Precision UAV Landing in Unstructured
Environments

Kevin Pluckter and Sebastian Scherer

Abstract Autonomous landing of a drone is a necessary part of autonomous flight.
One way to have high certainty of safety in landing is to return to the same location
the drone took-off from. Implementations of return-to-home functionality fall short
when relying solely on GPS or odometry as inaccuracies in the measurements and
drift in the state estimate guides the drone to a position with a large offset from
the initial position. This can be particularly dangerous if the drone took-off next
to something like a body of water. Current work on precision landing relies on
localizing to a known landing pattern, which requires the pilot to carry a landing
pattern with them. We propose a method using a downward facing fisheye lens
camera to accurately land a UAV from where it took off on an unstructured surface,
without a landing pattern. Specifically, this approach uses a position estimate relative
to the take-off path of the drone to guide the drone back. With the large Field-of-View
provided by the fisheye lens, our algorithm can provide visual feedback starting with
a large position error at the beginning of the landing, until 25cm above the ground at
the end of the landing. This algorithm empirically shows it can correct the drift error
in the state estimation and land with an accuracy of 40cm.
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1 Introduction

Landing a quadrotor autonomously is essential for the ubiquitous presence of drones.
Majority of UAVs currently rely on GPS based state-estimation for landing, but drift
builds up over time and these systems are unreliable if in a GPS denied environment.
Given this, a drone cannot reliably land in the same spot and could potentially attempt
to land in an unforgiving location, such as a nearby tree. Our proposed solutions
prevents these issues by re-traversing the proven take-off path back to its starting
position. We are able to precisely land the drone with this method via a monocular
fisheye camera. Majority of current work on precision landing focuses on landing in
a known structured environment (helipad or runway) [11]. Given a known landing
pattern, these algorithms are able to identify the target and use its geometry to
robustly estimate the relative state of the drone. Much work has gone into different
landing pattern designs to enable accurate pose estimation [16, 18, 19]. While these
methods result in accurate landings, they require the drone to land on a specific type
of landing pattern. This would require drone operators to carry a landing pattern
with them in order to ensure the safe return and landing of their drone. Our work
focuses on a new area, landing at the UAVs starting position in an unstructured and
unknown environment. This enables drones to be autonomously deployed in the field
and return to their starting position while following the take-off path in reverse.

In order to accurately land a quadrotor in an unstructured environment, without
prior knowledge of the take-off location several problems must be addressed: the
drone must be able to localize relative to where it has taken off from and be able
to guide itself to ensure a safe landing. This work addresses these problems with
a method inspired by [6]. During the take-off a set of images are recorded, and
during landing, the drone localizes to these images and descends along a similar path
back to its initial position, as seen in Fig. 1. The approach improves the safety of
landing twofold, by landing in the same starting position, there is a high likelihood
of the location still being safe, and by taking a path similar to the one from take-off
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enables the drone to avoid obstacles that were avoided during take-off. To the best
of our knowledge, we present the first algorithm for precision landing of a drone
in unstructured environments, such as those in Fig. 2, with an average accuracy of
40cm. In summary, the contributions of this paper are:

- An algorithm for safe precision landing of quadrotors in unstructured environments.
- Experimental results on precision landing in various environments with baseline
comparisons.

2 Related Work

This section will go over work done in the area of precision landing and adjacent
fields that have influenced the proposed method.

Precision Landing

Within the area of precision landing for vertical takeoff and landing (VTOL) vehi-
cles, much work has focused on using helipad design. Specifically, helipads with
concentric circles and with a H in the center are common along with other custom
designed helipads [11]. Approaches using helipads with either an H or T on them use
pretrained neural networks to identify the letter and then using the known geometry
of either the letter or the surrounding circle to estimate 6DOF pose relative to the
landing pattern [16, 18, 19]. A shortcoming of these methods is losing information
on the landing pattern during the approach. Based on the size of the landing pattern
and the field-of-view (FOV) of the camera, the quad-rotor will no longer be able to
see the landing pattern and be unable to estimate it’s pose. Approaches using more
custom landing patterns use unique circular patterning with varying size to ensure
good recognition and pose estimation close up and far away [2, 3, 12]. Additionally,
these methods rely solely on circle detection and identifying the circles that form the
correct pattern, neural networks are not used. Another approach to tackle the problem
of FOV is by using two different cameras, one for approaching from a distance and
another once close up [1]. As mentioned before though, these methods require there
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Fig. 2: Landing locations: depicted are two of the landing locations used during testing.
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to be a landing pattern of known size to be able to successfully perform an accurate
landing. Without a landing pattern, other techniques and assumptions must be applied
to recognize the area and land.

