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Abstract

Reliable and efficient acquisition of data from physical spaces has widespread applications in industry, policy, defense,
and humanitarian work. Unmanned Aerial Vehicles (UAVs) are an excellent choice for data gathering applications,
due to their capability of gaining information at multiple scales. A robust data gathering system needs to reason about
multi-resolution nature of information gathering while being safe, and cognizant of its sensory and battery limitations.
The state of the art algorithms with provable worst-case guarantees are unable to present an efficient solution online.
This thesis addresses three critical aspects of enabling safe, efficient, and multi-resolution data gathering: (1) online
budgeted multi-resolution informative path planning (IPP), (2) guaranteeing safety and, (3) optimization of sensing
bandwidth for implicit and explicit data gathering requirements.

First, we present an online navigation algorithm to guarantee the safety of the robot via an Emergency Maneuver
Library (EML). We define a vehicle to be safe in static environments if it can stay in known unoccupied space while
operating in partially known environments. Finding an optimal solution online for a non-holonomic system with
non-linear dynamic constraints, in an online fashion is computationally infeasible. We present an efficient method to
construct an EML that fully exploits the vehicle ’s dynamics capabilities and known unoccupied space available to en-
sure safety at high speeds. Another advantage of the EML is that it defines a pertinent volume from which uncertainty
needs to be removed, to ensure UAV’s safety. Further, we present a sensor motion planning approach that optimizes
mission costs while using EML to ensure vehicle safety by gaining information relevant to the mission.

Second, we prove that for a specific class of information gathering problems, which consist of informative actions,
such as gaining elevation to gather low-resolution data, traditional Markov Decision Process-based approximate
solvers are not optimal. In such cases, the belief space dynamics need to be modeled to obtain efficient solutions to the
multi-resolution IPP problems.

Third, we present Randomized Anytime Orienteering (RAOr), an anytime, asymptotically near-optimal algorithm,
that enables solving aforementioned multi-resolution IPP problems online by taking heuristically guided random walks
in the space of near-optimal routes. Although the work focusses on developing motion planning algorithms, we also
describe representations that enable these planning algorithms to run on-board on computationally constraint platforms.

The algorithms developed, form a framework for safe, efficient, multi-resolution data gathering that has enabled
UAVs to operate in diverse environments, scales, and applications. Further, we evaluate our algorithms on multiple
UAVs varying from full-scale helicopters to small quad-rotors, running closed-loop autonomous missions that cumula-
tively span hundreds of kilometers.
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4.3 Contextual Importance Function – The figure illustrates the region with con-
textual importance function greater than 1 in orange, and region which is known
to the robot in grey. As the robot navigates, the known region has no more
information to be gained that might affect its future actions. The volume around
the trajectory, bounded by the emergency maneuver library for the future un-
safe states and volume inside the landing zone is contextually important. It
is for gaining this information that we need to optimize the sensory actions. 59
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4.4 Information Gain – The expected information gain given a prior (p(o)) is
monotonic in probability of detecting the obstacle if the obstacle is present,
p(d|o). Assuming there are no false positives, p(d|o′) = 0. This implies
for maximizing information gain, one may maximize p(d|o) 62

4.5 Expected Probability of Detection: The expected probability of detection
of a wire if it exists, Ep(o) p(d|o) for a given action is an indicator of how
good an action is. The plots show Ep(o) p(d|o) versus varying nodding time
period for the worst case scenario for the sensor at vehicle velocity, v =

45 m/s m/s, for a uniform p(o). Each sensor velocity corresponding to dif-
ferent nodding time periods is evaluated till tr = 1.4s. The evaluation shows
scans with slower scanning speed are better, this is intuitively the correct be-
havior as slower nodding speeds means more uniform point distribution of
rays in the [θ, φ] manifold. Similarly a lower fast axis resolution (Yaw Res.)
results in a more uniform distribution of rays in the [θ, φ] manifold, leading
to more information gain. 65

4.6 Left:Effective sensor range increment using the worst-case policy as com-
pared to passive scanning. Right: Effective sensor ranges and max safe speeds
for online (PASP), worst-case and passive sensing policies. 66

4.7 A mission at Quantico, 26th Feb 2014 68
4.8 Sensor Nodding Profile: The figure shows the sensor’s nodding profile. In

the initial part of the mission, the sensor acts to keeps the vehicle safe. It switches
to focussing on the landing zone when safety for the remainder of the mis-
sion has been guaranteed. This focussing of the laser is shown by the nar-
row peak to peak of the nodding angles. At the very end, once enough points
on the landing zone has been focussed, the sensor reverts back to ensuring
that the vehicle can be safe should it desire to waveoff. 68

4.9 Safety Benefits: The figure shows the sensor’s nodding profile. In the ini-
tial part of the mission, the sensor acts to keeps the vehicle safe. It switches
to focussing on the landing zone when safety for the remainder of the mis-
sion has been guaranteed. This focussing of the laser is shown by the nar-
row peak to peak of the nodding angles. At the very end, once enough points
on the landing zone has been focussed, the sensor reverts back to ensuring
that the vehicle can be safe should it desire to waveoff. 68

4.10 Mission Definition: The helicopter navigates from loiter point (on the right)
to landing zone (on the left), a distance of more than 10km in less than 210
seconds. It has to navigate the environment while being provably safe and
touch down at the LZ without hovering over it to look for potential sites. The
sensor is controlled to enable safe completion of the mission. 69

4.11 Mission Definition: The rotorcraft has to navigate the environment while be-
ing provably safe and touch down at the LZ without hovering over it to look
for potential sites. The sensor is controlled to enable safe completion of the
mission. 69
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5.1 (a) The UAV gets a high reward if it visits the same cell as the car to gather
high resolution information of the car (lets say its numberplate.). Since the
UAV knows where the car is, it does not need to take action up and can di-
rectly go to the cell with the car. (b) In the POMDP version of the problem
the location of the car is unknown, hence there is only a small chance that
the next cell the UAV goes to has a car in it, leading to a small expected re-
ward. (c) But if UAV gains height, the uncertainty about the location of the
car is removed. Although there is no reward from this action but the removal
uncertainty leads to guarantee of gaining high reward by visiting the cell in
which the car exists. Since, MDP-POMDP solvers cannot take informative
action up, they are sub-optimal for such data gathering problems. 89

6.1 An illustration how RAOr-G combines CSP and TSP solvers in combination
with local greedy heuristics to explore the space of routes rapidly, resulting
in improvement of run times for finding near optimal solutions for the cor-
related orienteering problem. a) Using the CSP algorithm the current admis-
sible route is given by r = xstart, x1, x2, x3, xend. b) At the next step x4

is sampled, and is to be added to the route. c) The exponential number of
ways in which x4 can be added to r is reduced to a near optimal order in poly-
nomial time by the TSP solver. This step reduces an exponential search space
with in polynomial computation costs. d) The new route obtained is then im-
proved by conducting a local search using greedy heuristics. 97

6.2 Illustration of drawbacks of RAOr algorithm. a) The problem shown in here
consists of three high valued nodes and a budget just sufficient to visit all
three. The optimal solution is to visit all three nodes but very few routes ex-
ist that have a reward close to optimal. The solution shown is found by run-
ning RAOr-G algorithm, Alg. 9. b) Shows the run time vs reward plot for
the problem shown in (a) for both RAOr-G and RAOr. RAOr can only attain
approximately 66% of the optimal value, as it has a hard time selecting the
correct set of nodes. c) Illustrates the problem RAOr faces while running on
problems with a small budget. Here a 5X5 grid of nodes, distributed uniformly
at a resolution of 1 with a budget of 15 is shown. The routes in red are routes
sampled by RAOr that exceed the budget, whereas routes in blue are routes
that were sampled that do not exceed the budget. Visibly, red routes outnum-
ber the blue routes. d) The same problem leads to poor run times of RAOr
for relatively low budget problems. Here we show the run times of RAOr
and RAOr-G on the 5X5 grid shown in (c) while varying the available bud-
get. A runtime of 0 signifies that the algorithm did not converge. Clearly RAOr
did not converge for low budget problems in the allotted time. Highlighting
the limitation of RAOr in dealing with low budget problems. 98
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6.3 Illustrated here is 10X10 grid size benchmark problem. For all the bench-
mark problems the nodes are situated in a uniform grid with 1 resolution. For
this particular problem RAOr-G is able to find a near-optimal solution in 6.9
seconds while the state of the art takes 143.6 seconds for finding same qual-
ity of solution. 101

6.4 a) RAOr-G planned path with a 500m budget on the 100X100 area for Case2.
Red marks the sensor footprint. Notice how the path visits high value regions,
displayed in black. Grey paths show all the paths searched by RAOr-G. b)
and c) Case 1 is displayed in dashed line, Case 2 in solid lines. RAOr-G is
competitive with greedy algorithms in Case 1 and dramatically outperforms
greedy and RIG for Case 2, where greedy algorithms are stuck in local max-
ima. 102

6.5 Performance comparison of GCB and RAOr-G for a scenario where gain-
ing height is expensive and hence greedy algorithms tend to get stuck in lo-
cal minima. 103

6.6 a) Testing site, start and end are marked by green nodes and car locations
are shown in orange. b) Vehicle starts with a budget of 700m, the reward in-
creases as likelihood of finding the car increases, the crest in reward marks
the time at which the global planner found and decided to map the car. Fig-
ures 1, 2, 3 and, 4 show the series of plans at various stages of the exploration
mission, Dark squares indicate absence of cars and red squares presence of
cars. Shades of grey and red signify certainty. Once the car is recognized,
a 360 view of the car is associated with a high reward. 104

6.7 Long-range exploration mission, where the robot was tasked to explore 150, 000m2

of area, and it completed the mission in 1 battery pack, just under 5 minutes.
The top left image shows the scenario, and other 3 images show mission progress
in chronological order as denoted by the flight time displayed in them. 105

6.8 All the locations where the robot has been successfully able to find and map
cars in high resolution (Red dots). Start and end points of missions from which
the robot began and ended scouting. (White Dots) 105

6.9 MAV System Block Diagram: Exploration Planner RAOr provides global
trajectories to the disparity planner described in section 6.8. Semantic clas-
sification outputs classified images to the exploration planning node, that pro-
cesses these images to construct a semantic grid map also described in sec-
tion 6.8 111



18 SANKALP ARORA

6.10 Figures 1 shows the updated map after a classified image 4 is integrated in
our current mapping pipeline, Figure 2 shows the updated map if the clas-
sified image is projected on the DEM without exploiting semantic knowl-
edge and Figure 3 shows the updated map if the ray interdependence is not
modelled. Dark squares indicate absence of cars and red squares presence
of cars. Shades of grey and red signify certainty. Modelling ray interdepen-
dence and exploiting semantic knowledge leads to better modelling of un-
certainties due to occlusions while providing an improved cell occupancy
estimate. Figure 4 provides the sensitivity analysis of mapping performance
vs. DEM height errors. 115

6.11 Planning pipeline based on inverse depth obstacle perception. The frontal
expansion and back expansion are shown in pink and red point cloud around
the original point cloud of pole. Planned path around the pole is also shown
with the current robot position circled in green. 115

6.12 Left: Disparity vs Depth (blue) and probability distributions are shown in
red and green. Red and Green PDF in disparity are same and easy to model
but their corresponding Red and Green PDF in range vary and difficult to
model. Hence we use inverse depth space to represent obstacles. Also, dis-
parity i.e. inverse range captures space at multi-resolution suitable for reg-
istration of stereo sensor data. Right: Shows the pixel-wise expansion of a
point obstacle according to robot size. 117

6.13 Disparity expansion shown as point cloud. The pink and red point cloud rep-
resent the foreground and background disparity limits. 118

6.14 Pose Graph of expanded disparity images. Dashed path shows robot motion
and stored nodes in the graph are shown as triangles. Nodes are stored at in-
tervals of distance and orientation. 119

6.15 Location where experiments were carried out: highlighted area 123
6.16 Time profile of expansion step. 124
6.17 Point cloud is shown at the bottom in all three figures for reference. Point

cloud is colored by height in (a) & (b) and by actual intensity in (c). (a) Planned
path(green) between low trees highlighted in red ellipses (b) Replanned(green
path) as more observations are made, marked in red ellipse, (c) Long range
planning horizon. The point cloud shows the noisy measurement but even
noisy information allows to infer occupancy at long distances. 124

6.18 Reactive Planning at 4m/s: Top image shows the robot has planned to go
right with unseen obstacle marked in red ellipse. Bottom image: after bank-
ing right an obstacle obstructs the previous plan and a new plan avoiding it
is generated. 125

7.1 Current vs proposed data gathering pipeline 133
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7.2 Left: Motion planner operates independently of the safety library. Result-
ing in maximizing the distance from walls of the corridor and slower nav-
igation speeds. Right: If the motion planner is cognizant of EML and safety
constraints, it can identify a faster solution to fly through the corridor while
being close to a wall. 133

7.3 Left: Vehicle flies a constant speed around the target to gather its data, while
myopically looking forward as and when required. Right: The same approach
does not work in this scenario, as there is a sharp turn in the path, leading
to the vehicle missing essential information about the target as it ensures safety. 133

7.4 1: In this scenario, the viewpoints are 10m away from the target, the vehi-
cle is equipped with a sensor with a range of 22m and field of view of 60 de-
grees, if a viewpoint views a unique sector of the cylinder, +1 reward is gained.
The maximum speed of the vehicle is restricted to 3 m/s. 2: An informative
route planned by using RAOr. 3: A safe informative route planned by using
SafeRAOr using path independence assumption. 4: A safe informative route
planned by using SafeRAOr while modeling path dependence. Given a max-
imum heading rate of the vehicle, ψ̇ = 1.06 rad/s, the trajectory generated
by assuming paths are independent leads to total time taken by 38.24s, while
the trajectory generated by modeling path dependence takes 34.37s to cover
the same viewpoints. It takes the planner 1.12s to generate the trajectory. 136

7.5 Scouting of Landing Zones (LZ). We want the vehicle to be able to scout for
landing zones. Left: Since we cannot deal with big problems online, we re-
duce the size of those problems by aggregating many nodes into one. In this
case vehicle does not scan the LZ, because the cost of visiting the node is
out of budget. Right: Faster global planning will enable increased granu-
larity (more nodes) and hence enabling partial coverage of LZ. 139

7.6 Illustrated here is a scenario where wrong assumptions about the environ-
ment lead to an uncertain map, which requires the vehicle to travel more to
gain information about the environment. The vehicle gains the same infor-
mation about the environment with a much smaller path if its assumptions
about the object heights in the environment are correct. 141





1
Introduction

Data acquisition is relatively easy in the virtual world, where the cost of
accessing data can be equivalent to accessing a memory block. However,
the cost of data gathering in physical spaces, where it is impractical to have
sensor networks is not as trivial. Currently, we rely on humans to carry or
drive sensors around to digitize the physical world to collect data.

Gathering data from an oil pipeline to predict future leaks, collecting data
from a lake to sample spatial distribution of water contaminants to predict
outbreak of diseases, gathering data about flood survivors to aid in search
and rescue missions, or to collect data about bridges to predict corrosion
rates, these applications require data gathering in the physical realm at an
unprecedented scale. Using humans to do these tedious, boring and often
risky tasks is far from ideal. Therefore, there is an urgent need to develop
autonomous robots to do the job for us.

Micro-Aerial Vehicles (MAVs) are well suited for such data gathering
tasks. The primary reason is their ability to reach vantage points unattainable
by other systems. MAVs can switch from viewing large spaces at a distance
to flying in close to obtain more accurate information. This capability of gain-
ing information at different scales makes MAVs excellent for the applications
mentioned above. Hence, the last decade has seen massive growth in research
for applications for MAVs such as search and rescue [Goodrich et al., 2008],
infrastructure inspection [Bircher et al., 2015], surveillance, crop and wildlife
monitoring [Hodgson et al., 2016].

A common trend in these applications is that not all possible sensing
locations are of equal value; we are usually more interested in gathering
information about specific targets, such as victims, vehicles, animals. Often
we do not know in advance the location of these targets, making it necessary
to locate them before conducting more detailed inspection. We argue that
we need to develop safe data gathering robots that can exploit their multi-
resolution data gathering capabilities while reasoning about their motion and
sensory constraints.

Section 1.1 motivates the need for such robots through an example and
a field experiment. Section 1.2 describes the saliencies of the problem
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Figure 1.1: Typical scenario, where
earth moving data is required on an
hourly basis at a mining site to mea-
sure machine productivity. Currently,
vehicles take a brute force approach
to survey the complete site, leading to
low-resolution data collection. For an
MAV to collect relevant data on this
site, it needs to find objects of interest
and focus its sensory and physical
resources in gaining data around those
objects of interest. We will enable such
data gathering through the techniques
developed during our thesis.

of gathering data in physical spaces. The challenges of addressing these
saliencies with respect to state of the art are described in section 1.3. Our
thesis is presented in section 1.4, followed by a summary of contributions,
section 1.5 and the document structure in section 1.6.

1.1 Motivating Examples

Mining companies are interested in measuring earth moved by earth movers
operating on their sites on an hourly basis. Earth movers are only capable
of altering the earth around them in that time. Nonetheless the current
commercial data gathering MAVs use lawn mower patterns at a fixed height
above the environment to gather data, as shown in figure 1.1. Often, the data
collected from a height does not have enough resolution to compute the small
amount of earth moved by the machinery. A better approach would be to
focus the sensory bandwidth of an MAV on gathering low-resolution imagery
to locate machines of interest and then capture high-resolution data around
those machines of interest selectively.

We tested our hypothesis at Fort Indian Town Gap, figure 1.2, where
we wish to collect high-resolution data of cars to make their 3D models.
A lawnmower aerial surveying pattern of the whole sites takes 70 minutes
to run, requiring multiple battery changes. The result of the run is a good
looking 3D model of the environment, but there is not sufficient data to
make a high-resolution model of the cars in the environment. Whereas, a
multi-scale data gathering approach where the MAV gains height to gain
information about the location of cars and then gains high-resolution data
by focusing its sensing bandwidth on the cars leads to a high resolution 3D
model of cars within 10 minutes of flight time.
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Figure 1.2: Top: Our test site, with
the location of a car (our object of
interest) and the MAV takeoff location
highlighted. Bottom left: 3D Model
of the car constructed with 1 hour and
10 minutes of “lawnmower” pattern
flight. Bottom right: 3D Model of
the car constructed with 10 minutes of
human-piloted, focused flight, starting
from the same location. The goal of
safe, multi-resolution data gathering
is to efficiently gather high-quality
information pertinent to the user.

1.2 Saliencies of Physical Data Gathering

Above example shows that focussing sensory and physical resources of an
agent while gathering data pertinent to the mission makes them an effective
tool for data gathering. Mobile platforms pose constraints on the sensors,
compute they can carry. Given the limited battery life, their operating time
is also limited. Such constraints lead to the following four salient charac-
teristics to the problem of safe, efficient data gathering in partially known
environments.

1. Safety Constraint. The vehicle has to ensure that it will never run into
obstacles while gathering data.

2. Constraint on sensing bandwidth. A limited payload carrying capacity
limits the number of sensors the vehicle can carry leading to limited
sensing bandwidth.

3. Correlated nature of information. Equipped with cameras, some mobile
platforms like UAVs can view large areas from a distance to gain infor-
mation. This capability leads to the reward of visiting different locations
being correlated.

4. Constraint on the total travel distance. Due to limitations of fuel/battery,
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the length of the route taken by the mobile platforms is limited.

Safety constraint necessitates that the agent gathers data about the environ-
ment to make sure its obstacle free, we call such a data gathering requirement
as implicit and the act of gathering data to satisfy an implicit requirement as
implicit data gathering.

Similarly, the need for task-specific data gathering is called explicit. For
example, for a pipe inspection robot, the user explicitly specifies to gather
data about cracks and rust on pipes.

Actively gathering implicit and explicit data while modeling physical
constraints requires agents to reason about the high-dimensional uncertainty
of the environment. We identify unique challenges posed by the problem in
the next section.

1.3 Challenges

Active data gathering refers to optimization of data being gathered during
experimentation. The data gathered is optimized to meet the objectives of the
experiments. The desire is to meet experiment’s objectives at minimum cost
or to maximize a reward function. The search space for active data gathering
is the space of all possible actions and possible data gathered from these
actions. Since the data gathered from the actions are stochastic, the space
of possible actions and possible observations can be large and active data
gathering problem is NP-Hard in this large search space.

State Of The Art

In digital spaces, however, where the cost of gathering data is independent
of data points gathered, the problem is well studied and even though its
NP-Hard, near-optimal polynomial time solvers exist.

Unlike active data gathering in physical spaces, active data gathering in
digital domain does not have to contend with motion constraints. Reasoning
about motion constraints exponentially increase the search space. Majority
of the current state of the art physical data gathering systems attempt to
solve the physical data gathering problem using following three lines of
approaches.

Myopic Active Data Gathering - Heuristic driven Policies

One approach is to ignore the motion constraints and apply a myopic strategy
where a set of sensing locations is identified, and the agent travels to the most
promising one. While such strategies are computationally efficient, they are
generally heuristic driven and myopically optimize Pareto-optimal reward
functions. On account of being myopic, these strategies inadequately model
motion constraints like constraint on total path-length, leading to sub-optimal
behavior.
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Non-Myopic Active Data Gathering - Offline Computed Policies

Another approach is to solve for non-myopic policies that model motion
constraints. Although such methods provide near-optimality guarantees, their
runtimes do not enable online generation of solutions. These approaches ig-
nore the need for gathering data for safety of the vehicle or make simplifying
assumptions on vehicle dynamics, leading to the vehicle operating at slow
speeds.

Decision Theoretic Data Gathering - Optimal but Intractable

Decision-theoretic approaches, use POMDP solvers to address the data
gathering problem and have been able to address the active data gathering
problem for localization successfully but the dimensionality of active data
gathering for safety or mapping makes them unsuitable to run online.

We capture some of the challenges involved in developing safe, efficient,
multi-resolution data gathering agents in the following list.

• Challenge 1: Guaranteeing Safety while Fully Exploiting Vehicle Dynam-
ics and Known Space - The safety constraint requires the vehicle to be
in a control invariant state that entirely lies in known free space. State of
the art makes simplifying assumptions on the dynamics of the vehicle to
meet these constraints online. An extreme but well-accepted approach
is using straight line stopping to ensure safety. Such approaches lead to
under-utilization of vehicle dynamics and sensory capabilities. Modelling
non-linear dynamics and complex known space geometry online, in a fixed
computation time, to enable the vehicle stay in known free space poses a
challenge.

• Challenge 2: Designing Online Algorithms for Active Data Gathering for
the Implicit Need to Ensure Vehicle Safety - The data gathering agent has
to reason about gathering data about possible obstacles in the environment
to guarantee its safety while also gathering information that is explicitly
required by the user. Given the limited sensing bandwidth, the agent has to
infer the pertinent information to be gathered for safety and plan sensory
actions accordingly. Inferring pertinent information is dependent on the
reachability of the vehicle, which is computationally intensive to compute
for vehicles with non-linear dynamics. Moreover, computing expected
information gain is computationally infeasible on mobile platforms.
Making it non-trivial to design algorithms that enable active data gathering
for the implicit need of ensuring vehicle safety.

• Challenge 3: Designing Near-Optimal Algorithms for Explicit Data Gath-
ering while Reasoning about Budget Constraints- Reasoning about budget
constraint while active data gathering requires the agent to reason about
its future actions non-myopically. However, decision-theoretic data gath-
ering requires planning in high dimensional belief spaces. Approximate
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solutions to the decision-theoretic problem have been suggested, and have
been able to reduce the run-time significantly, but their current computa-
tion requirements render those solutions to be infeasible online. Myopic or
receding-horizon approaches have been successful at providing reasonable
solutions to informative path planning, but they lead to oscillations, which
negatively affects the performance of the vehicle under the budget con-
straint. Information theoretic path planning problem is also NP-Hard in a
high dimensional information space. The high dimensional state (belief)
space combined with the need for a non-myopic solution make the design
of a near-optimal algorithm for explicit data gathering while reasoning
about budget constraints challenging.

The work presented in this document focuses on addressing these chal-
lenges to develop efficient data gathering agents in physical environments.

1.4 Thesis Statement

The central thesis of this document is that - For mobile robots operating
in partially known environments, active gathering data and concurrently
reasoning about motion constraints produces higher rates of information gain
and higher speeds of safe operation.

1.5 Contributions

The contributions of this thesis are three algorithms that can be used to
address the safe data gathering problem in physical spaces while reasoning
about motion constraints. The algorithms assume the data gathering agent
is operating in a static, partially known environment and it can carry limited
computational power. The three algorithms are designed to solve three
different aspects of the safe, efficient data gathering namely enabling safe
operations of mobile agents in partially known environments while utilizing
their dynamic limits, reasoning about pertinent data gathering for the safety
of the mobile agents while modeling their dynamic constraints and reasoning
about task-specific, multi-resolution data gathering with budget constraints.

Ensuring Safety through a Library of Emergency Maneuvers

The first algorithm demonstrates a way to guarantee the safety of an agent
operating in partially known static environments while utilizing its dynamic
capabilities. The algorithm efficiently constructs a near-optimal library of
emergency maneuvers by using survivability as a metric. Since this library is
constructed offline, full non-linear dynamics of the vehicle can be exploited
for the generation of the library. Moreover, the sub-modular and monotonic
structure of survivability enables polynomial time solution of NP-hard library
generation problem.
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This library of emergency maneuvers is then used to enforce the safety
constraint online. The resulting algorithm is agnostic of the rest of the
planning pipeline and has a guaranteed upper bound on runtime. We show
that the algorithm enables rotorcraft to fly safely at 1.8 times the speed as
compared to techniques that approximate dynamics of the vehicle to ensure
safety. [Arora et al., 2015, 2014]

Sensor Motion Planning for Implicit and Explicit Data Gathering

In the second algorithm, we describe a way to optimize sensor motion
to gather, implicit information for ensuring vehicle’s safety, and explicit
task-specific information, given the vehicle’s path is fixed. We show that
decision-theoretic optimization of sensor trajectory for cost minimization
of vehicle trajectory can be equivalent to information-theoretic optimization
of the sensor trajectory for maximizing pertinent information gain. We use
emergency maneuver library to infer the information pertinent for ensuring
vehicle’s safety and describe a paradigm that optimizes sensory actions for
worse case scenario for the safety of the vehicle. We show that these offline
optimized sensory actions can be augmented online to improve vehicle
performance further.

The developed algorithm provides performance bounds on the operating
speeds of the vehicle. Computing the pertinent information for safety using
emergency maneuvers enables the algorithm to run online while reasoning
about the dynamics of the vehicle. We show that the algorithm enables 300%
higher safe speeds for full-scale helicopters equipped with a long-range lidar
than sensor motion planning schemes that fail to account for rotorcraft’s
dynamic constraints. The algorithm assumes that the vehicle’s path is fixed;
hence its scope is limited to mobile platforms for which there exists atleast a
degree of freedom of sensor’s motion that can be controlled independently of
vehicle’s motion. [Arora and Scherer, 2015]

Explicit Data Gathering with Path-Length Constraints

In the third algorithm, we focus on vehicle motion planning for a multi-
resolution data gathering task while modeling path length constraints. We
show that for budgeted, multi-resolution data gathering problems near-
optimal solvers need to reason about belief space dynamics. Guided by this
result, we describe a belief dependent reward function for the budgeted data
gathering problem and present an anytime, asymptotically near-optimal
budgeted data gathering solver (RAOr), that can efficiently solve for routes
that maximize correlated reward functions subject to constraints on route cost.
The key insight is to break the problem into the selection of viewpoints to
visit and the order in which to visit them, leading to an exponential reduction
in dimensionality. RAOr combined with expected observation assumption has
enabled us to perform non-myopic, multi-resolution information gathering
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on-board. [Arora and Scherer, 2017, Arora et al., 2018]

Experimental Results

The algorithms developed, form a framework for safe, efficient, multi-
resolution data gathering that has enabled UAVs to operate in diverse environ-
ments and scales. We evaluate our algorithms on multiple UAVs operating
at two scales, 1. Full-scale helicopters running closed-loop autonomous nav-
igation and landing missions, 2. MAVs with gathering high-resolution data
of objects of interest operating in unknown environments. The missions cu-
mulatively span hundreds of kilometers of closed loop flights. Although the
work has focussed on developing motion planning algorithms for information
gathering, we briefly describe representations and systems that enable these
planning algorithms to run onboard on computationally constraint platforms.
[Choudhury et al., 2014, Dubey et al., 2017, Maturana et al., 2017]

1.6 Document Outline

Challenges Chapters

Challenge 1: Guaranteeing Safety while Fully
Exploiting Vehicle Dynamics and Known Space

Chapter 3: Ensuring Safety in Partially Known Environments

Challenge 2: Designing Online Algorithms for
Implicit Data Gathering to Ensure Vehicle Safety

Chapter 4: Sensor Planning for Implicit and Explicit Data Gathering

Challenge 3: Designing Near-Optimal Algorithms
for Explicit Data Gathering while Modelling Motion
Constraints

Chapter 5: Modeling of Belief Space Dynamics for Budgeted, Multi-
Resolution Data Gathering
Chapter 6: Randomized Algorithm for Path Planning for Budgeted Data
Gathering

Table 1.1: Mapping from chalenges to
chapters

Table 1.1 provides a mapping from chapters of this document to the
challenges faced in developing safe, efficient physical data gathering agents.

In chapter 2, we begin by describing the decision-theoretic formulation of
the safe, active data gathering problem in partially known environments, and
examine how approximations are used in state of the art to address different
parts of the problem. We will also examine some of the active data gathering
systems that have been successfully deployed while highlighting the need for
modeling motion constraints.

In chapter 3, we describe the algorithm to ensure the safety of a vehicle
operating in partially known environments by using a library of emergency
maneuvers, and evaluate its performance on multiple full-scale helicopters.

In chapter 4, we describe an algorithm that leverages emergency maneu-
vers to enable sensor motion planning for gathering for ensuring the safety of
the vehicle. We evaluate and compare the performance of the algorithm on
full-scale helicopters equipped with an actively controlled nodding laser.

In chapter 5, we will move from sensor motion planning to vehicle motion
planning for active data gathering. We prove the need for reasoning about
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high dimensional belief space dynamics for budgeted, multi-resolution data
gathering problem, and present an online solver for the same problem in
chapter 6.

Finally, we conclude with a summary of the work, and a discussion of
some of the more interesting results. We discuss some of the unresolved
problems of the resulting planning framework and remaining open questions.





