
P-CAP: Pre-computed Alternative Paths to Enable
Aggressive Aerial Maneuvers in Cluttered Environments

Ji Zhang, Rushat Gupta Chadha, Vivek Velivela, and Sanjiv Singh

Abstract— We propose a novel method to enable fast au-
tonomous flight in cluttered environments. Typically, au-
tonomous navigation through a complex environment requires
a continuous heuristic search on a graph generated by a
k-connected grid or a probabilistic scheme. As the vehicle
progresses, modification of the graph with data from onboard
sensors is expensive as is search on the graph, especially if
the paths must be kino-dynamically feasible. We suggest that
computation needed to find safe paths during fast flight can
be greatly reduced if we precompute and carefully arrange
a dense set of alternative paths before the flight. Any prior
map information can be used to prune the alternative paths
to come up with a data structure that enables very fast
online computation to deal with obstacles that are not on the
map but only detected by onboard sensors. To test this idea,
we have conducted a large number of flight experiments in
structured (large industrial facilities) and unstructured (forests-
like) environments. We show that even in the most unstructured
environments, this method enables flight at a speed up to 10m/s
while avoiding obstacles detected from onboard sensors.

I. INTRODUCTION

Fast autonomous flight in complex environments is chal-
lenging for many reasons. Even if high fidelity vehicle
state information (typically 6 DOF) is available at a high
frequency, planning paths to avoid obstacles discovered with
onboard sensors requires creating and updating a map of
the environment that can be searched for kinodynamically
feasible paths. This is computationally expensive. Since com-
putational resources available for flying vehicles are limited,
ideally, we would like a method that can guide an aerial
vehicle with low computational complexity. One method is to
use a hierarchical method that separates the problem of safe
flight into two subproblems. One part solves a global path-
planning problem by searching a k-connected grid with a
heuristic ensuring that it does not get stuck into local minima.
A second part solves a local problem that runs in parallel
tracks the global path while avoiding obstacles. This method
has been used for ground [1] and aerial [2], [3] vehicles
effectively but still requires considerable computation. Here,
we propose a method that reduces computational complexity
considerably such that it is possible to ensure safe flight using
very lightweight computation onboard the aerial vehicle.

We propose to do this by trading computational complex-
ity with memory. Instead of searching a graph that is contin-
uously being updated by onboard sensors, we precompute
a dense set of alternative kinodynamically feasible paths
and arrange them in a manner that enables extremely fast
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Fig. 1. (a) A simple illustration of pre-computed alternative paths. A
main path in yellow connects between start point A and end point B.
Alternative paths are organized at different levels, colored in green, red, and
gray, respectively. The main path and alternative paths are generated based
on a prior map, therefore the paths do not collide with structures on the
map, represented by the two black rectangles. During navigation, the vehicle
switches among the pre-computed paths to avoid obstacles. (b) A photo
from an experiment where the proposed method enables a lightweight aerial
vehicle to maneuver aggressively at 10m/s in a cluttered forest environment,
avoiding a ladder and a truck placed on the path as obstacles. More details
regarding the experiment are available in Section V-B, Test 1.

switching between paths when obstacles are encountered.
Any prior map information is used to prune the set of
alternate paths before flight starts. Under this method, the
task of safe guidance during the flight is to ensure that
the current path segment is collision free. If not, another
alternative path is examined for safe travel. Surprisingly, a
practically small set of paths is able to enable fast flight
even when it is necessary to negotiate obstacles that are only
discovered during the flight. In our experience, the proposed
method requires little onboard computation, typically < 2%
of a single CPU thread on a modem embedded computer.

The method of generating and arranging these paths is
conducted as follows. A set of paths are created based on a
prior map, these include a main path connecting from start to
goal, and local alternative paths for the purpose of obstacle
avoidance. The alternative paths are organized at multiple
levels (see an example in Fig. 1(a), where green, red, and
gray paths are at three different levels). Paths at higher levels
branch out from paths at lower levels, and eventually merge
into paths at lower levels. During navigation, if a path is
blocked by an obstacle, the vehicle switches to a path which
branches out from the current path. This process recurs if
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multiple obstacles exist blocking paths at different levels.
Such a representation enables autonomous navigation even
in complex environments, such as forests, that have changed
enough that previously planned paths are no longer feasible.
This is shown in Fig 1 (b) where obstacles as a ladder and
a truck occlude the paths that were planned before flight.