Visual Teach and Repeat

One particular method that has been used in similar scenarios to relatively localize
and traverse long distances using a monocular camera is Visual Teach and Repeat
(VTR). Primarily focusing on ground robots, this technique will "teach" a path to a
robot via piloted traversal of the path, and then be able to robustly and accurately
traverse the path using a monocular camera and other base level sensors for odometry
[6, 7]. In order to estimate a 6DOF pose estimate, the algorithm must first recognize
the image from the teach pass that it is nearest to and then estimate the pose. The
pose estimation is enabled with a monocular camera with the assumption of local
ground planarity. After the robot re-localizes itself, it relies upon visual odometry to
take it to the next keyframe in the path.

Recent work has begun to expand this concept to quad-rotors [13, 14]. The first
of these papers shows a proof of concept for VTR with a drone equipped with a
downward facing camera and laser range finder. This approach builds a local 3D map
is during the teach pass that the drone then localizes to during the repeat pass. The
approach shows promising results, but did not look into how the technique would be
affected by varying altitudes. The second paper proposes a more fully developed VTR
for drones, but uses a forward facing camera and a qualitative position estimation.
From these various approaches to VTR, we have developed the proposed method for
precision landing, using a similar architecture, but a different method for generation
of motion command and transitioning between keyframes.

Visual Servoing

The premise of visual servoing is to to directly control the robot using vision [4, 5].
One type of visual servoing is Position Based Visual Servoing (PBVS), where
features are extracted in an image from an object of known size to command an input
towards a goal pose. PBVS is similar in nature to the methods used landing patterns
where a model is known. In the proposed work, there is no model of the position
from which the drone took off, but a planarity assumption for the ground from which
the quad-rotor took off can be made. From this assumption, we can estimate pose
from one camera frame to another if the height at each position is known. With scale
abmiguity is solved, a method similar to PBVS can be used for the controller input.

3 Approach

The approach is inspired by Visual Teach and Repeat [6], where the take-off is the
teach pass and the landing is the repeat pass. In this section, we will discuss the
details of this method: the teach pass (take-off), the repeat pass (landing), position
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Fig. 3: Pipeline of algorithm with steps during take-off having orange arrows and steps during
landing having blue arrows. Additionally, a sample of a raw image, undistorted image, and matched
images are shown. In the matched image sample above the Pose Estimation and Control section
shows how matches are found on the image and a resultant white arrow displays the motion required
to minimize the position error.

>

estimation, and control will be explained. The entire pipeline can be seen in Fig. 3,
which runs at 15 Hz onboard on an NVIDIA Jetson TX2.

Take-off & Landing

During take-off, a set of images is recorded in regular intervals with a fisheye lens
camera. The wide FOV of the fisheye provides key information at the start of the
take-off when the camera is very close to the ground and good information at higher
altitudes. Images are recorded at a higher rate while the drone is close to the ground
and at a slower rate as the drone ascends higher. Details on the image recording rate
and other parameters used for the method can be found here. Once all of the images
are recorded, key points are found and ORB descriptors are extracted and saved to be
used during the landing phase. This process only takes seconds and allows for faster
run-time during landing by not performing repetitive calculations.

For landing, the drone comes back to the final position from take-off at 8 m height.
Then the current image is compared with the image taken at an altitude just below the
current altitude of the drone. A relative position estimate to the image from take-off
is estimated in the form of a 2-D rigid body transform. This estimate is then used to
command the drone towards that position. While the drone approaches the position
of the image from take-off, it constantly descends. Once the drone goes below the
height of the current take-off image being compared to, the next closest image is
used. This process commands the drone along a similar path from take-off back to
it’s original position on the ground.

