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Abstract A vision-based extended Kalman filter is proposed to estimate the state of
a remotely operated vehicle (ROV) used for inspection of a nuclear reactor pressure
vessel. The state estimation framework employs an overhead, pan-tilt-zoom (PTZ)
camera as the primary sensing modality. In addition to the camera state, a map of
the nuclear reactor vessel is also estimated from a prior. We conduct experiments
to validate the framework in terms of accuracy and robustness to environmental
image degradation due to speckling and color attenuation. Subscale mockup exper-
iments highlight estimate consistency as compared to ground truth despite visually
degraded operated conditions. Full-scale platform experiments are conducted using
the actual inspection system in a dry setting. In this case, the ROV achieves a lower
state uncertainty as compared to subscale mockup evaluation. For both subscale
and full-scale experiments, the state uncertainty was robust to environmental image
degradation effects.

1 Introduction

We propose a vision-based state estimation and localization framework to enable
submersible robots to conduct inspection of nuclear reactor pressure vessels. The
framework is formulated as an extended Kalman filter (EKF) that is robust to sen-
sor degradation and image corruption that may occur due to environmental effects,
such as radiation and color attenuation. The proposed framework relies on a pan-
tilt-zoom (PTZ) camera, fixed with respect to the vessel frame, that is autonomously
controlled. To model the reactor vessel, we propose the use of a sparse map that con-
cisely represents the vessel geometry as a series of planes and landmarks. The map
is assumed to be known in advance with limited uncertainty arising from differences
between engineering blueprints and construction. The map is estimated in the state
to enable corrections based on projections of vessel landmarks (points and lines) in
the camera image space.

A submersible robot that is used to inspect a nuclear reactor pressure vessel is
shown in Fig. 1. The robot and vessel are monitored by an external PTZ camera,
which is the primary sensing modality of the framework. The key advantage of us-
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ing using a camera is its zoom capability. High optical resolution images of the
scene are still obtained via zoom despite the camera being positioned relatively far-
ther from the reactor, which mitigates the adverse effects of radiation. Indeed, the
existence of radiation in this environment restricts the use of others sensors for the
framework. Significant radiation exposure excludes the use of localization sensors
with sensitive electronics, such as inertial measurement units or depth sensors. In-
deed, radiation-sensitive electronics can degrade and fail with exposure of a few
krad [21], which is below the expected exposure dosage in this setting. The under-
water setting excludes the use of GPS, and water attenuation excludes sensing depth
using projective infrared light without the use of an external light source [25]. How-
ever, the underwater setting lacks turbidity, so vision-based perception is viable.

The use of vision for underwater robots has been studied both in laboratory exper-
iments and in deployed field robots. Although submersible robots can utilize a range
of sensing modalities [15], radiation exposure from the nuclear reactor restricts
us to considering systems where vision is the primary sensing modality. A visual
SLAM formulation with pose-graph optimization was utilized to construct a texture-
mapped, three-dimensional model of a ship hull for inspection purposes [14]. An
EKF state estimation formulation that includes vision and inertial measurements
was found to be successful in underwater navigation of a submersible robot [22].
Another study demonstrated a localization solution for a AUV using acoustic sen-
sors and visual odometry [7]. Our use of structural landmarks is similar to previous
work in localizing an underwater robot in a structured environment using only visual
perception (an onboard camera) [4], but our study differs in that robot localization
is achieved through a fixed, external camera.

Deployed field inspection robots that utilize vision have conducted subsurface
bridge inspection [19] and ship hull inspection [11], with sonar imaging as the pri-
mary inspection modality in these cases. In the domain of nuclear reactor inspection,
the use of cameras and robotics for inspection has been studied [18, 20]. A previous
study estimated the x- and y-position and yaw angle of a submersible robot within
a reactor vessel by observing eight LEDs located on the vehicle with an external
camera (primarily using a depth sensor for the z-position) [5]; our work differs by
estimating both the robot and camera pose with six degrees of freedom.

Fig. 1 This submersible robot
is used to inspect reactor
pressure vessels. Note the
planar structure of the vessel
and the geometric features
located on the walls and floor.
The robot is equipped with
three red fiducial markers that
are used for pose estimation.
A tether is used to transmit
robot control signals from the
control station.
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Regarding PTZ cameras, we note that the movement of a small unmanned system
with a pan-tilt camera has been estimated using an EKF [8]. This study estimates
the projection of the system in the camera image space, not in three dimensions as
our framework does. Jain and Neumann [12] employ an EKF to estimate the pose
and focal length of a PTZ camera.