A key insight is that the pre-computed paths function as
a summary of the prior map – these paths are guaranteed
to avoid structures on the map. Hence, during flight the
obstacle avoidance does not heavily rely on onboard sensor
data to generate local paths, but only uses the sensor data to
check for obstacles along the path. This significantly lowers
the requirement for the data density to carry out the path
switching reliably. Another key insight is that all alternative
paths are organized to lead to the goal. This way, the vehicle
does not need to spend effort on searching for a path that
points to the goal, but only focuses on collision check. In
other words, for any collision-free path that is chosen, the
vehicle will navigate to the goal by following the path.

The proposed method has been tested with an aerial
vehicle in 42 flight experiments in 5 different environments
and operates at speeds up to 10m/s. We believe that this is
the fastest autonomous flight that has been demonstrated to
date in such environments. Results are in a public video1.

II. RELATED WORK

Our work is most related to path planning and colli-
sion avoidance with an emphasis on robot navigation. The
problem involves solving for a path for a vehicle to travel
from start to goal, given a traversable representation of the
environment. Graph search-based methods such as Dijkstra
[4], A* [5], and D* [6] algorithms traverse different states on
the graph to search for paths. On the other hand, sampling-
based methods cover the graph with random samples. Paths
are generated by connecting selected samples. Contemporary
sampling-based methods such as Rapidly-exploring Random
Tree (RRT) [7] and its variants [8]–[10] have high capabil-
ities to handle maps in large scales, generating paths in a
relatively short amount of time compared to graph search-
based method. In this paper, we use a state-of-the-art RRT-
based method, BIT* [11], for generation of the main path.
BIT* method is known for its computation speed.

Some path planning methods pre-process a prior map to
extract traversable information and convert the information
into particular representations. The converted representations
facilitate or accelerate the path search. Typical methods
include Voronoi graph [12], vector field [13], and Probabilis-
tic Roadmap (PRM) [14]–[16]. Here, PRM-based methods
randomly sample on the map to create a connectivity graph.
Paths are found by searching on the graph. In comparison,
these methods share the same insight with the proposed
method that all pre-process a prior map and summarize it
into certain representations. However, a key difference is that
the summarized representations in the previous methods are
not unique for a single pair of start and goal. For this reason,

1Experiment video: https://youtu.be/BZ1A9SB_9EE

methods such as PRM still need to traverse the graph in order
to find a path given a specific goal point. In our method,
all paths are generated and organized to lead to the goal.
The result is that the navigation problem is simplified and
becomes a collision check and path switch problem.

The novelty of the proposed method is not in computing
the paths – we are open to use any suitable method for path
generation. The contribution of the paper is in separation of
path generation from onboard computation, by offline pre-
computing the alternative paths. This way, the navigation is
less sensitive to the density of onboard perception sensor
data, saving computation and reducing response time. More
importantly, the method avoids problems caused by varying
density in the perception sensor data ranging from close to
far ahead of the vehicle. The paths can also be pre-computed
taking into account curvature and kinematics constraints.

III. NOTATIONS AND DEFINITIONS

The proposed method uses pre-computed alternative paths
to enable vehicle navigation and obstacle avoidance. We start
with definitions of the alternative paths as the following.
• Define Q ⊂ R as the configuration space of a vehicle,

and Qoccu ⊂ Q as the occupied subspace based on
the prior map. Qoccu is untraversable. The traversable
space is defined as Qtrav = Q\Qoccu. Let A ∈ Qtrav

and B ∈ Qtrav be the navigation start and end points.
• Define a main path connecting from A to B. The main

path is at level 0, denoted as ξ0 ∈ Qtrav. Let S(ξ0) = A
and E(ξ0) = B be the start and end points of ξ0.

• Each path can have alternative paths, called branches.
The set of branches of ξ0 are at level 1, denoted as
B(ξ0). The branches of a level i ∈ Z+ path, if available,
are at level i+ 1.

• A path at level i is denoted as ξji ∈ Qtrav, where
j ∈ Z+ is the branch index at level i. The start and
end points are denoted as S(ξji ) and E(ξji ). The set of
branches is denoted as B(ξji ).

