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ABSTRACT
The mapping and characterization of planetary
surfaces relies on the analysis of data collected
by spacecraft and orbiters. Their instruments pro-
vide extensive contextual information, but factors
such as sparsity, resolution, and noise leave un-
certainty in the orbital analysis. Hence the need
to send robotic explorers to refine these mod-
els through the collection of definitive, in situ
measurements. Since planetary rovers face many
operational challenges and constraints, it is im-
portant to identify sampling locations that maxi-
mize information value. This paper describes a
deep generative method that learns a probabilistic
model relating remote and in situ data, which then
allows formal experimental design and measure-
ment planning using tools from information the-
ory. We apply this method to spectroscopic obser-
vations of the Cuprite Hills in Nevada. The results
indicate that our model is capable of inferring high
resolution features from orbital data, and that it
also identifies effective in situ sampling locations.

1 INTRODUCTION
The study of planetary surfaces has been made
possible through the analysis of data collected by
spacecraft and orbiters. For example, the instru-
ments carried by the Mars Reconnaissance Orbiter
(MRO) have been crucial in the mapping of land-
forms, minerals, and ice of Mars [1]. Despite the
fact that these instruments provide useful informa-
tion, factors such as sparsity, resolution, and noise
leave uncertainty in the analysis of relatively low-
resolution (10s of meters) remote sensing from
orbit. Figure 1 shows an example of this phe-
nomenon using MRO’s Compact Reconnaissance
Imaging Spectrometer for Mars (CRISM) sensor
[2]. Important spectra features are lost due to
the smoothing effect of imaging over large areas.
Noise from the detector and the observed envi-
ronment are apparent. For more definitive results,
robotic explorers, such as Curiosity and ExoMars,
are needed to collect high resolution, in situ mea-
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Figure 1: Comparison of high-quality labora-
tory spectra [3] (left) and CRISM ratioed spec-
tra [4] (right), colored according to mineralogic
match. The CRISM spectra from orbit shows fea-
ture smoothing due to resolution and noise from
various sources.

surements. Nonetheless, rovers face many oper-
ational challenges and constraints, so it is impor-
tant to identify locations that maximize informa-
tion value.

Deep learning has enabled machines to automat-
ically perform complex, nonlinear data modeling
and analysis. In this work, we apply deep learning
to inferring high resolution features from orbital
data, and then help guide in situ explorers in their
investigation in an efficient manner. Our approach
integrates concepts from different networks and
applications. Furthermore, our formulation is un-
supervised, learning underlying patterns without
the need for labeled data, which is difficult to ob-
tain when studying distant planets.

Distribution-based models can be used to compute
the associated uncertainty of the predictions using
information-theoretic value functions [5]. Conse-
quently, methods from autonomous science and
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automatic experimental design may be applied
to optimize scientific productivity when guiding
rovers [6, 7, 8, 9, 10].

We apply these models and methods to imaging
spectroscopy and the geologic analysis of spec-
tra. We validate our deep learning model in a case
study of the thoroughly-studied, mineralogically
diverse site of Cuprite, Nevada [11]. Afterwards,
we compute information-theoretic values to show
the underlying uncertainty of each site, revealing
informative sampling locations for an in situ ex-
plorer. Our results indicate that the deep genera-
tive model is a powerful tool for inferring high res-
olution features from low resolution orbital data.

2 FORMULATION

Our method of exploration is formulated as a pro-
cess of model refinement (improving the accuracy,
resolution and completeness of the surface model)
and in situ sample selection to increase available
information. Constituent techniques include gen-
erative models and experimental design.

Deep generative models learn probabilistic mod-
els of data in an unsupervised manner [12]. They
have been successfully applied on many different
scenarios, such as chemical design [13] and local-
ization of celestial bodies [14]. The application
that is of particular interest to this work is super-
resolution, and it consists in the construction of
high resolution models from low resolution input
data [15]. Different deep generative models have
led to impressive results in image generation and
reconstruction [16, 17].