2 System Overview

The robotic inspection system consists of a submerged PTZ camera that monitors a
ROV operating in a reactor pressure vessel. The robot is equipped with three fiducial
markers. Figure 2 illustrates the system and depicts three distinct reference frames:

1. the body frame {B}, located at the robot center of mass;
2. the external camera frame {E}, located at the optical center of the camera; and
3. the inertial world frame {W}, which is the reference frame for the vessel map.

The robot pose, camera pose, and camera focal length are estimated using an
EKF. To account for uncertainties in the vessel geometry, the map representation of
the vessel is also estimated in the state. The resulting framework is shown in Fig. 3.

The remainder of this section will address system models and methods: the ex-
ternal camera (Sec. 2.1), the submersible robot (Sec. 2.2), the map representation of
the vessel (Sec. 2.3), a method for camera rotation inference via homography-based
image registration (Sec. 2.4), and a method for incorporation of landmark projec-
tions into the sparse map (Sec. 2.5). The EKF formulation detailed in Sec. 3 will
leverage these models and methods to enable ROV state estimation.

Fig. 2: System representation and landmarks: (left) in three dimensions; (right) in
the two dimensional image space of the external camera. The intersections of ves-
sel planes πππ i and πππ j yield Plücker lines that project as lines `̀̀i j. Similarly, three-
dimensional points PPPi project to two-dimensional points pppi in the image space.
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Fig. 3: The system diagram of the state estimation framework.

2.1 External PTZ Camera

A PTZ camera is utilized to monitor the robot and vessel during infrastructure in-
spection and is mounted to the vessel, external to the robot. The camera is controlled
via visual servoing such that the robot is always in view with reasonable magnifi-
cation. The PTZ images are used for inference of camera rotation (Section 2.4),
camera-to-robot localization (Section 2.2), and camera-to-world localization using
projections of structural landmarks in the image space (Section 2.5). We assume
pinhole projection as the underlying camera model that relates a three-dimensional
point in homogeneous coordinates P̃PP∼ [PPPT, 1 ]T to its image projection in homoge-
neous coordinates p̃pp ∼ [ pppT, 1 ]T, where R and t represent the transformation from
the point frame to the camera frame:

p̃pp∼ K[R | t ]P̃PP (1) K =

 fx 0 cx
0 fy cy
0 0 1

 (2)

2.2 Submersible Robot and Fiducial Markers

The submersible robot (Fig. 1) is equipped with three fiducial markers to enable
pose estimation from the marker projections in the camera image space. These pro-
jections (mmmi = [ui, vi ]

T, i = {1,2,3}) provide corrections between the external cam-
era and the robot frames. The markers are detected using the K-means clustering
algorithm [1] and assigned based on the estimated robot pose.

The position of the markers (MMMb
i ) with respect to the body frame {B} is static

and known from robot measurements. The marker positions provide the visual scale
that is necessary to infer the three-dimensional pose of the robot from the marker
projections. These projections arise in the external camera image space as follows:
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m̃mmi ∼ K [Re
w | te

w ]T
w

b M̃MM
b
i (3)

In this model, T w
b is the rigid body transformation matrix that relates points ex-

pressed in the body frame to the world frame, calculated from the robot pose es-
timate (pw

b , q̄w
b ). Similarly, the extrinsic calibration matrix [Re

w | te
w ] is determined

from the pose estimate of the external camera (pw
e , q̄w

e ).

2.3 Sparse Map from Structural Elements

As shown in Fig. 1, the characteristic geometric appearance of the reactor pressure
vessel structure can be described as a series of intersecting planes, with landmarks
that exist on these planes. These three-dimensional geometric entities (planes and
points) form two types of landmarks in the image space: lines and points. The vessel
geometry is specified in the world frame {W}.

Each plane πππ = [ n̄T, d ]T ∈ R4 is described by a unit normal vector n̄T and dis-
tance d. The three-dimensional line that arises from the intersection of two adjacent
planes, πππ i and πππ j, is represented in Plücker coordinatesLi j = πππ i∧πππ j, whereL∈P5.

The infrastructure contains landmarks, which are engineered structural elements
such as relief holes, cavities, or bolts that can be represented as a three-dimensional
point, PPP. Specifically, we note the prominence of repeated point elements such as
flow holes on the reactor core floor (Fig. 1, c.f. Fig. 5) and bolts (c.f. Fig. 8). These
landmarks exist on a plane, as represented by the constraint πππ · P̃PP = 0.