To initialize the landing process, the drone uses its state-estimate to fly above where
it started. Once the drone is in position it needs to be able to localize. In order to
accomplish this task we used a downward facing fisheye camera and a set of images
collected during take-off. A 180° FOV fisheye lens was selected as it provides much
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more information about the ground below the drone than a pinhole lens. This is
particularly beneficial at the start and end of the landing, allowing for a larger offset
at the start, 8m above ground, and for more reliable motion commands until it is
0.25m above the ground. The images are projected to a flat image plane [9, 10]
and ORB features are extracted from the drone’s current image and matched the
descriptors from the corresponding image from take-off in order to localize during
the descent [15]. ORB features were selected over learned neural network features
and features made for spherical images as literature shows that they are much slower
[17, 20], which would hinder the speed of the control loop.

Once features are matched, the pose is estimated relative to an image from take-off.
First, the feature points’ position is corrected using the estimated roll and pitch. Then
they are projected into 3-D space using a planar assumption, the measured height,
and intrinsic camera parameters. These two steps can be accomplished by rearranging
the rotational flow correction equation from [8] and use it for correcting the rotation
of an individual point and project it into 3D space:

P, = Zcos(6,)cos(6)) 0
P — M N
P, = M .

Where Z is the measured height from the laser range finder, 6 is the current estimated
roll and pitch of the drone, P is a feature point’s metric coordinates in 3D with
respect to the drone’s current position, p is the feature point’s position in the camera
frame, and f is the estimated focal length of the image. Once both sets of points are
projected onto the ground plane, a 2D rigid body transformation can be calculated
and give a metric relative position error. Random sample consensus (RANSAC)
is used to reject outliers while finding the rigid body transform. If there is a low
consensus during RANSAC, the drone ascends to increase its FOV until it can again
match with the image from take-off. This pipeline can be seen in the Pose Estimation
& Control section in Fig. 3.

Once the position error is estimated, it is used as an input to a PI position controller
using the drone’s onboard state-estimate. The drone receives velocity commands
from the position controller during the descent at 15Hz until it is 0.25m above the
ground when it completes the landing. At 1.5m the drone aligns with the concurring
image from take-off before finally descending.

4 Experiments

In this section, we discuss the experiments and results. We perform a drone landing
experiment to demonstrate the performance and robustness of our precision landing
algorithm, as well as present a baseline comparison to landing using only state
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Fig. 4 Experimental Setup:
experiments were conducted
with the X-Star Premium
Quadcopter by Autel Robotics.
A NVIDA Jetson TX2, ueye
camera equipped with fisheye
camera lens, and SF30 laser
range finder are equipped. The
Jetson TX2 is connected to the
X-Star Premium’s embedded
computing device. A second
ueye camera is attached with
a pinhole lens for offline
comparison.

estimate. Additionally, data is collected and presented for comparison of the efficacy
of both fisheye and pinhole camera lens.

A second experiment was performed to test the algorithms robustness to scene change.
Landing tests were performed with a van next to the drone for takeoff, and before
landing, the van was moved to a set further distance as shown in Fig. 6. The setup for
our experiments can be seen in Fig. 4 and all the data collected can be found here.

Landing Experiments and Comparisons

The experimental procedure is as follows. First, an environment is selected and
the drone is placed in its initial position. For measurement purposes, the drone is
placed next to either a natural landmark, such as a corner of a tile, or an artificial
landmark, such as a golf tee in the grass. Second, the drone is manually piloted
with varying paths taken (i.e. straight, diagonally, curved, etc.). Once the takeoff is
completed, it is flown in a random direction in varying amounts to simulate drift from
the drone’s state-estimate. Finally, the landing procedure is initiated and the drone
autonomously lands. After the drone has landed, measurements are taken for the
drone’s displacement from the initial position. These will be compared with results
using a GPS & Intertial Measurement Unit (IMU) based Extended Kalman Filter
(EKF) state-estimation. This test has been performed in a wide range of environments,
grass, turf, and stone tiling. Wind speeds are recorded from METAR report from
the Allegheny County Airport (KAGC) to observe the algorithms robustness to high
wind speeds and gusty weather. The performance for the proposed method and the
GPS-IMU based EKF can be seen in Table 1.

