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Abstract— For a manipulation skill to be applicable to a wide
range of scenarios, it must generalize between different objects
and object configurations. Robots should therefore learn skills
that adapt to features describing the objects being manipulated.
Most of these object features will however be irrelevant for
generalizing the skill and, hence, the robot should select a small
set of relevant features for adapting the skill.

We use a framework for learning versatile manipulation skills
that adapt to a sparse set of object features. Skills are initially
learned from demonstrations and subsequently improved using
reinforcement learning. The robot also learns a meta prior over
the features’ relevances to guide the feature selection process.
In this paper, we explore using either desired trajectories or
observed trajectories for selecting the relevant features. The
framework was evaluated on placing, tilting, and wiping tasks.
The evaluations showed that using the desired trajectories
to select the relevant features lead to better skill learning
performance.

I. INTRODUCTION

In order to generalize manipulations between different
scenarios, robots will need to be capable of adapting their
manipulation skills to the objects that they are manipulating.
For example, the robot may need to adapt a grasping skill to
the location of an object’s handle, or a placing skill to the size
and location of a supporting surface. These variations in the
objects and their poses can be represented by a set of object
features. The robot can then learn versatile manipulation
skills that adapt to these object features.

The majority of the object features will not be relevant
for generalizing a manipulation skill. Hence, only a sparse
set of object features should be selected for adapting the
manipulation skill. Rather than relying on a human to define
the set of relevant features, the robot should select the
features autonomously. The robot can select the features
based on example trajectories from different situations. These
trajectories may be obtained from human demonstrations, or
acquired autonomously through trial and error.

We explore feature selection for manipulation skills us-
ing a skill learning framework that incorporates imitation,
reinforcement, and transfer learning [1]. An overview of
the framework is shown in Fig. 1 and its components are
explained in Section III. Motor primitive skills are initially
learned from kinesthetic demonstrations. These example tra-
jectories are used as training data for selecting the relevant
features using stochastic search variable selection (SSVS)
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[2]. When the robot encounters a new scenario, it computes
the initial desired trajectory according to the current skill.
The skill execution is subsequently improved through trial
and error using policy search reinforcement learning. The
final trajectory is used as an additional training sample for
learning the skill and selecting the relevant features. To
guide the feature selection process, the robot learns a meta
prior for transferring the relevance of features from previous
skills. The meta-level prior allows the robot to predict the
relevance of the new skill’s object features based on meta
features extracted from the initial demonstrations. These
meta features represent characteristics of the object features
and how they relate to the skill being learned.

In this paper, we use our skill learning framework [1]
to investigate the effects of using either the desired hand
trajectories or the hand trajectories observed during the skill
executions to select the relevant features. Using the desired
trajectory is the more direct approach to selecting the object
features for generalizing the desired trajectory. However, the
desired trajectory is not bound by the physical constraints
of the task. For a compliant robot, the observed trajectory
will deviate from the desired trajectory when it encounters a
constraint, e.g., when it pushes against an immovable object.
The observed trajectory may therefore include additional
information regarding the task’s constraints, which the robot
should use to adapt the skill’s desired trajectory. We inves-
tigate both of these approaches in this paper.

The two approaches were evaluated on placing and tilting
tasks, as described in Section IV. Using the desired trajec-
tories to select the relevant features lead to improved skill
learning performance. Using a meta prior to guide the feature
selection process also resulted in better performance. In the
second experiment, the robot successfully learned wiping
skills using a meta prior learned from the skills acquired
in the first experiment.

II. RELATED WORK

Our skill learning framework combines imitation, rein-
forcement, and transfer learning [1]. Recent work in imitation
learning and reinforcement learning have been used to learn
and execute complicated robot motor skills, e.g., playing ball
games [3], [4], [5], [6], scrubbing surfaces [7], [8], opening
doors [9], [10], and manipulating objects [11], [12], [13].
The learned skills adapt to the object features of the task,
e.g., the goal location or the position of the ball, but the
features used to generalize the skill are usually manually
preselected. These approaches therefore focus on learning
how to adapt to the object features, and not on selecting
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Fig. 1. An overview of the manipulation skill learning framework. The robot learns a mapping from the object features to the motor primitive’s parameters.
The features and parameterized motor primitives are described in Sections III-A and III-B. The framework uses stochastic search variable selection (SSVS)
to select a sparse set of relevant object features for generalizing the skill, as explained in Section III-D. The selection process is guided by a prior on the
relevance of the features. This prior is computed from meta features extracted from demonstrations and a meta prior learned from the feature relevances
and meta features of previously acquired skills, as explained in Section III-C. The framework incorporates reinforcement learning to optimize the skill for
new scenarios and thus acquire more training samples for the feature selection and skill learning process.

the relevant features. Our approach uses a set of predefined
rules to automatically generate large feature pools from task
demonstrations. The robot subsequently learns to select a
subset of relevant features from the pool.