2.4 Homography-Based Inference of Camera Rotation

To infer the change of the external camera rotation, a homography-based method-
ology is used that leverages image registration. The pixel coordinates of successive
images from the external camera are mapped by a homography [23]:

x̃xx′ = H x̃xx (4)

where x̃xx is the homogeneous pixel coordinates, i.e., x̃xx = [u, v, 1 ]T. Because the ex-
ternal camera does not translate, image pixel displacements do not depend on scene
structure [6]. Specifically, this homography H is the infinite homography H∞ in-
duced by the plane of rotation at infinity [10]. Between frames i and j, this homog-
raphy has one of two structures, Hstatic and Hrot , depending on whether the camera
is static or rotating, respectively:

Hstatic = I3×3 (5)

Hrot = K Ri j K−1 (6)
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The homography, H, is calculated via intensity-based image registration between
consecutive frames. The resulting camera rotation Ri j is then used to drive the pro-
cess model of the external camera in the state estimation framework.

2.5 Projections of Structural Elements

The projections of structural elements that compose the map are observable from
the external camera image space (Fig. 2). Landmarks (points and lines) are used for
correcting the state estimate by identifying and associating them in the image space.
These projections are utilized for localization between the robot and the world, as
well as for localization between the external camera and the world.

Landmarks are identified and associated first using feature detection based on
geometric shape. Lines are detected using the Canny filter [3] and the probabilistic
Hough transform [17]. Points are detected using blob detection and, in the case of
circular elements, the Hough transform [26]. After detection, data association is
performed by first projecting map elements into the image space, and comparing
them against candidate detected landmarks. The closest detected landmark (within
a heuristic threshold) is then associated to a projected landmark.

Three-dimensional points and their projections in the image space are related by

p̃ppi ∼ K [Re
w | te

w ] P̃PP
w
i (7)

For lines, the Plücker line Li j = πππ i∧πππ j formed from the intersection of adjacent
planes defined in the world coordinate frame are projected in the external camera
image space as a line `̀̀i j ∈ P2:

`̀̀i j ∼KLe
wLw

i j (8)

The matrix Le
w is the rigid displacement matrix for lines, and K is the perspective

projection matrix for lines [2].

3 EKF Methodology

We estimate the non-linear state of the system (robot, camera, and map) using a
discrete extended Kalman filter (EKF) with quaternions [16] to obtain a recursive
state estimate. This state estimation framework leverages the algorithms described
in Section 2 (Fig. 3) and requires as priors the position of the fiducial markers on the
robot, the vessel geometry as obtained from blueprint specifications within a limited
degree of uncertainty, and the camera radial and tangential distortion parameters,
obtained via a previously known calibration. We assume from this point forward
that the external camera images are unwarped following a transformation to reverse
the lens distortion. To initialize the filter, we optimize the initial position of the
external camera and focal length to minimize the reprojection error between the
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observed and predicted vessel landmarks. Thereafter, the initial pose of the robot
may be estimated from the marker projections from constrained optimization.

3.1 System Parameterization

The non-linear state of the inspection system X(t) is estimated via an extended
Kalman filter with inputs u(t) ∈ R3 and a variable number of measurements z(t),
depending on the scene. The system state encompasses the state of the inspection
system (robot and external camera) XS(t) and the map of the vessel XM:

X(t) = [XS(t)T, XM
T ]T (9)

3.1.1 Inspection System State

The state of the system is represented by

XS(t) = [pw
b (t)

T, q̄w
b (t)

T, pw
e

T, q̄w
e (t)

T, fff e(t)
T ]T (10)

where pw
b (t) = [xw

b (t), yw
b (t), zw

b (t) ]
T and q̄w

b (t) are the position and orientation (re-
spectively) of the robot with respect to the world frame, pw

e = [xw
e , yw

e , zw
e ]

T and
q̄w

e (t) are the (static) position and orientation of the external camera with respect to
the world, and fff e(t) = [ fx(t), fy(t) ]T is the vector of focal length components.

3.1.2 Map State

The world structure is represented by a map in the state estimate XM that encom-
passes the vessel planes and three-dimensional landmarks that exist on these planes.
Each plane πππ = [ n̄T, d ]T is described by the unit normal vector n̄ and distance d.