2
Background

In this chapter we first introduce a decision-theoretic formulation for safe
active data gathering in physical spaces, section 2.1. We then present ap-
proximations made by state of the art techniques to tractably address the
active data gathering problem, section 2.2. We then discuss successfully
deployed data gathering robotic systems and briefly present the need of the
work presented in this document, section 2.3.

2.1 Decision Theoretic Formulation of Safe Data Gathering

Under the decision theoretic regime, autonomous data gathering agents
integrate the actions and observations made by the robot to update robot’s
belief about the environment and select the action that maximizes a reward
function in expectation. Let the combined state of the environment and the
robot be s ∈ S . Let the high dimensional state of the environment be given
by m ∈ s ∈ S . If the state of the agent and the environment is known and the
agent takes an action a ∈ A it causes the environment to transition from state
s to state s′ ∈ S with probability Ω (s, a, s′) = P(st+1 = s′|st = s, at = a),
we use subscript to denote the time step. However, at any given time the
agent has a probabilistic belief about its state and the state of the world,
b ∈ B be the probability distribution over the state, b : S → [0, 1]. Let, A
be action space of the robot and the sensor. Let π : B → A be the policy
that maps from belief to action space. Let o ∈ O be an observation and
Z (s′, a, o) = P(ot+1 = o|st+1 = s′, at = a) be the observation model. The
reward function, RB : AXB → R, is belief dependent and assigns rewards
to belief, action pairs. The dynamics constraints on the robot and the sensors
are given by h(π(bt), π(bt−1)) ≤ 0. The safety constraint is represented by
sA(bt, π(bt)) ≤ 0. The cost of the trajectory is given by ∑t=0:T C(π(bt)).
And the total budget for the information gathering mission be given by B.

π∗ = arg max
π∈Π

T

∑
t=0

Ebt∼P(bt |π,t) [RB (bt, π(bt))] (2.1)
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h(π(bt), π(bt−1)) ≤ 0∀t = 0 : T

sA(bt, π(bt)) ≤ 0

bt+1(s′) = η Z
(
s′, a, o

)
∑
s∈S

Ω
(
s, a, s′

)
b(s)

∑
t=0:T

C(π(bt)) ≤ B

Where, η denotes a constant normalizer.
To solve equation 2.1 optimally, the solver has to operate in the belief

state-space B, which is continuous and has at least the same dimensionality
as the environment. Moreover, it has to reason about the expectation over all
possible future observations and trajectories. It is computationally infeasible
to address the problem of active data gathering online in a decision-theoretic
fashion. Adding motion and safety constraints to the problem further in-
crease the complexity. Nonetheless, it is a significant problem to solve, and
researchers have addressed the problem through various approximations as
presented in the next section.

2.2 Related Work

Active Data Gathering

The problem of planning for data gathering is a well studied one and finds its
roots in sequential hypothesis testing [Wald, 1945]. Sequential hypothesis
testing have since been extended to account for mobile sensing within the
framework of Bayesian reasoning [Cameron and Durrant-Whyte, 1990]. The
work on active mobile sensing can be broadly classified into three paradigms,
myopic approaches that ignore motion constraints, non-myopic approximate
solvers that reason about the cost of moving or model motion constraints, and
decision theoretic approaches.

Ignoring Motion Constraints - Sensor Motion Planning

Early work of J.J. Gibson [Gibson, 1950] proposed that perception is due
to the combination of the environment in which the agents exists and how
those agents interact with the environment. He noticed that optical flow
observed by a mobile agent is controlled by its motion, hence the agent can
actively control how and what it senses in the environment. One of the early
works of active data gathering through sensor configuration planning on
a mobile agent was presented in [Tenenbaum, 1970], it involved control
of camera parameters for optimizing edge detection. In the seminal work
[Bajcsy, 1988], a framework was proposed for one-step greedy active data
gathering for camera control to minimize misclassification risk. [Ballard,
1990] suggested the concept of an animate vision system that can control the
gaze of a low-resolution camera to achieve higher resolution imagery. These
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algorithms focus on controlling the sensor motion or parameters to achieve
better task performance.

As cameras became higher resolution and more computationally powerful,
some of these techniques for active exposure and focus control got absorbed
in onboard camera hardware. However, for Lidars, a sensor that still suffers
from limited bandwidth, active sensor control approaches are still practically
beneficial. Some work has addressed the need for controlling lidar to focus
on specific targets to localize them, for example in [Arora et al., 2013] we
focus a Lidar on the ship deck to enable better localization of it.

However, for safe data gathering in partially known environments, an
agent needs to focus its sensor on gathering information to ensure vehicle
safety as well as task-specific data. Such tasks present an added challenge of
reasoning about agent’s dynamic constraints to ensure its safety. We describe
an algorithm to enable such data gathering in chapter 4. In the next sub-
section we present how myopic data gathering techniques are used for vehicle
motion planning.

Ignoring Motion Constraints - Vehicle Motion Planning

Optimization of sensor configuration does not need to reason about path-
length or budget constraints of the agent. Hence, myopic or heuristic driven
approaches can provide efficient solutions. Similar approaches were first
applied to mobile data gathering agents for controlling their trajectories to
gather data. Yamauchi in his seminal work on frontier-based exploration
[Yamauchi, 1997] suggested a myopic approach for information gathering.
Later works have resulted in a variety of myopic (next-best-view) approaches
that incorporate information theoretic measures for problems like object
recognition [Denzler and Brown, 2002], mapping [Stachniss et al., 2005],
and scene reconstruction [Chen et al., 2011]. While such algorithms have
shown to be useful in their respective applications, they typically rely on
restrictive assumptions on the representations, objective functions and do not
have guarantees on global optimality.

Finite-horizon, model predictive control methods, [Bourgault et al., 2003,
Ryan and Hedrick, 2010] provide an improvement over myopic techniques,
but they do not have performance guarantees beyond the horizon depth and
the run times to operate online in large state-spaces. Charrow et al.[Charrow
et al., 2015] present a finite horizon, information theoretic approach where
a set of sensing locations is identified, and the system travels to the most
promising one.

The approaches discussed above do not model the budget constraint and
assume that the agents have sufficient runtime to cover the entire environment.
Leading to an assumption that coverage is equivalent to information gath-
ering, [Plonski and Isler, 2016]. While such strategies are computationally
efficient, they fail to account for the constraint on travelling distance effec-
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tively. As a result, the computed routes can lead to oscillatory behavior. In
the next sub-section, we discuss planning approaches that model budgetary
constraints of agents.

Modelling Motion Constraints

The problem of planning routes to gain information is NP-hard [Krause,
2008]. Decision-theoretic approaches to information gathering have been
improved over the years either by approximating solutions through sampling
the action space [Pineau et al., 2003] or by restricting the space of problems
to metric spaces, [Lim et al., 2016]. Chen et al. presented how POMDP-
Lite [Chen et al., 2016] can be used to solve large information gathering
problems in a relatively small time by augmenting the reward function with
information theoretic rewards. Often, to reduce the run-time of these solvers,
the maximum likelihood observations are used instead to define deterministic
belief space dynamics [Hsiao et al., 2008]. Nonetheless, the computational
requirements of these decision theoretic solvers render them unusable in
an online setting, especially for MAVs, with limited computation carrying
capabilities.

Another approach is to invoke a long horizon planner [Yu et al., 2014,
CHEN et al., 2014, Zhang and Vorobeychik, 2016]. However, these ap-
proaches are far from real-time. The recursive greedy algorithm [Singh
et al., 2009], Branch and bound [Binney et al., 2013] require computation
exponential in the size of the problem instance due to the large blow-up in
the search space with increasing budget. An alternative is to utilize a finite-
horizon solver that solves the problem for only a portion of the budget at a
time [Hollinger et al., 2009].

Given the run-times of these algorithms, there is a need for faster methods
to compute informative routes. We present Randomized Anytime Orienteer-
ing (RAOr) an algorithm that can efficiently solve for routes that maximize
correlated reward functions subject to constraints on route length in chapter 6.

Guaranteeing Safety

Substantial literature exists on ensuring safety for autonomous vehicles. We
focus our attention on ensuring safety for static, uncertain environments.

Wikman et al. [Fraichard and Asama, 2004b] introduced the notion of
Inevitable Collision State (ICS), a state for which irrespective of future
vehicle trajectory, a collision is inevitable. The general approach to safety
is to avoid ICS, while assuming unknown regions in the environment to
be obstacles. Some of the early work for ground robots relied on making
sure that vehicle can stop within sensor range while applying maximum
longitudinal deceleration [Fox et al., 1997]. This technique is effective for
vehicles that have the capability to apply large longitudinal decelerations.
Similar approach to safety has been adopted by aerial vehicles as well
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[Scherer et al., 2012c, Goerzen and Whalley, 2011, Adolf and Dittrich, 2012].
However, stopping distance based velocity limit does not exploit the complete
dynamics of the vehicle, leading to conservative velocity limits.

Another paradigm is to simplify the non-linear dynamics of the UAVs and
plan a path that is guaranteed to stay within the known unoccupied region.
Mixed integer linear programming is used in [Schouwenaars et al., 2004] to
plan paths that stay within the known region. Simplified dynamics model in
a sampling based graph is used in [Frazzoli et al., 2002] while limiting the
maximum planning time to ensure safety. The assumption is that the planner
can always plan an obstacle free path if allowed to run until the maximum
planning time. [Enright et al.] uses Dubin curves to plan paths within the
known space. Simplified of dynamics, coupled with a reliance on a planner to
generate a safe path online leads to conservative robot behavior that does not
fully exploit sensory and dynamics capabilities of the vehicle.

We present an emergency maneuver library based method that utilizes
the true dynamics of the vehicle to find a positive control invariant set in
the known unoccupied space. We formulate the problem of generating this
library as a NP hard path survivability optimization [Dey et al., 2011]. We
prove the path diversity problem to be monotonic, sub-modular leading to
an efficient, bounded sub-optimal algorithm [Streeter and Golovin, 2007] to
generate the trajectory set. In the next section we discuss four exploration
strategies that we consider as the state of the art.

Data Gathering Systems

There have been multiple information gathering systems with significant field
results. We briefly describe relevant systems and their planning paradigms.
Starting with the river exploration MAV by the Air lab at FRC, CMU [Jain
et al., 2015]. The MAV used myopic frontier based planning, to follow a river
and map its banks. The system worked in GPS-denied environments using
visual odometry for state estimation. It primarily relied on using lidar for
detecting water surface of the river and mapping its banks. Similar, sensor
suite and data gathering methods were used by the bridge inspection MAV
[Yoder and Scherer, 2016].

Infrastructure inspection often has hard constraints on the resolution at
which the information needs to be gathered. Bircher et al. [Bircher et al.,
2015] leverage such constraints and the model of infrastructure to be in-
spected to generate an optimized information gathering route. Given the
limited sensing range or the sensing constraints, the information gathering
planners in the above use cases do not need to reason about multi-resolution
information gathering. Both these approaches assume they have enough
battery to complete the mission and do not consider the flight time or budget
constraint while gathering information.

[Wettergreen et al., 2014] use relatively low resolution satellite imagery
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to guide a ground rover to efficiently collect science data. The on-board
informative path planner uses a variant of a recursive greedy, generalized
cost benefit algorithm [Zhang and Vorobeychik, 2016]. The methodology
reasons about multi-resolution nature of data gathering while applying
an approximate algorithm of planning for data gathering under budget
constraints. However, the rover itself gathers data at a constant resolution.
Jones et al.[Jones et al., 2014] use a similar one-step greedy approach to
reason about multi-resolution data gathering for mapping craters on lunar
surface. [Mascarich et al., 2018] uses randomly generated geometric trees,
similar to [Hollinger], that respect budget and yaw-rate constraints to enable
localization of radiation sources using UAV.

2.3 Developing Algorithms that Enable Safe Data Gatherers in Phys-
ical Spaces

Active data gathering through mobile robots has been an area of interest
since the late 80’s. Early approaches were limited to heuristic driven myopic
policies due to limited computation available. As computing and sensing
hardware improved, these approaches were applied to ground robots where
the motion constraints and sensing constraints were not restrictive. Leading
to next-best-view based myopic approaches being effective for ground-
based exploration applications. With UAV systems maturing over the last
decade, there is a need for developing algorithms that enable safe, multi-
resolution data gathering systems that do not rely on myopic, greedy methods
to overcome oscillatory behavior and lead to efficient, multi-resolution
information gathering under budgetary and sensory constraints.

In this work we describe algorithms to solve three different aspects of
the safe, efficient data gathering namely enabling safe operations of mobile
agents in partially known environments while utilizing their dynamic limits,
reasoning about pertinent data gathering for the safety of the mobile agents
while modeling their dynamic constraints and reasoning about task-specific,
multi-resolution data gathering with budget constraints. Throughout this
work, we assume that the agent is operating in a partially known environment
while the agent’s pose is known.

We start by describing an algorithm that enables safe operations of mo-
bile agents in partially known environments while fully exploiting vehicle
dynamics and known space available in the next chapter 3.





3
Ensuring Safety in Partially Known Environments

Active data gathering in physical environments and applications like cargo
delivery, surveillance, people transport, reconnaissance etc. require the robots
to operate in unstructured, partially known environments at high speeds. The
robots should ensure safety while navigating in such environments without
compromising on performance. A popular method to guarantee safety relies
on limiting the vehicle speed such that it can come to a stop using longi-
tudinal deceleration within the known obstacle-free volume [Buchberger
et al., 1993]. This method fails to fully exploit either the vehicle’s dynamics
or known unoccupied volume, leading to unsatisfactory performance. An-
other method includes planning a trajectory such that its initial part takes the
robot towards the goal while it ends in a control invariant set that lies within
the known obstacle-free region [Schouwenaars et al., 2004]. Although this
method fully exploits the known space it limits the planning horizon. In this
chapter, we examine the problem of ensuring safety for mobile autonomous
systems while maintaining the capability to operate the vehicle at its perfor-
mance limits. The key idea is to ensure that the vehicle is always in a safe
state from which it can transition to a loiter pattern or come to a stop within
the known obstacle-free space. All these states are inside the control invariant
set of the robot [Blachini, 1999], which is a well-known approach to ensure
feasibility for model predictive control applications [Michalska and Mayne,
1993]. Determining loiter patterns or trajectories resulting in complete stop
in various environments is computationally challenging especially when the
robot has non-linear dynamics. Additionally, it is required that the safety eval-
uation has a low worst-case response time so that it can be used for on-line
motion planning at high speeds.

In order to ensure the on-line capability of the safety evaluation, the
problem is decoupled in an off-line and an on-line part. The off-line part
generates an optimized set of trajectories enabling the robot to reach a safe
state and stay within the known obstacle free region for an infinite time
horizon. The trajectory set is designed to maximize the probability of finding
at least one emergency maneuver in the known unoccupied environment.
The on-line part determines if the set contains a collision-free trajectory
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regarding the current state and environment of the robot. Thereby, the off-line
generated trajectory set reduces the search space for the on-line part. This
safety evaluation approach serves as a computationally tractable algorithm
with bounded run time.

It can be shown, that the problem of generating this optimized trajectory
set is NP-hard [Branicky et al., 2008]. We present an efficient, bounded
sub-optimal approximate solution that finds a trajectory set maximizing the
probability of containing at least one safe trajectory given a prior obstacle
distribution. The proposed novel safety assessment approach is based on
an emergency maneuver library and is compared to stopping distance. The
proposed approach was evaluated through a variety of experiments conducted
on multiple rotorcraft. In all evaluated scenarios the novel safety assessment
approach outperforms known common approaches by enabling higher safe
velocities of the rotorcraft while guaranteeing safety for the rotorcraft at all
times.

The main contributions discussed in this chapter are as follows:

• Generation of an emergency maneuver library that allows for on-line
safety assessment of robotic systems at high speeds in unknown environ-
ments

• Efficient algorithm for the library generation with bounded sub-optimality

• Experimental evaluation from field tests with an autonomous full-sized
helicopter flying at speeds of 56m/s

3.1 Safety Definition

Autonomous mobile robots have matured over the years. As these systems
are developed for field applications [Scherer et al., 2012c, Abdel-Malek
et al., 2006, S.Q. Marlow , 2009, Enright et al.], the need for robust and safe
autonomous robots is highlighted. Previous work on safety of autonomous
robots can be broadly divided into two paradigms. One of the paradigms is
to make sure that the vehicle can stop within the sensor range while applying
maximum allowed longitudinal deceleration [Scherer et al., 2012c, Goerzen
and Whalley, 2011, Adolf and Dittrich, 2012]. The stopping distance based
velocity limit does not exploit the complete dynamics of the vehicle, leading
to conservative velocity limits.

Another paradigm is to simplify the non-linear dynamics of the UAVs and
plan a path that is guaranteed to stay within the known unoccupied region.
Mixed integer linear programming is used in [Schouwenaars et al., 2004]
to plan paths that stay within the known region. Simplified dynamics in a
sampling based graph is used in [Frazzoli et al., 2002] while limiting the
maximum planning time to ensure safety. The assumption is that the planner
can always plan an obstacle free path if allowed to run until the maximum
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planning time. [Enright et al.] uses Dubins curves to plan paths within the
known space. These methods also suffer from not being able to exploit the
vehicles full dynamic capabilities.

It is also important to quantify the safety of the mobile autonomous
systems. [Mettler et al., 2010] suggested using distance from obstacles as a
metric for safety of a robot navigating through an obstacle field. This metric
does not take into account the sensory and dynamic limitations of the vehicle,
thus it cannot ensure safety of the vehicle.

We present a safety metric that considers both sensory and dynamics
constraints of the vehicle to evaluate the vehicle safety. We then present an
emergency maneuver library based method that utilizes the true dynamics of
the vehicle to find a positive control invariant set in the known unoccupied
space. We formulate the problem of finding this library as a NP hard path
diversity optimization [Green, Colin J. and Kelly, 2011, Branicky et al., 2008,
Erickson and LaValle, 2009, Dey et al., 2011]. We prove the path diversity
problem to be monotonic, sub-modular leading to an efficient, bounded sub-
optimal algorithm [Streeter and Golovin, 2007, Krause and Guestrin, 2007] to
generate the trajectory set.

The safety of a mobile autonomous system is dependent on its sensory
and dynamic capabilities. In a fully-known environment a mobile system
is unsafe if it enters a state for which there exists no trajectory that avoids a
collision, such a state is called an Inevitable Collision State [Fraichard and
Asama, 2004a]. In a static partially-known environment the unknown regions
may contain obstacles. Therefore, to ensure the safety of the mobile robot
its state should be constrained such that it can always transition to a terminal
feasible invariant set [Schouwenaars et al., 2004] that enables the robot to
stay within the known obstacle-free volume for an infinite time horizon. We
now formally define safety for robots operating in uncertain environments.
Let, x(t) be the state of the robot at time t in the state space X which is in
a manifold X ⊂ S ∈ Rn. The workspace of the robot is defined asW
and the occupancy of the robot system in the workspace at a certain state
is given as VA(x(t)) ⊂ W . The known space in the workspace at a given
time t is denoted as Kt ⊂ W . The occupancy of the known obstacles at
time t is given by Oobs

t ⊂ Kt ⊂ W . Let ΦF(x) be the search space of
trajectories for a given state x, that end in a terminal feasible invariant set. Let
φ(x) be such a trajectory and let φ(x, τ) be the state of the vehicle at time τ,
along the trajectory φ(x), which is by definition rooted at state x. Then any
trajectory followed by the vehicle can be considered safe if for all states on
the trajectory there exists a trajectory φ(x) which completely lies inside the
known obstacle-free space at that time. Equation (3.1) presents this definition
formally:

Definition 1 (Motion Safety):

∀t, ∀τ, ∃φ(x) : VA(φ(x, τ)) ⊂ (Kt \ Oobs
t ) (3.1)
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A trajectory is considered safe till time T if for all t ≤ T equation 3.1
is satisfied. In the next section, we discuss how this safety definition can
be enforced on mobile autonomous vehicles in real-time with the use of an
emergency maneuver library.

3.2 Approach

Finding a trajectory that satisfies (3.1) online is non-trivial due to computa-
tion costs involved, especially if the robot’s dynamics are non-linear. State of
the art methods approximate vehicle dynamics or use stopping distance based
safety criterion, which leads to robots performing well below their dynamics
and sensory capabilities. We provide a method that enables for guaranteeing
the safety of the vehicle in static environments, while exploiting the limits of
vehicle dynamics and considering the available known obstacle-free space.
We split the problem into two parts, first, we efficiently compute a reduced set
of terminal invariant trajectories offline then use this reduced set to search for
safe terminal invariant trajectories online. In the next section we discuss how
to compute the terminal invariant trajectory set resulting in the emergency
maneuver library. Before discussing how this emergency maneuver library
can be used online to ensure safety of the mobile robot.

Offline Generation of a Library of Emergency Maneuvers

Instead of solving for dynamically feasible trajectories that end in a terminal
invariant set on-line, we approximate the search space by a finite set of such
trajectories. The trajectory set is designed such that the probability that at
least one of the trajectories stays collision-free, given a prior on the obstacle
configuration for a given state is maximized for a static environment. We
show that this problem is NP hard [Branicky et al., 2008, Erickson and
LaValle, 2009] and then prove that it is monotonic sub-modular, providing a
sub-optimality bound for a greedy algorithm.

Modeling Safety as Survivability

We want to find a set of trajectories that are control invariant and maximize
the probability that the set contains at least one collision-free trajectory.
The trajectory set is optimized for a spatial stochastic process defined in
r ∈ W , that captures the distribution of obstacle configurations that the
robot is likely to encounter during its lifetime. We assume this spatial field
is give by ζ(u, r), where u is the event of point r being unoccupied/free.
The probability density function defined by this process is then given by
pζ(u, r). Probability that there is no obstacle inside a volume V ⊂ W is
thus given Pu(V) =

∫
V pζ(u, r)dr. The volume which is swept by the
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robot following a certain trajectory φ is expressed as V(VA(φ)) = {r|r ∈
W , ∃τ r ∈ VA(φ(τ))}, [Abdel-Malek et al., 2006]. We use the shorter
notation Vφ = V(VA(φ)) to denote the volume swept by the robot. The
probability of a path being safe is given by the probability of the swept
volume being free of obstacles.

Pu(φ) = Pu(Vφ)

which allows to determine the probability of path φ1 or φ2 being unoccupied

Pu(φ1 ∪ φ2) = Pu(φ1) + Pu(φ2)− Pu(φ1 ∩ φ2)

where,

Pu(φ1 ∩ φ2) = Pu(Vφ1 ∩ Vφ2).

Using the inclusion-exclusion principle, we get the probability of a path set
Φ = {φ1, φ2, ..., φn} having an obstacle free path as

Pu(Φ) =
n

∑
k=1

(−1)k−1(
n

∑
1≤i1≤...≤ik≤n

Pu(φi1 ∩ ...∩ φik )). (3.2)

In order to maximize the safety of the robot, a finite path set Φ must be
determined maximizing the probability that at least one path is collision-free.
This is formulated as the path diversity problem:

Problem 1 (Maximizing Path-Set Survivability): The desired trajectory
set Φd maximizes the probability of finding at least one obstacle-free path.

Φd := arg max Pu(Φ)

subject to ‖Φd‖ < NΦ

where, Φd ⊆ Φ ⊆ ΦF

(3.3)

ΦF is the search space of trajectories. Since the path diversity problem
is known to be NP-hard, we present a greedy method to optimize (3.3). But
before that we prove that greedily optimizing equation (3.3) is bounded
sub-optimal. To prove bounded sub-optimality we prove the Pu(Φ) is sub-
modular and monotonically increasing in the cardinality of Φ.

Monotonicity Proof

In this section we show that the probability of at least one path in a path set
being collision-free is monotonically increasing with the cardinality of the
path set.

Proposition 1 (Monotonicity of Path Sets). Given a path set ΦA, a path φa

and a path set ΦB = {ΦA, {φa}} the probability that the set ΦB contains at
least one collision-free path is bigger or equal than for the set ΦA

Pu(ΦB)− Pu(ΦA) ≥ 0.
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Proof. The probability of the path set Φb having at least one obstacle-free
path is given by

Pu(ΦB) = Pu(ΦA ∪ {φa}).

Using inclusion exclusion principle lead to

Pu(ΦB) = Pu(ΦA) + Pu(φa)− Pu(ΦA ∩ φa)

Pu(ΦB)− Pu(ΦA) = Pu(φa)− Pu(ΦA ∩ φa). (3.4)

For all φa, Pu(φa) ≥ 0 and max[Pu(ΦA ∩ φa)] = Pu(φa), which is the
case when all the volume covered by path φa is already covered by ΦA. This
implies that

Pu(φa)− Pu(ΦA ∩ φa) ≥ 0

and inserted in (3.4) leads to Pu(ΦB)− Pu(ΦA) ≥ 0 �

Prop. 1 shows that adding more trajectories to a path set, cannot decrease
the probability of finding an obstacle-free path in the set. In other words,
Pu(Φ) is monotonically increasing in the cardinality Φ.

Sub-Modularity Proof

In order to show that a greedy algorithm for the path diversity problem
(Prob. 1) is bounded sub-optimal, we will show that Pu(Φ) is a sub-modular
set function. This means, that the difference in the probability Pu that a single
trajectory makes when added to the path set decreases as the size of the path
set increases.

Proposition 2. Let there be a path set ΦΓ ⊆ ΦΥ ⊆ V, where Pu : 2V → R.
Now, assume a path φe, such that φe ⊆ V\Υ. Define ΦΓ+e = {ΦΓ, φe},
ΦΥ+e = {ΦΥ, φe}. For sub-modularity

4(e|Υ) < 4(e|Γ)

where,4(·) is the discrete derivative.

Proof. The discrete derivative of4(e|Γ) is defined as

4(e|Γ) = Pu(ΦΓ+e)− Pu(ΦΓ)

= Pu(ΦΓ ∪ φe)− Pu(ΦΓ)

= Pu(ΦΓ) + Pu(φe)− Pu(ΦΓ ∩ φe)− Pu(ΦΓ)

= Pu(φe)− Pu(ΦΓ ∩ φe)

and similarly

4(e|Υ) = Pu(φe)− Pu(ΦΥ ∩ φe).
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Taking the difference of the discrete derivatives

4(e|Γ)−4(e|Υ) =
= Pu(φe)− Pu(ΦΓ ∩ φe)− Pu(φe) + Pu(ΦΥ ∩ φe)

= Pu(ΦΥ ∩ φe)− Pu(ΦΓ ∩ φe)

= Pu((ΦΓ ∪ΦΥ/Γ) ∩ φe)− Pu(ΦΓ ∩ φe)

= Pu((ΦΓ ∩ φe) ∪ (ΦΥ/Γ ∩ φe))− Pu(ΦΓ ∩ φe)

= Pu(ΦΓ ∩ φe) + Pu(ΦΥ/Γ ∩ φe)

− Pu(ΦΓ ∩ φe ∩ΦΥ/Γ)− Pu(ΦΓ ∩ φe)

= Pu(ΦΥ/Γ ∩ φe)− Pu(ΦΓ ∩ φe ∩ΦΥ/Γ)

Applying Baye’s Rule
Pu(ΦΓ ∩ φe ∩ΦΥ/Γ) = Pu(ΦΓ|(φe ∩ΦΥ/Γ))Pu(ΦΥ/Γ ∩ φe)

it follows that

4(e|Γ)−4(e|Υ) = Pu(ΦΥ/Γ ∩ φe)(1− Pu(ΦΓ|φe ∩ΦΥ/Γ)).

With Pu(ΦΥ/Γ ∩ φe)(1− Pu(ΦΓ|φe ∩ ΦΥ/Γ)) ≥ 0 the equation can be
rewritten as

4(e|Γ)−4(e|Υ) ≥ 0.

�

Greedy Algorithm for Generating Emergency Maneuvers

Since, Pu(Φ) is monotonic sub-modular, the path diversity problem (Prop. 1)
can be greedily optimized while maintaining a sub-optimality bound of
(1− 1/e) ≈ 63% [Nemhauser et al., 1978, Krause and Guestrin, 2007]. We
describe the greedy algorithm in Alg. 1. We start with an empty trajectory

Algorithm 1: Greedy Optimization for a Emergency Maneuver Trajec-
tory Set

Initialize :ΦG = ∅

while |ΦG| < NŒ do
φs = arg max

φ∈ΦF/ΦG

Pu(ΦG ∪ {φ})

ΦG = {ΦG ∪ {φs}}
end

set and search through ΦF to find the trajectory that maximizes Pu. This
trajectory is saved in ΦG and in the next step, the search for trajectory that
maximizes Pu is conducted in ΦF/ΦG, and added to ΦG. The process
of greedily selecting trajectories from ΦF/ΦG and adding them to ΦG is
repeated till the desired number of trajectories NŒ have been added. In the
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next section we explain how to use this greedily generated set to guarantee
safety.

Using Emergency Maneuvers to Ensure Safety

We ensure the safety of the mobile autonomous system by using the emer-
gency maneuver library to enforce the constraint that the current and next
state of the system always lies in the positive invariant set, which does not
intersect the obstacles and stays within the known volume.

Known%Unocc.%Volume
Known%Obstacles

Available%Safe%Trajectory

Planned%Trajectory

Known%Unocc.%Volume
Known%Obstacles

Available%Safe%Trajectory

Planned%Trajectory

State%at%t+lookahead

Available%collision%free%paths%
at%state%%t+lookahead

Known%Unocc.%Volume
Known%Obstacles

Available%Safe%Trajectory

Planned%Trajectory

Unsafe%Trajectory
Current%state

Known%Unocc.%Volume
Known%Obstacles

Available%Safe%Trajectory

Planned%Trajectory

Current%state
Unsafe%Trajectory

If%the%rotorcraft%cannot%slow%
down%in%time%to%the%suggested%
speed.%

State%at%t+lookahead

(a) (b)

(c) (d)

Figure 3.1: Safety Algorithm: (a) A
motion planner sends a planned tra-
jectory to the safety algorithm (b) The
safety checker queries an emergency
maneuver library to ensure maneuvers
exist from the trajectory that lie entirely
in known free space. (c) Eventually the
safety checker encounters a case where
the library is unable to find a maneuver
for the trajectory (d) The safety checker
tries to slow down the vehicle until
the library is successful. If not, the
safety checker reverts to the previous
guaranteed safe trajectory.

The algorithm to ensure safety is explained in Alg. 2 and demonstrated
in Fig. 3.1. Let σ : [0, T] → X be the nominal trajectory that the vehicle is
following to reach the goal. Let, ΦSt be the emergency maneuver library for
state at time t in σ and ∆t be the time interval between safety checks.