Some frameworks learn features to improve action selec-
tion in ambiguous situations [14], [15]. These methods often
result in an implicit pose estimation of an object or part
that the robot then uses to generalize the skill. The features
are usually learned for specific objects and not to generalize
between different objects with various shapes and sizes.

Motor skills can be adapted to different situations by using
suitable task frames. Potential task frames are often defined
relative to objects. The robot can select a task frame from
demonstrations based on the variances of the trajectories in
each candidate task frame [16], [17]. Task frames can be
generalized between objects by detecting object parts with
similar shapes and estimating their poses [18], [19], [20].

A related challenge for skill learning is selecting the set
of relevant objects for a manipulation [21]. Relevant objects
can be extracted from demonstrations using visual cues, such
as motionese [22]. The object selection problem is distinct
from our feature selection problem, as not all of the features
of a relevant object will themselves be relevant.

Several works have explored multi-task and transfer learn-
ing in the field of robotics [23], [24], [25]. These approaches
often focus on transferring trajectories or controllers between
tasks. The tasks are often similar and share the same feature
space, e.g., different target locations for reaching may be

considered as different tasks. Our tasks have distinct features
and the robot learns a meta-level prior for transferring the
relevance of the features between skills. Meta features have
been used to transfer knowledge about features between tasks
in other applications including predicting movie ratings, text
classification, and object recognition [26], [27], [28].

III. SKILL LEARNING WITH FEATURE SELECTION

The object features and skill representations are described
in Sections III-A and III-B respectively. The robot predicts
the relevance of the individual features using a meta prior,
as described in Section III-C, and then selects a sparse
set of features using stochastic search variable selection,
as explained in Section III-D. The robot improves the skill
execution for new situations using reinforcement learning, as
described in Section III-E.

A. Object Features

To generalize skills between objects, the robot requires
a suitable representation for describing the manipulated ob-
jects. We use object features to model the objects’ shapes,
although the set of features could be extended to include
other properties such as mass. Manipulations often depend on
parts of objects [29], e.g., the blade of a knife, or the opening
of a container. Our features therefore describe the relevant
parts of the objects rather than the objects as a whole.

To extract a set of object parts, we provide the robot
with coarse 3D point cloud models of the objects and
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Fig. 2. Examples of object parts (colored points) that were extracted using
GrabCut. Each part is described by six features: 3D positions and 3D sizes.
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demonstrations of the manipulation task using the objects.
The robot estimates the object parts by detecting points that
come into close proximity to other objects during the demon-
strations. Proximity often indicates an interaction between
objects. These points are used as the initial part estimates
for segmenting the point cloud into part and non-part regions
using GrabCut [30]. Additional details of the part extraction
are provided in our previous work [31]. Examples of the
extracted parts for the pushing, placing, and tilting tasks used
in our experiments are shown in Fig. 2.

Given the object parts, the robot uses a set of predefined
rules to generate object features for each of the parts. Our
evaluation tasks can be performed using motions aligned
with the Cartesian robot frame. We also assume that the
objects are prealigned with this task frame at the start of the
skill execution. The object features are therefore computed
by fitting an axis-aligned bounding box to the point cloud
points associated with each part. The 3D x-y-z position
of the bounding box’s center relative to the robot’s hand
defines the first three features. The x-y-z lengths of the
bounding box’s sides define another three features, giving
a total of six features per extracted part. The features from
all of the parts are concatenated to form a set of M object
features ¢;;Vj € {1,..., M} that describe the ith scene S;.
The correspondences between the objects and parts across
different scenes are given, and the features are concatenated
in the same order to create a consistent feature vector. Most
of the generated features will not be relevant for generalizing
the manipulation skill, and the robot will need to select a
sparse set of relevant features.