• Define the parent of ξji as the path that ξji is started
from, denoted as ξs(ξ

j
i ). Further, the path that ξji ends

at is denoted as ξe(ξ
j
i ).

• Define an ancestor of ξji as any path ξlk, k, l ∈ Z+, k <
i, that is reachable to ξji through parent connections, ξji
is also called a descendant of ξlk.

• A path set G = {ξ0, ξji }, i, j ∈ Z+, contains all
aforementioned paths. The maximum level in the set,
n ∈ Z+, is the level of the path set.

As a convention in this paper, we use ‘obstacles’ to refer
to objects that do not exist on the prior map but appear on
paths in G. The occupied space on the prior map Qoccu refers
to ‘structures’. The navigation problem is to drive a vehicle
from A to B and avoid obstacles using paths in G.

IV. METHOD

A. Navigation Algorithm

Given a path set G = {ξ0, ξji }, i, j ∈ Z+, Algorithm 1
carries out the navigation by switching paths in G to avoid
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Algorithm 1: Navigation
1 input: path set G = {ξ0, ξji }, i, j ∈ Z+ between A and B,
2 obstacles from processing perception sensor data,
3 obstacle avoidance distance D;
4 output: navigation command;
5 begin
6 Initialize vehicle location at A, set the current path ξc ← ξ0;
7 while B is not approached do
8 Check if any obstacle is present on ξc;
9 if obstacle is present on ξc then

10 Find branches in B(ξc) whose start points are before
the obstacle on ξc and within D to the obstacle, denote
the set of branches as C, C ⊂ B(ξc);

11 Check branches in C in the decreasing order of the
distances from their start points to the obstacle on ξc,
find the first collision-free branch if available, denoted
as ξ′, if all branches in C are blocked by obstacles,
find the one with the most number of paths branching
out before the obstacle, denoted as ξ′, ξ′ has at least
one branch before the obstacle, if multiple branches
share the same criteria, use an empirical selection;

12 if ξ′ is available then
13 Navigate the vehicle to S(ξ′) and ξc ← ξ′;
14 end
15 else
16 Start a breadth-first search from the start point of

the first branch before the obstacle on ξc, and find
a collision-free path, denoted as ξ′′;

17 if ξ′′ is available then
18 Navigate the vehicle to S(ξ′′) and ξc ← ξ′′;
19 end
20 else
21 Navigate the vehicle to A following ξc’s

ancestors and report navigation unsuccessful;
22 end
23 end
24 end
25 else if E(ξc) is approached then
26 ξc ← ξe(ξ);
27 end
28 else
29 Navigate the vehicle on ξc;
30 end
31 end
32 Finish and report navigation successful;
33 end

obstacles. Starting on the main path, the algorithm receives
obstacle information from processed perception sensor data.
If an obstacle is detected, the algorithm checks available
branches of the current path ξc, in B(ξc). Here, an obstacle
avoidance distance D is used. The algorithm checks branches
in B(ξc) whose start points are before the obstacle on ξc and
within D to the obstacle. In other words, the vehicle will
only leave the current path to avoid an obstacle within D
to the obstacle. The branches are checked in the decreasing
order of the distances from their start points to the obstacle,
starting from the first branch whose start point is within D
to the obstacle. The algorithm chooses the first collision-
free branch found. However, if all checked branches are
blocked, the algorithm chooses the one with the most number
of paths branching out before the obstacle on the branch.
Denote the chosen branch as ξ′, ξ′ is required to have at
least one path branching out before the obstacle. After the
vehicle approaches S(ξ′), the current path ξc is switched
to ξ′. The path switching recurs if multiple obstacles exist

blocking paths at different levels. Here, if multiple branches
meet the same criteria, an empirical selection is made which
picks the one with the largest n − k, where n is the level
of G and k is the level of the chosen branch. If multiple
branches still meet the same criteria, the algorithm picks the
one furthest away from all surrounding obstacles.

In the case that no clear branch is available before the ob-
stacle, the algorithm performs a breadth-first search starting
from the start point of the first branch before the obstacle.
As shown on lines 16-22 in Algorithm 1, this is considered a
backup strategy and can possibly drive the vehicle back along
the path. Preferably, the vehicle should only drive forward
and use path switching to avoid obstacles. If the breadth-first
search still does not find a collision-free path, the vehicle is
driven to the start and navigation is unsuccessful.