Within the family of deep generative models, two
commonly-used methods are Generative Adver-
sarial Networks (GAN) [18] and Variational Au-
toencoders (VAE) [19]. As the name indicates,
a GAN is a system of two neural networks con-
testing with each other in order to learn how to
best generate data. One network learns to gen-
erate candidates while the other learns to evaluate
candidate fitness. GANs do not perform any trans-
parent probability density estimation. Regarding
VAEs, they learn a representation for a set of data
by encoding into a latent or compressed space and
then decoding back into the original state. VAEs
make strong assumptions concerning the distribu-
tion of data, usually setting a multivariate Gaus-
sian prior over the latent variables. In our par-
ticular case, VAEs are preferred because they can
perform explicit density estimation; a property
that can be used to advantage during information-

driven exploration.

Learning explicit probability densities allows
computation of the associated Shannon entropy,
an information-theoretic value used to quantify
the uncertainty of a prediction [5]. There ex-
ist extensive reviews of approaches for the prob-
lem of experimental design under probabilistic or
Bayesian scenarios [20]. Under some weak as-
sumptions that apply to most practical cases, it
has been shown that one can employ a strategy
known as maximum entropy sampling [21], which
reflects the idea that in order to learn the most
about a system under study, one should make ob-
servations where prior information is most uncer-
tain. In other words, sampling well-known loca-
tions will only result in marginal benefits.

The aforementioned notions have been exten-
sively applied on autonomous robotic exploration
focusing on science survey tasks. They have been
used for meteorite identification in Antarctica [6]
and for selective data return in the Atacama Desert
in Chile [7]. Recent efforts have incorporated
more sophisticated path planning methods into the
Bayesian experimental design problem with au-
tonomous rovers [8, 9, 10].

3 METHOD
This work addresses the problem of identifying
appropriate sampling locations for an explorer
when the underlying task is to efficiently map
and characterize a locally unknown area, such as
a planetary surface. Specifically, a preliminary
assessment where there is only access to non-
labeled low-resolution observation of the scene.

We assume that a relationship between in situ data
X and remote-sensed data Y exists, meaning f :
X 7→ Y . We define this process in a broad sense
(it may be linear or nonlinear), but assume that
it includes two characteristics. Orbital data tend
to have a lower resolution than in situ data, and
usually contain additional noise.

To solve the aforementioned problem, we propose
the following strategy. First, use a deep generative
model that learns a probabilistic model that pre-
dicts high-resolution data from low-resolution ob-
servations. Then, utilize maximum entropy sam-
pling to identify the most informative sampling
locations, given the learned probabilistic model.

3.1 Deep Generative Model

We use the basic structure of a VAE for learn-
ing Gaussian representations of data Nn (µ,Σ) in
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Figure 2: Basic structure of our deep generative model. The low resolution input is associated with an
orbital measurement Y which is encoded into a multivariate Gaussian distributionNn (µ,Σ) in a latent space
Z. This probabilistic representation is decoded into a high resolution output that is much richer in terms of
information and feature content, and would correspond to the prediction of an in situ observation X̂.

a latent or compressed space Z. By definition, a
VAE is an autoencoder, so the input and the out-
put should have the same resolution. However, we
modify the previous notion in order to be able to
incorporate different types of inputs and outputs;
orbital and in situ, respectively (Figure 2).

Our model uses the following loss function:

L = E(X̂, X) + λDKL (Nn(µ,Σ)||Nn(0, 1)) . (1)

It adds two different types of loss terms: the re-
construction error between the predicted and the
true output, and a Kullback-Leibler divergence
penalization of the latent space with respect to a
standard Gaussian. This results in a trade-off be-
tween reconstruction accuracy and learning mean-
ingfulness, which is tuned by parameter λ.

We have presented this approach in a very general
way. The specific details of an architecture de-
pend enormously on its particular application and
associated type of processed data. In this paper,
we apply this model to imaging spectroscopy and
the geologic analysis of spectra. We next explain
the corresponding architecture details.