The algorithm queries the emergency maneuver library at a future state of
the system, and ensures it can transition to an emergency maneuver which
lies in known obstacle free space. If there are no such maneuvers, one of the
emergency maneuvers computed at the previous step (for the current state)
are executed. Otherwise the vehicle carries on its nominal trajectory. This
algorithm has a fixed maximum response time and is guaranteed to keep the
vehicle safe.
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Algorithm 2: Emergency Maneuver Trajectory Set Application for
Reactive Safety

Initialize : t = 0
ΦPrevious = ΦSt

while mission active do
ΦNew = {∅}
for ∀φc ∈ Φ(st+∆t) do

if ∀τ VA(φc(τ)) ⊆ (Kt \ Oobs
t ) then

ΦNew = {ΦNew, {φc}}
end

end
if ΦNew = {∅} then

execute φe ∈ ΦPrevious

else
ΦPrevious = ΦNew

follow σ
end

end

3.3 Results

Reduction in Sensing Requirements

We generated the emergency maneuver library to ensure the safety of three
full-scale autonomous helicopters, equipped with a large field of view range
sensor. The dynamic constraints of the helicopter are given in Tab. 3.1.

Constraint Velocity ‖v(t)‖

≥ 20 m/s < 20 m/s

Roll [◦] 25.00 28.50
Roll rate [◦/s] 15.00 −
Heading rate [◦/s] − 28.50
Longitudinal vel. [m/s] 60.00 20.00
Vertical vel. [m/s] 5.00 5.00
Longitudinal accel. [m/s2] 0.75 0.75
Vertical accel. [m/s2] 1.00 1.00

Table 3.1: Constraints on trajectory

Given these constraints we approximate ΦF, by five hundred trajectories
each forming a positive control invariant set. The trajectories for this applica-
tion end in a hover and can trivially be extended to end in a loiter if desired.
Each trajectory slows down the helicopter using the maximum allowed de-
celeration. The trajectories are generated by sampling the roll rate and z
acceleration uniformly. Once the helicopter has made a 180◦ coordinated turn
the radius of the turn is fixed and the vertical velocity is forced to be 0 m/s.
We use a constant resolution three dimensional grid as our representation and
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Figure 3.2: Generation of emergency
maneuver library for one state. From
left to right the plots step through the
generation of emergency maneuver
library for 6 iterations. The top row
displays the search space from which
the current trajectory is picked, where
each trajectory is colored according to
the probability of not passing through
an obstacle in the set. The middle row
shows the greedily selected maneuver
in the current step in green and existing
maneuvers in the set in black. The
bottom row shows the total probability
of finding at least one maneuver in the
set not passing through an obstacle.
The robot starts at 25m/s longitudinal
velocity for all the maneuvers and for
illustration purposes, is restricted to
move in the xy plane.The benefit of
adding new maneuvers diminishes as
more trajectories are added and almost
levels out after 5 trajectories.

assume uniform probability of occupation of each voxel. The probability of
a trajectory set containing at least one unoccupied trajectory is calculated
using inclusion-exclusion principle as suggested in [Branicky et al., 2008].
Fig. 3.2 steps through the emergency maneuver library generation process for
the robot motion restricted to a plane starting at 25m/s forward longitudinal
velocity. The probability of at least one maneuver in the set surviving reduces
with each trajectory being added and almost levels off at about 5 trajectories.
Given a trajectory set we can calculate the sensor range required for different
velocities. Given an emergency maneuver library, the minimum sensor range
required for a certain velocity is calculated as

range = min
φc

(max(ξ(φc))). (3.5)

The function ξ returns a vector of the euclidean distances between starting
state x and all the states in φc ∈ ΦG(x).

The best case sensor range required while using the emergency maneuver
library is given by (3.5). The worst case is the same as the stopping distance.
Hence, the emergency maneuver library is guaranteed to provide at least
as much performance as using only the stopping distance for the safety
evaluation. In Fig. 3.3 the different requirements on the sensor range for
stopping distance and the emergency maneuver library are illustrated.

Case Study 3.1: Safety Execution Test

To ensure that the rotorcraft can execute safety maneuvers and keep the
vehicle safe, safety check was initially executed on the rotorcraft in a scenario
with simulated obstacle. Fig. 3.4 shows an early test of the safety checker and
eml. In the next section we show how the EML was able to keep the vehicle
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Figure 3.3: Changes in Sensor Re-
quirements. The sensor range required
for safe operation of the vehicle when
using stopping distance for safety is
displayed in red, in green is the sensor
range required for safe operation of
the vehicle when using emergency
maneuver library for helicopter safety.

from entering unknown spaces in adverse condition like sensor outages.

(a) (b)

(c) (d)

Figure 3.4: Data from a flight test
conducted on 18th December 2013
in Manassas,Virgina. a) Helicopter
approaches a large simulated wall with
the emergency trajectory libraries with
no emergency maneuver in contact
with the wall. b) As the helicopter
gets closer to the wall, the emergency
maneuvers intersect the wall and be-
come invalid. Only valid maneuvers
are displayed. c) More emergency
maneuvers are pruned away as they
come in contact with the wall d) An
emergency maneuver is executed as the
future state is no longer safe.

Case Study 3.2: Sensor Failure

Unknown  
space

Sensor fails  
during flight

Known 
free space

Robot

Guaranteed 
safe trajectory

Robot executes 
safety maneuver

Trajectory remains 
in known free space

Unknown  
space remains 

the same

(a) (b)

Figure 3.5: Guaranteeing safety even
when the sensor fails (a) A situation
where the sensor has failed. In such a
situation, the space that is unknown
will remain unchanged due to lack of
updates from the sensor. However, the
current trajectory being followed is
guaranteed safe by construction as it
always lies in the space that is known
to be free (b) The robot eventually
executes the evasive maneuver as the
unknown space remains unchanged.
This ensures the robot perpetually
remains in a safe state.
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Fig. 3.5 shows the vehicle safely surviving during sensor failure. Note that
the current trajectory being followed is guaranteed safe as it lies in the known
free space. In the subsequent time-steps, even though the trajectory planning
algorithm continues to plan new paths, the motion planner does not update
the trajectory as the unknown space remains unchanged. The robot continues
to follow this trajectory and eventually executes the evasive maneuver section
as shown in Fig. 3.5. Hence, the robot perpetually remains in the known free
space ensuring the system remains safe till a human operator can intervene.

Case Study 3.3: Quantico and Mesa Flights

We can quantify the performance of an emergency maneuver library by
calculating the maximum safe velocity it enables the helicopter to fly at and
the planning time it allows the planner before it becomes imperative for the
helicopter to execute the emergency maneuver library. Fig. 3.6 shows the
maximum safe velocity and allowed planning times for a flight test conducted
in Quantico, Virginia. The red line shows the path where the helicopter is
turning towards the landing zone. The orange part of the path corresponds
to the part of the mission for which the sensor on the helicopter focuses
on the landing zone for its evaluation. This implies, when the helicopter is
moving through the path in orange the sensor stops looking for obstacles
and the helicopter comes increasingly close to the known/unknown volume
boundary, leading to a drop in maximum safe velocity and allowed planning
time. The red part of the path corresponds to turns, it should be noted how the
maximum safe velocity according to the stopping distance decreases as the
vehicle turns. This happens due to a reduction in effective range of the sensor
because of the sparsity of observations in front of the vehicle while turning.
The maximum safe speed by the emergency maneuver library is unaffected,
as it efficiently utilizes the known space.

Fig. 3.8 shows the maximum safe velocity and allowed planning times for
seven flight tests conducted in Quantico, Virginia which are shown in Fig. 3.7.

As can be seen in Fig. 3.8, the maximum safe speed is always greater than
the helicopter speed, which means the helicopter is always safe. Furthermore,
the stopping distance based safe velocity limit is always considerably below
the executed velocity which shows that the emergency maneuver library
approach is less conservative than the stopping distance approach. The use of
the emergency maneuver library also enable higher available planning times
leading to a better overall performance of the motion planning approach due
to longer available computation time.
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Figure 3.6: Safety Quantization: Flight
test in Quantico, Virginia. a) Shows an
autonomous landing mission conducted
in Quantico, Virginia on Unmanned
Little Bird. b) Shows the safe velocity
of the helicopter with the emergency
maneuver library during the flight tests
in dashed line, the executed velocity
in solid line and the safe velocity if
stopping distance is used in dotted line.
c) This figure shows planning time
available to the planner, before the
vehicle will reach the edge of known
space and execute one of the emer-
gency maneuvers. The planning time
calculated assuming the helicopter will
follow the current planned trajectory.

(a) (b)

Mountains

Tree lines

Figure 3.7: Different planning problem
distributions in different environments.
The lines denote the path traced by the
helicopter superimposed on a satellite
image (a) Missions in Quantico, VA,
where obstacles are towers, trees and
no fly zones (b) Missions in Mesa, AZ,
where obstacles are mountains and no
fly zones.
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Figure 3.8: The figures show the al-
lowed plan time, distance to the landing
zone (LZ) and, the safe velocity relative
to the executed velocity of the heli-
copter. The black line shows the mean
and the gray dashed line illustrates
the upper and the lower bound of the
measurements of all considered flight
tests.

3.4 Summary

In this chapter, we presented development and evaluation of emergency
maneuver library to guarantee the safety of high speed mobile autonomous
systems, online in unknown environments. The algorithm determines the
maximum velocity for which safety can be ensured, given a future path of
the robot. Therefore, it takes into account the constraints of the perception
system as well as the dynamics of the rotorcraft. Main contributions of the
work are as follows -

• Near-Optimal construction of emergency maneuver library - We prove
that constructing a safety library to maximize survivability is an NP-hard,
sub-modular, monotonic problem, Prob. 1. Resulting in a near-optimal
greedy algorithm for library construction, Alg. 1.

• Online safety algorithm for non-linear vehicle dynamics - Off-line gener-
ated trajectories enable real-time evaluation of the safety of the rotorcraft
while fully exploiting vehicle dynamics. Enabling rotorcraft to fly safely at
speeds of up to 60 m/s, while stopping distance based approach enables a
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maximum speed of 40 m/s, Fig. 3.6.

• More than 100kms of autonomous flight tests, over the course last three
years- Vehicle safety was ensured while operating in diverse environments
and even in adversarial conditions like sensor outages.

Contributions towards Enabling Safe Data Gathering in Physical Spaces

This work formally defined the safety constraint (equation 3.1) in the
decision-theoretic formulation (equation 2.1) of active data gathering in
physical spaces. We also described an algorithm that enables enforcement of
the safety constraint online, irrespective of the dynamics of the vehicle. The
safety definition and the algorithm to ensure safety is valid for static, partially
known environments with no pose uncertainty of the vehicle.

Having defined safety, in the next chapter we present an approach to
enable active data gathering for the implicit need for a vehicle to be safe and
for explicit mission requirements through sensor motion planning.





4
Sensor Planning for Implicit and Explicit Data Gathering

In the last chapter we described an algorithm to enable safe operation of
mobile data gathering agents in partially known environments. In this chapter
we use that algorithm to define reachability and optimize sensor motion
to actively gather data for implicit requirement of safety. We also briefly
describe an algorithm for active data gathering for the explicit mission-
specific requirements.

Navigation through partially known environments, localization, mapping
and manipulation of objects etc. are all tasks for which the robot is expected
to detect objects, free space or features in the environment. The rate and
accuracy of detection of information of interest dictate the performance of
the robotic system. For example - we observed in the previous chapter that
the speed at which a safe autonomous vehicle can operate is a function of the
known space. Sensors to detect such features of the environment are often
limited by their properties like field of view (FOV), resolution, sampling
rate and signal to noise ratios. These sensors are either fixed [Huang et al.,
2011, Furgale and Barfoot, 2010, Bills et al., 2011] with respect to the vehicle
or in some cases move in constant pre-computed patterns [Scherer et al.,
2012b,a]. The capabilities of such sensors and the robotic system can be
augmented by actively controlling the sensor configuration to minimize the
cost of completing the task assigned to the robot.

The problem of active perception is a well studied one and finds its
roots in sequential hypothesis testing [Wald, 1945]. Active perception
and adaptive sampling problems have since been extended to account for
mobile sensing within the framework of Bayesian reasoning [Cameron
and Durrant-Whyte, 1990]. Later works have resulted in various solutions
that incorporate information theoretic measures for problems like object
recognition, mapping, and scene reconstruction [Chen et al., 2011]. Gradient
based methods for next best view and belief space planning have improved
[Bourgault et al., 2002, Van Den Berg et al., 2012]. While such algorithms
have shown to be useful in their respective applications, they typically rely
on restrictive assumptions on the representations, objective functions and do
not have guarantees on global optimality. Finite-horizon model predictive
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control methods [Bourgault et al., 2003, Ryan and Hedrick, 2010] provide
improvement over myopic techniques, but they do not have performance
guarantees beyond the horizon depth and the run times to operate online
in large state-spaces. POMDP based solvers [Myers and Williams, 2010],
suffer from the same curse of dimensionality. The recursive greedy algorithm
[Singh et al., 2009], Branch and bound [Binney et al., 2013] use the budget to
restrict the search space. But require computation exponential in the size of
the problem.

We overcome the curse of dimensionality by searching for a policy in
reduced search space to actively control the sensor configuration. The policy
function is learnt such that it maximizes the gain of information that is
important for the completion of the mission of the robot while ensuring
its safety as it navigates through unknown environments. We implement
the policy on multiple full-scale autonomous helicopters equipped with an
actively controlled nodding Lidar, using occupancy grid map as a world
representation. The policy optimizes the use of sensor bandwidth to enable
safe, high speed navigation and fast detection of landing zones. The main
contributions of the chapter are as follows:

• Computational complexity analysis for calculating expected information
gain for a range sensor and an occupancy grid map representation.

• Policy function and feature design to enable online active sensor control
that helps keep vehicle safe at high speeds.

• Efficient algorithm to approximate expected information gain for a range
sensor detecting obstacles.

• Evaluation of the learnt policy on an autonomous full sized helicopter
demonstrating guaranteed safe autonomous navigation at speeds of 56m/s
and straight in approaches to landing zones, eliminating the need to hover.

The task of enabling safe, high speed flight enforces tight temporal con-
straints on the sensor controller motivating the reactive, online approach. In
the next section we formally setup the problem, section 4.2 presents with the
approach overview. Section 4.2 and section 4.2 cover the implementation de-
tails including construction and the process of learning the policy parameters.
Results of evaluation of the performance of the algorithm are discussed in
section 4.4.

4.1 De-Coupling Sensor and Vehicle Motion Planning

In this section we formulate the problem as that of minimization of the
expected cost of traversal from initial to goal state, through optimization of
sensor trajectory. This problem is then shown to be the same as maximizing
the gain of information that minimizes the cost of traversal. Information
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Figure 4.1: Application Scenario: Top
Left – Test Vehicle, Boeing Unmanned
Littlebird. Top Right – Near Earth Au-
tonomy M3 sensor suite, equipped with
a actively controllable high range laser.
Bottom – Example mission scenario,
the vehicle is suppose to autonomously
navigate to a pre-defined landing zone
at high speeds, evaluate it and decide to
whether to land or not while ensuring
safety.

gain maximization problem formulation motivates and guides our approach,
described in section 4.2.

Let the robot’s state space be X ⊂ Rn. Let σ : [0, T] → X be the
state space trajectory and C : X → R be the cost function, where T is the
time horizon. The boundary values are σ(0) = σ0 and σ(T) = σf . Let the
dynamics constraints on the robot be given by h(σ(t), σ̇(t), σ̈(t)) ≤ 0. The
cost of the trajectory in a fully deterministic environment is

∫ T
0 C(σ(t))dt.

Operating in partially known, unstructured environments the robot has to
decide on its next action based on its current belief. Let the state space of the
world beW ⊂ Rm, where world includes the uncertainty of the robot about
its environment and it’s pose. Let belief b ∈ B, be a probability distribution
over the state of the world, b : W → {0, 1}. Let’s assume the belief of
the robot at the start of the mission is b0. The belief of the robot changes as
observations are made using a sensor. Let π : B → A be the policy that
maps from belief to action space of the vehicle, then σ(t) = σ0 +

∫ t
0 π(bt)dt.

Let the sensor’s state space be S ⊂ Rs. Let σs : [0, T] → S be the sensor
trajectory. Let πs : B → As be the policy that maps from belief to action
space of the sensor, then σs(t) = σs0 +

∫ t
0 πs(bt)dt.

The cost function changes as the belief of the robot evolves. To highlight
this fact we represent the cost function as Cb : X ×W → R. Due to the
stochasticity of the belief of the robot, it can only reason about expected
cost of its policy, Ep(b|π,πs ,bo) Cb(.). The distribution of belief trajectories
p(b|σ, σs, bo) at any given time is dependent on both state and sensor tra-
jectory. Let the dynamics constraint on the motion of the sensor be given
by hs(σs(t), σ̇s(t), σ̈s(t)) ≤ 0. The full optimization problem can then be
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defined as follows.

arg min
π,πs

∫ T

0
E

p(b|π,πs ,bo)
Cb(π(b(t)), πs(b(t)), b(t))dt (4.1)

h(σ(t), σ̇(t), σ̈(t)) ≤ 0

hs(σs(t), σ̇s(t), σ̈s(t)) ≤ 0

In this chapter we study the problem of optimizing the sensor trajectory given
a fixed vehicle trajectory σ(.). The problem is then reduced to.

arg min
πs

∫ T

0
E

p(b|σ,πs ,bo)
Cb(σ(t), πs(b(t)), b(t))dt (4.2)

The constraints on the sensor actuation specified in eq. 4.1 also apply to
eq. 4.2. Notice that, in this formulation the sensor motion can only result
in gaining of information about the environment. Therefore, the mini-
mization of the cost function with the πs as the only variable, results in
sensor gaining information that is important to minimize the required cost
function. We call this information contextually important information, as
it is important to sense this information to reduce the cost function. Let
M(x, σ(t), b(t)) ∈ {0, 1} return 1 if the information at point x ∈ (W) in the
world is contextually important and 0 otherwise, for a given belief b(t), ve-
hicle state σ(t). Let IG(x, σ(t), πs(b(t)), b(t)) be the expected information
gain at x ∈ W and time t.

Proposition 3 (Maximizing information gain to minimize trajectory cost).
Given a vehicle trajectory σ(.), optimizing sensor policy to minimize ex-
pected cost of the vehicle trajectory, eq. 4.2, is equivalent to optimizing
sensor’s policy for maximizing contextually important information gain,
eq. 4.3.1 1 The proofs of all the propositions are in

section 4.6
arg max

πs

∫ T

0

∫
∀x∈X

E
p(b|σ,πs ,bo)

M(x, σ(t), b(t))

IG(x, σ(t), πs(b(t)), b(t))dxdt
(4.3)

In our application, the robot is a full scale autonomous helicopter, the
sensor is a nodding lidar, with an actively controlled pitch axis. The trajec-
tory σs(t) of the nodding sensor relative to the helicopter can be completely
defined by its pitch angle profile in time ρ(t), laser configuration ρc, which
consists laser’s fast axis resolution ρ f and its pulse rate, ρp. The pose of
the robot is given by a high accuracy GPS/INS system, the world repre-
sentation is an occupancy grid map [Thrun, 2003]. The information gain
evaluation for an occupancy grid map is presented in detail in the section 4.6.
M(x, σ(t), b(t)), the contextual importance function is discussed in detail
in section 4.2. In the next section we present an overview of our approach to
solve eq. 4.3 for a mobile autonomous robot.
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4.2 Approach

Information gain based path planning is an NP-hard problem [Singh et al.,
2009]. Moreover, the calculation of information gain itself is computationally
expensive, see proposition 4. As a result, the computational cost involved
in calculating information gain for a large number of rays over a large range,
makes it non-trivial to conduct gradient based optimizations.

Proposition 4 (Complexity of calculating information gain). For a laser sen-
sory action with nr rays, interacting with N cells of an occupancy grid map,
the worst case computation complexity of calculating expected information
gain is O(3nr N).

PolicyFeatures
World Representation
(Occupancy GridMap)

Contextual Importance
M(v)

b(t)

b(t)

f(t) σs(t)

Point Cloud

Mission Decsription σ(t)

Figure 4.2: Approach Overview: The
sensor is actively controlled through
a policy that takes in the features that
are extracted from robot’s belief. The
features take expected information gain
and contextual importance function into
account.

To overcome the computational complexity issues and solve the problem
online, we propose learning a reactive policy function that maps from fea-
tures to action, (see Fig. 4.2). The policy learnt, is designed to maximize
the contextual information gain in the next time step. For the application
considered in the chapter, the policy learnt keeps the robot safe at high speeds
and enables quick landing zone evaluation, enabling lower mission times.
The data flow in the block diagram (Fig. 4.2) is explained in the rest of this
section to provide an intuitive understanding of the suggested approach and
its application.

The point cloud generated by the laser is used by the perception repre-
sentation to form the robot’s belief about the world, we use an occupancy
grid map as the world representation. The belief of the robot, along with the
mission description and the intended robot trajectory are used to infer the
contextual importance function. The contextual importance function presents
the locations from which it is important for the robot to gain information
to complete its task safely. The construction of this function is described in
section 4.2. The contextual importance function along with the belief of the
robot are used to calculate features. The policy function maps these features
to sensory actions. The features are the only input to the policy. Therefore,
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they should capture the saliencies of the interaction between sensory actions,
the representation and the environment. The construction of one such set of
features is described in section 4.2.

The policy takes the features as input and provides the trajectory for the
sensor, σs(.). For the application considered in the chapter, the policy is
designed a for high range laser, nodding in the pitch axis with respect to
the vehicle. The construction of the policy is described in section 4.2. The
parameters of the constructed policy function need to be learnt to maximize
the contextually important information gain. The procedure to learn the
policy parameters is presented in section 4.3. In the next section we describe
the construction of the contextual importance function for our application.

Contextual Importance Function

Finding the contextual importance function is as hard as solving for the
original optimization problem, described in section 4.6. We approximate this
function by defining M(x, σ(t), b(t)) = 1, for all x, that might be important
to the vehicle given the belief b(t) and the robot state σ(t). In this work,
we consider the structure of the contextual importance function to have two
components - safety Msa f e(.) and landing zone evaluation Mlz(.).

Pertinent Information for Implicit Data Gathering

We use the emergency maneuver library, as described in chapter 3, to enforce
the safety constraint. If there exists a trajectory in the emergency maneuver
library that starts from the current state of the vehicle and stays within the
known obstacle free region for infinite time, the vehicle can be considered
safe. Therefore, it is important to sense the volume occupied by emergency
maneuver trajectories corresponding to the planned trajectory.

Given a vehicle state σ(t) at time t, let there be a function κ(x, σ(t), b(t)) ∈
{0, 1} which is one for the points inside the volume occupied by emergency
maneuver library for state σ(t) if it is unsafe and zero otherwise. The contex-
tual importance function for safety is then given as.

Msa f e(x, σ(t), b(t)) = κ(x, σ(t), b(t)) (4.4)

Pertinent Information for Explicit Data Gathering

The mission objective of the helicopter is to navigate safely from start to goal
and then land. Therefore, it is important to evaluate landing zones before the
helicopter commits to a landing. The landing zone is represented as a 2D
grid, with each cell storing the probability of that cell being a safe landing
site. Let, the landing zone grid be represented by LZG. Each cell inside the
landing zone is allocated contextual importance of one.

Mlz(x, σ(t), b(t)) = 1 ∀x ∈ LZG (4.5)
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The combined contextual importance function of safety and landing zone
evaluation is given as

M(.) = max(Msa f e(.), Mlz(.)) (4.6)

Fig. 4.3, illustrates the contextual importance function for a helicopter

Figure 4.3: Contextual Importance
Function – The figure illustrates the
region with contextual importance
function greater than 1 in orange, and
region which is known to the robot
in grey. As the robot navigates, the
known region has no more informa-
tion to be gained that might affect its
future actions. The volume around the
trajectory, bounded by the emergency
maneuver library for the future unsafe
states and volume inside the landing
zone is contextually important. It is for
gaining this information that we need to
optimize the sensory actions.

navigating towards a landing zone to land.

Policy Parametrization for Sensor Planning

We have discussed that the problem of directly optimizing the sensor trajec-
tory to minimize the cost function is NP hard and the cost function evaluation
is computationally expensive, making local optimization impractical. There-
fore, we develop a mapping from features to nodding actions that can be used
online. We introduce the features and policy for controlling the nodding of
the laser for ensuring vehicle safety in sections 4.2 and 4.3. The policy to
evaluate landing zone is described in section 4.3.

The policy function is re-defined as, πs : R f → Ra, where R f is the
feature space and Ra is the action space. The policy is developed such that
it can guarantee the safety of the vehicle at high speeds if the environment
allows so. We restrict the action space to constant velocity nods to make the
search computationally tractable. We learn a policy offline that maximizes the
information gain in the worst case scenario. The worst case scenario and the
process of learning the policy function is presented in section 4.3.

We want to optimize the use of sensor bandwidth and avoid wasting it
looking at regions that are already known, inaccessible or unimportant to the
mission. Therefore the features have to cover visibility, information gain and
contextual importance function. In the next subsection we cover the feature
design and then present the policy function.

Input Features for Sensor Planning Policy

To calculate the relevant field of view for the sensor, we compute and store
the contextually important expected information gain along a grid of pitch (θ)

and yaw (φ) directions, with rays originating from laser’s center. This forms
a 2D map ζm(θ, φ) → R, mapping view direction to contextually weighted
expected information gain. We generate this map by tracing rays through 3D
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occupancy grid representation and calculating contextually weighed expected
information gain along the rays. The algorithm for calculating the expected
information gain along the rays is presented in [Julian et al., 2014]. Average
range at which information is gained re is also used as a feature for the
policy. re can be calculated while calculating ζm. The detailed algorithms to
calculate ζm and re are presented in detail in section 4.6. The policy function
can then be represented as eq. 4.7 below.

[ρ̇, ρ f , ρmax, ρmin] = π(ζm, re) (4.7)

The FOV to scan ρmax, ρmin, is inferred using ζm. The ρmax is given by
maximum pitch in ζm for which the information gain is greater than 0. The
ρmin is given by minimum pitch in ζm for which the expected information
gain is greater than 0. The speed of the nod is stored as lookup table against
re at which the information to be sensed. We now look at how we learn the
mapping (lookup table) between re and the nodding velocity that maximizes
the information gain for that range. The nodding actions are limited to time
tr = 1.4s, which is the same as the maximum time taken by representation to
update.

4.3 Policy Search

We want to find a nodding speed at which to scan the volume to maximize
the gain of contextually important information. The standard method to find
the optimal policy parameters is to run the system either in simulation or in
field and search the parameter space for values that minimize the expected
cost over a range of scenarios. But given we are designing a policy to keep
the vehicle safe in all conditions, we search for the optimal policy for the
worst case scenario. In the worst case scenario, the time available to the
sensor for scanning is minimal and the uncertainty to be reduced about the
presence of obstacles is maximum. In other words the information to be
gained is maximum. Subsection 4.3 describes how information gain is related
to the object detection uncertainty. Section 4.3 develops the worst case
scenario for a guaranteed safe autonomous mobile robot navigating through
unknown environments. This scenario is used to learn the nodding actions
that maximize contextually important information gain. Where, information
gain is a function of reduction in uncertainty about the presence of obstacle
of interest. In the case of a rotorcraft the smallest obstacles of interest are
wires. If we can ensure the detection of wires, all other obstacles like trees,
building and hills are guaranteed to be detected. Section 4.3 describes the
algorithms to efficiently calculate probability of detection given sensory
actions, enabling efficient search of policy parameter (ρ̇).



SAFE DATA GATHERING IN PHYSICAL SPACES 61

Worst Case Policy Search Scenario for Implicit Data Gathering

The average range from which contextually weighted information is to be
gained is given by re. Let Vs : X → R3 be the function that returns the
volume bounded by the emergency maneuver library at a given state. In
the worst case scenario the sensor has minimum time to scan the maximum
volume. Therefore we assume the vehicle is unsafe at σ(t + tr), where t is
the current time. We also assume Vs is monotonic in speed of the input state
and Vs(σ1) ∈ Vs(σ2) if speed of the vehicle at σ1 is less than the speed at σ2,
while pose at σ1, σ2 is the same. Assuming we are operating in an unknown
environment.

Proposition 5 (Worst Case Scenario for Safety). The sensor would have to
reduce uncertainty for maximum volume in the environment if the vehicle is
moving at the maximum speed that enables it to stay safe at re.

To learn the nodding speed for a given re, we assume the vehicle is at state
σsa f e, where the speed at σsa f e is the maximum speed such that at least one
of the emergency maneuvers lie within a sphere of range re. To guarantee
the safety of the vehicle in the worst case scenario, the sensor will have to
reduce the uncertainty about the existence of obstacles in Vs(σsa f e). We use
this worst case scenario to learn the policy parameters [ρ̇, ρc] for a given re.
Next section explains the relationship of uncertainty reduction or expected
information gain and the probability of detection of objects given sensory
actions. Information gain as probability of detection of worst case obstacle
Let the probability that the smallest obstacle against which the autonomous
system has to guarantee safety is present at x is given by px(o). For brevity
we use p(o) instead of px(o). Let the probability of detection of obstacle
given there exists an obstacle at x be p(d|o) and probability of detecting an
obstacle given there is no obstacle at x is given by p(d|o′). We can express
the expected information gain given px(o) as a function of p(d|o) and
p(d|o′) (see section 4.6).

Proposition 6 (Monotonicity of Expected Information Gain). Assuming there
are no false positives, p(d|o′) = 0, p(d′|o′) = 1. For a given p(o), IG can
be completely expressed as a function of p(d|o) and monotonically increases
in p(d|o).

Fig. 4.4 illustrates proposition 6.
The no false positives assumption holds for a lidar capable of processing

multiple returns. To find the effectiveness of an action we evaluate p(d|o)
for a given p(o) and calculate the information gain in the mission relevant
region. The action that provides the maximum information gain is selected
as policy for given features.In the next section we present an efficient al-
gorithm to calculate p(d|o), that allow the creation of policy lookup table
tractably. Efficient calculation of probability of detection We describe a
method that enables us to calculate expected information gain for a range
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Figure 4.4: Information Gain – The
expected information gain given a prior
(p(o)) is monotonic in probability of
detecting the obstacle if the obstacle
is present, p(d|o). Assuming there are
no false positives, p(d|o′) = 0. This
implies for maximizing information
gain, one may maximize p(d|o)

sensor efficiently. To compute expected information gain we calculate p(d|o)
for a given p(o). The naive method of calculating p(d|o) is through sam-
pling configurations of the object and computing ray intersections with the
object given the sensor nodding motion. This algorithm has the complexity
of O(RM), where R is the total number of rays generated by the laser and
M is the number of samples drawn from p(o). If an objects exists in 6D
space, and for each dimension we sample N particles. The computational
complexity is then O(RN6). We introduce an algorithm that changes this
computational complexity to O(R3N4) by reasoning about ray-object inter-
sections in the object’s c-space in spherical coordinates. We further exploit
the symmetry and structure of the problem of sensing for safety to reduce the
complexity to O(R3

l N), where Rl is a small fraction of the actual number of
rays.