Let us model the collision check time on the main path and
each alternative path to be bounded by O(1). Let dmin and
dmax be the minimum and maximum intervals between two
consecutive start points. Define h as the maximum number
of branches sharing the same start point. Let R be the
perception sensor range. Recall D is the obstacle avoidance
distance, R ≥ D ≥ dmax ≥ dmin. For each recursion, if
not executing the breadth-first search, Algorithm 1 checks at
most h[D/dmin] alternative paths as well as the main path.
If executing the breadth-first search, however, Algorithm 1
traverses all alternative paths within the perception sensor
range, with maximally (2h[R/dmin]) alternative paths at
one level (before and after the vehicle), and (2h[R/dmin])

n

alternative paths at all levels, as well as the main path. Hence,
the computational complexity can be stated below.

Theorem 1: Algorithm 1 has a computational complexity
of O(h[D/dmin]) without executing the breadth-first search,
and of O((2h[R/dmin])

n) otherwise.

Next, let us analyze the probability of successful obstacle
avoidance. In a path set G, the main path ξ0 has length Lm. A
path ξji , i, j ∈ Z+, has the maximum length Lb. To simplify
the analysis, we model obstacles as volumeless particles
distributed on the paths. Obstacle distribution is independent
and identical along all paths in G. Let σ be the probability for
an obstacle to appear on a path segment with a unit length.
We assume no obstacle is within D after A or before B.
Otherwise, an obstacle right after A or before B can simply
cause a navigation failure. Since Algorithm 1 executes the
breadth-first search as a backup strategy, in the following,
we analyze the probability for the vehicle to navigate from
A to B without executing the breadth-first search.

Lemma 1: The probability that the vehicle executes the
breadth-first search is bounded from above by an exponential
function that decreases w.r.t. n and [D/dmax].

Proof: In two cases the vehicle will execute the breadth-
first search. In the first case, the vehicle navigates on a level
n path ξjn, j ∈ Z+, and is blocked by an obstacle. This
requires an obstacle to appear on a path at each level from
level 0 to n. The probability for an obstacle to be on the
main path ξ0 is σLm, and the probability for an obstacle
to be on path ξji , i ∈ Z+, is no greater than σLb. Thus, the
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probability for the first case to occur is bounded from above,

pn ≤ σLm(σLb)
n = σnLmL

n
b . (1)

In the second case, the vehicle navigates on a path ξjk,
k ∈ Z+, k < n, and cannot find a clear branch of ξjk to
execute before the obstacle. This must be because obstacles
are also present on the branches. Let C be a subset of B(ξjk),
C ⊂ B(ξc), which contains branches in B(ξc) with the start
points before the obstacle and within D to the obstacle.
Since the maximum interval between the start points of two
consecutive branches is dmax, there are at least [D/dmax]
branches in C. For each of these branches, there is an obstacle
on the branch as well and there is no path branching out
before the obstacle. This requires an obstacle to appear
within dmax after the start point, with a probability σdmax.
Considering all branches in C, the second case has,

p1...n−1 ≤ (σdmax)
[D/dmax]. (2)

Considering both cases, the vehicle executing the breadth-
first search to avoid an obstacle is bounded from above,

p1...n ≤ p1...n−1 + pn ≤ σnLmL
n
b + (σdmax)

[D/dmax]. (3)

Lemma 1 analyzes in the case that the number of obstacles
is unlimited. Each obstacle has certain probability to appear
on a path in G. In Lemma 2, we tackle the problem from a
different direction to understand how many obstacles can be
avoided regardless of the distribution of obstacles.

Lemma 2: The vehicle can avoid a minimum number of
min(n, [D/dmax]) obstacles without executing the breadth-
first search regardless of the distribution of obstacles.

Proof: First, let us prove that the vehicle can avoid at least
min(n, [D/dmax]) obstacles regardless of the distribution. To
this end, we prove it takes at least min(n, [D/dmax]) + 1
obstacles for the vehicle to execute the breadth-first search.
Considering two cases, if it happens on a level n path ξjn,
j ∈ Z+, the vehicle must be blocked on a path at each level,
from level 0 to n. This requires at least n+1 obstacles, where
n + 1 ≥ min(n, [D/dmax]) + 1. Second, if it happens on a
level k path ξjk, k ∈ Z+, k < n, the vehicle must check at
least [D/dmax] branches and find at least [D/dmax] obstacles
blocking the branches. Another obstacle must appear on ξjk,
leading to at least [D/dmax]+1 obstacles in total. Likewise,
there is [D/dmax] + 1 ≥ min(n, [D/dmax]) + 1.

