant features and learning the
corresponding skill parameters. The meta prior can help the robot select rele-
vant features and, hence, perform better when given limited number of training
samples. The benefit of the meta-level prior is greater when the new skill shares
similarities with the previous set of skills.
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3.3 Transfer Learning Experiment

Having learned a set of relevant parameters for the placing and tilting tasks, the
robot can now use these skills as additional examples for learning an improved
meta prior θh. In the second experiment, the robot used a meta prior learned from
the four previous skills to learn skills for three new tasks: cutting an object using
a knife (cut), emptying a container into another container (pour), and wiping an
object’s flat surface with another object (wipe). The cutting and wiping tasks
were divided into two skills each, with the first skill making contact between
the two objects (prep cut and prep wipe) and the second performing the actual
manipulation (cut and wipe). The prep cut skill was ultimately omitted from
the evaluations due to safety concerns. The safe demonstrations of the cut prep
skill lacked variety, which resulted in poor generalization performance.

The meta prior was trained using the meta features extracted from six demon-
strations of each of the four previous skills. For comparison, the robot also learned
a set of skills using a uniform prior. Each new skill was learned from six demon-
strations using three sets of different objects. The set of manipulated objects
used in the experiments are shown in Fig. 5a. The focus of this experiment is
on investigating the initial performance of skills when using a meta-level prior
versus a uniform prior. The robot therefore does not use reinforcement learning
to improve the skills.

Each skill was executed in 15 different scenarios using various sets of three
objects in different configurations. In order to compare the performances of the
two approaches, the robot received a score between zero and one for each skill
execution. For the cutting skill, the robot received one point if the knife cut into
the object without slipping off or break contact with the object. The cutting
motion consists of a single back-and-forth movement, and is not meant to directly
cut through the object. For the pouring task, the robot received a score based on
the proportion of the poured nuts that were transferred to the second container.
For the prep wiping skills, the robot received a score of one if the tool made
contact with the bottom right quadrant of the surface to be wiped. For the wiping
skill, the robot received a point if it moved over the surface without breaking
contact or slipping off. High scores do not indicate exceptional performance or
mastery of the skill. Instead, they indicate that the computed shape parameters
fulfill the basic goals of the skill and, hence, provide a suitable initialization for
further refinement through trial and error. The average scores for the skills are
shown in Fig. 5, with higher scores indicating better performance.

3.4 Transfer Learning Experiment Discussion

The results show that the robot could successfully perform the task for the
majority of the presented scenarios when using the meta-level prior, with an av-
erage score of 0.78 across the four skills. In contrast, the uniform prior approach
resulted in an average score of 0.55.

Using the meta prior helped the robot avoid selecting irrelevant features.
The majority of the errors for the wipe prep skill with the uniform prior are due
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Fig. 5. The left picture (a) shows the objects manipulated in the experiments. The plot
on the right (b) shows the average scores obtained in the transfer learning experiment.

to placing the tool too high and thus failing to make contact with the surface.
This offset is due to the robot incorrectly selecting the horizontal x width of the
tool’s part for the vertical z component of the skill. Similarly, the uniform prior
resulted in poor performance for the pouring task because the y position of the
second container’s opening was selected as a relevant feature for the x component
of the skill. Both of these errors were avoided by the meta-level prior, which had
learned from previous skills that the relevant features are usually aligned with
the direction of the skill component.

The meta-level prior also helped the robot to select relevant features for
improving generalization. The wiping skills learned using the two priors were
qualitatively different despite achieving similar scores. The uniform prior re-
sulted in a skill with a constant amplitude for the back-and-forth movement of
the wiping skill. By contrast, the meta prior approach selected the position of
the middle of the wiped surface as a relevant feature. As a result, the wiping
movement implicitly adapted to the size of the surface and was even inverted
when the tool was placed on the far side of the wiped surface.

The experiment has shown the benefit of using a meta-level prior to trans-
fer feature relevance knowledge between skills. Although the skills learned still
require refinement through trial and error, the meta prior resulted in better
initialization for the novel skills given the limited training data.

4 Conclusion

In this paper, we presented a framework for efficiently learning versatile ma-
nipulation skills by transferring knowledge from previous skills. The skills are
initially learned through imitation learning and subsequently refined using re-
inforcement learning. The framework uses SSVS to select a sparse set of object
features for generalizing the skill parameters. The feature selection process is
guided by a meta-level prior on the relevance of each feature. The meta prior
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is learned from previously acquired skills and their relevant features. The robot
predicts the relevance of object features for novel skills based on a set of seven
meta features, which describe the proximity and alignment of the features to the
hand.

The proposed framework was successfully evaluated on a variety of manipu-
lation skills including placing, tilting, and pouring. The experiments show that
the meta-level prior results in more efficient learning and better performance for
novel skills that share similarities with previously learned skills.
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