The algorithm for efficient calculation of P(d|o) is presented in Alg. 3.
The input to the algorithm is sensor trajectory (σs), partial pose (xpartial ∈
RXSO(3)) of the object of interest. The partial pose consists of the range
of the object from the laser and its relative orientation. We assume that the
size of the object is small compared to the query range, which results in
negligible change in projection of the object to [θ, φ] plane of the spherical
coordinate frame, centered at the laser. The algorithm returns a function
p(d|θ, φ, xpartial) that provides the probability of detection of object if its in
xpartial configuration at any [θ, φ]. We assume the object is detected if n hits
are detected on the object. It is also assumed that if the ray and the object
intersect, the hit will be reported with a probability of ph.

Each laser beam, is projected as an ellipse on [θ, φ] plane given its beam
width. We approximate this ellipse as a convex polygon in [θ, φ] plane. The
projection of the object of interest to the same plane is also approximated as
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a convex polygon. To compute probability of detection of the object we need
to calculate intersections between the object of interest and laser rays. We
compute these intersections by projecting laser beam polygons space to the
c-space of the object of interest in the (θ, φ) plane.

The Intersect(.) function (Alg. 4), calculates the intersecting regions
for the set of c-space polygons amongst themselves and stores them as a set
Y

spartial
int . It also returns the list of members of its input set that intersected

to form a polygonal region i ∈ Y
spartial
int , ∀i ∈ Y

spartial
int as λi

int ∈ Λint. The
output of Alg. 4 is used by Probability(.) function (Alg. 5), to calculate the
probability of detection given an object at xpartial ∀[θ, φ].

Algorithm 3: E f f icientCalculationo f P(d|o)
Input :σs, xpartial

Output : p(d|θ, φ, xpartial)

So ← ProjSpherical(spartial)

SL ← GeneratePolygons(σs)

SL,o = SL
⊕

So

// The minkowski sum projects polygons in
// SL to the space of So.
[Yint, Λint]← Intersect(SL,o)

p(d|θ, φ, spartial)← DetectionProbability(Yint, Λint)

Return : p(d|θ, φ, spartial)

Proposition 7 (Probability of Detection vs. Distance). Given a fixed angular
motion profile of a lidar sensor, if an object is detected when n laser hits
are reported on it, and the probability of an intersecting ray reporting a hit
is ph. The probability of detection of the object decreases with increase in
the distance between the object and the lidar sensor, assuming the relative
orientation of the object and lidar is constant.

Since we are reasoning about safety, leveraging prop. 7, we maximize the
information gain by evaluating p(d|o) at the furthest range we are interested
in, where the p(d|o) is minimum. In our case that range is given by re. This
reduces the task to maximizing the information gain on a 2D spherical
manifold [θ, φ] at range re. So the configuration space of the object restricted
to a 2D plane is 3D. Assuming, we use N particles for each dimension to
approximate p(o), the computational cost of evaluating an action is given by
O(R3N).

We restricted the action space to constant velocity nods, hence the laser
points lie at a constant distance from each other in pitch and yaw space,
forming a grid. This symmetry can be exploited by finding p(d|o) for every
configuration of the object in a single grid cell as p(d|o) is the same for
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Algorithm 4: Intersect(.)
Input :SL,o

Output :Y
spartial
int , Λint

Initialize :Y
spartial
int = SL,o, λi

int = i∀i ∈ Y
spartial
int , Yprev = SL,o

while |Yprev| > 1 do
Ynew = NULL
for j ∈ Yprev do

for k ∈ Yprev − [1 : j] do
Ynew = Ynew ∪ (j ∩ k)

λend+1
int = λ

j
int ∪ λk

int
end

end
Y

spartial
int = Remove(Y

spartial
int , Ynew)

Y
spartial
int = Y

spartial
int ∪Ynew

Yprev = Ynew

end
Return :Y

spartial
int , Λint

Algorithm 5: Probability(.)

Input :Y
spartial
int , Λ

spartial
int , φ, θ

Output : p(d|φ, θ, spartial)

i← ReturnPolygonContaining(θ, φ, Y
spartial
int )

p(d|φ, θ, spartial) = ∑
|λi

int |
k=n (

|λi
int |
k )pk

h(1− ph)
|λi

int |−k

Return : p(d|φ, θ, spartial)
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every cell. Also, the intersection of the object need only be checked with the
points in l2 radius of the grid cell, where l is the length of maximum side of
the bounding box of the object of interest. Let these number of points in l2

radius be Rl . The complexity of evaluating an action is O(R3
l N). For a flying

helicopter the smallest obstacle of interest are wires, we focus our analysis on
10mX0.07m wires, where 0.7m is the width of a standard high tension wire
on tall electric towers. We pessimistically assume that the wire is only 10m
long. A typical nodding action may have Rl = 11, we use N = 10000, the
reduction in computation time is by a factor of 1015, see section 4.6.

Alg. 3 is evaluated exhaustively for the complete nodding velocity space
at finite discrete intervals, to create the lookup table of range vs nodding
velocity. The slowest nodding speed is restricted such that one complete nod
occurs in maximum tr = 1.4s. The action providing maximum information
gain is stored as the nodding time for that range. Fig 4.5 presents plots for
expected probability of detection of a wire, given a uniform distribution of
wires.
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Figure 4.5: Expected Probability of
Detection: The expected probabil-
ity of detection of a wire if it exists,
Ep(o) p(d|o) for a given action is an
indicator of how good an action is.
The plots show Ep(o) p(d|o) versus
varying nodding time period for the
worst case scenario for the sensor at
vehicle velocity, v = 45 m/s m/s, for
a uniform p(o). Each sensor velocity
corresponding to different nodding
time periods is evaluated till tr = 1.4s.
The evaluation shows scans with
slower scanning speed are better, this
is intuitively the correct behavior as
slower nodding speeds means more
uniform point distribution of rays in
the [θ, φ] manifold. Similarly a lower
fast axis resolution (Yaw Res.) results
in a more uniform distribution of rays
in the [θ, φ] manifold, leading to more
information gain.

Policy for Explicit Data Gathering

The policy for scanning for landing zone evaluation is also computed to
maximize the information gain on the LZ. The LZ we are concerned with is
defined as a circle of 50m radius around a nominal point on the terrain for
each mission. Since a fixed region needs to be sampled for LZ evaluation
over the length of the approach, the laser is controlled to sample it with a
uniform distribution of points, in order to maximize information gain. The
sampling rate of the laser is fixed for safety scans to 29000 points per second,
as changing the sampling rate means switching off the laser for 7 seconds
and reducing the maximum range of the laser from 1400m to 650m, which
renders the vehicle unsafe at high speeds. Once the safety of the entire
mission is ensured, the sampling rate of the sensor is increased to 83000, if it
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enables a denser sampling of LZ.

4.4 Results

Effective Range Increment

Figure 4.6: Left:Effective sensor range
increment using the worst-case policy
as compared to passive scanning. Right:
Effective sensor ranges and max safe
speeds for online (PASP), worst-case
and passive sensing policies.

Fig. 4.6 shows the effective range increment of the vehicle by using the
sensor planner approach described in this chapter. The effective range of the
sensor increases more than six times over passive nodding pattern and the
online augmentation of offline worst-case policy led to an effective range
increment of roughly 1.5 times. Enabling rotorcraft to fly at speeds of up
to 56 m/s safely, while passive scanning approach restricted the maximum
safe speed to 18 m/s. We test our approach on multiple full-scale helicopters
equipped with Near Earth Autonomy, M3 active nodding range sensor. Over
the course of approximately 3 years, the sensor planning and emergency
maneuver library based safety system was tested on a number of craft. Tests
were facilitated through Boeing, Near Earth Autonomy, Executive Heli-
copters, and Aurora Flight Sciences. All helicopters shown in table 4.1 had
a safety pilot on board. The TALOS system could either execute in a fully
autonomous mode where it sent commands directly to the helicopter flight
control system or provided such commanded trajectories to the pilot to follow
through a nearby display. The Unmanned Little Bird was equipped with fly
by wire capability and could switch between fully autonomous and pilot in
the loop modes. The Bell helicopters used were not equipped with fly by wire
capability, so were only flown with the pilot in command.

As can be seen from table 4.2 many tests of the sensor planning and
EML based safety system have been conducted throughout the project.
These tests were accomplished with the help of Boeing (Phase I), Executive
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Characteristics Boeing H-6U Bell 206B Bell 206L and 206L-3
(Unmanned Little Bird) (Jet Ranger) (Long Ranger)

Project phase Phase I Phase II and III Phase III
Engine power 485 kW (650 hp) 310 kW (420 hp) 485 kW (650 hp)
Empty weight 998 kg (2200 lbs) 730 kg (1609 lbs) 998 kg (2200 lbs)
Max takeoff weight 1610 kg (3100 lbs) 1451kg (3200 lbs) 1882 kg (4150 lbs)
Rotor diameter 8.38 m (27.4 ft) 11.28 m (37 ft) 11.28m (37 ft)
Max speed 268 km/h (145 KTAS) 219 km/h (118 KTAS) 232 km/h (125 KTAS)
Rate of climb 10.5 m/s (2070 ft/min) 6.6 m/s (1300 ft/min ) 6.6 m/s (1300 ft/min )
Service ceiling 6096 m (20000 ft) 3114 m (13500 ft) 6096 m (20000 ft)

Table 4.1: Helicopter Platforms
ComparisonHelicopters (Phase II), Near Earth Autonomy, and Aurora Flight Sciences,

who provided both the hardware and staff to perform these tests. Performing
tests with a full scale helicopter is a complex task that requires a lot of time
and resources for preparation, execution, and post flight evaluation and data
analysis. Looking at the table presented above, it is possible to get an average
of around 6 test runs per day. Each test run is composed in general by one
short flight that takes no more than 15 minutes, from takeoff to land. The
low number of test runs per day, reflects the amount of preparation required
prior to flight, fixing software or hardware issues, wait time or test cancelled
due to weather related events, and unexpected air traffic in the test locations.
The test were conducted in Mesa, AZ, Manassas, VA, Pittsburgh, PA and
Quantico, VA.

Test Type Phase I (runs) Phase I (days) Phase II (runs) Phase II (days) Phase III (runs) Phase III (days)

Unit Test (*) (*) 34 8 214 28
Integrated 24 2 61 11 284 51
Total Test 24 2 95 19 498 79

Table 4.2: Number of test runs per-
formed along the project

Case Study 4.1: A Typical Landing Mission

In this section we describe a typical mission, in which the helicopter performs
autonomous landing while being guaranteed safe. The lidar policy switches
from scanning for safety to scanning for landing zone evaluation. Fig. 4.7
Shows a typical mission overlayed over satellite map. Fig. 4.8 and Fig. 4.9
show the sensor trajectory and the vehicle trajectory for the same flight.
It is interesting to note that during a sharp turn the safe speed provided by
emergency maneuver library, only slightly decreases as it better uitlizes
the vehicle dynamics and free space, whereas the stopping distance based
safe velocity drops dramatically. Another interesting artifact of contextual
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Figure 4.7: A mission at Quantico,
26th Feb 2014
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) Figure 4.8: Sensor Nodding Profile:
The figure shows the sensor’s nodding
profile. In the initial part of the mission,
the sensor acts to keeps the vehicle safe.
It switches to focussing on the landing
zone when safety for the remainder of
the mission has been guaranteed. This
focussing of the laser is shown by the
narrow peak to peak of the nodding
angles. At the very end, once enough
points on the landing zone has been
focussed, the sensor reverts back to
ensuring that the vehicle can be safe
should it desire to waveoff.

data gathering is visible in Fig. 4.9, where after the laser has scanned the
LZ and it starts scanning the region for a possible wave-off or take-off, the
maximum safe speed of the vehicle increases from 40 m/s to 60 m/s. With
passive scanning or fixed (state-machine based) sensing policies the switch
from LZ to gathering information for wave-off will only occur retro-actively,
rather than pro-actively.

Figure 4.9: Safety Benefits: The figure
shows the sensor’s nodding profile.
In the initial part of the mission, the
sensor acts to keeps the vehicle safe. It
switches to focussing on the landing
zone when safety for the remainder of
the mission has been guaranteed. This
focussing of the laser is shown by the
narrow peak to peak of the nodding
angles. At the very end, once enough
points on the landing zone has been
focussed, the sensor reverts back to
ensuring that the vehicle can be safe
should it desire to waveoff.

Case Study 4.2: Quantico and Mesa Flights

Fig. 4.10 shows a typical collection of missions on any given flight date
and Fig. 4.11 provides the corresponding safety and planning time statistics
for the missions. All the missions need the vehicle to navigate from start to
the landing zone at high speeds, evaluate the landing zone and land without
hovering if the landing zone is safe. The sensor had to clear enough
region to keep the vehicle safe, even at the speeds of 56 m/s and sample
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Figure 4.10: Mission Definition: The
helicopter navigates from loiter point
(on the right) to landing zone (on the
left), a distance of more than 10km
in less than 210 seconds. It has to
navigate the environment while being
provably safe and touch down at the LZ
without hovering over it to look for po-
tential sites. The sensor is controlled to
enable safe completion of the mission.

a 100m diameter landing zone with enough number of points to evaluate it
for landing the vehicle on it. On an average the time available to the laser to
sample the landing zone (LZ) was below 20 seconds. Such missions were
impossible to conduct with a passive scanning approach. Passive scans
designed to ensure safety and evaluate landing zone are only able to keep the
vehicle safe up to a maximum speed of 18 m/s and evaluate the complete
landing zone in 112 seconds.

Figure 4.11: Mission Definition: The
rotorcraft has to navigate the environ-
ment while being provably safe and
touch down at the LZ without hovering
over it to look for potential sites. The
sensor is controlled to enable safe
completion of the mission.

4.5 Summary

This chapter defines a policy to control a sensor mounted on the vehicle
to maximize the vehicle’s performance. We construct and demonstrate a
policy function that ensures safety up to a maximum speed if the environment
allows so. We proved that the problem of minimizing vehicle trajectory
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cost by actively controlling the sensor can also be formulated as that of,
optimizing the sensor trajectory to maximize the contextually important
expected information gain. We showed that not only the optimization for
information gain is NP hard but the evaluation of expected information gain
is prohibitively expensive for gradient based optimization. Nevertheless,
we have demonstrated a simple policy to control the sensor to maximize
contextually important information gain can be used to drastically improve
the robot’s capabilities. Main contributions of this chapter are -

• Proving equivalence between minimizing vehicle trajectory and maximiz-
ing contextual information gain- We prove that for a fixed path, optimizing
sensor motion for minimizing vehicle trajectory cost is equivalent to
maximizing contextual information gain. Using this property the original
problem of minimizing vehile trajectory cost can be converted to a better
studied information theoretic approach, Prop. 3.

• Construction of sensing policy offline to provide perfomance guarantees-
Constructing worst case for safety, where the sensor has maximize the
information gain in the next step, results in a sensor motion policy that can
provide offline guarantees on vehicle performance. The worst case policy
was learnt offline by exploiting symmetris of constant velocity actions.
Enabling a compute effort reduction of the order of 1015, Sec. 4.6.

• Augementing worst case policy on-line to improve performance - The core
idea of taking visbility and already sensed regions into account through a
sparse set of features enabled a 1.5 times performance increase over worst
case sensor motion policy, Fig. 4.6.

• More than 100kms of autonomous flight testing, over the course last three
years- The sensor planner enabled vehicle to fly safely up to the speeds
of 60 m/s and evaluating landing zones in less than 20s, where passive
sensory action approaches restricted the maximum speed to just 18 m/s,
while taking 112s to evaluate landing zones.

Contributions towards Enabling Safe Data Gathering in Physical Spaces

This work split the decision-theoretic formulation (equation 2.1) of active
data gathering in physical spaces in two parts, optimization of sensing motion
(equation 4.3) and optimization of vehicle motion. We described an algorithm
to optimize sensor motion given a vehicle path. By modeling the dynamic
constraints via EML, the algorithm provides performance guarantees by
optimizing for data gathering in a worst-case scenario for vehicle safety. The
offline learnt policy is augmented online to account for visibility and already
known regions.

After covering active sensor motion planning for implicit and explicit
data gathering, we shift our focus on vehicle trajectory motion planning for
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explicit data gathering or Information Path-Planning as it is classically known.
In the next chapter we identify an inherent structure in multi-resolution data
gathering that renders Markov Decision Process (MDP) based methods
ineffective.
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4.6 Proofs and Algorithmic Details

Maximizing Information Gain to Minimize Trajectory Cost

Proposition 3 (Maximizing Information Gain to Minimize Trajectory Cost).
Given a vehicle trajectory σ(.), optimizing sensing policy to minimize ex-
pected cost of the vehicle trajectory, eq. 4.2, is equivalent to optimizing
sensor’s policy for maximizing contextually important information gain,
eq. 4.3.

Proof. Let π∗s be the the optimal solution to eq. 4.2. Optimizing eq. 4.2 is
equivalent to optimizing eq. 4.3, if π∗s (.) is the optimal solution to eq. 4.3 as
well. We prove the proposition 3 by constructing M(.) and IG(.) such that
π∗s (.) is trivially the solution of eq. 4.3. Such an M(.) and IG(.) are defined
in equation 4.8 and 4.9.

M(x, σ(t), b(t)) =

{
1 if x was sensed byπ∗s (b(t)), at σ(t) and b(t)
0 otherwise

(4.8)

IG(x, σ(t), πs(b(t)), b(t)) = min(IG(x, σ(t), πs(b(t)), b(t)), IG(x, σ(t), π ∗s (b(t)), b(t)))
(4.9)

By definition, π∗s (t) senses the information at all the locations where
M(x, σ(t), b(t)) = 1, which is its maximum value for all x ∈ X for
any given time t. In order to prove that π∗s (t) is a solution to eq. 4.3, we
need to prove that σ∗s (t) also maximizes IG(.). We define IG(.), such that
its maximum possible value for a given x, σ(t) and b(t) is obtained by
π∗s (b(t)). Hence by construction π∗s () is a solution to eq. 4.3. It is important
to note the obvious fact that solving the optimization problem by maximizing
the information gain is as hard as the original problem. �

Complexity of Calculating Information Gain

Proposition 4 (Complexity of calculating information gain). For a laser
sensory action with nr rays, interacting with N cells of an occupancy grid
map, the worst case computation complexity of calculating information gain
is O(3nr N).

Proof. Consider a robot equipped with sensors that provide range measure-
ments to the nearest obstacle. The robot employs occupancy grid map to
construct the map and detect obstacles. The occupancy grid models the en-
vironment as an nm-tuple random variable M = (M[1], ...., M[nm ]), where
M[i] is binary random variable that is 0 in absence of obstacle in voxel i
and 1 in presence of obstacles. For each voxel i at a given time t, occupancy
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grid map stores li
t = logit(P(Mi = 1|z0:t)), where z0:t indicate the mea-

surements observed from the ranging lidars. Pi,t
occ = P(Mi = 1|z0:t) or

Pi,t
emp = P(Mi = 0|z0:t) can be calculated from the logit function.

Let, Ri
t be the set of all the rays that may pass through a voxel i at time

t, given the sensor geometry. Let, ni
t,r = |Ri

t|. Let Zi
t = [Zi,1

t , .., Z
i,ni

t,r
t ] be

a ni
t,r-tuple random variable, where Zi,j

t is an independent ternary random
variable that is zocc if the ray j observes an obstacle in voxel i at time t, zemp

if voxel i is empty or zφ if ray j does not interact with voxel i. Let, Γi
t be

the set of all possible values of random variable Zi
t. The number of possible

values of Zi
t or the cardinality of Γi

t is given by 3ni
t,r . Let, γ ∈ Γi

t be defined
as γ = [z1, ...znt,r ], where, zj ∈ zocc, zemp, zφ. Then equation 4.10 gives the
probability of γ,P(γ).

P(γ) =
ni

t,r

∏
j=1

P(zj) (4.10)

where, P(zj) can be calculated using algorithm 6.
Let, I j be an ordered set of voxel indices through which a ray j ∈ Rt

passes through. Let, I j(v) be a function, returns the index of the vth voxel
that ray j traverses. Pi

j (z), z ∈ zocc, zemp, zφ stores the probability of ray j
observing either zocc, zemp or zφ in voxel i. If we know that a ray interacts
with a voxel, the probability of observing that voxel is occupied given its state
is P(z[i]occ|M[i]) and is constant for all the M[i] ∈ M. Also, P(zemp|M[i]) =

1− P(zocc|M[i]). Note that any ray casting method can be used to generate I j,
Ri

t for all rays j ∈ Rt and cells i in M.
The expected information gain at a time t, for a voxel i, from which nr

rays pass, is then given by equation 4.11

i
IG
nr

= H(M[i]|Z0:t−1)− ∑
∀γ∈Γi

t

∏
∀zj∈γ

P(zj)H(M[i]|γ, Z0:t−1) (4.11)

where, H(.) is the Shannon entropy [Shannon, 1951], both M[i]|Z0:t−1 and
M[i]|γ, Z0:t−1 can be calculated through equation 4.12.

li
t = li

t−1 + ∑
∀j∈Zi

t

logit(P(Mi = 1|j)) (4.12)

As discussed before if nr rays pass through a cell, there are 3nr possible
unique combinations of measurements for that cell. If there are N voxels
through which maximum nr rays pass. The computation complexity of
evaluating expected information gain is given by O(3nr N). �

Calculating Features

Algorithm 7 describes the process to compute the features (ζm, re), as men-
tioned in section 4.2. ζm is a 2 dimensional map along pitch and yaw axis. A
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Algorithm 6: MeasurementProbability()

Require : M, Ij, P(z[i]occ|M[i]), P(z[i]emp|M[i])∀i ∈ M
for v = 1 : |Ij| do

if v = 1 then
PI(v)

j (zocc)← P(z[I(v)]occ |MI(v) = 0)P(M[I(v)] =

0) + P(z[occ I(v)]|M[I(v)] = 1)P(M[I(v)] = 1);
PI(v)

j (zemp)← P(z[I(v)]emp |M[I(v)] = 0)P(M[I(v)] =

0) + P(z[emp I(v)]|M[I(v)] = 1)P(M[I(v)] = 1);

PI(v)
j (zφ)← 0;

end
else

PI(v)
j (zocc)← PI(v−1)

j (zemp)(P(z[I(v)]occ |MI(v) = 0)P(M[I(v)] =

0) + P(z[I(v)]occ |M[I(v)] = 1)P(M[I(v)] = 1));
PI(v)

j (zemp)← PI(v−1)
j (P(z[I(v)]emp |M[I(v)] = 0)P(M[I(v)] =

0) + P(z[I(v)]emp |M[I(v)] = 1)P(M[I(v)] = 1));

PI(v)
j (zφ)← PI(v−1)

j (zφ) + PI(v−1)
j (zocc);

end
end
Pi

j (zφ)← 1∀i /∈ Ij;

Return : Pi
j (z)∀z ∈ zocc, zemp, zφ, ∀i ∈ M
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given cell of the map stores contextually weighted expected information gain
along (θi, φj) where θi is the pitch and φj is the yaw at the cell [i, j]. For each
cell in ζm, we cast a ray along the corresponding pitch and yaw direction.
The function RayCast(θi, φj) returns the indices of all the occupancy grid
voxels that a ray along (θi, φj) might visit. MeasurementProbability(.)
function as described in algorithm 6 returns the probability of observing each
cell along the ray as either occupied or empty. Eq. 4.11 defines the expected
information gain for a given voxel and eq. 4.13 provides the definition of
contextual importance. The inputs to the feature calculation algorithm is the
observation model of the laser, occupancy grid map.

For calculating the features we want to capture whether a ray might sense
any information that is contextually important to the mission at any given
time. We define CI(x), as the contextual importance of the volume occupied
by the voxel at point x.

CI(x) = 1, i f M(x, σ(k), b(t)) > 0 for any k ∈ [t, T] (4.13)

where, T is the final time of the mission.
Section 4.2 describes how ζm is used to calculate the relevant field of

view for the sensor to scan. In order to make an informed decision about the
scanning action we need to know at what range the information is required.
We compute re as the average range at which contextually weighted impor-
tance is received. To make sure the range at which information is requested is
sufficient to ensure safety, it is lower bounded by the range required to make
the vehicle safe. Rsa f e : X → R is the function that returns the minimum
range required to keep a state safe. Given an emergency maneuver library this
function is trivial to compute.

Worst Case Scenario for Safety

Proposition 5 (Worst Case Scenario for Safety). The sensor would have to
reduce uncertainty for maximum volume in the environment if the vehicle is
moving at the maximum speed that allows it to stay safe at re.

Proof. Let the known volume be Vk. To guarantee safety of the vehicle if
the environment allows so, the sensor has to reduce uncertainty about the
presence of obstacle of interest in Vs(σ(t + tr)) − Vk. For the worst case
scenario the volume in which information is to be gained or uncertainty to
be reduced is maximum. Therefore for the worst case scenario we have to
maximize Vs(σ(t + tr)). Vk is fixed, so we have to maximize Vs(.).

Vs(σ(t + tr)) is monotonic in speed at σ(t + tr). Hence, we want to
maximize the speed at σ(t + tr). Which implies the sensor will have to scan
maximum volume in minimum time if the vehicle is moving at maximum
safe speed possible for re. �

Obviously, if the sensor can ensure safety in the worst case scenario for all



76 SANKALP ARORA

Algorithm 7: FeatureCalculator()
Require : M, P(zocc|M = 0), P(zocc|M = 1)
voxelcount = 0;
for θ = θmin : θres : θmax do

for φ = φmin : φres : φmax do
Iθ,φ = RayCast(θ, φ);
Pmeas(.) = MeasurementProbability(M, Iθ,φ, P(zocc|M =

0), P(zocc|M = 1));
IGθ,φ = 0;
re = 0;
for i ∈ Iθ,φ do

IGθ,φ = CI(ix) IGi + IGθ,φ;
//ix is the position of the center of the voxel i in the
workspace;
re = re + CI(ix) IGi Range(i);
voxelcount ++;

end
ζm(θ, φ) = IGθ,φ;

end
end
re = max(re/voxelcount, Rsa f e(σ(t + tr)));
Return :ζm, re
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re, then the vehicle can fly at its maximum speed safely if the environment
allows so.

Monotonicity of Expected Information Gain

Proposition 6 (Monotonicity of Expected Information Gain). Assuming there
are no false positives, p(d|o′) = 0, p(d′|o′) = 1. For a given p(o), IG can
be completely expressed as a function of p(d|o) and monotonically increases
in p(d|o).

Proof. Assuming there are no false positives, p(d|o′) = 0, p(d′|o′) = 1. For
brevity we change the notation to p(d|o) = pa, p(d′|o) = p′a. The equation
reduces to the following-

IG(o) = p(o)(p(d|o)[H(p(o))− H(p(o|d))+
p(d′|o)(H(p(o))− H(p(o|d′)))]+
p(o′)(p(d|o′)(H(p(o))− H(p(o|d)))+
p(d′|o′)(H(p(o))− H(p(o|d′))))

(4.14)

where, H(.) is the entropy, [Shannon, 1951].

IG(o) = H(o)− p(o)pa H(o|d)−
p(o)p′a H(o|d′)− p(o′)H(o|d′)

(4.15)

Given p(d|o′) = 0, p(d′|o′) = 1, p(o|d) = 1, can be easily verified using
Baye’s Rule. Since p(o|d) = 1, H(o|d) = 0.

IG(o) = H(o)− (1− p(o)pa)H(o|d′) (4.16)

where,

H(o|d′) = −∑
o

p(o|d′)log(p(o|d′)) (4.17)

p(o|d′) can be expressed as a function of pa and p(o), and is given by
following equation.

p(o|d′) = (1− pa)p(o)/(1− pa p(o)) (4.18)

Using equation 4.16,4.17 and 4.18 the expected information gain can be
completely expressed as a function of [p(d|o) = pa, p(o)]. Obviously
expected information gain is zero if p(d|o) = 0 and positive otherwise,
monotonically increasing with p(d|o). �

Probability of Detection vs. Distance

Proposition 7 (Probability of Detection vs. Distance). Given a fixed angular
motion profile of a lidar sensor, if an object is detected when n laser hits
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are reported on it, and the probability of an intersecting ray reporting a hit
is ph. The probability of detection of the object decreases with increase in
the distance between the object and the lidar sensor, assuming the relative
orientation of the object and lidar is constant.

Proof. Given a fixed angular motion of the laser the number of rays that
intersect a given object decreases with increasing distance between the object
and laser. The decrease in number of hits results in decrease in the probability
of detection of the object. Assuming an object is placed at a distance such
that Nr rays intersect with the object. We show that probability of detection
of an object is greater when Nr + 1 rays intersect than when Nr rays intersect
it. The probability on detecting an object when Nr rays intersect (PNr

d ), it is
given by equation 4.19.

PNr
d =

Nr

∑
k=n

(
Nr

k

)
pk

h(1− ph)
Nr−k (4.19)

If Nr + 1 rays intersect the object the probability of intersection is given by
equation 4.20.

PNr+1
d =

Nr

∑
k=n

(
Nr

k

)
pk

h(1− ph)
Nr−k +

(
Nr

n− 1

)
pn−1

h (1− ph)
Nr−n+1PNr+1

d

= PNr
d +

(
Nr

n− 1

)
pn−1

h (1− ph)
Nr−n+1

(4.20)

Since,( Nr
n−1)pn−1

h (1− ph)
Nr−n+1 ≥ 0.

PNr+1
d ≥ PNr

d (4.21)

�

Reduction in Computational Complexity for Evaluating Actions

The algorithm described in section 4.3, calculates P(d|o) by first project-
ing the object at given distance r and orientation α, β, γ in the [φ, θ] plane
of spherical co-ordinates at a nominal range of 1m. The laser rays are also
projected to the same plane. Both the object and rays can be represented
as polygons in the [φ, θ] plane. The rays are then projected to the configu-
ration space of the object. P(d|o) is then easily calculable for all φ, θ at r,
through calculating ray polygonal intersections in c-space. The polygonal
intersections can be calculated in O(R3) in the worst case. Since, the P(d|o)
is calculated for all φ, θ, it eliminates the need to sample in those dimen-
sions, leading to reduction in number of particles to N4. The computational
complexity of calculating P(d|o) is then given by O(R3N4).