Second, we prove there exists a distribution of no more
than min(n, [D/dmax]) + 1 obstacles which can cause the
vehicle to execute the breadth-first search. Consider dmin =
dmax. If n ≤ [D/dmax], we can place an obstacle on a path
at each level, from level 0 to n. With n+1 obstacles in total,
the vehicle is forced to enter a level n − 1 path ξjn−1, and
then execute the breadth-first search due to not finding a clear
branch before the obstacle on ξjn−1, since another obstacle is
blocking the level n path. Alternatively, if n > [D/dmax], we
can place one obstacle on the main path ξ0, and an obstacle
on each of the [D/dmax] branches before the obstacle on ξ0,
right after the start point. The vehicle cannot find a clear

branch and executes the breadth-first search. In both cases,
we need no more than min(n, [D/dmax]) + 1 obstacles.

B. Main Path Generation

The main path is the best path between start and goal that
can be developed before flight. We currently use the BIT*
method [11] to generate this path. Given a prior map as a
3D point cloud, we first create an Octree and then run the
BIT* method. When generating the path, we selectively use
three types of constraints to limit the curvature, elevation, and
introduce no-fly zones, based on the mission. For elevation
constraints, we use Axelsson’s method [17] to extract the
ground from the map, then define the minimum and maxi-
mum height of the path above the ground. For no-fly zone
constraints, manually defined polygons are used and the path
is not allowed to enter the polygons. For all constraints,
a checking step is used during expansion of the RRT. If
a constraint is violated, the corresponding state is rejected.
The resulting path is further smoothed in a sliding window
average to meet our requirement for high-speed flights.

C. Alternative Path Generation

Alternative paths are generated using bell-shaped cubic
spline curves. Boundary conditions are used at the start and
end points to make sure continuous acceleration through
path switches. Each alternative path has two free parameters,
determining the length (parallel to the main path) and width
(perpendicular to the main path) of the alternative path.
Fig. 2(a) gives an example of alternative paths in a 2D case.
This case is suitable if the vehicle elevation needs to be
constant during the flight. The alternative paths at level 1
are organized in pairs. On each level 1 path, level 2 paths
branch out. Here, we only show three pairs of level 1 paths
and three level 2 paths from a single level 1 path, for clarity
of illustration. Fig. 2(b)-(c) show an example of alternative
paths in a 3D case. In this case, the alternative paths at each
level are organized in batches. For each batch, the paths
branch out from their parent in different directions.

The alternative paths are generated based on a prior map,
hence they do not interfere with structures on the map. When
generating an alternative path, we start with a default set of
length and width. Collision check is run. If the path collides
with the map, a two-dimensional search is started. The search
reports collision-free paths found, or no collision-free path
is available. The path whose parameters are the closest to
the default parameters (sum of the difference to the default
parameters in both dimensions) is chosen. We understand
the search can be optimized, and usage of bell-shaped spline
curves may neglect valid paths which do not fit into spline
curves. However, considering a large number of alternative
paths being generated, the neglected paths should have minor
effect on reducing the chance of successful navigation.

V. EXPERIMENTS

A. Simulation

We test the proposed method in simulation using three
levels of alternative paths in a 2D case. As shown in Fig. 3,
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(a)

(b)

(c)
Fig. 2. Example alternative paths in (a) a 2D case in top-down view and
(b)-(c) a 3D case in top-down view and front view. The yellow curve is the
main path, from left to right. The green curves and red curves are alternative
paths at level 1 and level 2. In the 2D case (in (a)), level 1 paths are in
pairs, branching out on two sides of the main path. In the 3D case (in (b)-
(c)), paths at each level are organized in batches, branching out in different
directions. Note that the figures only show a few level 1 paths and level 2
paths starting from a single level 1 path, for clarity of illustration.

