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Abstract— In this paper, we present an end-to-end convo-
lutional neural network (CNN) for depth completion. Our
network consists of a geometry network and a context network.
The geometry network, a single encoder-decoder network,
learns to optimize a multi-task loss to generate an initial prop-
agated depth map and a surface normal. The complementary
outputs allow it to correctly propagate initial sparse depth
points in slanted surfaces. The context network extracts a
local and a global feature of an image to compute a bilateral
weight, which enables it to preserve edges and fine details
in the depth maps. At the end, a final output is produced
by multiplying the initially propagated depth map with the
bilateral weight. In order to validate the effectiveness and the
robustness of our network, we performed extensive ablation
studies and compared the results against state-of-the-art CNN-
based depth completions, where we showed promising results
on various scenes.

I. INTRODUCTION

3D scene information is being widely utilized in the
robotics and computer vision fields for autonomous vehicles,
SLAM, augmented reality, and other applications. Unfortu-
nately, all of the current commercial devices used for 3D
acquisition have pros and cons in terms of reliability, cost,
capturing the environment and scene configuration.

As is widely known, the most reliable device for 3D
acquisition is 3D LiDAR which has a wide field of view
and depth ranges as well as high accuracy. LiDARs work
synergistically with cameras for visual perception tasks such
as visual SLAM and segmentation, because the 3D points
from the LiDAR provide additional information to the scene.
However, 3D LiDARs are cost-prohibitive and provide only
sparse measurements. Although structured light-based de-
vices (KINECT, Real Sense, etc.) are able to obtain denser
3D measurements than the 3D LiDARs, they have short
scanning ranges, and bright sunlight makes those measure-
ments sparse. A passive approach, stereo matching, is an
alternative way to capture the dense 3D depth of a scene,
but its reliability with object boundaries of similar colors and
textureless regions still remains a problem. Its reliability can
be enhanced by using confidence measures [6], [18] which
remove unreliable pixels, but they require an additional post-
processing depth completion process. Because of the limi-
tations of these commercial devices, depth completion has
become an essential issue to resolve before 3D information
can be practically used.
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Fig. 1: Overall pipeline and results comparisons to state-of-
the-art methods.

Traditional methods for depth completion propagate
sparse depth points, guided by image-dependent propagation
weights which are determined by various approaches. In [11],
[21], a joint bilateral filter whose propagation weights de-
pended on the spatial and range information of an image, was
used for depth map completion. Park et al. [16] proposed
a joint weight of color similarity and non-local means.
Yang [27] built a minimum spanning tree based on the
color intensities of a corresponding image for a non-local
depth propagation. Despite various such attempts to make
optimal propagation weights, these approaches commonly
suffer from severe errors in large homogeneous regions and
repeated patterns.

The recent success of convolutional neural networks
(CNN) has produced significant progress in depth completion
methods in the past few years. CNN-based depth completion
can be categorized into two major classes: the use of modi-
fied convolution operations [24], [7] and deep feature-guided
propagation, which we focus on here. Among the deep
feature-guided propagation methods, Ma and Karaman [13]
used an encoder-decoder network. The encoder is based on
a residual network (ResNet) [5] pre-trained on the ImageNet
dataset [19], and the decoder generates dense depth maps.
In [10], an encoder-decoder style network was modified for
multi-task learning in order to output dense depth maps and
semantic segmentation from a single sparse depth map and its
corresponding image. Zhang and Funkhouser [28] generated
dense depth maps using a weight matrix which describes a
surface normal and occlusion boundary. Although the surface
normal and the occlusion boundary were estimated by CNNs,
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Fig. 2: Overview of the proposed depth completion network.

depth propagation was carried out by solving a traditional
least squares problem with the weight matrix.