Since we are sensing to ensure vehicle safety, we maximize the infor-
mation gain at the furthest range we are interested in. This reduces the
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evaluation of P(d|o) to a φ, θ manifold at the range re. Which eliminates the
need to sample in dimension r. Since, we are interested in wires of length l,
aligned with the φ, θ manifold, the sampling is only restricted to the orien-
tation of the object in the φ, θ manifold. The computation complexity as a
result reduces to O(R3N).

Further, we reduce the action space to constant velocity nods, which
results in a grid of laser ray polygons in the [φ, θ] manifold. It is obvious
that for an infinite grid the P(d|o) function will repeat itself for each cell.
Hence, if we make an infinite grid assumption, P(d|o) need only be evaluated
for all the configurations of the object within a cell. If the resolution of
the grid generated by laser ray polygons in the [φ, θ] manifold is given by
[φres, θres]. The number of polygons that may interact with the object to
be detected in given by Rl = max(l + φres, l + θres)2/min(θres, φres)2.
Hence, the computational complexity reduces to O(R3

l N). In a nod of 1.4s
for the helicopter at moving at 45m/s, the length of wire projected in the
[φ, θ] manifold is, l = 1.2◦, φres = 0.48◦, θres = 0.54◦, Rl = 11. We use
N = 10000 samples for each dimension. Therefore the computational cost
reduction is of the order of 1015.





5
Modeling of Belief Space Dynamics for Budgeted, Multi-
Resolution Data Gathering

In chapter 3 we described the safety constraint and an algorithm to enforce
it online. In chapter 4 we described the sensor motion optimization for
active data gathering in physical spaces that leverage the safety definition
to model dynamic constraints of the vehicle and enable data gathering for
safety. In this chapter, we shift our focus on vehicle motion planning for
active data gathering for task specific requirements. We characterize the
decision-theoretic formulation of motion planning for active data gathering
and show that for agents with multi-resolution data gathering capabilities it
is imperative to model high-dimensional belief spaces dynamics to generate
efficient solutions. We start by briefly describing Markov Decision Processes
and Partially Observable Markov Decision Processes as decision-theoretic
solvers.

Markov Decision Processes (MDPs) were developed as a part of stochastic
control theory [Beutler, 1989]. The MDP formulation of problems makes
underlying assumptions that the state of the environment and the agents is
known, while dynamics can be stochastic with known parameters and the
state is Markovian, [LaValle, 2006]. MDPs are computationally relatively
efficient to solve [Littman et al., 1995b]. Therefore, in robotics applications,
whenever it is reasonable to make the assumption that the world is completely
known or the uncertainty in the world can be ignored, MDP has been a useful
tool to solve sequential decision making problems [Choudhury et al., 2015,
Bakker et al., 2005, Trautman and Krause, 2010, Pivtoraiko and Kelly, 2011,
Abbeel et al., 2007]. However, for the problems where uncertainty cannot be
ignored POMDPs were developed [Kaelbling et al., 1998].

POMDPs are computationally intractable to solve optimally in the worst
case [Papadimitriou and Tsitsiklis, 1987]. Approximate POMDP solvers
have been developed to solve POMDPs tractably, we refer readers to [Shani
et al., 2013, Ross et al., 2008] for a comprehensive literature review. A
popular approach to solving POMDPs approximately is to leverage MDP
solvers and take the best expected action assuming the uncertainty about
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the environment will not change or it will magically disappear in the next
step, FF-Re-plan [Little et al., 2007], Hindsight optimization [Yoon et al.,
2008] and QMDP [Littman et al., 1995a] are examples of such methods.
Despite strong assumptions these methods found early success as leading
online POMDP solvers and have been effectively applied to problems like
shared autonomy [Javdani et al., 2015], manipulation planning [Koval et al.,
2016b,a] etc. We call such methods MDP based approximate POMDP
solvers, MDP-POMDP solvers in short.

Use of MDP based approximate POMDP solvers requires computing
expectation over either prior or posterior of the distribution over the state
space. For large state spaces computing this expectation online can be
challenging, to overcome this challenge, imitation learning techniques are
used in conjunction with MDP solvers to train a policy offline such that it
implicitly takes the expectation over uncertainty over state space and picks
the best action online [Tamar et al., 2017, Choudhury et al., 2017a, Zhang
et al., 2016].

MDP based approximate POMDP solvers, including the imitation learning
based methods that rely on MDPs fail at taking actions that do not belong to
optimal MDP policies. It is well known, actions that lead to reduction in un-
certainty about the state space, while not providing rewards are an important
class of actions that are often not included in optimal MDP policies [Yoon
et al., 2008, Littman et al., 1995a, Choudhury et al., 2017b]. The failure of
agents to take such actions can lead to sub-optimal POMDP solutions, some-
times, catastrophically so. We provide a formal definition for such actions
in this chapter and identify with examples the conditions under which MDP
based approximate POMDP solvers fail. The presence of actions identified
in this chapter, can be confirmed without solving full POMDP problems, and
for any problem where such actions exist, the readers are advised to exercise
caution against using MDP-POMDP solvers. We also show that such actions
do exist for multi-resolution informative path planning problems. The pri-
mary need to identify problems where MDP-POMDP solvers do not work is
to avoid the implementation effort before realizing the unsuitability and to
make better solver design choices.

Consider the famous tiger problem, [Kaelbling et al., 1998], there is a tiger
hidden behind one of the two doors in front of the agent, the agent has three
possible actions. 1. Listen to determine the door behind which the tiger is
hidden. 2. Open the door without the tiger for high reward 3. Open the door
with the tiger for a high penalty. When the uncertainty about tiger’s location
is removed the optimal MDP policy is to open the door without the tiger. The
action to listen for the location of tiger is never a part of the optimal MDP
policy. Hence, if there is a 50% chance that the tiger is behind left door and
the agent is using MDP-POMDP solvers, it will never listen for location of
the tiger and have only a 50/50 chance of opening the door with a tiger in
it. Whereas, if the agent would have listened for the the presence of the tiger,
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it could have been guaranteed to avoid the tiger. Knowing the tiger problem
is unsuitable for MDP-POMDP solvers, we can avoid those methods while
designing an approach to solve the problem.

We formalize the conditions under which MDP-POMDP based solvers
fail alongside the actions symptomatic of such conditions in section 5.3. We
then provide a detailed example of the tiger problem and multi-resolution,
budgeted informative path planning problem where such conditions exist and
MDP-POMDP solvers can lead to unacceptably poor performance in section
5.4. Before going further we formally re-introduce the MDP and POMDP
formulations in section 5.1 for the sake of completeness and briefly describe
how MDP solvers are used solve POMDP problems approximately in section
5.2.

5.1 Explicit Data Gathering

MDP Formulation

A markov decision process can be represented by the tuple MDP =

(S , s0,A, Ω, R, Term) where

• S is a set of states.

• so is the state at time 0, initial state.

• A is a set of actions.

• Ω is a set of state transition probabilities.

• R : S ×A → R is the reward function.

• Term : S ×A → {0, 1} is the terminating condition.

At each time step, the agent takes an action a ∈ A which causes the
environment to transition from state s to state s′ ∈ S with probability
Ω (s, a, s′) = P(st+1 = s′|st = s, at = a). The agent receives a
reward R (s, a). On reaching the new state s′. The MDP is terminated if
Term (s, a) = 1.

πM : S → A be a policy function for the MDP that maps from a state to
action. Let the state distribution induced by a policy πM after t time steps,
starting with state s0 be P(s|πM, s0, t). The value of a policy πM is the
expected cumulative reward for executing πM for T time steps on the induced
state and history distribution

J (πM) =
T

∑
t=1

Est∼P(st |πM,s0,t) [R (st, πM(st))] (5.1)

The optimal policy for the MDP maximizes the expected cumulative
reward, i.e π∗M ∈ arg max

πM∈ΠM

J (πM).
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The value of a state s for a given policy πM is given by VπM(s) =
T
∑

i=1
Esi∼P(si |πM,s) [R (si, πM(si))]

An MDP solver takes an MDP as an input and returns the optimal policy
π∗M.

POMDP Formulation

In most of the real world situations the state of the environment cannot be
fully known. Agents rely on observations to infer the state of the environ-
ment. Since, the state of the environment is inferred, the agent maintains
a probability distribution over possible set of states that the environment
can be in. Let, that distribution be b : S → [0, 1]. At each time step, the
environment is in some state s ∈ S which cannot be directly observed.
Let, the initial belief be given by b0(.). The agent takes an action a ∈ A
which causes the environment to transition to state s′ ∈ S with proba-
bility Ω (s, a, s′). The agent receives a reward R (s, a). On reaching the
new state s′, it receives an observation o ∈ O according to the probability
Z (s′, a, o) = P(ot+1 = o|st+1 = s′, at = a). bt(.) is the state of the belief of
the agent at time then bt+1(.), given an action at and observation ot+1 by

bt+1(s′) = η Z
(
s′, a, o

)
∑
s∈S

Ω
(
s, a, s′

)
b(s) (5.2)

where η is a normalization constant.
π(bt) : B → A ∈ Π be a policy function for the MDP that maps from a

belief state to action.
The reward of a belief state is given by

RB (bt, at) = ∑
s∈S

R (s, at) b(s) (5.3)

The value of a policy π is the expected cumulative reward for executing π

for T timesteps on the induced belief distribution. Given a starting belief b,
let P(b′|b, π, i) be the induced belief distribution after i timesteps.

J (π) =
T

∑
t=1

Ebt∼P(bt |π,t) [RB (bt, π(bt))] (5.4)

The optimal policy maximizes the expected cumulative reward, i.e π∗ ∈
arg max

π∈Π
J (π).

The value of executing a policy π from a belief b is the expected cumula-
tive reward:

Ṽπ(b) =
T

∑
i=1

Ebi∼P(bi |b,π,i) [RB (bi, π(bi))] (5.5)

The Q-value function Q̃π(b, a) is defined as the expected sum of one-step-
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reward and value-to-go:

Q̃π(b, a) =RB (b, a) +

Eb′∼P(b′ |b,a)
[
Ṽπ(b′)

] (5.6)

POMDP provides an elegant framework to formalize and tackle planning
problems for agents operating in partially known environments. There are
two major challenges that POMDP solvers face: (1) Keeping track of evolving
uncertainty about the state space over the planning horizon. As future
observations need to be accounted for, the solver needs to keep track of future
beliefs that are exponential with respect to number of future observation steps.
(2) Computing the expectation over the state space. Since the state space of
most of the problems worth solving is large, computing an expectation over
such state space needs large computation, making it expensive to evaluate
online. In the next section we explore how MDP-POMDP solvers overcome
these challenges.

5.2 Solving POMDP through MDP Solvers

Approximate POMDP solvers like Hindsight Optimization [Yoon et al., 2008]
and QMDP [Littman et al., 1995a] leverage MDP solvers and simplifying
assumptions about the environment uncertainty to provide approximate solu-
tions to POMDP. Hindsight optimization finds the optimal action assuming
that uncertainty about the state cannot be changed, whereas QMDP assumes
that the uncertainty will magically disappear after the next action. For both
these approaches, action for a given belief b is given by equation 5.17. The
only difference is that the value function computed by using QMDP is a
tighter upper-bound than Hindsight optimization for the POMDP value
function.

a = arg max
a∈A

Es∼b(s)

[
max

πM∈ΠM
QπM (s, a)

]
(5.7)

Through the simplifying assumptions about the evolution of belief state,
these approaches overcome the first challenge for POMDP solvers — keep-
ing track of evolving uncertainty over planning horizon. However, these
approaches still need the expectation over the state space to be computed.

Imitation learning based approaches [Tamar et al., 2017, Choudhury
et al., 2017a, Zhang et al., 2016] address this concern through data driven
techniques. MDP solvers are used over sampled MDP problems to train a
policy on the expected distribution of problems. Enabling the online policy
to take the best decision in expectation if magically all the uncertainty would
disappear in the next step.

Family of approximate POMDP solvers that use MDP work quite well in
problems where the required changes in belief can be attained by actions that
are rewarding as well. A well-known problem with MDP solvers is that they
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do not take actions that don’t belong to optimal MDP policies. Hence, neither
do the imitation learning methods.

A class of such actions is informative actions. MDP solvers have no
motivation to gain information, since under their assumption, either the
environment is already known as much as it can be or the uncertainty will
disappear after the next step but for POMDP problems gaining information
can be useful, [Littman et al., 1995a].

In the next section we show that gaining information through observations
can only lead to a belief state with higher value, and discuss a class of infor-
mation gaining actions that will not be taken by an MDP solver leading to
sub-optimal solutions by MDP-POMDP solvers.

5.3 Expected Value of Information

Information is gained through observing the environment. Let a POMDP be
given by POMDP = (S , b0,A, Ω, R, Z, Term). Let o ∈ O be observed and
the belief changes from b to bo. The Q− value of the bo is given by equation
5.8.

Ṽπ∗(bo) = Q̃π∗(bo, a) =max
a∈A

[
RB (bo, a) +

Eb′∼P(b′ |bo ,a)

[
Ṽπ∗(b′)

] ] (5.8)

Let’s say the probability of observing observation o given a belief b is P(o|b).

Definition 2: Expected value of information is given by the difference
between the expected of value of belief state reached after making an observa-
tion and the optimal value of the belief state before the observation, equation
5.9.

EVIo(b) = Eo∼P(o|b)

[
max
a∈A

Q̃π∗(bo, a)
]
− Ṽπ∗(b) (5.9)

Theorem 1. Expected value of information is greater than or equal to 0, for
all observation and belief.

Proof. If we ignore the observation and take the same action that maximizes
the Q-value of b, instead of bo, then the observation does not affect the
actions, and the expected value of the belief state. Lets say, the optimal action
for b is given by , a∗b = arg max

a∈A
Q̃π∗(b, a). We replace maxa∈A with a∗b in

equation 5.9, refer to equation 5.10.

Eo∼P(o|b)

[
Q̃π∗(bo, a∗b)

]
− Ṽπ∗(b) (5.10)
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Expanding equation 5.10.

∑
o∈O

∑
s∈S

R (s, a∗b) P(s|b, o)P(o|b)+

∑
o∈O

∑
b′∈B

Ṽπ∗(b′)P(b′|b, o, a∗b)P(o|b)− Ṽπ∗(b) = 0
(5.11)

Marginalizing over o.

∑
s∈S

R (s, a∗b) P(s|b)+

∑
b′∈B

Ṽπ∗(b′)P(b′|b, a∗b)− Ṽπ∗(b)

Ṽπ∗(b)− Ṽπ∗(b) = 0

(5.12)

Since we replaced a max function with a fixed action, we can infer that the
minimum value of EVIo(b) is 0. �

Unfortunately, optimal MDP solvers do not take informative actions if the
actions do not provide with reward or access to more rewarding states.

Definition 3: Informative actions (aI) are actions that are not a part of the
optimal MDP policy for any state or time, but lead to observations. Formally,
they are defined by following set of conditions:

• aI 6= π∗(s)∀s ∈ S .

• P(b′|b, a, o) = P(b′|b, o)P(o|b), where P(bo|b, o) = 1 and P(b′|b, o) =
0∀b′ 6= bo.

If informative actions lead to more valuable information that they cost,
then MDP-POMDP solvers are provably sub-optimal.

Theorem 2. If there exists an informative action aI ∈ A in POMDP, such
that the expected value of information attained by aI is ≥ −Rb(b, aI), then
family of MDP-POMDP solvers will be sub-optimal by atleast EVIo(b) +
RB (b, aI).

Proof. The difference between the Q-value of aI and Q-value of a∗b is given
by equation 5.13.

Q̃π∗(b, aI)− Q̃π∗(b, a∗b) (5.13)

= RB (b, aI) + Eb′∼P(b′ |b,a)

[
Ṽπ∗(b′)

]
− Ṽπ∗(b) (5.14)

Since an observation is observed immediately after taking action aI and
definition of aI , equation 5.14 reduces to equation 5.16.

RB (b, aI) + Eo∼P(o|b)

[
max
a∈A

Q̃π∗(bo, a)
]
− Ṽπ∗(b) (5.15)
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RB (b, aI) + EVIo(b) (5.16)

�

In the next section we show two examples, where MDP-POMDP solvers
catastrophically fail on account of their inability to take informative actions,
Multi-resolution informative path planning being one of them. We first start
with a detailed tiger problem.

5.4 Examples

Tiger Problem

In the canonical tiger problem there are two doors and a tiger is hidden
behind one of them. There are two possible states, either the tiger is hidden
behind the left door TL or the right door TR, S = {TL, TR}. The action set
is given by, A = {dL, dR, l}, where dL denotes opening the door at left,
dR denotes opening the door at right and l denotes the action of listening
to determine the location of the tiger. Action l can return observations,
O = {oL, oR}, where oR denotes a tiger is heard behind the right door and
oL denotes a tiger is heard behind the left door. Let the probability of hearing
a tiger behind a door X ∈ L, R if there is a tiger behind door X is given by
P(oX |TX) = 1.

The reward of the action state pairs is given by table 5.4.

s = TL s = TR

a = dL R(TL, dL) = 0 R(TR, dL) = 100
a = dR R(TL, dR) = 100 R(TR, dR) = 0
a = l R(TL, l) = −1 R(TR, l) = −1

Let the initial belief be b0(TL) = P(TL) = 1− P(TR) = 0.5. If the
uncertainty is removed from this problem, the optimal MDP solver will
suggest the action to open the door with no tiger behind it, a = dL or a = dR.
And since the action l is neither rewarding or does not lead to a rewarding
state, it will never be taken by the MDP solver. Approaches like hindsight
optimization and Q-MDP use MDP solvers to compute the next action. Both
these approaches find the optimal action assuming that uncertainty about the
state cannot be changed. The action is given by equation 5.17.

a = arg max
a∈A

Es∼b(s)

[
max

πM∈ΠM
QπM (s, a)

]
(5.17)

For the tiger example with b0 = 0.5, equation returns actions TL or TR

with the hindsight upper-bound value Ṽhs
π∗M (b0) = 100, whereas the actual

value of action TL or TR is 50. However, if the action l is taken, the state of
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Figure 5.1: (a) The UAV gets a high re-
ward if it visits the same cell as the car
to gather high resolution information
of the car (lets say its numberplate.).
Since the UAV knows where the car
is, it does not need to take action up
and can directly go to the cell with
the car. (b) In the POMDP version
of the problem the location of the
car is unknown, hence there is only
a small chance that the next cell the
UAV goes to has a car in it, leading
to a small expected reward. (c) But
if UAV gains height, the uncertainty
about the location of the car is removed.
Although there is no reward from this
action but the removal uncertainty leads
to guarantee of gaining high reward by
visiting the cell in which the car exists.
Since, MDP-POMDP solvers cannot
take informative action up, they are
sub-optimal for such data gathering
problems.

the environment is revealed leading to a Q-value of action l, Q̃π∗(b, l) = 99.
Therefore, for this problem, Hindsight is only 50/50 as it takes best expected
action in hindsight and has no implicit motivation to gain information. In this
problem all the MDP-POMDP solvers discussed in section 5.2, will face the
same problem. Making them unfit to solve the famous tiger problem. In the
next section we demonstrate that MDP-POMDP solvers are unfit to solve
multi-resolution, budgeted information gathering through a scaled down
version of the problem.

Multi-resolution, Budgeted Information Gathering

Unmanned Aerial Vehicles (UAVs) have the capability to gain height and
gather low resolution information at a large scale and the agility to zoom
down on relevant regions of the information to gain high resolution informa-
tion. This ability makes them suitable for locating objects in the environment
and gain information about those objects. The UAV only receives a reward
if the high resolution information about the object of interest is collected.
Since, the action of gaining height and gaining low resolution information
only results in reduction of uncertainty and no actual reward, we show it is an
informative action and MDP-POMDP solvers are unable to exploit the ability
of UAVs to gather information at multiple resolution.

Let us assume the UAV operates in a grid with cells C = {c1, c2, c3, ...c9},
with an object of interest, a car in cell cr, where r ∈ [1, 9], see figure 5.1.
The UAV starts at time t = 0 from cell c5. At time t, the state of the
environment is given by the history of cells visited by the UAV and the
location of the car cr, st =< cr, ci1 , ci2 , ci3 , ..., cit >, where ci1:t ∈ C.
There are five possible actions that the UAV can execute in this grid world,
A = {north, east, south, west, up}. Action a = north moves the UAV to
the north of the cell it currently occupies if possible, otherwise it keeps the
UAV in the same cell. Similarly, east, south, west actions move the UAV to
the east, south or west of cell it currently occupies respectively. Action up
results in the UAV gaining height to inspect the presence of cars in all the
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cells and returning to the cell it executed up in. Let, T : SXA → C be the
deterministic transition function that takes the state of the UAV and an action
as input and returns the the cell in which the UAV will be after the action is
executed.

In the MDP definition of the problem, location of the car is known. The
UAV gets a high reward for going to the same cell as the car, all actions cost
−1 and action up costs relatively higher, −2. The reward function is given
by equation 5.18.

R(s, a) =


100 if T(s, a) = cr ∧ @cij ∈ S : cij = cr,

−2 if a = up,

−1 otherwise.

(5.18)

Terminal state is reached when either cell c5 is visited twice or total cost of
taking actions (excluding reward of visiting the same cell as the car) exceeds
five.

Since the location of the car is known, an optimal MDP solver will directly
approach the car taking actions either east, west, north or south and return to
the terminal cell c5, the value of the starting state, s =< cr, c5 > is given by
equation 5.19.

Vπ∗M(s = c5) =

{
99 if cr ∈ {c2, c4, c6, c8},
97 if cr ∈ {c1, c3, c7, c9}.

(5.19)

Action up does not offer any reward and increases the cost of all paths that
leads to any rewarding state. Therefore, an MDP solver will never take the
action up. Action up here is an informative action according definition 3.
Presence of an informative action cautions us against using MDP based
Approximate POMDP solvers for this problem.

In the POMDP version of the problem, the UAV is uncertain about the
location of the car. Assuming ties between actions are broken randomly, and
the belief about the location of the car is uniformly distributed, the value of
initial belief state buni f orm

0 given hindsight optimization is used at every step
can be computed using equation 5.5 and is given by equation 5.20.

Ṽπh(buni f orm
0 ) = 34.125 (5.20)

where, πh is the policy attained by iteratively using hindsight optimization.
The value of information about the car is given by the difference between

the expected value if the location of the car is known, equation 5.19, the
expected value if it is unknown, equation 5.20, 63.875

The optimal POMDP policy will use the action up to reduce the uncer-
tainty and guarantee that it will find the car in the grid, leading to a value of
96. As per theorem 2 the MDP based solvers are sub-optimal by the sum of
the expected value of information and the reward achieved by the informative
action, 61.875.
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As is evident, MDP-POMDP solvers perform sub-optimally at the bud-
geted, multi-resolution,information gathering task and fail to leverage the
agility of UAVs, making them unsuitable for such applications.

5.5 Summary

The main contributions presented in this chapter are -

• Identification of informative actions as a symptom of unsuitability of
MDP based solvers - We prove that presence of informative actions with
a positive expected value of information, section 5.3, is symptomatic of
unsuitability of MDP-POMDP solvers for solving a POMDP. Identifica-
tion of such actions without the need to solve the full POMDP, can help
avoid implementation effort to discover the unsuitability of MDP-POMDP
solvers and make better design choices.

• Demonstrating Unsuitability of MDP based solvers for multi-resolution
data gathering - We demonstrated that capability of UAVs to gain height
and acquire large-scale, low resolution information is not exploited by
MDP based POMDP solvers, hence we need to model the belief space
dynamics to enable efficient multi-resolution data gathering, section 5.4.

Contributions towards Enabling Safe Data Gathering in Physical Spaces

In this work we demonstrated that efficient data gathering agents in physical
spaces should be able reason about their capabilities to move in the environ-
ment and gather data at multiple resolutions. This behaviour can be achieved
if solvers for vehicle motion planning for active data gathering reason about
motion constraints and belief space dynamics.

Since, decision-theoretic solvers have to operate in a high dimensional
belief space and account for all possible future observations, they are not
suitable for online implementation. The next chapter presents a method
to enable planning for budgeted, multi-resolution data gathering online in
diverse environments.





6
Randomized Algorithm for Path Planning for Budgeted
Data Gathering

In the last chapter we demonstrated that for solvers to generate near-optimal
solution to multi-resolution, budgeted data gathering problems, they need
to model high-dimensional belief space dynamics. In this chapter we de-
scribe a solver that enables generation of near-optimal solutions to the
multi-resolution, budgeted data gathering problem online.

Consider a situation where a region, affected by floods. There is an urgent
need to locate survivors, provide supplies and establish communication with
them. We have at our disposal an UAV with a camera that can fly up to a
limited distance of 1 km. Then the problem becomes that of locating and
counting as many survivors as possible while being restricted to fly 1 km.
The robot needs to reason about the fact that it can gain a lot of information
about the area by gaining height and subsequently flying close to survivors to
get a more detailed picture.

Thus the two salient characteristics of the problem are

1. Constraint on the total travel distance. Due to limitations of fuel / battery,
the length of the route taken by the robot is limited.

2. Correlated nature of information. Equipped with cameras, UAVs can view
large areas from a distance to gain information. This leads to reward of
visiting different locations being correlated.

The problem of planning routes to gain information is an NP-hard problem
[Krause, 2008]. Moreover, in the last chapter we proved that in order to find
efficient solutions to the problem, planner has to take high-dimensional belief
space dynamics into account. The current state of the art systems attempt
to solve this problem using two lines of approach. One approach is to apply
a myopic information theoretic strategy [Yamauchi, 1997, Charrow et al.,
2015] where a set of sensing locations is identified and the system travels to
the most promising one. While such strategies are computationally efficient,
they fail to effectively account for the constraint on traveling distance. As a
result the computed routes can lead to oscillatory behavior.
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Another approach is to invoke a long horizon planner [Yu et al., 2014,
Singh et al., 2009, CHEN et al., 2014, Zhang and Vorobeychik, 2016].
However, these approaches are far from real-time.

The key contribution of this chapter is an anytime, provably optimal algo-
rithm, Randomized Anytime Orienteering(RAOr), that can efficiently solve
for routes that maximize correlated reward functions subject to constraints
on route length. The key ideas behind RAOr is to restrict the search space to
routes that incur minimum distance to visit selected nodes, and rapidly search
this space using random sampling.

We provide empirical and theoretical analysis of RAOr. We prove it
to be asymptotically optimal while providing convergence rate analysis.
Empirically the algorithm outperforms the state of the art by more than
an order of magnitude in terms of run time required to solve benchmark
problems near optimally.

In the next Section we formulate the problem of budgeted, multi-resolution
information gathering and describe the essential related work. In Section 6.2
we elucidate on transforming Correlated Orienteering to a Constraint Satis-
faction Problem and a Traveling Salesman Problem. The resultant algorithm
(RAOr, Alg. 8) obtained by leveraging the new formulation is described
in Section 6.3 with its properties and drawbacks. These drawbacks are ad-
dressed in Section 6.4. The evaluation results and conclusions along with
scope of future work is presented in Section 6.8.

6.1 Information Theoretic Fromulation for Explicit Data Gather-
ing

Let us formally define the problem of maximizing the reward in a given
experiment while respecting a traveling budget B. Let V = [v1, v2, v3, ..., vn]

be the set of all sensing location in the workspace. Let the robot start from
node vs ∈ V and end at node ve ∈ V. Let r = [vs, vr

1, ..., vr
m, ve] be an

ordered set of the sensing locations where, r : r ⊆ V. For each r, let I(r)
be the reward gained by visiting each location in P. Let the cost of traversal
be given by C(r) = ∑i=1:|r|−1 C(vr

i , vr
i+1), where vi is the ith element in

r , ∀i ∈ [1, |r|]. The problem then is defined by equation 6.1.

arg max
r⊆V

I(r) subject to C(r) ≤ B (6.1)

The Orienteering Problem (OP) [Golden et al., 1987] work is closely
related to the exploration problem. The Orienteering Problem defines the
reward at nodes to be independent of each other or in other words the the
reward function is modular. Constant approximation ratio of (2 + ε) were
given by [Chekuri et al., 2012], but such guarantee is unsatisfactory in
practice. On the other hand Mixed Integer Programing(MIP) based solutions
exist for OP and related problems[Vansteenwegen et al., 2011]. But these



SAFE DATA GATHERING IN PHYSICAL SPACES 95

solutions fail to capture the reward relationship amongst nodes, leading to
sub-optimal paths.

[Krause, 2008] established that information gain is sub-modular and
monotonic. Nemhauser in 1978, [Nemhauser et al., 1978] provided an
efficient method to optimize submodular functions. Unfortunately adding
the traveling budget constraint makes the problem non-submodular and non-
monotonic. [Chekuri and Pal, 2005, Singh et al., 2009] suggested using a
recursive-greedy to find approximate solutions for the orienteering problem
if the reward function is submodular. Due to large run-times none of these
solutions scale well to real world problems. The runtimes of most of the
algorithms exceed 3 minutes on a standard desktop PC for a graph of more
than 100 nodes.

The MIP based methods solve for linearly relaxed versions of the problem
and then impose integer constraints. This results in the method spending most
of its time finding partial solutions that do not meet the budget constraints.
Also, the state of the art algorithms optimize for the nodes to visit and the
sequence in which to travel those nodes together. This leads to the algorithms
searching a huge space of solutions for which the sequence of nodes traversed
is sub-optimal.

The large run times and the failure to model the reward relationships
amongst nodes, necessitates the development of better exploration planning
algorithms for efficient autonomous information gathering systems. In the
following section we propose reformulating the problem as a combination of
Constraint Satisfaction and Traveling Salesman Problem to overcome these
limitations.

6.2 From Data Gathering to Orienteering to Set Selection and TSP

The solution to the correlated orienteering problem is a route in a graph,
such that the reward attained by the route is maximized while the path cost
stays within a specified value. We break the problem of finding the route,
into finding the set of locations to visit and then finding the optimal order
in which to visit those locations. Since, we assume the reward function
is independent of the order in which the set is visited. This allows the set
selection and set order optimization to run independently, without affecting
the reward attained by a set.