the alternative paths are about 40m in length along the main
path. Obstacles are defined as 5m squares. Through the
test, 1-5 obstacles are placed along the paths to introduce
blockage. In Fig. 3(a), a single obstacle blocks the main
path. An alternative path at level 1 (green curve) is chosen.
In Fig. 3(b), two obstacles are employed where one blocks
the main path and the other stays close to the main path,
blocking alternative paths coming out on one side. A level 1
path on the other side is chosen (green curve). In Fig. 3(c),
three obstacles are placed, one on the main path and the
other two close to the main path blocking alternative paths
coming out on both sides. The first collision-free alternative
path is chosen, which is a level 1 path starting after the first
obstacle (green curve). In Fig. 3(d), a different placement
of tree obstacles is used, causing the vehicle to switch to a
level 1 path (green curve) followed by a level 2 path (red
curve) to avoid. In Fig. 3(e), one more obstacle is adopted.
The vehicle goes through three levels of alternative paths
(green, red, and gray curves). In Fig. 3(f), a distribution of
five obstacles forces the vehicle to check the paths at the
highest level and still find no choice. A breadth-first search
is run thereafter which finds a level 1 path connected with
a level 2 path (green and red dashed curves). Note that this
trajectory would be the optimal for Fig. 3(e) and Fig. 3(f). It
is not chosen because the simple path switching strategy does
not check alternative paths recursively at multiple levels.
However, such a case rarely happens in practice due to
the fact that perception sensor data is sparse far ahead of
the vehicle. When the path is determined, far obstacles are
often yet undetected and the case does not start until close

obstacles are passed or too close for a decision change.

B. UAV Experiments

Our experimental platform is shown in Fig. 4. This is a DJI
Matrice 600 Pro aircraft carrying a DJI Ronin MX gimbal. A
sensor-computer pack is mounted to the gimbal and therefore
is kept in the flight direction for obstacle detection. The
sensor-computer pack consists of a Velodyne Puck laser
scanner, a camera at 640×360 pixel resolution, and a MEMS-
based IMU. A 3.1GHz i7 embedded computer carries out all
processing. The state estimation is based on our previous
work [18], integrating data from the three sensors to provide
vehicle poses and registered laser scans. The map is built
from a manual flight a month before the UAV experiment.

We report on three flight tests. Test 1 is in a complex forest
environment. As shown in Fig. 5, the pre-computed paths
consist of a main path and alternative path at two levels,
based on a prior map. Alternative paths are created with a
minimum curvature constraint to meet the requirement for
high-speed flying. The test has three separate runs, with a
clear path, one obstacle, and two obstacles on the path. For
each run, the UAV flies at a speed of 10m/s. In the case of
a clear path, the vehicle follows the main path to the end.
In the case of one obstacle, a ladder is placed on the main
path and the vehicle avoids by switching to a level 1 path.
In the case of two obstacles, a ladder and a truck are left in
the field. The vehicle switches to a level 1 path, then shortly
after, switches to a level 2 path to avoid both obstacles.

For comparison purposes, we run the BIT* method [11]
with data logged during Test 1. The test is conducted on
the same sensor-computer pack as in Fig. 4. Laser scans are
registered w.r.t. the prior map before processing. Fig. 6(a)
shows the paths generated using the registered laser scans,
and Fig. 6(b) presents the paths computed using a combina-
tion of the registered laser scans and prior map. Since the
BIT* method is an anytime method, we let the method run
for 100ms, 500ms, and 2s, respectively. The corresponding
paths are in yellow, green, and red. If the method does not
generate a path within a time limit, the path is not shown. As
shown in Fig. 6(a), without using the prior map, the paths
change shape dramatically over time, which potentially limits
the flight speed. If using the prior map, as shown in Fig. 6(b),
the paths are stabler. The smoothness still does not meet
our requirement for high-speed flying. The paths need to be
smoothed further. However, for two out of the three start
points, the method does not generate a path within 500ms
(only one start point connects to a green path). The heavy
processing makes it hard to use in high-speed flights.