In this paper, we propose an end-to-end CNN consisting of
two novel sub-networks: a geometry network and a context
network (See Fig. 1). The geometry network has an encoder-
decoder architecture, and predicts a surface normal of a
scene and an initial dense depth map. The uniqueness of
this approach over previous works [13], [28] is the use of
a sparse depth map as well as its corresponding image.
By optimizing them jointly in a training step, we were
able to alleviate the front-parallel issues of the initial dense
depth on slanted surfaces, as demonstrated in a traditional
manner [9]. Another contribution of our work is to introduce
the concept of a bilateral weight, which was used for CNN-
based colorization [8], to predict a sharper dense depth
map. The context network learns to produce the bilateral
weight to capture local features such as strong edges, sharp
corners and thin structures, and global features like the
histogram, average intensity or even the scene category of
an image. In the end, we produce a final dense depth map
by simply multiplying the bilateral weight to the initial dense
depth map. We will describe the technical details of our
method in Sec. II. We demonstrate the robustness and the
effectiveness of the proposed network on various scenes
using extensive quantitative and qualitative evaluations, and
compare the results to CNN-based state-of-the-art depth
completion methods [13], [28] in Sec. III.

II. APPROACH

Our network consists of two sub-networks: a geometry
network to jointly estimate dense depth and surface normal,
and a context network to integrate contextual information for
the depth map. The overall framework is described in Fig. 2.

A. Geometry Network

The geometry network takes four-channel input, where the
first three channels represent an RGB image and the last
channel is composed of a prior sparse depth. We pass the

four-channel input through an encoder-decoder network as
shown in the red box of Fig. 2. The encoding part is based on
ResNet-50 pre-trained on the ImageNet [19] (which neglects
the last average pooling layer and linear transformation
layer) with an additional convolution layer. The decoding
part contains four up-projection layers as proposed in [12],
followed by an upsampling layer. This preserves both the
high-level information passed from coarser feature maps and
fine local information provided in lower layer feature maps.

Given the four-channel input, our network outputs an
initial dense depth map Dpred and three channel surface
normal vector Npred . We force the depth map and surface
normal to be consistent in our training step [1]. To do this, we
incorporate a depth-normal consistency term for the normal-
guided depth completion into a loss function whose details
will be described in Sec. II-C. The joint training improves
the accuracy of all tasks, especially on slanted surfaces,
while keeping the model capacity fixed as shown in Fig. 4.
Implementation detail can be found at our project page in
sites.google.com/view/bulee.

B. Context Network

It is widely known that edge-preserving filters such as
a traditional bilateral filter [3], [15] can produce significant
improvements in depth refinement. Inspired by non-learning-
based filtering, we adopt a bilateral learning scheme [4],
originally designed for high dynamic range image enhance-
ment, and adjust it to obtain a bilateral weight, including
the contexture information of a scene, for depth refinement.
The bilateral learning scheme uses a bilateral grid rather
than simply applying 3D convolutions to feature maps. The
bilateral grid allows full connectivity to be expressed in all
dimensions of the feature maps by operating 2D convolution
on the spatial dimension. This lets us to learn the bilateral
weight in a more expressive form than a standard bilateral
filter, since it does not discretize the input image.

As shown in the blue box of Fig. 2, the context network
is composed of two streams. The network input Iblurred is



a gray-scale image, and is blurred by downsampling with
a factor of 4, and then upsampled with a factor of 16.
Accordingly, the size of reference image Ire f , whose size
is H ×W , is upsampled by a factor of 4. We observe that
minimizing the absolute error between the upsampled Ire f
and Iblurred helps recover sharp edges in the final depth maps
by extracting more rich and reliable features.

1) Image feature extraction and bilateral grid prediction:
The first stream takes a low resolution copy of Iblurred and
learns both local and global features. The local feature refers
to semantic features and spatial location inside the image,
and global feature means high-level scene descriptions. We
first encode an input image with four convolutional layers
with 3× 3 filters to extract the low-level image features S.
The local feature L is extracted by passing S through two
consecutive convolutional layers with 3×3 filters and stride
1. The global feature G is obtained through two convolutional
layers with 3× 3 filters and stride 2, and three additional
fully-connected layers. Finally, the local and global features
are fused to form a fused feature F as below:

Fc[x,y] = σ

(
∑
c

G+∑
c

L[x,y]
)
, (1)

where x, y are the image pixel locations, c is the channel of
the feature, and σ(·) is the ReLU activation function. The F
is then linearly transformed and reshaped to form a bilateral
grid B whose size is H/sh×W/sw×d×ch. sh and sw are the
ratio between the spatial size of the bilateral grid and the full-
resolution image size. The d is the depth of the bilateral grid
and is empirically set to 8. The ch is a channel of the bilateral
grid. In this paper, we set ch to 2 because it was sufficient
to represent the depth maps using a two dimensional space
consisting of a weight and a bias.