B. Adaptive Skills

Having extracted a set of object features, the robot now
needs to learn manipulation skills that adapt to these features.
The skills are represented using dynamic motor primitives
(DMPs) [32]. The Cartesian DMPs use a separate linear
dynamical system to represent each of the three x-y-z com-
ponents of the skills’ desired trajectory. We focus on learning
the translational components of the skills. The shape of the
trajectory for each skill component is defined by a set of
K + 1 shape parameters w;;Vk € {0, ..., K}, for scene S,

which includes a goal offset w;g = g —yo between the initial
state yo and the goal state g.

To generalize the manipulation skill, the robot learns a
linear mapping from object features to shape parameters

Wi = Z?ilekﬁﬁjia (1

where wj is the skill parameter that determines how the
jth feature affects the kth shape parameter. Even though
this linear representation is not as flexible as a nonlinear
mapping, it can be used for adapting a wide variety of skills.
For example, the robot can learn a pouring skill that adapts
to the position and width of a container’s opening, or it can
learn a cutting skill that scales with the length of the blade.

Given a set of [V training examples, each of which includes
K shape parameter values w;;, and M object feature values
®;i, the robot can learn the skill parameters w;; using
linear ridge regression. However, most of the extracted object
features will not be relevant for generalizing the manipulation
skill. We therefore include a feature relevance variable v; €
{0,1}Vj € {1,...,M} that defines if the jth feature ¢;;
is relevant v; = 1 or irrelevant v; = 0. Since the set of
relevant features can vary between the X-y-z components
of the manipulation skill, the robot selects a separate set
of relevant features for each skill component. The feature
selection process, as described in Section III-D, estimates
the relevance of each feature +y; based on the example
trajectories. The linear regression for computing the skill
parameters w;; is performed using only the features ¢;; that
are considered to be relevant y; = 1, and the skill parameters
for the irrelevant features are set to zero.

C. Meta Features and Meta Priors

To guide the skill learning process, the robot learns a meta-
level prior [26] to compute a prior over the feature relevances
p(7y;). The prior has a logistic regression form

plyy=1) = (1 +exp (Zf:l ahSth))_la )

where the set of H parameters 0,Vh € {1,..., H} is the meta
prior, and ¢;,Vh € {1,...,H} are the H meta features for
the jth object feature ¢;;.

The meta features ¢;;, represent properties of their re-
spective object feature ¢; and how it relates to the skill. We
extract the meta features from the initial and final scenes
of individual demonstrations, as illustrated in Fig. 3. Each
object feature ¢; is associated with an object part and a
direction in which the feature is computed. We define the
position of the part at the start of the demonstration as
pj € R3 and the direction of the feature as d; € R3. The
features describing the position or length of a part in the
x direction will thus have d; = [1 0 0]”. Similarly, we define
the initial position of the active robot hand as p € ]1§3, and
the direction of the skill component being learned as d € R3.
Thus, when learning the y component of the manipulation
skill the direction is d = [0 IQ]T. We assume that the
direction of the skill component d remains constant, but the
position and direction of the feature moves with the object
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Fig. 3. The figure illustrates the six geometric meta features ¢, for the
feature ¢;. The initial and final scenes of the demonstration are shown on
the left and right. The hand is located at p and the feature’s part is located
at p;. The horizontal feature defines a distance in the d; direction, and the

robot is currently learning the skill component for the vertical d direction.

part to p’; and d}, as shown in Fig. 3. The hand position at
the end of the demonstration is given by p'.
Given these properties, we define six meta features as

e = |lp; — pl? wja = |Ip; =PI

piz=ld"(0; = DI? w5 = ||CTT(2§T— I 3
pjs = |d¥d;] pio = |d"d|

where the meta features in the first two rows represent the
proximity of the object feature to the robot’s hand, and the
meta features in the third row capture the alignment of the
object feature with the skill component. These meta features
allow the robot to predict if, for example, a feature is more
likely to be relevant because the hand moved closer or further
away from its part during the demonstration, or because the
feature was aligned with the skill component at the end
of the demonstration. We include a binary seventh meta
feature, which indicates whether the feature is representing
the position or the length of a part, as well as a bias term.

These meta features allow the robot to compare features
from different tasks, and thus transfer the prior knowledge
of the features’ relevances between distinct tasks. The meta
prior 0,¥h € {1,..., H} indicates which meta features are
informative for selecting relevant features. The meta prior
is learned from previous skills using iteratively reweighted
least squares. The training data for learning the meta prior
includes the meta feature values ¢ and the feature relevances
v from the previous skills.