Test 2 is on an inactive industrial site. As shown in Fig. 7,
the main path is manually created with spline curves fit
through waypoints. This way, it collides with three obstacles
– an instant canopy, a tree, and a wire. The vehicle avoids
all three obstacles by switching to level 1 paths. In Test 3,
the mission is to fly over an orchard, as shown in Fig. 8.
The alternative paths follow the same convention as in Test
2. The difference is that the alternative path only cover the
first 100m after take-off and last 100m before landing. This
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(a) (b) (c)

(d) (e) (f)
Fig. 3. Simulation results. The test utilizes a 2D path set. The main path is in yellow, from left to right. Three levels of alternative paths are in green, red,
and gray, respectively. Each alternative path is about 40m long along the main path. Obstacles are 5m squares placed on the paths to introduce blockage.
In (a), one obstacle is used and the vehicle chooses an alternative path at level 1 to avoid. In (b), two obstacles are present, one blocking the main path
and the other blocking the alternative paths on one side of the main path. The vehicle chooses an alternative path on the other side. In (c), three obstacles
block the main path and its both sides. The vehicle chooses the first collision-free alternative path which starts after the first obstacle. In (d), a different
placement of three obstacles causes the vehicle to chose a level 1 and a level 2 path to avoid. In (e), four obstacles are present bringing the vehicle onto
three alternative paths at levels 1-3. In (f), five obstacles appear and the vehicle cannot avoid even using paths at the highest level. A breadth-first search
is run which finds the dashed curves. Note that in (e)-(f), the vehicle does not choose the dashed curves initially but a more complex trajectory spanning
three levels. Such decision is possible due to our simple path switching strategy not checking alternative paths recursively at multiple levels.

(a) (b)

(c) (d)

(e) (f)
Fig. 5. Result of Test 1. (a) shows a 3D point cloud used as the prior map. The test area is in the orange rectangle with the blue dot as the start point. An
aerial image from the same area is shown at the upper-right corner. (b) shows the pre-computed paths. The main path is in yellow. Two levels of alternative
paths are in green and red, respectively. The test contains three separate runs, all at 10m/s. First, no obstacle is present and the vehicle follows the main
path to the end. Then, in (c), a ladder is placed on the main path as an obstacle. The vehicle chooses an alternative path at level 1 to avoid. The dark-red
object is the detected ladder in laser scans overlaid on the map. Finally, in (d), a ladder and a truck are left in the field as two obstacles, blocking the
main path and a level 1 path. Consequently, the vehicle switches twice, to a level 1 and then a level 2 path. The dark-red objects are the ladder and truck.
(e)-(f) show registered laser scans during the flights and corresponding images from an onboard video camera. The ladder and truck are labeled with the
orange rectangles. Also, (e)-(f) are right at the path switches from the main path to level 1 path, and from the level 1 path to level 2 path.

is because the middle course of the flight is high above the
ground and the chance to collide with an obstacle is very

small. Generation of the main path uses manually defined no-
fly zones to prevent the vehicle from flying above buildings
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Fig. 4. UAV experimental platform. A DJI Matrice 600 Pro carries our
sensor-computer pack on an DJI Ronin MX gimbal. The gimbal keeps the
sensors in the flight direction for obstacle detection. The sensor-computer
pack consists of a Velodyne Puck laser scanner, a camera at 640 × 360
pixel resolution, and a low-grade IMU. An embedded i7 computer carries
out all onboard processing. The vehicle is equipped with a GPS module but
GPS signals are unused through all tests included in the paper.

and a bond. Elevation of the path is also limited between 15-
20m above the ground for the middle course of the flight.
While approaching the end, a tractor is placed in the field.
The vehicle avoids by switching to a level 1 path.

For further evaluation, we run tests in simulation using the
setup in Test 2. Obstacles are modeled as 1m cubes randomly
and repeatedly generated from a uniform distribution in the
3D space. As shown in Fig. 9, the rate of navigation failure
or full navigation blockage increases w.r.t. the number of
obstacles. Employing more alternative paths (2 levels instead
of 1 level) helps reduce the rate of navigation failure to a
large extent. Further, involving the breadth-first search helps
produce a significantly lower rate of navigation failure. These
results provide guidance to help specify the configuration of
the alternative paths for the offline path generation.