2) Guidance map generation: The latter stream handles
Iblurred to capture high-level features such as edges or bound-
aries. In our implementation, the full-resolution image is fed
to the network in order to obtain a guidance map g. Similar
to [4], the guidance map is obtained from a simple pixel-
wise nonlinear transformation which sums 16 scaled ReLU
functions with 16 pairs of slope and shift for each scale, as
defined below:

g[x,y] = b1 +ρ(a · Iblurred [x,y]+b0)

s.t. ρ(x) =
15

∑
l=0

ψl ·max(x−ηl ,0),
(2)

where a, b0 and b1 are a scalar weight and biases, respec-
tively. The function ρ is a summation of the 16 scaled ReLU
functions with slopes ψ and thresholds η .

3) Full-resolution-sized bilateral weight acquisition: The
final output of the context network is a bilateral weight
with the same spatial size as Iblurred (4H × 4W ), and 2
channels. Since the bilateral grid has a different size than
the guidance map, we upsampled the bilateral grid using a

tri-linear interpolation as below:

Wγ [x,y] = ∑
i, j,k

τ(swx− i)τ(shy− j)τ(d ·g[x,y]− k)Bc[i, j,k]

s.t. τ(x) = max(1−|x| ,0)
(3)

where i, j, and k are the indices for the bilateral grid. Since
our bilateral weight has 2 channels, γ ∈ {0,1}.

In the end, using the final bilateral weight Wγ , we produced
a refined image from Iblurred as well as a refined depth map
Dre f ined as shown below:

Ire f ined [x,y] =W0[x,y]+W1[x,y] · Iblurred[x,y]. (4)

Drefined[x,y] =W0[x,y]+W1[x,y] ·Dpred[x,y]. (5)

We observed that Wγ can achieve better depth completion
results when it produces a high-quality Ire f ined as well. We
have demonstrated this in our ablation study in Sec. III-A.

C. Loss Functions

Our loss function E is a linear combination of depth loss
ED, surface normal loss EN , depth-normal consistency loss
EC, bilateral weight loss EB, and final depth loss ED′ as
follows:

E = ED +λNEN +λCEC +EB +ED′ , (6)

where the balance weights λN and λC are set to 0.33 and
0.001, respectively1. Each term will be described thoroughly
in the following subsections, and we denote ‖ · ‖1 and ‖ · ‖2
as L1-norm and L2-norm, respectively.

1) Initial depth loss & surface normal loss: The initial
depth and surface normal loss are determined as follows:

ED = ∑ ‖ Dpred−Dgt ‖1, (7)

EN = ∑ ‖ Npred−Ngt ‖1, (8)

where Dgt and Ngt represent the ground-truth depth and
surface normal, respectively. We note that the NYU Depth
Dataset V2 [14], which we used as one of training sets, does
not provide ground-truth data for surface normal. To train our
network, we synthesized surface normal ground-truth data
from the ground-truth depth map. In addition, since the NYU
Depth Dataset V2 dataset has semi-dense depth maps, we
only calculated the errors for pixels with valid depth values.

2) Depth-normal consistency loss: Surface normal of the
3D point p should be orthogonal to the plane where the
point p lies. This means that the vectors from point p to its
neighbor points q should also be orthogonal to the surface
normal vector, i.e., the inner product with the surface normal
vector should be zero, and is defined as:

EC = ∑
p,q∈Np

‖< v(p,q),N(p)>‖2
2, (9)

where < ·> is an inner product. The EC measures the sum
of all inner products between the surface normal vector and
tangent vector from the point p to its neighbor q for all 3D
points.