The set selection problem can be formulated as a Constraint Satisfaction
Problem (CSP) and finding the optimal order for the selected set is studied
as the Traveling Salesman Problem (TSP). In the following we pose the
correlated orienteering as a combination of CSP and TSP. The resulting
algorithm (RAOr) is presented in Alg. 8 and described in section 6.3
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Algorithm 8: Randomized Anytime Orienteering(RAOr)
Input: G = [V, E], vs, ve, B, Tr
Output: The best route found in run-time Tr
S = SampleSet(V) // Random set is picked such that it contains
vs and ve
r = TSP(S, vs, ve)
rbest = φ
if RouteLength(r) <= B ∧ Reward(r) > Reward(rb) then

rbest = r
end
for i = 1 : 3|V| do

vnew = Sample(V) // sample a node
if IsInRoute(r, vnew) then

r = DeleteFromRoute(r, vnew)
end
else

r = AddToRoute(r, vnew)
end
if RouteLength(r) <= B ∧ Reward(r) > Reward(rbest) then

rbest = r
end

end

return r

Constraint Satisfaction Problem

In this section we describe how the Correlated Orienteering problem can
be viewed as a Constraint Satisfaction Problem. Let r∗ be the solution to
equation 6.1. Let, V∗ be the set of nodes that are present in r∗. Let, ar ∈
{0, 1}|V| signify the presence of the nodes in a route r, such that ai

r =

1 if vi ∈ r and ai
r = 0, otherwise. In order to solve the correlated orienteering

problem we want to find the assignment ar∗ and then the optimal order in
which nodes belonging to r∗, should be visited.

Randomized technique for efficient search for satisfying assignment of a
binary tuple was presented in 1999 in [Schöning, 1999a] as a solution to the
CSP problem. RAOr employs the same technique to search for the optimal
assignment of a = ar∗ , i.e. randomly flipping the assignment of one of |V|
bits of a.

Traveling Salesman Problem

Once the correct set of nodes are found, then finding the optimal route
just requires finding the order in which they need to be visited. Traveling
Salesman Problem solvers can provide us with a near-optimal order in
polynomial time, [Christofides, 1976b]. Hence combining the TSP and CSP
solvers allows us to develop an algorithm to solve the correlated orienteering
problem near optimally and efficiently.

6.3 Randomized Anytime Orienteering

In this section we describe Alg. 8 in detail. We highlight its properties and
drawbacks with examples. In the next section we will discuss methods to
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overcome these drawbacks.
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Figure 6.1: An illustration how RAOr-
G combines CSP and TSP solvers
in combination with local greedy
heuristics to explore the space of routes
rapidly, resulting in improvement of
run times for finding near optimal
solutions for the correlated orienteering
problem. a) Using the CSP algorithm
the current admissible route is given
by r = xstart, x1, x2, x3, xend. b) At
the next step x4 is sampled, and is
to be added to the route. c) The ex-
ponential number of ways in which
x4 can be added to r is reduced to a
near optimal order in polynomial time
by the TSP solver. This step reduces
an exponential search space with in
polynomial computation costs. d) The
new route obtained is then improved by
conducting a local search using greedy
heuristics.

The algorithm starts with uniformly sampling a set of nodes S ⊂
V|vs, ve ∈ S (Alg. 8 Line 1). The order in which S should be visited is
computed using a TSP solver (Alg. 8 Line 2). Running a TSP solver searches
an exponential space of routes in polynomial time, leading to run time reduc-
tion. The generated route is then checked for satisfying the budget constraint
and saved as the best available route if it is admissible (Alg.8 Line 2-3).

The algorithm then uniformly samples a node vnew ∈ V and changes it’s
status of being in route r (Alg. 8 Line 6-12 ). i.e if the node vnew was in route
r, it is removed from route r or if it was not in route r, it is added to it. The
new route obtained is checked for satisfying the budget and saved as best
available route, if it exceeds the value of rbest. This process is repeated 3|V|
times.

The algorithm described above is the standard probabilistic algorithm for
constraint satisfaction problem as suggested in [Schöning, 1999b] changed
to return the best route available in the budget. We now list some of the
properties and drawbacks of the algorithm.

Theorem 3 (Optimality of Randomized Anytime Orienteering). Randomized
Anytime Orienteering algorithm almost surely finds the optimal route from
start to end nodes, within budget B, if there exists one, within a polynomial
factor of 2(1− 1/|V|)|V| repetitions.

The proof of the theorem is provided in section 6.7.
Finding the optimal route for the TSP is an NP-Hard in a space that is

exponential in number of nodes. But, polynomial time α approximation
algorithms, where α ≥ 1, for a TSP exist in literature [Christofides, 1976a].
We leverage the polynomial time TSP solver to make Alg. 8 tractable.

Theorem 4 (α-Optimality of Randomized Anytime Orienteering). Random-
ized Anytime Orienteering algorithm almost surely finds the optimal route
from start to end nodes, within budget B/α, if there exists one, within a poly-
nomial factor of 2(1− 1/|V|)|V| repetitions. Given that the TSP solver in the
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inner loop is α-approximate.

Drawbacks

Figure 6.2: Illustration of drawbacks
of RAOr algorithm. a) The problem
shown in here consists of three high val-
ued nodes and a budget just sufficient
to visit all three. The optimal solution
is to visit all three nodes but very few
routes exist that have a reward close to
optimal. The solution shown is found
by running RAOr-G algorithm, Alg.
9. b) Shows the run time vs reward
plot for the problem shown in (a) for
both RAOr-G and RAOr. RAOr can
only attain approximately 66% of the
optimal value, as it has a hard time
selecting the correct set of nodes. c)
Illustrates the problem RAOr faces
while running on problems with a small
budget. Here a 5X5 grid of nodes,
distributed uniformly at a resolution
of 1 with a budget of 15 is shown. The
routes in red are routes sampled by
RAOr that exceed the budget, whereas
routes in blue are routes that were
sampled that do not exceed the budget.
Visibly, red routes outnumber the blue
routes. d) The same problem leads to
poor run times of RAOr for relatively
low budget problems. Here we show
the run times of RAOr and RAOr-G
on the 5X5 grid shown in (c) while
varying the available budget. A runtime
of 0 signifies that the algorithm did
not converge. Clearly RAOr did not
converge for low budget problems
in the allotted time. Highlighting the
limitation of RAOr in dealing with low
budget problems.

Uniform Sampling of Sets

RAOr has low run-time for the case where a large number of routes lie within
the budget and perform near optimally. But the problem scenarios where the
probability measure of the optimal path is small the runtime of the algorithm
is unacceptable. Fig. 6.2 (a) and (b) presents a problem where the route has
to pass through the three high value nodes to achieve close to optimal reward,
while the budget is just sufficient to do so. RAOr needs to be able sample
from a highly restricted set of feasible near optimal sets. This leads to large
run times.

Sampling Inadmissible Sets

RAOr can potentially spend a lot of time considering sets that are out of
budget if budget is small as compared to graph size. As is demonstrated in
Fig. 6.2 (c) and (d).

To alleviate the drawbacks of the problem we improve the algorithm
such that it still keeps its global solution finding properties but improve its
convergence properties in these pathological cases. These improvements
are defined in the next section and the improved algorithm is described in
algorithm 9.

6.4 Randomized Anytime Orienteering - Greedy (RAOr-G)

RAOr (algorithm 8) uniformly samples in the space of sets to find the optimal
set of nodes that should be in route. This provides with global solution
optimality guarantees while sacrificing on run-times for some pathological
cases.

We augment the algorithm to improve its anytime properties by leveraging
the problem structure in the following ways -
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Algorithm 9: RAOr-Greedy(RAOr-G)
Input: G = [V, E], vs, ve, B, Tr
Output: The best route found in run-time Tr
rg = TSP(vs, ve) // Seed local search if no global solution is
found
R = rg
if RouteLength(rg) > B then

return ∅
end
S = SampleSet(V, vs, ve)
r = TSP(S, vs, ve)
if RouteLength(r) <= B then

R = R ∪ r
end
for i = 1 : 3|V| ∧ runtime < Tr do

vnew = WeightedSample(V)
if IsInRoute(r, vnew) then

r = DeleteFromRoute(r, vnew)
end
else

r = AddToRoute(r, vnew)
end
if RouteLength(r) <= B then

R = R ∪ r
end
R = GreedyLocalSearch(G, vnew, R, B)

end

return arg maxr∈R I(R)

1. Conducting local searches in the space of routes.

2. Restricting the local search to admissible sets.

3. Informed sampling to improve the likelyhood of sampling high value
nodes.

The resulting algorithm is called Randomized Anytime Orienteering - Greedy
(RAOr-G) and is presented in Alg. 9, Fig. 6.1.

Since, RAOr-G (Alg. 9) is very similar to RAOr (Alg. 8) we highlight
the differences here. RAOr-G is seeded with a route which consists of only
vs, ve, Alg. 9, Line 1-2. The set of nodes is sampled as in RAOr (Alg. 8)
but if the resulting route generated by running TSP on selected nodes lies
within budget it is added to the set of feasible routes R, Alg. 9, Line 8-10. R
is then used by the local search algorithm as the candidate set for running
greedy local search, Alg. 9, Line 22. The GreedyLocalSearch function is
presented in Alg 10 and described in Section 6.4. Another major difference
is that instead of uniformly sampling for the node to add or delete from the
route, the sampling is weighted in order to sample more valuable nodes often.
The intuition behind weighted sampling is described in Section 6.4.

Local Greedy Search Heuristic

Local greedy search heuristic is used to improve the runtime of RAOr algo-
rithm and also to improve the anytime performance of the algorithm. The
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Algorithm 10: GreedyLocalSearch
Input: G = [V, E], vnew, R, B
Output: Updated set R after conducting local greedy search
rc = FindBestRouteInBudget(vnew, R)
if rc == ∅ then

rcn = Route(ve, vnew, vnew) // TSP
end
else

rcn = AddToBestRoute(vnew, rc)
// Run a TSP with vnew added to rc.

end
R = R− rc
rcn = AddNearByNodes(G, rcn, B, d, c)
R = R ∪ rcn

return R

greedy search takes as input a set of feasible routes found so far, R and the
sampled node vnew. It finds the route rc ∈ R according to equation 6.2.

rc = arg max
r∈R

I(r ∪ vnew)− I(r)
RouteLength(r ∪ vnew)

subject to RouteLength(r ∪ vnew) ≤ B

(6.2)

The reward of the updated route is further improved by adding nodes that are
within distance d and increased the reward gained by the route by atleast c,
while keeping it in budget 11.

Algorithm 11: AddNearByNodes
Input: G = [V, E], rcn, B, d, c
Output: Updated set R after conducting local greedy search
forall the v ∈ V|DistanceFromRoute(v, rcn) <= d do

if (I(rcn ∪ v)− I(rcn)) ≥ c then
if DistanceFromRoute(v, rcn) ∗ 2 ≤ B− RouteLength(rcn) then

rcn = AddToRoute(v, rcn)
// Run a TSP with v added to rcn.

end
end

end

return rcn

The total computation cost of a single iteration of local greedy search
heuristic is O(|R||V|). In practice we have found that the speedup achieved
far outweighs the cost, Fig. 6.2.

In the next Section we describe the intuition behind using weighted
sampling instead of uniform sampling and how it affects the theoretical
guarantees provided by the RAOr-G algorithm (Alg 9).

Weighted Sampling

Weighted sampling, samples nodes with the probability directly proportional
to the reward they offer independently. The intuition behind weighted sam-
pling is that nodes with high values tend to be the part of optimal routes. This
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intuition is very similar to that of constructing macro-actions described in
[He et al., 2010]. Unfortunately weighted sampling adversely affects the
theoretical guarantees of the algorithm, but empirically it leads to alleviating
the problems caused by uniform sampling 6.3.

Theorem 5 (Optimality of Randomized Anytime Orienteering - Greedy).
Randomized Anytime Orienteering - Greedy algorithm almost surely finds the
optimal route from start to end nodes, within budget B/α, if there exists one

in polynomial factor of
(

2
1+ζ

)|V|
repetitions, where ζ =

(
((|V|−Imin)Imin)

β

(|V|−1)(β+1)

)
,

Imin = minv∈V and I(v) 6=0 I(v), β = 1
|V|−2 .

6.5 Results

We evaluate the computational performance of RAOr on various benchmark
examples against the state of the art methods. Then, we apply the algorithm
on a realistic coverage scenario in simulation. All simulation computations
are performed on a computer equipped with Intel Core i7-4870HQ using
Matlab. The algorithm was also deployed on an autonomous exploration UAV
system, we present and analyze multiple exploration flights.

Computational Performance

The benchmark problem, Fig 6.3 consists of a graph with nodes located in a
grid at uniform resolution. The reward for visiting each cell in the grid is 1.
There is no reward for visiting a cell twice. Table 6.1 shows the comparative
run times of state of the art, near-optimal algorithms vs RAOr-G for different
problem sizes and varying budgets. MIQP [Vansteenwegen et al., 2011] is
a fixed time algorithm, which return after finding a near -optimal solution.
Both RAOr-G and eSIP [Singh et al., 2009] are anytime in nature. Each
algorithm was stopped when it reached 95% of the optimal value. RAOr-G
outperforms the state of the art in all the benchmark problems. RAOr-G
solves the problem with 400 nodes approximately 100 times faster than the
eSIP.
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Figure 6.3: Illustrated here is 10X10
grid size benchmark problem. For all
the benchmark problems the nodes
are situated in a uniform grid with 1
resolution. For this particular problem
RAOr-G is able to find a near-optimal
solution in 6.9 seconds while the state
of the art takes 143.6 seconds for
finding same quality of solution.
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Grid Size Budget eSIP MIQP RAOr-G

5X5 30
cost 29.8 29.6 29.4

utility 24 25 24
time(s) 6.8 15.3 0.5

7X7 60
cost 56.6 57.3 56.1

utility 48 49 48
time(s) 26.7 1358.5 2.4

10X10 100
cost 99.0 99.8 98.9

utility 87 92 87
time(s) 143.6 15330 6.9

20X20 100
cost 99.7 - 99.2

utility 87 - 87
time(s) 763.7 - 7.2

Table 6.1: Comparative run time
analysis of state of the art v/s RAOr-G.
RAOr-G consistently outperforms the
state of the art in terms of run times for
achieving near-optimal solutions. All
the solutions obtained are atleast 95%
of the optimal.

Correlated Rewards

In the first scenario we compared the computational performance against
algorithms that promise optimality but on a simple case, where rewards of the
nodes were independent. Here we evaluate RAOr-G’s performance against
algorithms that can potentially work on-board robots given their relatively
low runtimes for about over 100 randomly generated cases.
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Figure 6.4: a) RAOr-G planned path
with a 500m budget on the 100X100
area for Case2. Red marks the sensor
footprint. Notice how the path visits
high value regions, displayed in black.
Grey paths show all the paths searched
by RAOr-G. b) and c) Case 1 is dis-
played in dashed line, Case 2 in solid
lines. RAOr-G is competitive with
greedy algorithms in Case 1 and dra-
matically outperforms greedy and RIG
for Case 2, where greedy algorithms
are stuck in local maxima.

The algorithm has to find a route given start and end locations such that
the reward collected is maximized. Reward at a node is defined by the region
visible from a 25o field of view, downward facing camera. Viewpoints
exist on grid of 4m, at a height of 10m and at a uniform distance of 20m
at a height of 55m. Resulting a total of 650 nodes/viewpoints. The area
is randomly strewn with 5 high value objects, covering those from lower
viewpoints results in a 10 times higher reward than other locations. Two
distance metrics are implemented, Case1 Euclidean distance and Case2
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Euclidean distance with travel along z-direction costing 3 times more vs.
traveling in x-y plane, see figure 6.4. Since nodes/viewpoints are distributed
in a uniform fashion, greedy solutions are able to perform near optimally
in Case 1. RAOr-G performs comparably to the greedy solutions, while
incurring a bit more runtime. In Case 2, greedy solutions are clearly stuck in
a local maxima, leading to a much worst performance than RAOr-G. In both
cases RAOr-G outperforms RIG algorithm, [Hollinger], both in runtimes and
solution quality,see figure 6.4.

GCB vs RAOr-G

Fig. 6.5 illustrates one the runs from Case2 in the above section. GCB is a
non-myopic greedy algorithm for IPP. Since, gaining height is costly, the
greedy algorithm GCB is unable gain height leading to poorer performance
than RAOr-G which non-myopically reasons about the reward available. For
the given budget of 500, GCB manages to gain a reward of 1000, whereas
RAOR-G gains a reward of 4000.

Figure 6.5: Performance comparison
of GCB and RAOr-G for a scenario
where gaining height is expensive and
hence greedy algorithms tend to get
stuck in local minima.

Case Study 6.1: Exploration mission with low budget

The algorithm was also deployed on the autonomous UAV system described
in section 6.8. It ran at 3Hz on an Odroid-C2. Figure 6.6 describes the
vehicle mission. The vehicle is deployed to scout for cars and collect high
resolution data if a car is found. The exploration reward function is weighted
probability distance between current robot’s belief and expected updated
belief and a fixed reward of 20000 is allocated to scanning a car, for more de-
tails about the representation see section 6.8. The algorithm run’s adaptively
as the vehicle’s representation is updated and is able to guide the vehicle to
explore the environment and locate and map both the cars, see figure 6.6.
Since the vehicle uses RAOr-G, a non-myopic planner, it does not rush to the
first car it maps in the environment, rather realizes that it will be cheaper to
gather the high resolution imagery of the car at the return leg. Saving 32m of
cost in he process.
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Figure 6.6: a) Testing site, start and
end are marked by green nodes and
car locations are shown in orange. b)
Vehicle starts with a budget of 700m,
the reward increases as likelihood of
finding the car increases, the crest in
reward marks the time at which the
global planner found and decided to
map the car. Figures 1, 2, 3 and, 4 show
the series of plans at various stages of
the exploration mission, Dark squares
indicate absence of cars and red squares
presence of cars. Shades of grey and
red signify certainty. Once the car is
recognized, a 360 view of the car is
associated with a high reward.

Case Study 6.2: Flight tests at Gascola

Fig. 6.7, shows the largest data gathering mission conducted during field
trials. Simulated semantic classification images were used for this trial. The
travelling budget of the system was 1.9km with approximately 150, 000m2

area to be covered, the vehicle was able to cover the region in a single battery
pack while finding and mapping both the cars hidden in the environment. For
a greedy approach to collect the same resolution imagery of the car would
have taken over 35 minutes and 7 battery changes.

For repeatability 15 successful missions were conducted, where the robot
was tasked to find and map cars at high resolution in Gascola. Fig 6.8 shows
the distribution location of cars that the UAV found, as well as the start and
end points.

6.6 Summary

In this chapter, we presented the development and evaluation of an informa-
tive path planning algorithm that enables the online solution of budgeted,
multi-resolution, data gathering problems.

Main contributions of the work are as follows -

• Asymptotically optimal IPP algorithm- We introduced RAOr an asymptot-
ically optimal information path planning algorithm. That can efficiently
solve for routes that maximize correlated reward functions subject to
constraints on route length. The key insight in the problem structure is that
the order in which viewpoints are visited in the world is independent of the
reward gained by visiting them. This property enables the problem to be
broken into the selection of nodes to visit and the order in which to visit
them, leading to an exponential reduction in effective search space.
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Figure 6.7: Long-range exploration
mission, where the robot was tasked
to explore 150, 000m2 of area, and
it completed the mission in 1 battery
pack, just under 5 minutes. The top left
image shows the scenario, and other
3 images show mission progress in
chronological order as denoted by the
flight time displayed in them.

Figure 6.8: All the locations where the
robot has been successfully able to find
and map cars in high resolution (Red
dots). Start and end points of missions
from which the robot began and ended
scouting. (White Dots)
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• Experimental validation of RAOr and Multi-resolution information
gathering - We evaluate RAOr on a variety of toy, simulation, and real-
world scenarios. We show that it performs as well as greedy solvers, where
greedy methods are near-optimal while avoiding to get stuck in local
minima for problems where greedy approaches are ineffective. We also
show that multi-resolution data gathering can significantly increase the
effectiveness of UAVs as data gathering tools.

Contributions towards Enabling Safe Data Gathering in Physical Spaces

This work formally defined the budgeted data gathering problem (equa-
tion 6.1) with a belief dependent reward function. We then presented an
online algorithm that can address budgeted, multi-resolution data gathering
problem online. RAOr-G combined with safety algorithms described in chap-
ter 3 and the sensor motion planning algorithm described in chapter 4 form
a framework to enable safe, efficient data gatherers for mobile agents whose
pose uncertainty can be ignored. The algorithms have focussed on producing
online solvers to the data gathering problem that can reason about motion
constraints. As a result of modeling motion constraints, we have been able to
provide performance guarantees for the techniques described.

Before moving on to the conclusion, we present the proofs, and details of
the representations that enabled experiments presented in section 6.5.
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6.7 Proofs

Proposition 8 (Returning optimal route on optimal set selection). If RAOr
finds the optimal set of nodes to visit during it’s run-time, it is guaranteed to
return the corresponding optimal route, if an optimal TSP solver is used.

Proof. In every iteration, RAOr (Alg. 8) checks if the set of nodes selected in
that iteration can be visited within the budget constraint. The optimal order
to visit the selected set is given by a TSP solver. If the selected set can be
visited within the budget, it is stored as the best set encountered if it is more
rewarding than the previous best set encountered. The most rewarding set
encountered in the budget is returned. Therefore, if set V∗ is encountered it
is guaranteed that r∗ will be found and returned, given we have an optimal
TSP solver. Hence, if RAOr finds the optimal set of nodes to visit during
it’s run-time, it is guaranteed to return the corresponding optimal route, if an
optimal TSP solver is used. �

We next compute the probability of finding the optimal assignment or
equivalently the optimal path using RAOr.

Proposition 9 (Probability of finding the correct path). Randomized Any-
time Orienteering algorithm finds the optimal route from start to end
nodes, within budget B, if there exists one, with a probability of at least(

1
2

(
1 + 1

|V|−1

))|V|
in one run.

Proof. The proof of this theorem is taken from the work on probabilistic
algorithm for constraint satisfaction problem [Schöning, 1999a].

Given ar∗ is the optimal solution, we want estimate the lower bound on the
probability that Alg. 8 finds ar∗ . Once we have found this success probability
p, the expected number of independent repetitions of the procedure until we
find the optimal solution is 1/p.

Now, we calculate p. It is clear that the random variable X that counts the
number of bits in which the random assignment a and the fixed assignment
ar∗ disagree (i. e. the Hamming distance between a and ar∗ ) is binomially
distributed. That is, Pr(X = j) = (|V|j )2

−|V|. If the system is in state 0, this
means, an optimal assignment has been found.

At any given point in the algorithm, if a is not the optimal assignment then
there must be atleast one vertex out of |V| that needs to be flipped (included
or excluded from the set selection) to reduce the hamming distance of a to
ar∗ reduces by 1. Selecting the correct vertex would mean that the current
state transfers j to transfers to state j− 1 with probability at least 1/|V|, and
transfers to state j + 1 with probability at most |V|−1

|V| . This markov chain is the
same as described by [Schöning, 1999a]. We present the proof of value of p
here for completeness.

Given that the process has initially transferred into state j, we calculate
the probability qj that the process reaches the absorbing state 0. For this
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to happen the process needs at least j steps. We consider the case that the
random walk takes i ≤ j steps in the "wrong" direction and i + j steps are
required toward the "right" direction so that the process stops in state 0 after
j + 2i steps. To calculate this probability requires us to calculate the number
of paths on a rectangular grid (which represents the possible movements
over the Markov chain over the time scale) which transfers the process from
state j to state 0 while exactly i steps in the "wrong" direction. Using the
ballot theorem from [Feller, 1950], page 73, it can be seen that this number is
(j+2i

i ). j
j+2i . Therefore, the probability can be estimated as follows.

qj ≥
j

∑
i=0

(
j

j + 2i

)
.

j
j + 2i

.
(
|V| − 1
|V|

)i
.
(

1
|V|

)i+j

qj ≥
1
3

j

∑
i=0

(
j

j + 2i

)
.
(
|V| − 1
|V|

)i
.
(

1
|V|

)i+j
(6.3)

Further we can lower bound the above sum by its largest term as follows. We
use the following fact [Motwani and Raghavan, 2010]. ( n

βn) ∼ 2h(β)n =(
1
β

)βn ( 1
1−β

)(1−β)n
where h(β) = −β log2 β− (1− β) log2(1− β) is the

binary entropy function. In particular, the two functions(
(1 + 2β)j

βj

)
and

[(
1 + 2β

β

)β

.
(

1 + 2β

1 + β

)1+β]j

(6.4)

are within polynomial factors of each other. We lower bound the above
estimation for qj by setting β = 1

|V|−2 .

qj ≥
1
3

j

∑
i=0

(
j

j + 2i

)
.
(
|V| − 1
|V|

)i
.
(

1
|V|

)i+j

≥
[(

1 + 2β

β

)β

.
(

1 + 2β

1 + β

)1+β( |V| − 1
|V|

)β

.
(

1
|V|

)1+β]j

where β =
1

|V| − 2

=

(
1

|V| − 1

)j

(6.5)

where the last inequality holds up to some polynomial factor. Therefore, up to
some polynomial factor, using the binomial theorem, we obtain the following
estimate for success probability p

p ≥ (
1
2
)|V|

|V|

∑
j=0

(
|V|

j

)(
1

|V| − 1

)j

=

(
1
2

(
1 +

1
|V| − 1

))|V| (6.6)

�
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Theorem 1 (Optimality of Randomized Anytime Orienteering). Randomized
Anytime Orienteering algorithm almost surely finds the optimal route from
start to end nodes, within budget B, if there exists one, within a polynomial
factor of 2(1− 1/|V|)|V| repetitions.

Proof. According to Proposition 9 the RAOr algorithm finds the opti-

mal set with probability atleast p ≥ ( 1
2 )
|V| ∑

|V|
j=0 (

|V|
j )
(

1
|V|−1

)j
=(

1
2

(
1 + 1

|V|−1

))|V|
. The expected number of independent repetitions of

the RAOr algorithm are 1/p. The probability that RAOr will not find a sat-
isfying assignment after h repetitions is at most (1− p)h ≤ e−ph. Therefore,
to achieve acceptable chance of missing the optimal path, say e−50, we can
choose h = 50/p. So the complexity is within a polynomial factor of 1/p.
Therefore, Randomized Anytime Orienteering algorithm almost surely finds
the optimal route from start to end nodes, within budget B, if there exists one,
within a polynomial factor of (2(1− 1/|V|))|V| repetitions. �

Theorem 2 (α-Optimality of Randomized Anytime Orienteering Algorithm).
Randomized Anytime Orienteering algorithm almost surely finds the optimal
route from start to end nodes, within budget B/α, if there exists one, within a
polynomial factor of (2(1− 1/|V|))|V| repetitions. If the TSP solver in the
inner loop is α-approximate.

Proof. If the TSP solver is α optimal, if V∗ is encountered during set se-
lection, the length of the route covering the set may not fit inside the budget
constraint.

Although, if V∗b is the most rewarding set that can be visited in B
α , then

it can be guaranteed that if V∗b set is selected, it will be returned as the
most rewarding set by RAOr. The probability of finding V∗b is presented in
equation 6.6 and hence the RAOr algorithm almost surely finds the optimal
route from start to end nodes, within budget B/α, if there exists one, within a
polynomial factor of (2(1− 1/|V|))|V| repetitions. If the TSP solver in the
inner loop is α-approximate. �

Theorem 3 (Optimality of Randomized Anytime Orienteering - Greedy).
Randomized Anytime Orienteering - Greedy algorithm almost surely finds the
optimal route from start to end nodes, within budget B/α, if there exists one

in polynomial factor of
(

2
1+ζ

)|V|
repetitions, where ζ =

(
((|V|−Imin)Imin)

β

(|V|−1)(β+1)

)
,

Imin = minv∈V and I(v) 6=0 I(v), β = 1
|V|−2 .

Proof. RAOr− G relies on the same process as RAOr for its global conver-
gence characteristics. The random variable X that counts the number of bits
in which the random assignment ar and the fixed assignment ar∗ disagree (i.
e. the Hamming distance between a and ar∗ ) is binomially distributed. That
is, Pr(X = j) = (|V|j )2

−|V|. If the system is in state 0, this means, an optimal
assignment has been found.
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At any given point in the algorithm, if a is not the optimal assignment then
there must be atleast one vertex out of |V| that needs to be flipped to reduce
the hamming distance of a to ar∗ reduces by 1. Selecting the correct vertex
would mean that the current state transfers j to transfers to state j− 1 with
probability at least Imin

|V| and transfers to state j + 1 with probability at most

1− Imin
|V| . The change in probabilities is due to the weighted sampling of nodes

instead of uniform sampling.
Substituting these values in equation 6.5 and following the algebra we get

the following.

qj ≥
(
((|V| − Imin)Imin)

β

(|V| − 1)(β+1)

)j

= ζ j (6.7)

where the inequality holds up to some polynomial factor. Therefore, up to
some polynomial factor, using the binomial theorem , we obtain the following
estimate for success probability p

p ≥ (
1
2
)|V|

|V|

∑
j=0

(
|V|

j

)
ζ j =

(
1
2
(1 + ζ)

)|V|
(6.8)

Hence the number of repetitions required for RAOr− G to find the optimal

route is given by a polynomial factor of
(

2
1+ζ

)|V|
. Where ζ is given by(

((|V|−Imin)Imin)
β

(|V|−1)(β+1)

)
. �

6.8 Representations & Systems

Micro-Aerial Vehicle Platforms

RAOr-G was tested on multiple Micro-Aerial Vehicles (MAVs) over the
course of last 3 years of the project, table 6.2. Each multi-rotor is equipped
with a stereo pair, GPS/INS, and a high resolution camera to support seman-
tic segmentation. The base platform is an off-the-shelf quadrotor vehicle
retrofitted with in-house developed sensing and computing suite designed
for semantic exploration. The sensor suite consists of a monochrome stereo
camera pair, a monocular color camera, an integrated GPS/INS unit and a
barometer. The stereo camera pair provides 640× 480 resolution disparity
image at 10 fps for the obstacle avoidance and 3D mapping systems. The
central camera is operated at 3 fps, to provide high resolution color imagery
for the semantic perception system. All cameras are forward-facing, tilted
downwards at 15◦, an orientation well suited for low-altitude (< 40m) oper-
ation. The GPS/INS system and the barometer are used for state estimation,
figure 6.9.

All computation for autonomous operation is performed on-board. To this
end we equip the MAV with two embedded ARM computers; one of them is
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devoted primarily to planning tasks, while the other is devoted to perceptual
tasks. In addition, we use a specialized FPGA processor [ner] for stereo depth
computation. The computers are networked through high-speed ethernet. We
present the representations developed to enable autonomous data gathering
using these multi-rotors.

Characteristics Mikrokopter Octocopter DJI M100 DJI M100

Project year Year 1 Year 2 and 3 Year 4
Number of
propellers

8 4 4

Sensing Payload 2.5 kg 1.2 kg 0.5 kg
Flight time 300 s 300s 480s

Table 6.2: Quadrotor Platforms Com-
parison

Figure 6.9: MAV System Block Di-
agram: Exploration Planner RAOr
provides global trajectories to the
disparity planner described in section
6.8. Semantic classification outputs
classified images to the exploration
planning node, that processes these
images to construct a semantic grid
map also described in section 6.8

Semantic Grid Representation

The goal of the Semantic Mapping system is to inform the planning system
about the presence and approximate location of the classes of interest in
its surroundings, so it can create information-gathering plans. It does so
by means of a semantic map, a metric map that is annotated with localized
predictions regarding semantic classes.