Data is recorded from both the fisheye and pinhole cameras and analyzed offline
to determine the reliability of position estimation. The algorithm is ran on the data
and if RANSAC cannot determine a consensus on a rigid body transform, the image
instance is considered a failed localization. The percentage of failed localizations
across multiple trials can be seen in Fig. 5. This shows that the fisheye lens can
localize well even when close to the ground and has a lower failure rate throughout
the landing than the pinhole.
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Method Environment N“?ﬁ;;d Accuracy (cm) DeSvtiZIt';girg:m) Win?ﬁ/g;eed Max Gust (m/s)
Precision Landing Patio 18 38 23 3 5
Precision Landing Grass 1 17 44 42 3 5
Precision Landing Turf 10 34 17 7 12
Precision Landing Grass 2 10 45 24 8 15

State Estimate Patio 10 183 74 2 0
State Estimate Grass 1 10 359 205 2 0

Table 1: Precision-Landing and State-Estimate Landing Results

Scene Change Experiments

The experimental procedures for the scene change experiments are the same as the
landing with the addition that a van moves from a set initial position to a new set
position further away. Three sets of five experiments were ran with each set having a
different starting and ending offset of the van from the drone’s initial position. The
results can be seen in Fig. 7.

5 Conclusions and Future Work

The results from the experiments show that our algorithm can safely and accurately
land a quadrotor to its original takeoff position in various environments, and that it
outperforms the IMU-GPS EKF state-estimate by a statistically significant margin.
Additionally, our algorithm proves to be robust to wind as the results do not vary
with the wind conditions. There have been two observed failure case, if the ground
plane has a sudden large change in height, in which case the planar assumption is no
longer valid and an accurate rigid body transform cannot be calculated, and when the
scene has a large amount of change.

From the fisheye and pinhole camera lens comparisons, we conclude that the fisheye
lens, although having high radial distortion, provides more information for the task
of autonomous precision landing. This is particularly useful in two scenarios. Firstly,
when a drone initially starts its descent. This can be seen in the results when there
is a large offset from the end of the takeoff to the beginning of the landing. Overall,
this results in a more robust landing capability as the drone relies less on the state-

Fig. 5 Comparison of Fisheye
and Pinhole Camera Lens for
the task of localization. Each
bar displays the percentage
of bad position estimations
during landing across various
trials in the different environ-
ments. The fisheye camera
has fewer bad matches than
pinhole camera.

® Pinhole ® Fisheye

Percentage of Bad Matches (%)

[0,2) [2.4) [4,6) [6,8) [8,10)

Height Range (m)
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Fig. 6: Displays the three scene change experiments. From left to right is each experiment: Short-
Med, Short-Long, and Med-Long, with the take-off location in red and landing in yellow.

estimate. Secondly, when the drone is closer to the ground and there are higher levels
of wind. In essence, due to the fisheye lens’ greater FOV, even if pushed off-course
by wind, it maintains visual of the image from takeoff and can recover.

The scene change experiment demonstrated the effects of a change in the environment
for the landing algorithm with three different scenarios. The first where a large object
that provides many of the features in the images moves to a new position relatively
close to where it started. This causes the landing algorithm to be drawn off course
and land close to the area with the highest number of the original features. This short
coming gives interesting insight on potential other uses for the proposed method.
One, landing on a moving landing pattern. If the landing pattern is highly textured,
even if the landing pad were moving in the environment, the drone would be drawn
towards it. Second, if a highly textured landing pattern was used, the drone could
change where is lands relatively easily. The other two scenarios where the van moved
far from its initial position resulted in accurate landings. Each of these scenarios had
one edge case of the drone following the van, likely because the van had not moved
far enough away. From these two results it can be seen that if strong features are
removed, the drone can still land accurately.

There are several interesting areas to be explored for future work. One topic to further
explore is landing on a moving landing site with a highly textured surface. Another
area for future work would be the final control piece for the landing when the camera
can no longer match features.

Fig. 7 Results from scene
change experiments. Each 1250
box-and-whisker plot shows
the resulting accuracy across
the three scene change tests.
Short-Med means the van

moved from 4ft from the

1000

Final Error (cm)

drone to 16ft from the starting 250
point. For Short-Long, the van
moves from 4ft away to 41ft. ’ Short-Med short-Long Med-Long

For Med-Long the van moves
from 16ft to 41ft.

Scene Change Experiment Type
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