1The λN and λC are determined according to the works in [25], [28]



Model RMSE Rel delta1
No geometry & context 0.281 0.051 96.5
No context 0.241 0.05 96.8
No geometry 0.238 0.046 97.1
Ours (1x context) 0.237 0.050 97.1
Ours (2x context) 0.235 0.049 97.2
Ours without EB 0.251 0.050 96.8
Ours 0.225 0.046 97.2

TABLE I: Ablation study: performance changes with and
without each component of our network. (Dataset: NYU
Depth Dataset V2)

3) Bilateral weight loss & final depth loss: The bilateral
weight is used to sharpen the edge of the initial estimated
depth map Dpred . When training the network, this weight is
optimized by two loss terms. One is the bilateral weight loss
EB, and the other one is the final depth loss ED′ . The bilateral
weight loss measures the L2 loss between the original image
with sharp edges and the enhanced image output O:

EB = ∑ ‖ Ire f − Ire f ined ‖2
2 . (10)

Finally, the L1-norm between the refined depth result
Dre f ined and the ground truth depth is added as follows:

ED′ = ∑ ‖ Dre f ined−Dgt ‖1 . (11)

With this loss term, both the geometry network and the
context network are optimized to learn a better initial depth
and the bilateral weight for depth refinement at the same
time.

III. EXPERIMENTS
Our network was trained on RGB images and depth maps

in NYU Depth Dataset V2. The NYU Depth Dataset V2
was captured from a KINECT, provided semi-dense depth
information. With a cross-bilateral filter in authors’ pro-
vided toolbox2, we in-painted the depth maps. Our network
takes images with 228× 304 resolution made by resizing
and center-cropping original images. Simple random image
transformations were applied for data augmentation, such as
random scaling, rotating, flipping, or color adjustment.

In a training procedure, we use image sequences, ground-
truth depth maps, and surface normal maps generated from
the ground-truth depth maps. The whole network was trained
as an end-to-end manner, and the context network was
trained from scratch. For the geometry network. The SGD
optimizer was used with an initial learning rate of 1e− 2,
the momentum of 0.9, and a weight decay of 1e− 4. The
context network was also trained with the ADAM optimizer,
but with an initial learning rate of 1e−4 and weight decay
of 1e− 8. We used a batch size of 16 and trained for 20
epochs. Our network is implemented by using PyTorch on
a computer equipped with two NVidia 1080 Ti GPUs and
total training time is about 12 hours.

A. Ablation study
First of all, extensive ablation studies are conducted to

examine the effects of each component on our network.

2cs.nyu.edu/˜silberman/datasets/nyu_depth_v2.html

(a) Image (b) Ground-truth (c) No geometry

(d) No context (e) w/o EB (f) Ours

Fig. 3: The effect of our network inputs. Results from ablated
models (without geometry, context and bilateral weight loss)
and our complete model is shown.

In our evaluations, we use common quantitative measures
of depth quality: root mean square error (RMSE), mean
absolute relative error (Rel) and inlier ratio within a threshold
(delta1), where deltan is defined as:

deltan =
n({Dre f ined : max{Dre f ined

Dgt
,

Dgt
Dre f ined

}< 1.25n})
n({Dgt})

,

(12)
with n(·) as the cardinality of a set. The results are reported
in Table I whose examples are shown in Fig. 3.
Depth-normal consistency loss EC It is shown that ge-
ometry and context networks lead to significant performance
improvements. The improvement with the geometry network
is larger than that with the context network in Table I.
The geometry network reliably propagates the initial 3D
points guided by the depth-normal consistency. The 3D mesh
results in Fig. 4 show that the geometry-consistency term
effectively complete dense 3D scenes, even on the slanted
and homogeneous regions where most errors made.
Bilateral weight loss EB Our bilateral weight is learned
to refine a blurred image as well as a predicted depth map
via the bilateral loss term EB in Eq. (10). Interestingly, EB
produces high-quality depth maps in Table I and Fig. 3.
We observe that the multi-purpose loss for the bilateral
weight encourages more effective image and depth map

(a) (b) (c)

Fig. 4: The effect of bilateral weight loss. (a) Reference
image and GT depth. (b) Depth map results. (c) 3D meshes
(Top: Ours w/o EC term, Bottom: Ours).
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usage to improve the semantic consistency and image fidelity
simultaneously.
Bilateral weight training scheme We check the effec-
tiveness of upsampling Ire f and Iblurred to extract better
bilateral weight. As shown in Table I, bilateral weights
trained with upsampled images by a factor 4 shows better
results on all measures than the use of smaller images. In
fact, using upsampled images in traditional approaches helps
to extract reliable features [23]. In the same manner, our
context network also computes better deep features with
higher resolution images. Of course, we could train our
network with larger images, but this can cause severe blur
and memory issue on it.
Number of Sparse Samples We examine the performance
of the proposed method with respect to the number of
samples. As displayed in Fig. 5, a greater number of samples
yields better results in both accuracy and error measurements.
Although the more number of sparse priors improves the
quality of depth map, the performance is converged when
the number of depth samples is more than 5000 which is
about 1.5% of the total number of pixels.