Thus, in order to be useful, the system must operate online and in real
time, in order to keep the map updated as new sensor data is acquired. Addi-
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tionally, it must also be capable of recognizing and localizing distant (up to
200m) objects, as its function is primarily to help the vehicle decide where to
go, and secondarily to describe where it has been.

To this end, the semantic mapping system must answer two questions
about the scene: what objects of interest are in it, if any, and where are they,
in physical space. To answer these questions, our semantic mapping module
has two main stages. In the first stage, semantic segmentation, we use a deep
learning system to label monocular camera imagery. In the second stage,
mapping, we project the segmentation into a 2.5D grid map which maintains
the robot’s belief about the semantic class of each grid cell. We describe
mapping part of the pipeline in the following section.

Mapping

Given a semantically classified image, we want to find the position of objects
detected in the image, as well as model regions for which the information
in measurements is uncertain. Since, this mapping has to be performed on
board the vehicle, the driving requirement of the application is computation
time. Given a global pose by state estimation filter, each pixel in the labeled
image defines a ray originating at the camera center and passing through
the pixel center. To perform the mapping operation we use the images with
soft pixel-wise predictions, together with the robot’s global pose estimate
and a pre-existing digital elevation map (DEM). We exploit the semantic
knowledge of the world ( every object rests on the ground ) and use the
digital elevation map to infer the 3D structure of the environment.

Minimal computation cost has allowed occupancy grid based mapping
algorithms to be successfully deployed on-board robots. The reduced the
computational complexity is achieved by reducing the dimensionality of the
mapping problem by assuming cells in a grid are independent binary random
variables and measurements are independent, given a cell’s true occupancy
value. These assumptions have been shown to work effectively with sensors
that provide both range and bearing.

But a semantically classified image provides bearing only measurements
through rays originating from camera pose, making the ray independence
assumption limiting. To fully exploit the bearing only measurement and the
semantic structure knowledge of the world, we need to model ray dependence.
Section 6.8 and section 6.8 describe how we model dependence amongst
observations while still allowing for an on-line mapping algorithm.

Exploiting Semantic Knowledge

We assume that objects of our interest, represented by LM = {c1, c2, ...cn},
rest on the ground and we know the likely height hci∀ci ∈ LM. We model
the world as a 2.5D grid. In every cell, Cij of the grid at location i, j, we store
the heights at which rays pass over the cell for all classes by casting rays
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originating from the classified image, table 6.3. We are interested in finding
the cells where the height of rays passing over the cell match the height of
object we are looking for, while accounting for occlusions and limited field of
view. This leads to following cases for a given class in a cell Cij–

Symbol Description
Cij.c.hu The highest height at which a ray with label c passes over or

intersects the cell Cij.
Cij.c.hl The lowest height at which a ray with label c passes over or

intersects the cell Cij.
Cij.c.n f The number of rays with label c that pass over or intersect the

cell Cij at a height less than hc.
Cij.c.na The number of rays with label other than c pass over or

intersect the cell Cij at a height less than hc.
Cij.c.p f The cumulative probability of rays with label c that pass over or

intersect the cell Cij at a height less than hc.
Cij.c.pa The cumulative probability of rays with label other than c that

pass over or intersect the cell Cij at a height less than hc.
Cij.c.lo Integrated log-odds of an object of class c being present in the

cell Cij.

Table 6.3: Data members of grid cell
Cij for class c.

• Case 0- Average probability of rays that pass over cell Cij with a label
other than class c is greater than average probability of rays with class c.

• Case 1- Rays of some other class pass from below and above the class of
concern over the cell Cij.

• Case 2- Rays of some other class pass from below and nothing is observed
above the class of concern over the cell Cij.

• Case 3- Nothing is observed above or below the class of concern over the
cell Cij.

• Case 4- Nothing is observed below and some other class is observed above
the class of concern over the cell Cij.

Case 1 implies that the cell is well-observed. Therefore, Cij.c.hu and Cij.c.hl

should be close to hc and ground height respectively. Case 2 implies that
the upper part of the object could not be sensed due sensing geometry or
occlusions. Hence, Cij.c.hu should be less than hc and Cij.c.hl should be
close to ground. Similarly, Case 3 implies that Cij.c.hu and Cij.c.hl should
be less than hc and Case 4 implies that Cij.c.hu should be close to hc and
Cij.c.hl should be less than hc. These cases lead to equation 6.9, that is used
to determine whether there is positive, negative or lack of evidence in the
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current classified frame regarding the presence of object of class c over the
cell Cij

φij(c) =


0, Case 0

eαkCij .c.hl eβk(Cij .c.hu−hc)/hc
Cij.c.p f

Cij.c.n f
, Case k

(6.9)

Where, k ∈ [1, 4] and αk, βk are negative constants that allow us to change the
weights of the measurements according to the cases encountered. We use the
following values for these constants, α1 = β1 = −10, α2 = −10, β2 = −1,
α3 = −1, β3 = −1, α4 = −1, β4 = −10. Obviously a value of φij(c)
close to 0.5 indicates lack of evidence, and φij(c) < 0.5 indicates negative
evidence and φij(c) > 0.5 positive evidence for the presence of class c in cell
Cij.

Temporal Evidence Integration

φij(c), allows the algorithm to model the dependence amongst rays, while
allowing us to treat the cells independently. We assume at any given cell, the
log odds of probability of observing a class c is given by a constant γ. Each
class in a cell is represented as an independent binary random variable, as a
cell can have objects of multiple classes. Once the nature of evidence (φij(c))
is identified,logodds for each class in each cell is updated with equation 6.10.

Cij.c.lo =

{
Cij.c.lo, |φij(c)− 0.5| ≤ ζ

Cij.c.lo + γCij.c.(n f − na), otherwise
(6.10)

Where, ζ is a small positive number less than 0.5. We use ζ = 0.2 and γ = 1.
Each semantically classified image is integrated with the grid and Cij.c.lo
is updated for every cell that needs updating, this process is repeated for
every input semantically classified image. Next section presents the hardware
system on which we run the semantic mapping system to enable autonomous
scouting. Preliminary results for the mapping algorithm are presented in
section 6.8.

Mapping Example

In this section we demonstrate the effects of exploiting semantic knowledge
and modeling ray dependence qualitatively, while measuring the sensitivity
of the mapping algorithm to height inaccuracies in the DEM. Figure 6.10-4
shows a canonical scenario where a car, more than 50m away, is detected
by the semantic classification algorithm. Exploiting semantic knowledge
and modelling dependence allows the mapping algorithm to capture the
uncertainty about the presence of a car in the cell occluded by the car, figure
6.10-1, whereas if we do not reason about ray interdependence, the occluded
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Figure 6.10: Figures 1 shows the
updated map after a classified image
4 is integrated in our current mapping
pipeline, Figure 2 shows the updated
map if the classified image is projected
on the DEM without exploiting seman-
tic knowledge and Figure 3 shows the
updated map if the ray interdependence
is not modelled. Dark squares indicate
absence of cars and red squares pres-
ence of cars. Shades of grey and red
signify certainty. Modelling ray inter-
dependence and exploiting semantic
knowledge leads to better modelling of
uncertainties due to occlusions while
providing an improved cell occupancy
estimate. Figure 4 provides the sensitiv-
ity analysis of mapping performance vs.
DEM height errors.

cell is also inferred to contain cars figure 6.10-3. If both the semantic knowl-
edge and ray interdependence are not exploited, then a simple projection
of classified image to the DEM leads to an inference that multiple cells are
occupied by a car figure 6.10-2. Demonstrating that modelling the ray inter-
dependence and exploiting semantic knowledge leads to better mapping of
objects and uncertainties. Figure 6.10 shows that the algorithm’s performance
deteriorates in presence of height errors in the DEM. Unsurprisingly the
degradation is faster if DEM underestimates the height of the cells due to
observation geometry.

Local Perception & Planning Pipeline

Mathies et. al [Matthies et al., 2014] presented an approach to use disparity
images generated by a stereo pair for obstacle avoidance. In this approach
the occupied pixels in the disparity image obtained from the stereo pair are
expanded to account for robot’s size. The expanded disparity images are used
as a spatial representation to plan collision free paths.

Figure 6.11: Planning pipeline based
on inverse depth obstacle perception.
The frontal expansion and back expan-
sion are shown in pink and red point
cloud around the original point cloud
of pole. Planned path around the pole
is also shown with the current robot
position circled in green.

We maintain a similar pipeline to process the disparity images but improve
the expansion step through the inclusion of the observation noise model in the
disparity expansion. Furthermore, we compute two image expansions; frontal
and back to probabilistically capture the occupancy region. Figure 6.11 and
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Figure 6.13 show how the two images capture the pole obstacle. The frontal
expansion is shown in pink point cloud and the back expansion in red. We
also improve the path planning by using multiple disparity images to infer
occupied volumes. The use of multiple disparity images allows the planner
to reason about long range obstacles. The improved expansion algorithm and
multi-image occupancy inference are presented in section 6.8. Furthermore,
all the planned paths end at hover position with zero velocities ensuring
safety of the vehicle. Figure 6.11 briefly shows the planning pipeline.

Local Perception

We use disparity image or inverse depth image for obstacle representation
as it naturally captures spatial volume according to the sensor resolution
[Gohl et al., 2015]. This representation is befitting for noisy stereo data as
explained in Section 6.8. We employ C-space expansion where the original
disparity image is expanded, allowing us to treat the robot as a point when
doing collision checks during planning [Matthies et al., 2014].

Our method incorporates a stereo sensor error model and allows us
to reason about space behind obstacles. We use an additional padding in
disparity both in front and behind obstacles. This padding varies from 3σ

for close obstacles to 1σ for far obstacles, where σ is the standard deviation
of disparity error and the multiplier is represented by λ in later sections.
By varying λ we ensure safe planning at short range and a more optimistic
planning at long range. This enables the deliberative planning required for
exploration tasks.

Disparity error and its effects

Disparity is a measure of the proximity of an obstacle. We can derive how
close the obstacle is in depth using triangulation in stereo vision as follows.

z =
b f
d

(6.11)

Where, z is the depth of a pixel(u, v) with disparity d, b is baseline and f is
the focal length in pixels.

The actual 3D point can be derived as

P(x, y, z) = (uz/ f , vz/ f , z) (6.12)

The accuracy of the stereo setup is drastically affected as the disparity de-
creases. The error in depth increases quadratically with depth as shown in
equation(6.15). Differentiating equation(6.11) wrt d

∂z
∂d

= − b f
d2 (6.13)

∂z = − z2

b f
∂d (6.14)
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∂z ∼ z2 (6.15)

Disparity error is primarily caused due to correspondence error while match-
ing pixels along the epipolar line. It can be modelled using a Gaussian pdf.
Assuming correspondence error during disparity computation has a std devi-
ation σ = 0.5pixels, we define the Gaussian pdf N (d, σ2). Figure 6.12

Figure 6.12: Left: Disparity vs Depth
(blue) and probability distributions are
shown in red and green. Red and Green
PDF in disparity are same and easy to
model but their corresponding Red and
Green PDF in range vary and difficult
to model. Hence we use inverse depth
space to represent obstacles. Also,
disparity i.e. inverse range captures
space at multi-resolution suitable for
registration of stereo sensor data. Right:
Shows the pixel-wise expansion of a
point obstacle according to robot size.

shows how this Gaussian pdf in disparity results in a difficult to model pdf
for error in depth with an elongated tail on one side and a compressed tail
on the other. This motivates to use disparity image space domain directly for
occupancy inference rather than resorting to depth or 3D domain.

C-Space Expansion

C-Space expansion is required to represent obstacles such that a single point
state query can be used for collision checks. Occupancy grids have been the
default methods for registration of sensor data and C-Space expansion for
occupancy inference. Usually point clouds are used to populate occupancy
grids but point cloud generated using disparity images are highly uncertain
at greater depths Figure 6.17(c) and hence occupancy grid based representa-
tion is infeasible. Moreover, 3D occupancy grids require a huge amount of
memory to capture the planning workspace and hence fail to incorporate long
range measurements available from stereo sensors. To overcome this limita-
tion we use disparity images and apply disparity expansion step explained in
section 6.8.

Disparity Expansion

In this section we explain the step of C-Space expansion as applied to dispar-
ity images. This step allows us to capture the volume occupied by an obstacle
using two surfaces represented by two disparity images. These images rep-
resent front and back surface limits of the reported disparity. Each pixel in
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Figure 6.13: Disparity expansion
shown as point cloud. The pink and red
point cloud represent the foreground
and background disparity limits.

these two images effectively captures the range of disparity based on robot
size and the sensor error model as shown in the Figure 6.12. This process can
be divided into two steps.

The first step expands disparities along the image XY axis Figure 6.12(right)
i.e. an obstacle at some pixel (u, v) after inflation occupies a manifold of pix-
els from [u1, u2] and [v1, v2]. This is achieved by traversing through the
image row-wise first and then column-wise. This is similar to [Matthies et al.,
2014] but we also incorporate sensor error. We omit the steps required to
generate the look-up-table (LUT) to map u → [u1, u2] given disparity d and
v → [v1, v2] given disparity d. Reader is advised to refer [Matthies et al.,
2014] for generation of the LUT, but unlike looking up for the raw disparity
value d from table we look up for (d + λσ), where λ is the sigma multiplier
dependent on the range as discussed previously in Section 6.8.

The second step expands disparities to get new values for front and back
images using equation(6.16). These images represent the maximum and
minimum disparities for every pixel respectively.

z =
b f
d

df =
b f

z− rv
+ λσ

db =
b f

z + rv
− λσ

(6.16)

Where rv is the expansion radius based on robot size, df and db are the
computed front and back disparities which encompass the obstacle. As shown
in illustration on left side of Figure 6.13, the red area around the original
disparity of obstacle is the padding generated in the expansion step. This
padding is based on the robot size and sensor error model.

Our approach uses the LUT as shown in Algorithm(12) which takes the
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original disparity image D as input and processes it to generate the expanded
frontal and back disparity images D f and Dg respectively. The function
expand(d) implements equation(6.16) with λ = 0 and rv = 0 to prevent
double expansion in depth. The function connectedComponent() searches
for minimum disparity connected to the maximum disparity over steps of
provided range (set to a multiple of robot radius). This helps to find an
obstacle bounding volume. We do not want to use the minimum disparity
in a window as that can be located very far with no connection to the actual
obstacle and hence the connectedComponent() step is required.

Algorithm 12: Disparity Expansion Algorithm
Input: Disparity image D
Output: Expanded disparity images: D f , Db
for v = 1 : Height(D) do

for u = 1 : Width(D) do
d̂ = ceil(D(u, v) + λσ)

[u1, u2] = LUT(u, d̂)
V = D(u1 : u2, v) // Get vector of disparities
d f = expand(max(V))

db = expand(connectedComponent(d f , range))
for i = u1 : u2 do

D f (i, v) = max(d f , D f (i, v)) Db(i, v) = min(db, Db(i, v))
end

end
end

Algorithm(12) does row-wise expansion and its result is then subject
to column-wise expansion in a similar fashion with λ and rv set to default
values when using expand() function. The expanded disparity images
constitute a single snapshot volumes occupied by obstacles. To maintain
a spatial memory we create a pose graph consisting of multiple expanded
disparity images as described in the following section.

Pose Graph of Disparity Images

Figure 6.14: Pose Graph of expanded
disparity images. Dashed path shows
robot motion and stored nodes in the
graph are shown as triangles. Nodes
are stored at intervals of distance and
orientation.

The motivation to maintain spatial memory of the previously seen environ-
ment as the vehicle is moving using a pose graph is because of the following
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reasons:

1. Previously seen obstacles might not be visible in the current image.

(a) The stereo sensor has a minimum range dependent on maximum
perceivable disparity.

(b) Obstacles get occluded in different views.

(c) The field of view is limited.

2. Maintain a pose graph of disparity images (measurements) with nodes at
regular intervals of distances and angles as shown in Figure 6.14.

3. Allows occupancy inference using multiple measurements.

Algorithm(13) shows how we construct this graph. Each node in the

Algorithm 13: Pose Graph Algorithm
Input: D f , Dg, Pose, Ngraph, γd, γψ

Output: Pose Graph of Expanded disparity images: Graph
Tw

s ← Pose
Node = createNode(Tw

s , D f , Db)

if Graph.size() == 0 then
Graph.push_ f ront(Node)
Graph.push_back(Node)

end
PrevNode = Graph.begin()
pos_err = distance(Pose, PrevNode)
ang_err = angle(Pose, PrevNode)
if pos_err >= γd‖ang_err >= γψ then

if Graph.size() == Ngraph then
Graph.pop_back()

end
Graph.push_ f ront(Node)

end
Graph.pop_back()
Graph.push_back(Node)

graph is comprised of the following:

1. D f

2. Db

3. Tw
s which is the transform between the processed sensor measurement(D f , Db)

and world frame.

The algorithm takes as input the current robot position Pose, processed
disparity images D f , Db, maximum number of nodes Ngraph and two toler-
ance parameters γd, γψ for position and angular displacement respectively.
The constructed graph is used to project a given world point into all node
images and do occupancy inference. Occupancy inference using the set of
disparity images in the graph is explained in subsequent section.
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Occupancy Inference

Evidence grids or occupancy maps are methods to allow fusion of different
measurements taken over time. By maintaining a pose graph of expanded
disparity images, we can also take advantage of similar fusion without
building an occupancy grid which are not suited for stereo data as discussed
previously. We devised an occupancy inference method by fusing information
from all the images in the graph using the stereo sensor error model. Given
the standard deviation of correspondence error σ, we compute confidence of a
disparity state in the following manner.

C(d) =
(d− σ)

d
(6.17)

Confidence measure from equation(6.17) gives us a measure of how much
can we trust a given disparity for occupancy inference. Thus, long range or
low disparity, uncertain measurements have low confidence and update the
occupancy with lower values. We further discount measurements that mark
an area safe or potentially safe(occluded) by 0.5 to be more conservative
about clearing areas previously marked occupied. It should be noted that
the potentially safe areas are behind obstacles and have lower disparity
state, hence their contribution to occupancy clearance is less due to lower
confidence value. In our experiments we get the final occupancy measure
by projecting a world point P using equation(6.18) and equation(6.12) in
disparity images of all nodes in the graph and accumulating the occupancy
cost according to Table(6.4):

Check Remark occupancy cost occ(ds)

ds > df(u, v) safe −0.5C(ds)

ds < df(u, v)
and obstacle C(ds)

ds > db(u, v)
ds < db(u, v) potentially safe −0.5C(ds)

Table 6.4: Occupancy update

Collision Checking

Collision checking is used to plan a new path and to validate if an existing
path is safe to follow. Collision checking is performed using the following
mapping of a 3D world point P to image pixel I with disparity ds:

P(x, y, z)↔ I(u, v, ds) (6.18)

A state is in collision if the occupancy measure as shown in equation(6.19)
crosses a pre-defined threshold γ.

Occupancy = ∑
nodes

occ(ds) (6.19)

Occupancy ≥ 0.0 (6.20)
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If the occupancy for a state is below the threshold, we consider that state
as not occupied by an obstacle.

Planning

We use a sampling based planner, BIT* [Gammell et al., 2014] to draw
samples in 3D space which are checked for collision as described in 6.8. The
output is a collision free path connecting start to goal state.

In our experiments we found that disparity images fluctuate around
obstacle edges leading to unwanted replanning due to the current plan being
in collision. To remedy this we used two threshold values. A lower value
γlow is used during planning to find a path i.e. obstacles are observed sooner
even at long distances and hence a more conservative path is obtained. A
higher threshold value γhigh is used to check the current plan for collision
and do replanning in case of collision. The advantage of using two threshold
values is that an initial plan is found using a more conservative occupancy
map while the replanning is done using a more reliable occupancy map. The
reliable occupancy map is not affected by fluctuations in the disparity maps.
The thresholds are chosen such that collisions at close range are always
detected but have great advantage to not force replanning due to less reliable
and fluctuating observations at long range when planning paths to longer
distances. In our experiments we have planned paths at distances longer than
100m (Figure 6.17). Figure 6.11 shows a planned path that avoids a pole
obstacle. This path is sent to the motion controller of the vehicle.

Motion Control

We developed a path tracker similar to [Hoffmann et al., 2008]. It takes the
current trajectory and uses feed-forward velocities specified in the trajectory
and generates final velocity and heading rates for the low level velocity
controller. The low level velocity controller runs on the quadrotor’s flight
control unit.

The trajectory controller obeys the dynamic limits of the robot and limits
the velocities in event of hard turns or sharp changes in trajectory. This
allows the planner to generate simple waypoint based paths and rely on the
trajectory control to obey vehicle dynamics.

Local Planning Experiments

We conducted most of the experiments in the highlighted area shown in
Figure 6.15. Some of the features of region were narrow trails, dense foliage
and varying height tree line, all of which made for challenging and interesting
obstacles. Tests involved manual take-off and sending a list of sparse global
waypoints to the obstacle avoidance system with the desired velocity. Sparse
global waypoints allowed obstacle avoidance system to plan around obstacles
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Figure 6.15: Location where experi-
ments were carried out: highlighted
area

determining vehicles path and safety. Table(6.5) lists the values we used for
conducting the experiments.

Parameter Value
Baseline: b 0.35m

Focal length: f 514.17 pixels
Correspondence error: σ 0.5

Connected component range: range 2rv

Robot radius: rv 1.5m
Lenient Occupancy Threshold: γhigh 1.8

Strict Occupancy Threshold: γlow 0.9
No. of nodes in Pose graph: Ngraph 10

Displacement between nodes: γd 1.5m
Angle between nodes: γψ 30◦

Table 6.5: Parameters Used

Local Planning Results

Figure 6.16 shows the time taken to process a single disparity image to
compute the frontal and back expansions using Algorithm(12) on the on-
board ARM computer. In our experiments we used CPU version at 320× 240
resolution because the GPU was used for semantic classification algorithm
as concurrent part of the experiments. A pose graph using Algorithm(13)
was created and used for collision checks using equation(6.19). Using our
approach a single occupancy inference and collision check takes on average
0.01ms. Given 100ms between each frame we can do about 2000 collision
checks which was usually sufficient for the BIT* planning algorithm.

Figure 6.17(a) Shows planned path going through two low height trees.
The top left is the disparity image with left camera image shown on top right.
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Figure 6.16: Time profile of expansion
step.

Figure 6.17: Point cloud is shown
at the bottom in all three figures for
reference. Point cloud is colored by
height in (a) & (b) and by actual in-
tensity in (c). (a) Planned path(green)
between low trees highlighted in red
ellipses (b) Replanned(green path) as
more observations are made, marked
in red ellipse, (c) Long range planning
horizon. The point cloud shows the
noisy measurement but even noisy
information allows to infer occupancy
at long distances.
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The point cloud is only for visualization purpose and the trees are marked
in red ellipses. Although the trees are not completely visible in the current
disparity image, they are still a part of obstacles as they were seen at previous
robot positions and hence stored in the pose graph. Without the pose graph
these trees would have been invisible to the robot. Thus the pose graph helps
in keeping memory of obstacles which were seen previously but can’t be
observed as they exceed the limit of maximum possible disparity after robot
motion.

Figure 6.17(b) shows the previous path was re-planned and pushed up as
more observations of the bushes/trees are made at long range are marked as
obstacles at approximately 30m distance from the robot. This was possible
due to fusion of occupancy using several disparity images in the pose graph.

Figure 6.17(c) emphasises the advantage of planning in disparity space
at long distances. At greater distances the point cloud is very noisy but we
are able to get some information about occupancy by using all the sensor
data. While occupancy grids would have huge impact, both memory wise and
computationally to use all this data, our approach is able to incorporate all
the information using minimalistic image space representation and do better
occupancy inference.

Figure 6.18 shows the reactive nature of our approach. For this experiment
the robot was allowed to find a plan outside the sensor’s field of view and was
given a goal point in right direction. As the robot follows the plan and turns
right, an obstacle obstructing its path is detected and a new plan avoiding it is
generated. This happened at a speed of 4m/s hence implying our approach
quickly reacts to newly seen obstacles.

Figure 6.18: Reactive Planning at
4m/s: Top image shows the robot
has planned to go right with unseen
obstacle marked in red ellipse. Bottom
image: after banking right an obstacle
obstructs the previous plan and a new
plan avoiding it is generated.

Using the parameters specified in Table 6.5, if the robot moves 15m main-
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taining 10 nodes and assuming a maximum of only 100m depth (1.79pixel
disparity) per image our approach uses approximately 38% of the memory
required by a gridmap of cell size 1m3 covering the same volume. This is the
case when using a gridmap of large cell size meaning a very coarse resolution.
For a better resolution gridmap will require even more memory.

More than 100 runs were executed with approximately 1.6 hours in
autonomous mode, covering a cumulative distance of approximately 1.5Km.
The maximum speed was capped at 4m/s. Our approach allowed us to plan
to distances greater than 100m as shown in Figure 6.17(c). Average distance
to goal was 36m. The standard deviation of length of planned paths from
straight line paths was on average of 1.38m with a maximum of 30m. This
shows that in most cases planned paths were close to a straight path but with
slight deviation to avoid obstacles.





7
Conclusion

The central thesis of this document is that -
For mobile robots operating in partially known environments, active

gathering data and concurrently reasoning about motion constraints produces
higher rates of information gain and higher speeds of safe operation.

Mobile data gathering agents have an implicit need to gather data to
navigate the environment safely, while there is an explicit need to gather
task-specific data. Both explicit and implicit needs for gathering data have
to contend with the physical constraints of the agent like sensing bandwidth,
dynamic, and energy constraints. The work presented in this document has
focussed on enabling safe, efficient data gathering agents in physical spaces.

In section 7.1 we summarize the critical results presented in this document
and present the significance of contributions in section 7.2. We discuss
the theoretical structures uncovered during this work in section 7.3 and
limitations and open research questions in section 7.4.

7.1 Results Summary

We demonstrated that to ensure safety, near-optimal utilization of dynamic
constraints through emergency maneuver library (EML) leads to faster,
safer operations with reduced sensor range requirements as compared to
methods that approximate vehicle dynamics. Using survivability as a metric
to generate EML enables full utilization of vehicle dynamics for safety.
Survivability is monotonic, sub-modular set function, enabling the generation
of near-optimal trajectory sets using greedy algorithms for an NP-hard
problem. Using EML on rotorcraft enabled them to fly at 1.8 times the speed
(56 m/s) as compared to techniques that approximate motion (dynamic)
constraints of the vehicle.

EML combined with policy-based sensor planning provides a framework
to address the need for implicit data gathering for the safety of mobile robots.
Modeling vehicle dynamics for safety enabled us to define the pertinent
region from which information about obstacles needs to be gathered. We
showed that this pertinent volume definition could then be used to learn an



128 SANKALP ARORA

optimal policy for active data gathering. This optimal policy also provides
worst-case performance guaranty. We developed an algorithm to improve
these worst-case guarantees online to account for occlusion and known space.
Using the same worst case principle, we developed a policy for the explicit
data gathering need of evaluating landing zones. The augmented online
policy enabled maximum safe speed of 60 m/s for rotorcraft which is 25%
more than the worst case policy and 300% more than data gathering schemes
that fail to account for agent’s dynamics constraints.

Motion planning for explicit data gathering in physical spaces needs to
take the cost of moving into account in the presence of physical (path-length)
constraints. Data gathering agents are often deployed to gather information
with a minimum resolution requirement. For systems capable of gathering
data at multiple resolutions, it is often the case that the actions that lead to
low-resolution information do not lead to direct rewards. We proved that to
generate efficient solutions to multi-resolution data gathering problem while
accounting for path-integral constraints like total route length agents need to
reason about belief space dynamics. Guided by this result, we presented an
information-theoretic formulation of budgeted data gathering and develop
RAOr-G, an anytime algorithm for budgeted, multi-resolution data gathering.

The critical insight used to overcome the dimensionality of the problem is
that the order of visiting the viewpoints is independent of the reward gained
by visiting those viewpoints. This structure enabled us to take guided ran-
dom walks in the space of near-optimal routes to construct near-optimal IPP
solutions incrementally. RAOr-G produced solution 2 orders of magnitude
faster than other solutions that provide optimality guarantees and 1.75 times
better solutions other sampling-based algorithms. More significantly, the
multi-resolution information gain paradigm, where the data gathering agent
focuses it sensing bandwidth and limited operation time on pertinent informa-
tion result in coverage of areas 7 times larger than a non-adaptive paradigm
that fails to model the physical capability of the agent to gain information at
multiple resolutions. In the next section we present the significance of the
algorithms that enabled these improvements with respect to the state of the
art.

7.2 Significance of Contributions

Active data gathering is a design/control paradigm where the data being
gathered during experimentation is optimized to meet the objectives of the
experiment. The desire is to meet experiment’s objectives in minimum cost or
to maximize a reward function. In digital spaces, where the cost of gathering
data is independent of data points gathered, the problem is well studied and
even though its NP-Hard, near-optimal polynomial time solvers exist.

Mobile data gathering agents are bound by their dynamic, sensory and
battery limitations. Active data gathering in digital spaces does not have to



SAFE DATA GATHERING IN PHYSICAL SPACES 129

contend with these motion constraints. Reasoning about motion constraints
exponentially increase the search space. Majority of the state of the art meth-
ods address this increase in search space through following three approaches:
1. Algorithms that ignore motion constraints and use heuristic driven policies
or Pareto-optimal policies, such methods do not provide any performance
guarantees and are not scalable. 2. Algorithms that solve for routes that
model motion constraints offline. Although such methods provide guaran-
tees, however, their runtimes do not enable online generation of solutions.
3. Decision-theoretic POMDP solvers have been able to address the active
data gathering problem for localization successfully but the dimensionality
of active data gathering for safety or mapping makes them unsuitable to run
online.

We have focused on developing safe, mobile data gathering agents while
modeling their motion constraints. We have demonstrated significant perfor-
mance increase in agent’s data gathering performance as a result of motion
constraint modeling and in the process developed a framework that enables
safe, efficient physical data gathering with performance guarantees. The tech-
niques developed work in partially known environments and ignore the pose
uncertainty of the agents themselves. Our main algorithmic and theoretical
contributions are -

• Describing an algorithm for guaranteeing the safety of a mobile agent
operating in a partially known environment while fully utilizing its dynam-
ics. The algorithm is independent of the planning pipeline and guarantees
upper-bound on the run-time, while making no assumptions about the
dynamics of the vehicle.