Given multiple demonstrations, the robot first computes
the meta features for each demonstration and their respective
estimates of the prior. The robot then takes the mean of these
estimates to obtain the prior used for the feature selection.

D. Feature Selection

Using the example demonstrations and the prior over the
features’ relevances, the robot selects a set of relevant fea-
tures for generalizing the manipulation skill. The robot uses
the stochastic search variable selection (SSVS) algorithm
to perform the feature selection. The graphical model of
the SSVS with the meta prior is shown in Fig. 4. The
distribution over the feature relevances ; is given by Eq. 2.
The distribution over the shape parameter wj;, is given by
zero-mean Gaussians with relevance-dependent variances
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Fig. 4. The graphical model for the stochastic search variable selection
(SSVS) with the meta-level prior. The feature selection is performed using
N training samples. Each sample includes M object feature values ¢;; and
the desired trajectory’s K +1 shape parameter values w;;. We also evaluated
using the observed trajectory’s shape parameters w; to select the relevant
features. Each shape parameter is associated with a standard deviation oy,
and the mapping from object features to shape parameters is defined by the
skill parameters w;. Bach of the M object features is associated with a
binary relevance variable ;. The prior over the relevance variable v; is
computed using H meta features ;5 extracted from a demonstration and
H meta prior parameters ¢y, learned from previous skills.

where the variances were set to 32 = 0.0225 and 52 = 1.125
for our experiments. Thus, the shape parameters correspond-
ing to irrelevant features v = 0 are more likely to be close
to zero. The distribution over the shape parameters w;y is

P(Wik |tk ®:anyi OF) = N(Z?ilek%wi) (&)
where ¢(1.5r); are the M object feature values for the ith
sample, and o} is the output variance of the kth shape
parameter. We model the distribution over the variances as

0% ~ Inv-Gamma(a, b), (6)
where we set the inverse-gamma distribution’s shape param-
eter ¢ = 3 and scale parameter b = 3 to constants.

The SSVS algorithm selects the relevant features based on
the posterior distribution over the relevance features ;. This
posterior distribution is approximated using Gibbs sampling
[2], [33]. A feature is considered to be relevant if its posterior
distribution is over 0.5, i.e., it had a relevance value of v; =
1 for the majority of the samples obtained through Gibbs
sampling. Once the robot has selected a set of relevant object
features, it computes the skill parameters w;, for this sparse
set of features using linear regression.

Rather than using the parameters for the desired trajec-
tories w;, to select the relevant features, the robot can
alternatively use the shape parameters w;;, extracted from the
observed trajectories. Since the robot’s arms are compliant,
these trajectories will be bound by the physical constraints
of the task. The robot may thus be able to detect these
constraints better and generalize the skill accordingly. Once
a set of relevant features has been extracted, the robot uses
them to learn the mapping from the object features to the
desired shape parameters as before. The robot can use the
observed trajectories to compute the relevant features, but
not for computing the final skill parameters.

E. Learning from Experience

Given the skill parameters w;; and a set of object features
¢;; for a new scene, the robot computes an initial set of shape



Fig. 5.

Objects used for learning manipulation skills in the experiments.

parameters Y, for the DMP. This initial skill’s performance
could potentially be improved. Our skill learning framework
therefore incorporates reinforcement learning to improve the
skill through experience. We use relative entropy policy
search (REPS) to refine the shape parameters for a given
scenario [34]. We assume that the robot can attempt the task
repeatedly in the same scenario with constant object features.
This assumption allows the robot to optimize the shape
parameters w;; instead of the larger set of skill parameters
w;, used for generalization.

We define an initial Gaussian policy over the DMP’s shape
parameters as w; ~ N (@?,£°), where @) is the vector of
initial shape parameters [@?]; = Zﬁl w;k¢ji, and X0 is an
exploratory covariance matrix. We used diagonal covariance
matrices and set the diagonal elements of X° to 50. The robot
samples shape parameters from the policy and evaluates
them by executing the skill and receiving a task-specific
reward. After evaluating multiple samples from the current
policy N (w9, %X%), the robot computes an improved policy
N (@971 329+1) based on the acquired rewards. The REPS
algorithm maximizes the expected reward of the new policy
while limiting the Kullback-Leibler divergence between the
two consecutive policies. This bound leads to an improved
policy convergence behavior.

Once the robot has learned the skill for the scenario, the
final mean of the policy u?fi and the object feature values
¢;; are used as additional training data for selecting the
relevant features and learning the skill parameters w;. Thus,
the robot uses the knowledge acquired from this scenario to
improve the generalization of the skill in the future.