B. Comparison with the state-of-the-arts

To test the robustness of our network quantitatively, we
compare with the CNN-based state-of-the-art depth com-
pletion methods, Ma and Karaman [13] and Zhang and
Funkhouser [28], trained on NYU Depth Dataset V2. In
this experiment, we also used RMSE, Rel, delta1 as error
measures, and executed public source codes provided by the
authors’ website3. The number of initial depth samples is
200 which is less than 0.3% of the image pixels.

The results on NYU Depth Dataset V2 are shown in Ta-
ble II and we display depth results in Fig. 7 as examples. We
can see that [13] and [28] both give acceptable results by pre-
serving scene context well, but the performance degradations
happen in fine structures of scenes. In particular, occlusion
boundaries in [28] help to maintain the sharpness of output
depth maps. However, the estimated depth maps suffer from
severe depth displacement errors as a z-axis because inac-
curate normal estimation from single images leads to distort
scene geometry, as in Fig. 6. On the other hand, our network
can acquire dense depth maps and maintain better overall 3D

3[13]:github.com/fangchangma/sparse-to-dense,
[28]:github.com/yindaz/DeepCompletionRelease

Model RMSE Rel delta1
Ma and Karaman [13] 0.281 0.051 96.5
Zhang and Funkhouser [28] 0.229 0.049 96.7
Ours 0.225 0.046 97.2

TABLE II: Quantitative evaluation on NYU Depth Dataset
V2 (# of sample=200).

Datasets Model RMSE Rel delta1
Ma and Karaman [13] 0.152 0.041 97.90

SUN3D Zhang and Funkhouser [28] 0.166 0.041 97.02
Ours 0.145 0.040 98.00

Ma and Karaman [13] 0.565 0.089 93.60
RGBD Zhang and Funkhouser [28] 0.335 0.080 92.41

Ours 0.293 0.066 95.60
Ma and Karaman [13] 3.344 0.269 93.30

MVS Zhang and Funkhouser [28] 0.533 0.072 92.87
Ours 0.514 0.076 95.30

TABLE III: Quantitative evaluation on SUN3D, RGBD,
MVS datasets (# of sample=700).

structure, thanks to accurate surface normal information from
both single images and sparse depth information.

In Table III, we evaluate [13], [28] and our network
on SUN3D [26], RGB-D [22] and MVS [20] datasets as
shown in Fig. 8. All methods are not trained on these
datasets and we verify the generality of our network. As
shown in Table III, our network shows promising results on
all the datasets, compared to [13] and [28]. In qualitative
result, the geometry network guided by sparse depth maps
produces useful surface normal information without loss
of the generality, and the context network allows to yield
sharper depth maps, and therefore our network outputs better
result.

IV. CONCLUSION

We have presented an end-to-end CNN for depth comple-
tion. Our network mainly consists of two parts: a geometry
network for handling slanted surfaces and a context network
for preserving depth edges and details. We demonstrated its
robustness and effectiveness versus state-of-the-art methods
using various quantitative and qualitative evaluations.

However, there is still room for improving our network.

Fig. 6: 3D mesh comparison with the results of [28] and ours



(a) Image (b) Ground-truth (c) Initial depth (d) [13] (e) [28] (f) Ours

Fig. 7: Comparison of depth map results on NYU Depth Dataset V2 on which all methods were trained.

(a) Image (b) Ground-truth (c) Initial depth (d) [13] (e) [28] (f) Ours

Fig. 8: Comparison of depth map results on SUN3D, RGB-D and MVS datasets.

First, our context network often fails to obtain proper features
in regions of bright sunlight and deep shadow. We think
that applying CNN-based intrinsic decomposition [2] to
our network can be a good solution to the problem. In
addition, we expect that temporal information of the image
sequences will be helpful for refining propagation errors, as
demonstrated in [17]. As a future work, we plan to adopt
recurrent neural networks for the temporal information.
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