We propose a minimal representation for utilizing a map of the reactor in the EKF
framework by extending the geometric representation described in Sec. 2.3. Assum-
ing that the walls of the vessel are orthogonal to the floor, planes are specified by
their rotational degree of freedom (θ ) about the world z-axis and translational degree
of freedom (d). Therefore, the unit normal for each wall is n̄ = [cosθ , sinθ , 0 ]T.
For the floor of the vessel, only the height of the vessel h is needed in the state,
for n̄ = [0, 0, 1 ]T and d = −h. Therefore, if the vessel consists of N walls, 2N + 1
parameters are needed for the planar structure of the vessel.

Although landmark points are three-dimensional, they all must exist on a plane.
To enforce the coplanarity of a landmark with its associated plane, a point is rep-
resented by two translational degrees of freedom within in the plane, δ1 and δ2,
relative to the point −n̄d, which is the point on the plane closest to the origin of the
world frame {W}. These represent the two-dimensional position of the landmark in
the two-dimensional subspace of R3 formed by πππ . When considering n̄ as one axis
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of an orthonormal basis of the plane, the other two axes are v̄1 = [−sinθ , cosθ , 0 ]T

and v̄2 = [1, 0, 0 ]T for walls, and v̄1 = [1, 0, 0 ]T and v̄2 = [0, 1, 0 ]T for the floor.
A landmark’s three-dimensional position in the world frame {W} can be recov-

ered from its coincident plane and two-dimensional position within this plane:

PPP =−n̄d +δ1v̄1 +δ2v̄2 (11)

It follows from Eq. 11 that the coplanarity constraint of the landmark, πππ · P̃PP = 0,
is always satisfied for any choice of θ , d, δ1, or δ2.

With this minimal geometric representation, the map state XM ∈R2N+1+2L for N
planes and L points is as follows:

XM = [θ1, d1, . . . , θN , dN , h, δ1,1, δ1,2, . . . , δL,1, δL,2 ]
T (12)

3.2 Process Models

The system process model characterizes the temporal evolution of the state. The pro-
cess input, u(t), consists of the angular velocity of the external camera with respect
to its reference frame, ωωωw

e (t). The entire process model expressed in continuous
time is

ṗw
b (t) = 0 (13)

˙̄qw
b (t) = 0 (14)

ṗw
e = 0 (15)

˙̄qw
e (t) =

1
2 Q(ωωωw

e (t)) q̄w
e (t) (16)

ḟff e(t) = 0 (17)
π̇ππ = 0 (18)

ṖPP = 0 (19)

These continuous time update equations are converted into discrete time using
Euler discretization. We model the robot’s state evolution as being driven forward
by a random walk. For the external camera process, the position of the external
camera pw

e is static. The external camera rotates with an average angular velocity
ωωωw

e (t) determined from the output of the homography (Section 2.4). Q(ωωω(t)) is the
quaternion kinematic matrix [13] that relates angular velocity in a body-referenced
frame and quaternion orientation to quaternion rate. Lastly, the map is static as it is
defined in the world frame {W}.

3.3 Measurement Models

All system measurements z(t) consist of projections into the external camera image
space. The measurements can be categorized into two types: 1) ze

b(t), relating the
robot body frame {B} to the external camera frame {E}; and 2) zw

e (t), which relates
the external camera frame {E} to the world frame {W}:
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z(t) = [ze
b(t)

T, zw
e (t)

T ]T (20)

The body-to-external-camera measurements, ze
b(t), are determined through robot

fiducial marker detection (Section 2.2):

ze
b(t) = [mmm1(t)T, mmm2(t)T, mmm3(t)T ]T (21)

Projections of structural elements (Section 2.5) provide observations for external-
camera-to-world localization and robot-to-world localization. While the number of
marker corrections is fixed while the robot is in view, the number of landmark cor-
rections will vary depending on the scene. All measurements assume σ = 3 noise.

The predictions for these measurements, ẑ(t), utilize an ideal projective camera
model as detailed in Section 2. For points, the correction model is simply the pre-
dicted landmark projection in the image space. For lines, we adopt the line error
formulation as shown in Fig. 4, which is based on the distance from each point of
the detected line to its nearest point on the predicted line [24].

4 Results

We conduct experiments to demonstrate the correctness, accuracy, and robustness of
the state estimation framework. Experimental datasets are representative of actual
infrastructure for which the framework was designed. We pursue experiments of
two different types: 1) camera experiments with a subscale mockup infrastructure
system; and 2) platform experiments using the inspection system with a to-scale
reactor vessel mockup.