IV. EXPERIMENTS AND EVALUATIONS

The first experiment explores how the choice of trajecto-
ries and prior used to select the relevant features affects the
skill learning process. In the second experiment, the robot
learns a new meta prior from the first experiment’s skills. The
updated meta prior is used to learn basic wiping skills. The
experiments were performed with assorted objects, including
YCB objects [35], as shown in Fig. 5.

A. Learning to Tilt and Place Experiments

The first experiment evaluates the effects of using the
desired trajectories versus the observed trajectories for se-

lecting the relevant features together with either a meta-level
prior or a uniform prior. The evaluations were performed
using placing and tilting tasks. In the placing task, the robot
has to place a held object on top of another object in the
environment. The robot received a quadratic cost for the
final distance between the middle of the bottom of the held
object and the middle of the top of the supporting object.
The robot also incurred a quadratic cost for shifting the
supporting object, and a small quadratic cost for the distance
moved in each time step of the trajectory. For the tilting
task, we defined two points on the pivotal corners of the
boxes being tilted. The robot received a quadratic cost for
deviations of these points from their initial locations during
the task executions. The robot also incurred a cost for the
angle between the final object pose and the desired 90 degree
rotation. We assumed a rigid grasp and used the robot’s
forward kinematics to track the held objects. Other objects
were tracked with Niekum’s Alvar AR tags ROS package.

To learn the placing and tilting skills, the robot was
initially provided with six kinesthetic demonstrations of each
task. The demonstrations were performed with three different
sets of objects, with two demonstrations per object set.
Each scene includes three objects, although only one or
two objects were relevant for the tilting and placing tasks
respectively. The rotational components of the demonstra-
tions were similar for each skill. The robot therefore learned
these components using a single constant bias feature. The
robot learned DMPs with five shape parameters for each
component. The placing and tilting tasks both use 24 object
features plus a bias term, resulting in 125 skill parameters
wjj, per translational component.

After learning the initial skills from demonstrations, the
robot was presented with nine additional scenarios in which
to improve the skills through trial and error. The policy
search reinforcement learning was performed using three pol-
icy updates with five skill executions between each update.
After each policy update, the robot executed the skill using
the current mean of the policy to evaluate its performance.

For the meta prior approach, the robot was provided with
fifteen demonstrations of a pushing task, which included
one skill for making contact with the side of the object
and another for pushing the object. The robot used these
demonstrations to extract meta features. The relevance of the
features v for the pushing task were manually labeled. The
robot used these labels to learn a meta prior for predicting
the relevance of the features for the placing and tilting tasks.
The uniform prior is given by p(v;) = 0.1Vj € {1,..., M }.

The results of the experiment are shown in Fig. 6. Exam-
ples of the initial and final skills are shown in Fig. 7 and 8.

B. Discussion

The downward trends in the left and right plots of Fig. 6
show that the skills are being improved through reinforce-
ment learning and autonomous sample gathering respectively.
The meta priors result in lower costs for the placing skill
from the beginning. The MetaDes approach selected the x-
y-z position of the supporting surface as the relevant features



Placing Experiment Results

0.8 : . . . 1.2 - —
- I Initial scenarios-Initial costs
= Mr?itf?)rFr’T:Igrigstes I Initial scenarios-Final costs
07} , : I Final scenarios-Initial costs
[1Meta Prior Obs 1k Final i0s-Final costs 1
[ Uniform Prior Obs [ Final scenarios-Final costs
0.6 |- 4
05 4
2 o4l ; g
o o
0.3+ .
0.2+ .
0.1} -
0 0 1 2 3 Meta Prior Des  Uniform Prior Des Meta Prior Obs Uniform Prior Obs
Policy Updates
Final | Initial Trial |Meta Des|Unif Des|Meta Obs|Unif Obs| Final Trial |Meta Des|Unif Des|Meta Obs|Unif Obs
Place | Initial Scn | 6.48cm | 27.4cm | 5.96cm | 24.6cm | Initial Scn | 4.35cm | 20.7cm | 4.40cm | 17.90cm
Errors | Final Scn | 4.37cm | 14.3cm | 3.52cm | 2.70cm | Final Scn | 1.80cm | 12.9cm | 2.94cm | 1.46cm
Tilting Experiment Results
08 T T T T T 1.2 T T T 1
I Meta Prior Des I [nitial scenarios-Initial costs
07k [ Uniform Prior Des | | I |nitial scenarios-Final costs