3.1.1 Deep Learning Architecture

Given the characteristics of spectral analysis, the
scale or norm of a reflectance spectrum signal is
irrelevant for material identification [22]. Hence,
we perform a preprocessing step on the data that
consists in L∞ or max-normalization.

The relevant elements for the architecture of the

deep generative model are the following: the en-
coder, latent space, decoder consist of one fully-
connected layer each, with a ReLU activation
function. The output layer also contains one fully-
connected layer, but instead uses a sigmoid acti-
vation function. The dimensionality of the latent
space is 5. The reconstruction loss consists in a
mean squared error (MSE) criterion. The KL di-
vergence coefficient λ is set to 5 × 10−5. The op-
timization algorithm is Adam [23] with a mini-
batch size of 32, and 50 training epochs.

3.2 Automatic Experimental Design

Once density estimation has been performed,
Shannon entropy can be computed in order to
quantify the associated uncertainty of the predic-
tions [5]. It is defined as:

H(Z) = −
∑
z∈Z

p(z) log p(z). (2)

A widely used analog for continuous distributions
is known as differential entropy:

H(Z) = −

∫
Z

p(z) log p(z)dz. (3)

Since our model estimates Gaussian densities, we
can use the following expression to explicitly cal-
culate differential entropy:

H(Z) =
1
2

log {(2πe)n |Σ|}. (4)

In this case, the relationship between Σ and H(Z)
is obvious: the wider spread the learned Gaussian



Figure 3: Left: Visible wavelength mosaic of Cuprite Hills, Nevada, as seen by the AVIRIS-NG sensor. Right:
Representative reflectance spectra in the 0.4-2.5 µm range for points labeled on the mosaic image.

representation, the more uncertain the predictions.
Using the simple yet powerful principle of maxi-
mum entropy sampling [21], one can efficiently
learn about a system by collecting samples where
prior information is less certain.

4 EXPERIMENT
We test our approach using spectroscopic mea-
surements that are of high relevance for space
exploration since they are used to determine the
chemical composition and physical properties of
objects [22]. We specifically work with re-
flectance spectroscopic observations of Cuprite,
Nevada. It is a very well-studied region of high
mineralogical diversity that is amenable to both
remote sensing and in situ reflectance measure-
ment in the 0.38-2.5 µm range [11].

We utilize a mosaic of NASA’s Next Generation
Airborne Visible Near Infrared Imaging Spec-
trometer (AVIRIS-NG) [24, 25] (Figure 3). We
use a 50/50 split when producing the training and
test sets, respectively.

The pixels of the AVIRIS-NG image cube are of
high resolution (5 nm/channel, 3.7 m/pixel) and
serve as the in situ spectra that would be obtained
by a surface rover, specifically 97 channels in the
2.0-2.5 µm wavelength bands. To obtain remote

sensing data again the AVIRIS-NG imaging spec-
trometer data was used, but modified to produce
noisy, low-resolution images as proxy for orbital
observation. Various synthetic responses are cre-
ated by applying different levels of noise and res-
olution degradation to the Cuprite dataset. Specif-
ically, two different levels of additive white Gaus-
sian noise (AWGN) are used: low (SNR = 40 dB)
and high (SNR = 30 dB). Five different levels of
decimation are used: downsampling 97 channels
to 10, 20, 30, 40, and 50, respectively.

The deep generative model was trained on a 2.9
GHz Intel Quad-Core i7 laptop without graphics
processing unit (GPU). Training convergence is
achieved after approximately 30 minutes.

Our deep generative model (DGM) is compared to
two baseline methods. The first method (GMM)
learns a Gaussian mixture model with 20 classes
trained at full spectral resolution, and then condi-
tioned on observed channels. The second method
(INT) uses a Gaussian filter and cubic spline in-
terpolation.

5 RESULTS
The first objective of this experiment is to evaluate
and compare our method’s ability to reconstruct in
situ spectra from the aforementioned synthetic or-
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Figure 4: Example of in situ spectra predictions and ground truth values for six different minerals in Cuprite.
Orbital measurements have 10 channels and a low noise level. The plots show in situ predictions generated
by the interpolation (INT), Gaussian mixture model (GMM), and deep generative model (DGM) methods.

bital responses. The second objective is to identify
effective sampling locations.