The robustness of the state estimate is assessed against speckling, which is
radiation-induced chromatic image noise (Fig. 5). Speckling is characterized by the
random occurrence of clusters of pixels to become activated with a high color inten-
sity that persists for only one frame. A probabilistic speckling model was quantified
using 549 frames from an inspection dataset with speckling. Table 1 shows the dis-
tribution for the number of speckles per frame, n f rame (normalized by total number
of pixels) and size of the speckle in pixels, ssize. All experimental datasets were pro-
cessed twice: 1) “clean” (no speckling); and 2) “degraded,” with artificial speckling
and color attenuation to emulate the environmental image effects that are expected
when deployed in a nuclear reactor vessel.

Fig. 4 Quantifying error be-
tween a predicted line ˆ̀̀̀ and
an observed line segment `̀̀.
Points p̂ppA and p̂ppB are the clos-
est points on line ˆ̀̀̀ to points
pppA and pppB, respectively, that
define line segment `̀̀.
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Fig. 6: Subscale mockup system: (far left) experimental setup shown with the subscale mockup
of a reactor pressure vessel; (middle left) external camera; (middle right) subscale mockup of
the inspection robot; (far right) image of the subscale system from the external camera. Note the
complete lack of visual texture on the structure.

Fig. 5: Speckling (radiation-induced chromatic image
noise) observed during a reactor pressure vessel inspection.
Speckle clusters are circled in yellow for ease in viewing.

Table 1: Speckling model.

Parameter Value

n f rame ∼N (µ,σ 2)
µ 6.4655e−5
σ 2 3.0493e−10

ssize ∼Cat(Ki, pi)
i = {1, . . . ,6},Ki = i
p1 0.4034
p2 0.4087
p3 0.1021
p4 0.0542
p5 0.0200
p6 0.0116

4.1 Camera Experiments with a Subscale Mockup Structure

We perform camera experiments using a subscale mockup system (Fig. 6) that is
designed to replicate the geometry of a generic reactor pressure vessel on a smaller
scale. A frame with markers is used as a mockup for the submersible robot. An
Axis V5915 PTZ camera is used for the external camera. We use a VICON motion
capture system to obtain ground truth pose measurements of the robot. We calibrate
the external camera assuming a projective pinhole model and radial and tangential
distortion coefficients using the Kalibr calibration toolbox [9].

In this experiment, the robot is translated in a motion that is representative of
inspection robot motion. The results of state estimate are shown in Fig. 7 and Ta-
ble 2. From ground truth, we calculate that the framework has mean-squared error
(MSE) in position of under 2.9e−4 m2 in x, 3.1e−4 m2 in y, 1.7e−3 m2 in z. Using
ZY X Tait-Bryan Euler angles, the angular position MSE is under 3.8e−4 rad2 in
roll, 1.3e−3 rad2 in pitch, and 6.7e−4 rad2 in yaw. Qualitatively, good agreement is
observed between the ground truth and estimated paths as shown in Fig. 7, and the
state estimate is shown to be robust to images degraded by environmental effects.
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The uncertainty of the state estimate is also shown in Table 2. The ±3σ uncer-
tainty for the robot within the xy-plane is under 4.7 cm and under 10 cm vertically.
For the external camera, the lateral±3σ uncertainty is 0.5 cm and 4.2 cm vertically.

The relatively higher error and uncertainty in the z-direction for both the robot
and the external camera is a direct result of the subscale vessel. The subscale vessel
by design has no landmarks or visual texture on the walls, which is representative
of the most challenging types of reactor vessels for this system. In contrast with this
vessel, the to-scale mockup shown in Fig. 8 contains landmarks on the walls that
improve localization in the z-direction. For this reason, we expect that observing
wall landmarks or the top edge of the reactor will improve the uncertainty in this
dimension. Nonetheless, we note that the error and uncertainty in the xy-plane are
still suitable for coarse localization of the robot within the vessel.

Fig. 7: Path of the robot relative to the subscale
mockup structure. Shown are the estimated paths
for the clean (red) and degraded (blue) cases. The
ground truth path (black) is from motion capture.

Table 2: Accuracy and uncertainty.