[1Meta Prior Obs
[ Uniform Prior Obs

Il Final scenarios-Initial costs 4
[ Final scenarios-Final costs

@

o

o
0 1 2 3 Meta Prior Des  Uniform Prior Des Meta Prior Obs Uniform Prior Obs

Policy Updates
Mean | Initial Trial [Meta Des|Unif Des|Meta Obs|Unif Obs| Final Trial |Meta Des|Unif Des|Meta Obs|Unif Obs
Pivot | Initial Scn | 4.49cm | 4.44cm | 4.03cm | 4.41cm | Initial Scn | 3.13cm | 3.62cm | 3.35cm | 2.68cm
Errors | Final Scn | 2.86cm | 3.47cm | 3.47cm | 7.29cm | Final Scn | 2.13cm | 2.93cm | 2.91cm | 5.06cm
Fig. 6. The top and bottom plots show the results for the placing and tilting experiments. The plots show the performances when using the meta prior

versus the uniform prior approach, and the desired trajectory versus the observed trajectory, for selecting the relevant features. Lower costs indicate better
performance and the error bars represent one standard error. The plots on the left show the reinforcement learning curves averaged over the nine different
task scenarios. The plots on the right show the performance between the initial three (dark red and dark blue) and the final three (green and light blue)
scenarios. The dark red and green bars correspond to zero policy updates, while the dark and light blue bars indicate the performance after three policy
updates in the given scenarios. The top and bottom tables show the final position error after placing the object and the mean displacement of the pivot
while tilting the object respectively. The middle rows correspond to the errors for the first three scenarios, while the bottom rows correspond to the last

three scenarios. The left and right sides of the tables show the errors before and after applying reinforcement learning in the scenarios.

for the x-y-z skill components. It also included the redundant
y position of the supporting object’s bottom surface for the
y component. All of these features, except for the y position
of the supporting surface, were already selected for the first
scenario by using the meta-level prior.

By contrast, the uniform priors selected suitable features
for the skills’ horizontal x component in the initial scenario,
but the horizontal y component was either constant or incor-
rectly depended on the z position of the supporting surface.
Given more samples, the uniform prior approaches ultimately
included the y position of the supporting object. However

the poor initial samples can reduce the quality of the learned
skill. We will explore methods for weighting samples based
on their performance in the future. The relatively high final
placing cost of UnifDes is due to including the vertical z
position of the irrelevant object for the y movement.

The UnifDes and MetaObs approaches did not select the
z position of the supporting surface for the z component.
Instead, these skills relied on the compliance of the robot
to adapt to the surface’s height. This result indicates that
using the observed trajectory does not improve the feature
selection for the constrained directions. Including a penalty
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Fig. 7. The pictures show the performances of the placing skills. The robot
should place the cup on the middle of the wooden block. The pictures on
the left show the initial skills learned from six demonstrations. The pictures
on the right show the final skills that were improved over nine additional
scenarios using reinforcement learning. The top and bottom pictures show
the skills learned using uniform and meta-level priors.

for large forces or deviations between desired and observed
trajectories could improve the feature selection.

The robot tended to omit features corresponding to the
cups and bowls being placed. The variances over these
features are comparable to tracking errors and other sources
of noise. As a result, their relevance is difficult to determine.
Using a wider range of objects could alleviate this issue.

The surface centers used for the reward function are not
the same as those extracted for the features. The features
may therefore only be able to predict the placing position
to within a couple of centimeters for the initial trials. Given
tracking errors and other sources of noise, a placement error
of less than Hcm is generally acceptable for this task. The
robot could successfully perform the task even with larger
errors, as shown in Fig. 7.

The meta prior provided less benefits for the tilting task
than for the placing task. All four approaches used constant
trajectories for the initial tilting movements in the y-z plane.
Placing is similar to pushing, as both skills involve creating
contacts between two objects. By contrast, tilting is a single-
object skill that involves a 90 degree rotation. The benefit
of the meta prior is therefore greater when the new skill is
similar to the previously acquired skill.

The UnifObs learned a final skill that performed worse
than the initial skill. The poor performance of this skill is due
to the robot selecting two x direction features from the box
and the z position of the irrelevant object as the features for
the y movement. These selection errors could be attributed
to nonlinearities in the observed trajectories resulting from
the object-table interactions. The MetaObs approach avoided
these errors by selecting aligned features and omitting fea-
tures from irrelevant objects based on proximity.