Figure 4 shows a qualitative visualization of in
situ spectra predictions for the three methods us-



ing orbital data with 10 channels and low noise.
Specifically, it contains spectra for five different
minerals in Cuprite: alunite, kaolinite, muscovite,
montmorillonite, and calcite; as well as for an un-
known mineral. In spectral analysis, the most im-
portant features for chemical composition diagno-
sis are the absorption bands [22]. It can be ob-
served that some of these features are preserved
in the orbital data, whereas others tend to disap-
pear. The DGM method is able to learn and infer
these features, even when they may seem difficult
to retrieve. GMM also does well at this, but its
predictions are more broadly spread. Interpola-
tion, INT, is the worst at capturing features and is
also sensitive to noise (despite using a Gaussian
filter).

We then evaluate the performance of the three
methods with respect to the aforementioned lev-
els of data degradation. Figure 5 shows the corre-
sponding average mean squared errors. The DGM
and GMM methods are evaluated using their max-
imum a posteriori estimates. All results are statis-
tically significant using a 95% confidence. This
figure reaffirms and formalizes many of the pre-
vious findings. DGM outperforms the baselines,
especially when there is a large degradation in
orbital measurements. The GMM baseline out-
performs INT, but still has higher reconstruction
errors than our method. DGM also seems to be
much more robust since the errors are less sen-
sitive to both noise and downsampling. As ex-
pected, the difference in performance between the
three methods is reduced when orbital data has a
high quality, since orbital measurements are more
similar to in situ observations, ı.e. there is less in-
formation loss.

Finally, an entropy or uncertainty map of the test
set is shown in Figure 6, along with the locations
of the spectra from Figure 4. This figure also
shows a mineral map of Cuprite [11] generated
by the Tetracorder algorithm, an expert system
that has been widely used for automated mineral
identification with imaging spectroscopy [26]. In
here, black pixels indicate inconclusive classifica-
tion results. It can be observed that high entropy
regions match locations where the Tetracorder al-
gorithm could not provide classifications. This
suggests that our automatic experimental design
approach is capable of identifying and displaying
low certainty regions, which tend to be of special
interest when mapping and characterizing an en-
tire scene. In other words, the entropy map reveals
locations that are especially difficult to map using
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Figure 5: Average mean squared reconstruction
errors of the three methods for various levels of
noise and resolution degradation.

the contextual information from orbital data.

6 CONCLUSIONS
The study of remote planetary surfaces relies on
the analysis of contextual orbital data, along with
complementary in situ measurements. Since sur-
face explorers face many operational challenges
and constraints, it is important to identify loca-
tions that maximize information value.

We have proposed an approach that uses a deep
generative model in order to learn a probabilistic
representation connecting in situ and orbital data,
and then estimates the information gain across
the region to guide measurement planning. Our
method is able to predict high resolution obser-
vations from low resolution orbital measurements
with a higher accuracy than the baseline methods,
and is also more robust to noise and resolution
degradation. The learned probabilistic representa-
tions allow computation of the inherent entropy of
the observations, revealing locations where con-
textual orbital data needs to be refined the most.

A great advantage of our formulation is that it
learns underlying patterns without the need for
labeled data, which are difficult to obtain when
studying remote environments. Another encour-
aging aspect is that our model is efficiently trained
on a laptop without using any GPUs, which is of
critical importance when thinking of spacecraft or
rover implementation.



Figure 6: Left: Entropy map of Cuprite, and locations for the following minerals: alunite (1), kaolinite (2),
muscovite (3), montmorillonite (4), calcite (5), and unknown (6). Right: Tetracorder mineral map [26], where
black pixels indicate an inconclusive classification. These coincide with high-entropy regions.

Future investigations will apply this method to
other sensors and domains besides spectroscopy,
including multimodal data products. Finally, we
are integrating this work with path planning algo-
rithms that maximize science productivity given
explicit exploration and traversability constraints.
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