Parameter Value (Clean) Value (Degraded)

Accuracy (MSE), m2 or rad2

xw
b 2.7515e−4 2.8637e−4

yw
b 3.0282e−4 3.0809e−4

zw
b 1.6192e−3 1.6982e−3

θ w
e 3.6473e−4 3.7681e−4

φ w
e 1.1025e−3 1.2869e−3

ψw
e 6.0344e−4 6.7328e−4

Uncertainty (±3σ ), m or rad
Robot, {B}
xw

b 0.0435 0.0434
yw

b 0.0174 0.0175
zw

b 0.0961 0.0960
θ w

b 0.1361 0.1358
φ w

b 0.1101 0.1118
ψw

b 0.0527 0.0520
External camera, {E}
xw

e 0.0028 0.0037
yw

e 0.0021 0.0034
zw

e 0.0393 0.0424
θ w

e 0.0053 0.0056
φ w

e 0.0048 0.0051
ψw

e 0.0162 0.0172

4.2 Platform Experiments with Inspection System

Next, we demonstrate the capability for estimating the state of the inspection sys-
tem platform. We perform motion experiments with the inspection system plat-
form hoisted to a crane and translated relative to a (to-scale) reactor vessel quarter
mockup (Fig. 8).

We present the results for a 26-second test where the robot was translated verti-
cally by approximately 1.42 m. The external camera rotates during this experiment
to keep the ROV in view. Figure 9 shows the estimated path of the robot for this
test. As shown in Table 3, the state estimation framework estimates the pose of the
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robot with sufficient uncertainty for coarse localization of the robot within the ves-
sel. Specifically, we note that within the xy-plane the robot uncertainty (±3σ ) is
under 1.8 cm and 2.4 cm vertically. For the external camera, the ±3σ uncertainty is
under 0.5 cm within the xy-plane and under 1.9 cm vertically, with total rotational
uncertainty (in terms of Euler angles) to be approximately 0.01 rad.

We note that the uncertainty estimates were lower overall for the platform ex-
periments as compared to the subscale mockup experiments, due to utilizing wall
landmarks on the vessel mockup. Additionally, as in the subscale mockup experi-
ments, we observe that the framework is robust to image degradation effects, with
little significant effect on state uncertainty. Although ground truth position data is
not available for this experiment, cross-referencing the estimated position against
images from a camera installed on-board the robot suggests good agreement be-
tween the actual and estimated path.

Fig. 9: Estimated path of the inspection robot
relative to a quarter mockup of a reactor vessel
for the clean (red) and degraded (blue) cases.

Table 3: Uncertainty.

Parameter Value (Clean) Value (Degraded)

Uncertainty (±3σ ), m or rad
Robot, {B}
xw

b 0.0085 0.0084
yw

b 0.0161 0.0162
zw

b 0.0241 0.0237
θ w

b 0.0687 0.0727
φ w

b 0.0395 0.0406
ψw

b 0.0214 0.0225
External camera, {E}
xw

e 0.0031 0.0031
yw

e 0.0036 0.0036
zw

e 0.0166 0.0190
θ w

e 0.0035 0.0039
φ w

e 0.0033 0.0035
ψw

e 0.0092 0.0097

Fig. 8: External camera images from platform testing (left) clean and (right) degraded with artifi-
cial environmental image effects (speckling and color attenuation).
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5 Conclusion and Future Work

In this work, we have proposed an state estimation and localization framework de-
signed for coarse localization of a submersible robot within a nuclear reactor pres-
sure vessel that primarily utilizes a PTZ camera. We have proposed a map represen-
tation for reactor pressure vessels that models the struture as a series of orthogonal
planes, with structural points of interest that exist on the planes. The intersection of
vessel planes project to lines in the camera image space. These lines, as well as the
points of interest on the planes, serve as landmarks for correcting the state estimate.
The rotational motion of the camera is inferred from intensity-based homography.

We have shown that the proposed framework is suitable for coarse localization by
conducting two types of experiments. First, we confirmed the accuracy of the filter
for localizing the robot with respect to a challenging vessel with no visual texture
of wall landmarks. Second, we validated the framework using the actual inspection
system, showing that the estimated path uncertainty (±3σ ) is under 1.8 cm in the
xy-plane and 2.4 cm vertically. For the camera, the position uncertainty (±3σ ) is
under 0.5 cm in the xy-plane and under 1.9 cm vertically, with total rotational un-
certainty (±3σ ) of about 0.01 rad. We verified that our framework is robust to the
environmental image effects (speckling and color attenuation) that are expected to
degrade the system sensing when operating in the reactor vessel.

Our current work has shown the capability of this framework for state estimation
and localization to enable ROV-based inspections of nuclear reactor vessels. For
future work, we will investigate how image-based registration could also be used to
model variations in zoom setting of the PTZ camera. Additionally, we will pursue
an automated EKF initialization procedure that bootstraps the filter with minimal
effort from inspection personnel. We will also pursue testing of our framework in
real-time during an inspection of a reactor pressure vessel.
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