• Proving the equivalence of optimizing sensor trajectory to minimize
vehicle trajectory cost and optimizing the sensor trajectory to optimize
an information theoretic reward function. Using the equivalence and eml
based safety to define a near-optimal algorithm for active data gathering
for the safety of mobile agents in partially known environments.

• Demonstrating that near-optimal solvers for budgeted, multi-resolution
information gathering need to model high-dimensional belief space
dynamics.

• Describing an algorithm to solve budgeted, multi-resolution data gathering
problems online by exploiting the structure that the reward for visiting
viewpoints is independent of the order in which they are visited.

Through deployment of these algorithms over multiple platforms and testing
over hundreds of hours of operations, we have shown that active data gath-
ering while reasoning about motion constraints leads to a significant gain
in performance of autonomous mobile robots operating safely in partially
known environments. In the next section, we discuss some of the underlying
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mathematical structures that we have discovered while developing active
gathering techniques that can reason about motion constraints. In section 7.4
we present limitations of the current framework and possible future direc-
tions, before presenting final thoughts in section 7.5.

7.3 Discussion

In this section, we discuss the underlying mathematical structures we have
uncovered while developing solutions for planning for data gathering and
safety - 1. Survivability model for safety, 2. Equivalence of trajectory cost
minimization and contextual information gain maximization for sensor
motion planning, 3. Presence of informative actions in multi-resolution
information gathering, 4. Independence of reward for a set of viewpoints
from the order in which they are visited. We highlight how we utilized these
while discussing their broader applicability. We then shift our focus towards
the limitations of the presented algorithms and suggest future direction of
work.

Survivability Model for Safety

In chapter 3, we used the insight that the safety of a vehicle can be guaran-
teed by using an offline computed library. Previous works on the safety of
autonomous robots can be broadly divided into two paradigms. One of the
paradigms is to make sure that the vehicle can stop within the sensor range
while applying maximum allowed longitudinal deceleration [Scherer et al.,
2012c, Goerzen and Whalley, 2011, Adolf and Dittrich, 2012]. The stopping
distance based velocity limit does not exploit the full dynamics of the vehicle,
leading to conservative velocity limits.

Another paradigm is to simplify the non-linear dynamics of the UAVs and
plan a path that is guaranteed to stay within the known unoccupied region.
Mixed integer linear programming is used in [Schouwenaars et al., 2004]
to plan paths that stay within the known region. Simplified dynamics in a
sampling-based graph is used in [Frazzoli et al., 2002] while limiting the
maximum planning time to ensure safety. The assumption is that the planner
can always plan an obstacle-free path if allowed to run until the maximum
planning time. [Enright et al.] uses Dubins curves to plan paths within the
known space. These methods also suffer from not being able to exploit the
vehicles full dynamic capabilities.

Use of an offline computed library enables full utilization of the dynamics
of the vehicle to keep it safe. We proved that safety could be modeled as
survivability. This critical underlying structure enables the use of the sub-
modular and monotonic nature of survivability and develop a generic near-
optimal algorithm that can ensure a vehicle’s safety irrespective of the
complexity of its dynamics while making efficient utilization of free space.
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As a result, the algorithm could guarantee the safety of rotorcraft at speeds
of up to 60 m/s, while stopping distance based methods failed at speeds
over 40 m/s. Modeling safety as survivability also helped define a pertinent
volume from which obstacle data needs to be gathered to keep the vehicle
safe.

A drawback of the emergency maneuver library is that it is fixed and
does not change with the environment. In geometrically dense scenarios,
it is possible that a fixed sparse emergency maneuver library will lead to
a conservative performance of the vehicle. However, the sub-modular and
monotonic nature of survivability enables construction of adaptive sets of
libraries and overcome this drawback, as shown by [Dey et al., 2011]. Hence
the underlying structure of modeling safety as survivability has not only led
to 1.5 times the maximum safe speed increment in the application covered
in the thesis but also enables an extension of the idea to adaptive settings
without any assumptions on vehicle dynamics.

Trajectory Cost Minimization & Information Gain Maximization for Sen-
sor Motion Planning

In chapter 4, we proved that the optimizing sensor trajectory to minimize
the vehicle trajectory cost, given a vehicle path is equivalent to optimizing
the sensor trajectory to maximize contextual important information gain.
This property enables projecting of the reward of sensory actions in an
information space. The equivalence property combined with the use of
emergency maneuver library for safety enabled us to define a worst case
scenario for a sensor, gathering data to ensure vehicle’s safety. We then
exploited symmetries in the problem to learn an optimal policy offline for
the said worst case scenario and augment the policy performance online
using sparse features. The basic equivalence structure helped define an active
sensor motion planning algorithm that can escape the curse of dimensionality
as faced by POMDP based solvers [Myers and Williams, 2010], while still
providing performance guarantees. We also used the same equivalency
structure to generate an information theoretic reward function for the explicit
need for data gathering for LZs as well. The sensor motion planning method
developed enabled three-fold increase in maximum safe speed over passive
sensing, and an approximate six-fold increase in effective sensing range.

However, the equivalence property does not address how to derive the
information theoretic reward function from the original trajectory optimiza-
tion problem, in fact, we prove that deriving the reward function is as hard
as solving the original problem. One way to address this problem is to move
away from model-based methods, to model free methods for inference of
reward function. However, the dimensionality of the problem prohibits the
direct application of such methods.
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Presence of Informative Actions in Data Gathering

In chapter 5, we demonstrated that the problem of multi-resolution data
gathering using UAVs has informative actions in its action space. The action
to gain height to gather low-resolution, large-scale information. We show that
the presence of such action makes it imperative for the solver to model belief
space dynamics. Rendering MDP based approximate POMDP solvers, [Little
et al., 2007, Yoon et al., 2008, Littman et al., 1995a] and related imitation
learning based methods ineffective. This property of multi-resolution data
gathering motivated the information theoretic approach we adopted to model
the problem, chapter 6. We do not address the issue of automatic detection
of informative actions. However one can use MDP solvers to detect their
presence and decide the suitability MDP based approximate POMDP solvers
and related imitation learning-based methods for an application.

Independence of Reward Function For Explicit Data Gathering from Or-
der of Viewpoints

In chapter 6, we leverage the fact that for data gathering applications in static
environments and with no uncertainty about the position of the robot, the
reward is a set function of viewpoints and is independent of the order in
which those viewpoints are visited. This property of the reward function
enables us to sequentially solve the set selection and the order problem.
The sequential break down of the problem results in effective exponential
search space reduction, leading to the development of RAOr, an online solver
for budgeted, multi-resolution informative path planning (IPP) problem.
RAOr has enabled us to solve IPP problem onboard systems with limited
computational power.

Together these approaches have resulted in hundreds of safe flight hours,
enabling data gathering systems to fly at 3 times the speed and to gather data
of areas 7 times larger than possible from state of the art,

7.4 Future Work

Combining Implicit and Explicit Data Gathering

Emergency Maneuver Library (EML) enables the vehicle to stay safe while
operating in partially known environments. We have used the emergency
maneuver library with a myopic one-step look ahead, independent of path
planning. Treating path planing and safety independently enables real-time
guaranteed safe planning for systems with highly non-linear dynamics, figure
7.1. But this independence assumption potentially leads to sub-optimal
system behavior.

For example, in figure 7.2 if the planner and EML are operated indepen-
dently, the planner maximizes the distance from obstacles and finds a path
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Figure 7.1: Top: Current data gather-
ing pipeline. The implicit and explicit
data gathering is considered separately,
leading to undesired behavior like
slower navigation and, stopping for
safety. Bottom: Combined data gather-
ing pipeline with multi-heuristic RAOr
for faster budgeted informative path
planning, and safe, local informative
path planner, that reasons about trade-
off between implicit and explicit data
gathering overcoming drawbacks of the
current approach.

Figure 7.2: Left: Motion planner
operates independently of the safety
library. Resulting in maximizing the
distance from walls of the corridor and
slower navigation speeds. Right: If the
motion planner is cognizant of EML
and safety constraints, it can identify
a faster solution to fly through the
corridor while being close to a wall.

in the middle of the corridor, leading to a slower operation of the vehicle.
Whereas if the planner actively optimizes the maximum safe speed while
cognizant of the emergency maneuver library takes a path much closer to one
of the walls of the corridor, enabling faster safe navigation.
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Figure 7.3: Left: Vehicle flies a con-
stant speed around the target to gather
its data, while myopically looking
forward as and when required. Right:
The same approach does not work in
this scenario, as there is a sharp turn in
the path, leading to the vehicle missing
essential information about the target as
it ensures safety.

Efficient data gathering also requires the vehicle to gather relevant data
while being safe. The simplest approach for solving this problem is to gather
data for safety when required, while focusing sensing bandwidth on explicit
data gathering needs as the vehicle flies at a constant velocity. Figure 7.3,
explains a scenario where myopic constant velocity strategy works for a
circular path, but the same approach leads to missing pertinent information if
the curvature of the path is relatively higher.

The related informative path planning problem can be posed as a POMDP.
However, solving such a formulation is intractable. Bircher et al. [Bircher
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et al., 2016], tackled this high dimensional problem by embedding infor-
mation theoretic reward function in randomized sampling based planning
techniques. The suggested approach works well for short-horizon motion
planning problems but the planner is too computationally intensive for longer
horizon problems, moreover it provides no performance guarantees. In the
next section, we identify how a modified version of RAOr can be used to
address the problem.

Safe Local Informative Path Planning

In chapter 6, we exploited the structure in the reward function that the order
in which viewpoints are visited is independent of the information or reward
gained by visiting the viewpoints. The order of visiting the viewpoints
only affects the cost. We developed RAOr using this property of the reward
function. Adding safety as a constraint to the optimization of the reward
function, does not change its property of being order independent. Hence
RAOr algorithm is still applicable for solving safe informative path planning
problems.

However, it cannot be used directly, since to run the TSP in the RAOr
algorithm, we need to find a dense graph with costs associated with each of
the edges. We want to collect maximum information in minimum amount
of time, hence the cost of each edge is the time taken to travel that edge
by the agent while being guaranteed safe. However, the addition of safety
constraint leads to the dependence of time of travelling between viewpoints
on the complete motion history of the vehicle. The speeds at which the
vehicle can operate at, under the safety constraint is dependent on known free
space and the free space observed by the vehicle is dependent on the path it
has taken through the environment. This dependence of time of travelling
on the vehicle motion history exponentially increases the search space.
Moreover, to find an optimal cost, the optimizer needs to forward simulate the
observations to determine the speeds at which the vehicle can fly at, which is
computationally expensive.

Hence, to enable the use of RAOr for safe informative path planning, we
have to define an optimizer that can overcome these challenges to efficiently
find a near-optimal time trajectory. To develop an online optimizer, we first
ignore the motion history of the vehicle. Now, we need to find an optimal
connection between two vertices, xs and xe, where each vertex specifies
a maximum speed, position in 3D, and desired heading. The number of
paths between these vertices is nns

a , where na is the number of discrete ac-
celerations within the dynamic limits of the vehicle and ns is the number of
discrete waypoints between xs and xe. It is infeasible to forward simulate ex-
ponential (nns

a ) number of paths while forward simulating the corresponding
observations received to find the optimal route.

We use the insight that if the vehicle’s heading is fixed and the known free
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space observed while the vehicle follows a trajectory is independent of its
speed, the problem of connecting xs and xe with an optimal safe trajectory
is reduced to a bang-bang controller, with the complexity that is linear in ns.
We also assume that the fixed heading that enables fastest safe trajectory from
xs to xe is the one that aligns with the path.

Using the insight and assumption above, we divide the problem of finding
a near-optimal connection between xs and xe into three parts, with bang-
bang controller being the optimal controller for each segment. We split the
problem into finding the distance along the path (stp0) and the speed (vtp0),
where the vehicle aligns with the direction of travel, and finding the distance
along the path (stp1) and the speed (vtp1) where the vehicle starts turning
to align with xe.ψ. This reduces the problem of finding a trajectory from
xs to xe into finding a trajectory between xs to stp0, stp0 to stp1, and from
stp1 to xe. Each of these problems can be solved by using linear time bang
bang controllers. This separation of the problem, leads to a reduction of an
exponential (nns

a ) search space to a polynomial n3
an3

v search space. Also, the
number of observation simulations required reduce from nsnns

a to ns, if we
ignore the known space observed by the vehicle while it turning.

The above described splitting of the connect problem leads to the Algo-
rithm 15. In the following we describe the algorithm after defining some
primitives and notation. Let, G = [V, E] be the graph of viewpoints, with V
representing the vertices and E the edges. xi ∈ V is a vertex, xs ∈ V and
xe ∈ V are starting and ending vertices, b0 is the initial belief of the robot,
ψpath is the heading of the path, and ψ̇ is the maximum allowed heading
rate of the vehicle, re is the effective range of the vehicle, vde f is the default
speed required at the viewpoints, and amax is acceleration limit of the vehicle.
Primitives are defined as follows -

GetMaxTP0(.) - Returns the maximum distance along the path at which
the vehicle has to turn to align itself to the direction of the path. It is the
maximum distance along the path for which the vehicle can be considered
safe without adding any observations to b0.

GetMinTP1(.) - Returns the minimum distance along the path at which
the vehicle can to start turning to align itself to xe.ψ. It is the minimum
distance along the path from which xe can be observed to be in known free
space.

CacheRepresentation(.)- Returns a cached, indexed set of observations,
B0:s where s is the path length, along the path starting at xs and ending at xe,
while assuming that the heading of the vehicle is aligned with path.

RepUseList(.) - Returns a cached, indexed set of observations, Bs0 :s1 ∈
B0:s, that can be used from the cached set of observations, B0:s, given s0 and
s1 are stp0 and stp1 respectively.

VSafe(.) - returns an ordered set of maximum safe speeds given b0 and
Bs0 :s1 ∈ B0:s and an EML.

SafeConnect(.) - returns the minimum time safe trajectory from xs to xe by
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searching through all possible stp0, vtp0 and stp1, vtp1, while respecting the
upper velocity contraint provided by Vsa f e.

MinTimeBangBangController(.) - returns a minimum time trajectory
between two points, while respecting Vsa f e as the upper bound speeds and the
minimum time required to turn from the starting vertex to some end point and
velocity.

MaxTimeBangBangController(.) - returns a maximum time trajectory
between two points, while respecting Vsa f e as the upper bound speeds and the
minimum time required to turn from the starting vertex to some end point and
velocity.

ComputeSafeDMatrix(.) - returns the minimum safe time matrix D, that
acts as the cost matrix for the TSP in Algorithm 18.

OptimizeRoute(.) - optimizes the speed and heading profile along a route
while modeling the dependence of safe speed of the robot on a given path
segment on the history of motion the robot. The routine uses algorithm 14
and sensor planning as defined in chapter 4 as sub-routines.

Algorithm 18 is similar to Algorithm 9 but can be used for solving the
combined safe, local, informative path planning problem. The only two
differences being, it uses the Dsa f e matrix instead of the D matrix for cost of
the edges and uses the OptimizeRoute(.) function to optimize the best route
once it has been found.

Figure 7.4: 1: In this scenario, the
viewpoints are 10m away from the
target, the vehicle is equipped with a
sensor with a range of 22m and field
of view of 60 degrees, if a viewpoint
views a unique sector of the cylinder,
+1 reward is gained. The maximum
speed of the vehicle is restricted to
3 m/s. 2: An informative route planned
by using RAOr. 3: A safe informative
route planned by using SafeRAOr using
path independence assumption. 4: A
safe informative route planned by using
SafeRAOr while modeling path de-
pendence. Given a maximum heading
rate of the vehicle, ψ̇ = 1.06 rad/s, the
trajectory generated by assuming paths
are independent leads to total time
taken by 38.24s, while the trajectory
generated by modeling path depen-
dence takes 34.37s to cover the same
viewpoints. It takes the planner 1.12s to
generate the trajectory.

Although we did deploy SafeRAOr-G on a vehicle operating in the field,
it was only tested for one scenario, figure 7.4. There are open research
questions that we need to answer in order to prove the effectiveness of this
planner.

1. Under what sensor and environment characteristics is the assumption of
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Algorithm 14: SafeConnect
Input: xs, xe, stp0, stp1,Vsa f e, ψpath, ψ̇, amax , vde f
Output: Minimum time safe trajectory from xs to xe with stp0 & stp1 as turning points
σmin = MAXDOUBLE
for vtp0 = vde f : −vres : 0 do

[valid, σtp0] = MinTimeBangBangController(xs, stp0, vtp0, ψ̇, ψpath, amax ,Vsa f e)
if !valid then

[valid, σtp0] =

MaxTimeBangBangController(xs, stp0, vtp0, ψ̇, ψpath, amax ,Vsa f e)
end
if !valid then

continue
end
for vtp1 = vde f : −vres : 0 do

[valid, σtp1] =

MinTimeBangBangController(stp0, vtp0, stp1, vtp1, ψ̇, ψpath, amax ,Vsa f e)
if!valid continue
for v f = vde f : −vres : 0 do

[valid, σf ] =

MinTimeBangBangController(stp1, vtp1, xe, v f , ψ̇, ψpath, amax ,Vsa f e)
if !valid then

[valid, σf ] =

MaxTimeBangBangController(stp1, vtp1, xe, v f , ψ̇, ψpath, amax ,Vsa f e)
end
if !valid then

continue
end
if Time(σtp0) + Time(σtp1) + Time(σf ) < Time(σmin) then

σmin = σtp0 + σtp1 + σf
end

end
end

end

return σmin

Algorithm 15: OptSafeConnect
Input: G = [V, E], xs, xe, ψpath, ψ̇, amax , vde f , b0, re
Output: Minimum time safe trajectory from xs to xe
mintime = MAXDOUBLE
smin

tp0 = 0
smax

tp1 = s
smax

tp0 = GetMaxTP0(b0, xs, xe)

smin
tp1 = GetMinTP1(re, xs, xe)

B0:s = CacheRepresentation(b0, xs, xe)

for stp0 = smin
tp0 : sres : smax

tp0 do
for stp1 = smin

tp1 : sres : smax
tp1 do

Bstp0 :stp1 = RepUseList(b0, stp0, stp1)

Vsa f e = VSa f e(b0,Bstp0 :stp1 )

[valid, σmin] = Sa f eConnect(xs, xe,Vsa f e, stp0, stp1, ψ̇, ψpath, amax , vde f )

if valid ∧ (Time(σmin) ≤ mintime) then
σf = σmin
mintime = Time(σf )

end
end

end

return σf
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Algorithm 16: ComputeSafeDMatrix
Input: G = [V, E], ψ̇, amax , vde f , b0, re
Output: Safe D Matrix assuming path independence
for xs ∈ V do

for xe ∈ V do
ψpath = atan2((xe − xs).y, (xe − xs).x)
D[xs, xe] = Time(OptSa f eConnect(G, xs, xe, ψpath, ψ̇, amax , vde f , b0, re))

end
end

return σf

Algorithm 17: OptimizeRoute
Input: G = [V, E],r,ψ̇, amax , vde f , b0, re
Output: Route with optimized velocity and heading
σ = empty
W path

R =WR
for i = 0 : (size(r)− 2) do

xs = ri // ri is the ith element of the route
xe = ri+1

σi = OptSa f eConnect(G, xs, xe, ψpath, ψ̇, amax , vde f , bpath
0 , re)

[σi , bpath
0 ] = OptimizeHeading(σi , r, bpath

0 , re, ) // PASP (chapter 4)
σ = σ + σi

end

return σ

Algorithm 18: SafeRAOr-Greedy(SafeRAOr-G)
Input: G = [V, E], vs, ve, B, Tr , Dsa f e, b0
Output: The best trajectory found in run-time Tr
rg = TSP(vs, ve) // Seed local search if no global solution is
found
R = rg
if RouteLength(rg) > B then

return ∅
end
S = SampleSet(V, vs, ve)
r = TSP(S, vs, ve)
if RouteLength(r) <= B then

R = R ∪ r
end
for i = 1 : 3|V| ∧ runtime < Tr do

vnew = WeightedSample(V)
if IsInRoute(r, vnew) then

r = DeleteFromRoute(r, vnew)
end
else

r = AddToRoute(r, vnew)
end
if RouteLength(r) <= B then

R = R ∪ r
end
R = GreedyLocalSearch(G, vnew, R, B)

end
r = arg maxr∈R I(R)
σ = OptimizeRoute(G, r, ψ̇, amax , vde f , b0, re)

return σ
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independence of path cost from motion history effective? Since, for the
first part of the SafeRAOr-G algorithm, the time of traversing the edges
of the graph are assumed to be independent, it needs to characterized
when this assumption starts adversely affecting the performance of the
algorithm.

2. Is there an optimality bound that this algorithm can offer? On the face
of it the algorithm provides a near-optimal solutions if the path indepen-
dence holds true, however its unclear if the optimalty bounds exist if the
assumption is invalid.

3. Is the performance significantly better than that of other sampling based
techniques, if yes under what conditions? Sampling based planners like
the ones developed in [Bircher et al., 2016] and [Mascarich et al., 2018]
can be used to address the safe, informative path planning problems. It
is unclear what kind of problems are better suited to solved using which
algorithm.

Multi-Heuristic Global Path Planning

RAOr has enabled budgeted information gathering to be run online. Given
the run-times of the algorithm we are forced to abstract data gathering tasks
for an object to a single node, figure 7.5. Although this abstraction helps
us reduce the problem size, allowing RAOr to run in real-time, the reduced
granularity of reasoning about information gathering might lead to sub-
optimal behavior.

Figure 7.5: Scouting of Landing Zones
(LZ). We want the vehicle to be able to
scout for landing zones. Left: Since we
cannot deal with big problems online,
we reduce the size of those problems
by aggregating many nodes into one.
In this case vehicle does not scan the
LZ, because the cost of visiting the
node is out of budget. Right: Faster
global planning will enable increased
granularity (more nodes) and hence
enabling partial coverage of LZ.

For example, Figure 7.5 shows a scenario where the vehicle is scouting
for landing zones for a helicopter, if the whole landing zone is abstracted as a
single node, the node is not visited as the cost of visiting the node exceeds the
traveling budget. A faster global planning algorithm would allow for partial
coverage of landing zone, hence better performance on data gathering.

We can use sets of heuristics to decrease global planning run times for
RAOr, allowing us to solve bigger informative path planning algorithms
on-board the vehicle.

We presented preliminary results for using heuristics to speed up RAOr in
chapter 5. However, it is hard to design a single heuristic function that works
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in all environments. Multi-heuristic A∗ [Narayanan et al., 2015] and our
previous work [Choudhury et al., 2015] developed an ensemble of heuristics
to improve the performance of a planner solving diverse problems. However,
these works fail to take into account the hard run-time constraint on an online
algorithm.

Given RAOr can operate with multiple heuristics without the compromis-
ing its optimality and completeness properties, we can develop an ensemble
of heuristics that maximizes RAOr’s expected quality of the solution given
a distribution of planning problems while treating run-time as a constraint.
Section 7.4 formalizes the heuristic set selection problem and provides
a linear-time algorithm to select a near-optimal set of heuristics. The set
of heuristics can be applied to RAOr algorithm along with the GreedyLo-
calSearch algorithm 10.

Selecting the Set of Heuristics

Let, ξ ∈ Ξ be an informative path planning problem. Let, P(ξ) be the
probability of our global planner encountering the problem during run time.
Let the total run-time available for global planning be BT , let hi ∈ H be the
ith. Let, the maximum run-time for a heuristic hi for all planning problems
ξ ∈ Ξ : P(ξ) ≥ 0 be thi

. Let RH : HXΞ → R be the reward achieved by
applying RAOr with a heuristic inH on a planning problem in Ξ. We want to
select a set of heuristicsHonline ⊆ H such that the expected reward achieved
by the global planner is maximized, equation 7.1.

arg max
Honline⊂H

E
P(ξ)

[
max

∀hi∈Honline
R(hi, ξ)

]
(7.1)

∑
hi∈Honline

thi
≤ BT

The optimization problem in equation 7.1 is combinatorial optimization
problem and is NP-Hard. Since the problem is linear combination of maxi-
mization, the function being maximized is monotone and sub-modular with a
knapsack constraint . We can find a near-optimal solution to equation 7.1 in
linear time as presented in algorithm 19.

Although, multi-heuristic RAOr promises to increase the size of the
problem we can tackle online, there are still some open research questions
that will need to be answered for an effective multi-heuristic RAOr.

1. What should be the base set of heuristics? Possible candidates are sets of
well established TSP heuristics [Reinelt, 1994], with a plethora of greedy
reward or distance based heuristics.

2. Can we improve heuristic sets and their ordering online? Tallavajhula et.
al. [Tallavajhula and Choudhury, 2015] presented methodologies to learn a
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Algorithm 19: Greedy Heuristic Set Selection
Input: ξ, P(ξ),H, th∀h ∈ H, BT , RH(.)
Output: Near-optimal set of heuristics inH
Honline = ∅
BH = 0
whileH 6= ∅ do

h∗ = arg maxh∈H

EP(ξ)

[
maxh∈Honline∪h RH(hj ,ξ)−maxhi∈Honline

RH(hi ,ξ)

]
th

if BH + th∗ ≤ BT then
Honline = Honline ∪ h∗
BH = BH + th∗

end
H = H \ h∗

end

returnHonline

set contextual heuristics online, demonstrating significant improvement in
planning run-times.

3. Can we model heuristic interdependence? Since heuristics affect the set
of paths available, they can affect each others performance. It is not clear
whether this phenomenon needs to be modeled. If it turns out to be a
significant contributor to planning time speed-ups, a learned policy on
heuristic sets along the lines of Sanjiban et. al. [Choudhury et al., 2016]
might be useful.

The heuristic selection algorithm will allow the set of heuristics to be op-
timized for the planning problems the vehicle will face during its lifetime.
Multi-heuristic RAOr with heuristic selected through list selection will allow
global planning to run faster enabling the vehicle to solve larger informative
path planning problems online.

Data Gathering for Improving Long-Term Deployment

Figure 7.6: Illustrated here is a sce-
nario where wrong assumptions about
the environment lead to an uncertain
map, which requires the vehicle to
travel more to gain information about
the environment. The vehicle gains the
same information about the environ-
ment with a much smaller path if its
assumptions about the object heights in
the environment are correct.

Assumptions are made by data gathering systems for planning and operat-
ing effectively under uncertainty. The validity of these assumptions can affect
the performance of a data gathering system. Figure 7.6 presents an example
where the robot is using Monocular Semantic Mapping for creating the map
of the environment. Wrong assumptions about the environment lead to worse
mission performance. If the vehicle is deployed for a long term, the cumu-
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lative performance of the vehicle over its deployment might be significantly
improved by improving its assumptions about the environment.

Ideally, the information gathering system should be able to gain informa-
tion for improving its assumptions about the environment. However, there
is an exploitation and exploration trade-off involved in deciding for when to
gain information for what assumptions. Lets assume we have deployed the
information gathering system with Monocular Semantic Mapping. Assum-
ing the system is uncertain about the height of one of the classes of objects
it sees in the environment. Obviously this uncertainty affects the systems
performance, Figure 7.6. We assume that the robot is deployed at a site for
multiple data gathering missions and data collected during the mission is
used to update the assumptions that the robot uses for the next mission. The
information gathering system should lay emphasis on removing uncertainty
from assumptions,if the vehicle has to be deployed for a long time, so that its
performance is improved for future missions but if the vehicle is deployed for
only one mission there might be very little incentive in gathering data for im-
proving assumptions. Our current formulation does not allow the information
gathering agent to reason to do such reasoning.

We define data gathering for improving vehicle’s assumptions about the
environment as implicit data gathering for assumption improvement.

In this section we develop a formulation to enable implicit data gathering
for assumption improvement while exploiting the framework developed for
safe efficient data gathering.

Let, the vehicle be deployed for T ∈ N number information gathering
missions. Let, a ∈ A be the vector of assumptions. Let, ba ∈ BA be the prob-
ability distribution over the assumptions, ba : A → [0, 1]. The observation
model of the robot depends on the assumptions it makes about the environ-
ment, let the observation model be given by Pba(o|m), where o ∈ O is an
observation and m ∈ M is the state of the environment. Let oa

n ∈ Oa be
the observations taken by sensors during the nth deployment. Let PA(oa|m)

be observation model used to update assumptions. For the nth mission the
vehicle selects a route r∗n ⊂ V to optimize the information theoretic reward
function I(.) + Iwn(.) : V → R. Where, Iwn is a reward function that
encourages gathering of data for improving assumptions depending on wn.
wn ∈ R|A| is a real vector of same dimension as space A and decides how
important each assumption is for data gathering. Hence we want to find a
policy σa : BA → R|A|, such that the explicit information demanded by the
user is maximized over T runs.

σ∗a = arg max
σa

∑
n=0:T

E
oa

n
I(r∗n)) (7.2)
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ba
n(a) = αPA(oa|m)ba

n−1(m)

r∗n = arg max
r

I(r) + I(wn)(r)

C(r∗n) ≤ B

Where, α denotes a constant normalizer.
Equation 7.2 presents a formulation to address the data gathering prob-

lem for long-term improvement. However, there are plenty of open open
questions that need to be addressed before this formulation is puti in practice.

1. How do we restrict the space of assumptions? Space of assumptions can
theoretically be as big as assumptions about all the objects in the world.
Given the uncertainty in the location and kind of deployment of the system
can we reduce that space?

2. What is the correct distribution to represent belief in assumption space?

3. How do solve the daunting optimization problem? We can use Monte-
Carlo Tree Searches (MCTS) for solving the optimization problem. MCTS
is a popular technique for solving large POMDPs [Marchant et al., 2014].
It turns a tedious search in decision trees into an efficient approximation
using Monte-Carlo samples from the tree. Its main advantage over other
techniques, such as Point-Based Value Iteration is that it does not require
the overhead of maintaining alpha-functions over all states nor choosing
the states for which alpha-functions should be maintained.

7.5 Final Thoughts

The long-term vision of this work is to enable autonomous agents to actively
reason about their sensory and dynamic capabilities while being safe. The
agents should be able to efficiently use their sensory resources to gather
implicit and explicit information pertinent to their mission. The algorithms
presented in the thesis, form a framework for safe, efficient, multi-resolution
data gathering that has enabled UAVs to operate in diverse environments,
scales, and applications. We evaluated our algorithms on multiple UAVs
varying from full-scale helicopters to small quad-rotors, running closed-loop
autonomous missions that cumulatively span hundreds of kilometers. We
have demonstrated that contributions,and insights regarding safety, implicit
and explicit data gathering enable agents to partially achieve our vision. The
future work section lists concrete steps in furthering the development of
such autonomous agents. We hope that insights developed in this work help
autonomous agents to reach our long-term vision.
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