(a)

(b)
Fig. 6. Paths generated by the BIT* method [11] using data logged in Test
1. Three start points (blue dots) are selected from the path in Fig. 5(d) and
from which the BIT* method is run. Since the BIT* method is an anytime
method, we let the method run for 100ms, 500ms, and 2s, respectively. The
corresponding paths are in yellow, green, and red. In (a), we only use the
data from onboard perception sensors, and in (b), we use a combination of
the data from onboard perception sensors and prior map. Laser scans are
registered and overlaid on the map before processing. Here, if the method
does not generate a path within a time limit, the path is not shown. As we
can see, without using the prior map (in (a)), the method can generate a
path from each of the three start points within 500ms, but not within 100ms
(only one start point connects to a yellow path). The paths change shape
dramatically over time, potentially limiting the flight speed. On the other
hand, if using the prior map (in (b)), the paths are stabler. However, only
one out of the three start points has a path generated within 500ms (the point
connected to the green path), making the method hard to use in high-speed
flights. The test reveals the difficulty for online sampling-based methods to
enable high-speed maneuver in cluttered and complex environments.

(a)

(b)

(c)

(d)
Fig. 7. Result of Test 2 conducted on an inactive industrial site. (a) shows
the prior map and pre-computed paths. There are 597 level 1 paths (green
curves) and 8101 level 2 paths (red curves). A different view is present at
the lower-right corner with the level 2 paths cropped to reveal the vertical
section. As we see, the alternative paths go around structures on the map
such as the tree. (b)-(d) show the avoidance of three obstacles placed on the
main path – an insistent canopy, a tree, and a wire. The vehicle avoids all
three obstacles by switching to level 1 paths. The speed is 4m/s avoiding
the insistent canopy and tree, and 2m/s avoiding the wire.

Finally, let us inspect some metrics in the obstacle avoid-
ance. For collision check, the main path is stored in a 3D
K-D tree in 100m segments. The closest point on the path
is found for each laser point, and collision is determined. A
K-D tree query takes 3.5µs. For alternative paths, each point
on the path is compared to the laser points. Laser scans are
received at 5Hz and downsized to a resolution of 0.4m per
point (half of the UAV diameter). The downsized laser scans
are then filtered by a bounding box of the path. As shown in
Table I, the processing time to make a path switch decision
is < 50µs. Most of the path switches are made more than
30m before the obstacle. The latest path switch is at 24m
before the wire, and the earliest is 59m before the tractor.
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(a)

(b)

(c)
Fig. 8. Result of Test 3 conducted in an orchard. (a) shows an aerial image
with the main path. No-fly zones are used in generation of the main path
to prevent the vehicle from flying above buildings and a pond. The path
is limited in elevation between 15-20m above the ground for the middle
course of the flight. (b) presents the prior map and pre-computed paths.
The alternative paths follow the same convention as in Test 2, but only
cover the first 100m after take-off and last 100m before landing. This is
because the middle course of the fight is high above the ground and the
chance to collide with an obstacle is very small. (c) shows the avoidance of
a tractor placed on the main path close to the end. The vehicle avoids the
tractor by switching to a level 1 path. The speed is 8m/s during the middle
course of the flight and 4m/s within 100m to the take-off and landing.

VI. CONCLUSION

The paper proposes a novel method which offline gen-
erates a set of alternative paths to enable robot navigation.
The set of paths are computed at multiple levels, based on
a prior map. Obstacle avoidance is conducted by switching
paths, from lower levels to higher levels. This method
eliminates the necessity of online path creation, simplifying
the navigation to a collision check and patch switch problem.
The resulting system consumes little onboard computation
with low latency, taking only < 2% of a single CPU thread
on a modern embedded computer. Consequently, it makes
possible for a lightweight UAV to maneuver aggressively in
a cluttered forest environment, at a speed of 10m/s.

Fig. 9. Further evaluation using the setup in Test 2. Obstacles are modeled
as 1m cubes randomly distributed in the 3D space. As we see, the rate of
navigation failure or full navigation blockage increases w.r.t. the number of
obstacles. Using 2 levels of alternative paths instead of 1 level reduces the
rate of navigation failure to a large extent. Further, involving the breadth-first
search helps produce a significantly lower rate of navigation failure.

TABLE I
OBSTACLE AVOIDANCE METRICS FOR THE THREE FLIGHT TESTS

Proc. Path switch Flight
Test Obstacle time distance speed

1 Ladder (1-obstacle run) 37µs 36m 10m/s
1 Ladder (2-obstacle run) 35µs 35m 10m/s
1 Truck (2-obstacle run) 20µs 28m 10m/s
2 Instant canopy 26µs 26m 4m/s
2 Tree 33µs 53m 4m/s
2 Wire 10µs 24m 2m/s
3 Tractor 41µs 59m 4m/s
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