Although the skill learning framework performed well and
could learn the skills, individual components of the frame-
work could be improved in the future. The skill learning
framework currently assumes axis-aligned tasks and that the
relative positions of objects are similar, e.g., the object is

Tilting Scenario Initial Skill ~ Final Skill

Fig. 8. The pictures show the initial and final tilting skills learned using the
uniform prior. The skills learned using the meta-level prior are similar. The
blue dot indicates the initial corner point, i.e., the desired pivot point. (Left)
The initial evaluation scene. (Middle) The final pose using the skill learned
from six demonstrations. (Right) The final pose using the skill learned from
six demonstrations and nine reinforcement learning scenarios.

Wiping Trajectories
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Fig. 9. (Left and Middle) Example goal states from the wipe preparation
skills. The uniform prior’s skill fails to make contact with the surface.
(Right) Illustration of the wiping skills’ trajectories. The meta prior’s skill
moves towards the center of the surface.

placed at the center of the supporting surface. Our future
research will explore using more advanced features and
incorporating variable rotations for aligning objects. We will
also investigate using pose synthesis methods to predict
suitable object-object poses for establishing contacts between
objects [36], [19]. These predicted poses can then be used
as virtual objects to generate additional features. The current
meta features capture general concepts of proximity and
alignment. We will explore using more specialized meta
features in the future, e.g., meta features indicating if object
parts are currently in contact with other objects.

The results of the experiment show that the robot should
use the shape parameters from the desired trajectory to select
relevant features for generalizing manipulation skills.

C. Transfer to Wiping Skill Experiment and Discussion

The robot used the learned placing and tilting skills to
learn a new meta prior. The robot extracted meta features
from six demonstrations of each of the pushing, placing,
and tilting skills. The relevant features for placing and
tilting were computed using SSVS with the meta prior and
desired trajectories. Features with standard deviations of less
than 0.015m were excluded from the training data, as their
relevance cannot be reliably determined due to sensory noise.

Using the new meta prior, the robot learned basic wiping
skills from six demonstrations each. The wiping task was
divided into two skills: making contact with the surface,
and wiping across the surface. The robot only used imitation
learning for this experiment and did not refine the skills with
reinforcement learning. We again compared using a uniform
prior to the meta prior approach.

The skills were evaluated on 15 different scenarios using



different sets of objects. The robot successfully made contact
with the surface in 12 of the wipe preparation trials using the
meta prior, and 8 trials when using the uniform prior. The
robot successfully wiped the surface in 13 trials using the
meta prior and 12 trials using the uniform prior. The objects
were manually positioned at the start of the wiping task such
that the results are independent of the wiping preparation
skills.

The decreased performance of the uniform prior’s wiping
preparation skill is due to the inclusion of irrelevant features.
The uniform prior selected the horizontal x length of the
grasped object for adapting the vertical z movements, which
resulted in the object being placed too high, as shown in
Fig. 9. The meta prior approach successfully avoided these
misalignment errors, resulting in improved performance for
both skills.

For the wiping skill, the uniform prior approach selected a
constant amplitude for the back-and-forth movement in the x
direction. The meta prior approach selected the x position of
the wiped surface as a relevant feature, due to it alignment
and proximity to the hand. In this manner, the amplitude of
the wiping motion adapts to the initial position of the object
on the surface and always moves towards the center of the
surface, as shown in Fig. 9. The results of the experiment
show that the learned meta prior is useful for both rejecting
irrelevant features as well as selecting relevant features.

V. CONCLUSION

We explored feature selection for learning manipulation
skills. We used a skill learning framework that combines
imitation, reinforcement, and transfer learning to efficiently
learn versatile manipulation skills that adapt to different
objects and scenarios. We explored performing the feature
selection based on the desired and the observed trajectories.
For each approach, we also evaluated the performance when
using a uniform prior or a meta-level prior that allows
the robot to predict the relevance of features based on the
relevance of features from previously learned skills.

The skill learning framework was evaluated on placing,
tilting, and wiping tasks. The evaluations show that using
the desired trajectories, rather than the observed trajectories,
results in improved learning behavior and skill performance.
The experiments also showed that, in both cases, the meta
prior resulted in improved learning performance, especially
when the new skill is similar to a previously acquired skill.
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