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Abstract— Plant phenotyping is the measurement of observ-
able plant traits. Current methods for phenotyping in the field
are labour intensive and error prone. High throughput plant
phenotyping in an automated and noninvasive manner is crucial
to accelerating plant breeding methods.

Occlusions and non-ideal sensing conditions is a major prob-
lem for high throughput plant phenotyping with most state-of-
the-art 3D phenotyping algorithms relying heavily on heuristics
or hand-tuned parameters. To address this problem, we present
a novel model-based optimization approach for estimating plant
physical traits from plant units called phytomers. The proposed
approach involves sampling parameterized 3D plant models
from an underlying probability distribution. It then optimizes,
making the mass of this probability distribution approach true
parameters of the model.

Reformulating the phenotyping objective as a search in
the space of plant models lets us reason about the plant
structure in a holistic manner without having to rely on
hand-tuned parameters. This makes our approach robust to
noise and occlusions as frequently encountered in real world
environments. We evaluate our approach for plant units taken
across simulated, greenhouse and field environments. This work
furthers field-based robotic phenotyping capabilities paving the
way for plant biologists to study the coupled effect of genetics
and environment on improving crop yields.

I. INTRODUCTION

Plant phenotyping is the process of computing quantitative
measurements of observable plant traits. A subset of these
observable traits are physical attributes like stem diameter,
leaf angle, leaf length and leaf width. Knowing plant pheno-
types accurately and throughout a plant’s growth is central to
making breeding decisions so as to produce crops with higher
yields, drought tolerance and disease resistance. Currently
established processes for measuring plant phenotypes in
outdoor crop fields is labour intensive, error prone and has
limited throughput leading to what has come to be known
as the phenotyping bottleneck in the plant breeding pipeline
[1]. High throughput automated methods employing robotic
platforms and advances in computer vision and machine
learning methods are hence crucial to improved production.
We are developing high-throughput phenotyping methods for
accelerated breeding of biofuel crops like sorghum.

This paper addresses the problem of mapping plant sub-
units called plant phytomers to their phenotype values. A
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Fig. 1. (a) shows the robotic phenotyping platform used for collecting
outdoor field data along with a 3D reconstructed plant phytomer obtained
from field images. (b) shows proposed approach sampling plant models
from an underlying distribution and optimizing for making the mass of this
distribution approach phenotypes of the reconstructed 3D field phytomer.

plant phytomer, as seen in Fig. 1, consists of a leaf, its
sheath and the stem segment on which the leaf resides. It
can be thought of as a functional building block of the plant
and has special significance for phenotyping purposes, since
phenotypic traits like leaf length, leaf angle, leaf width, and
stem diameter can be estimated directly from this structure.
Our high throughput phenotyping robotic platform shown in
Fig. 1 has been used for collection of outdoor field data used
in our experiments. The uniqueness of this platform lies in
being able to collect 2D images of a plant at multiple vertical
heights from different horizontal viewpoints. More details
on the platform and data acquisition processes can be found
in [2]. In our previous work [3], we performed multi-view
3D reconstruction on a sequence of 2D images collected by
this platform and reconstructed 3D models of sorghum plant
phytomers.

The focus of this paper is extraction of phenotype val-
ues from already reconstructed 3D plant phytomers. The
phytomers obtained from outdoor field environments are
typically noisy and occluded as can be seen in Fig. 1(a).
Methods using traditional 3D geometric algorithms for doing
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phenotyping in controlled indoor environments [4]-[6] can
break down under such noise and occlusion levels since
assumptions on connectivity and non-degeneracy of cor-
responding 3D surface meshes is violated in such cases.
We instead propose a model-based optimization approach
employing parametric models capable of leveraging prior
knowledge on the structure of a plant phytomer. This makes
our approach more robust to occlusions and less sensitive to
noise. In particular, the main contributions of this paper are:

(1) Formulation of the phenotyping problem as that of an
optimization in the space of plant models. Design of a
parametric plant phytomer model for this objective.

(2) Evaluation of proposed approach on simulated, green-
house as well as field data

(3) Robustness analysis for plant phytomer data corrupted
with noise and occlusions

II. RELATED WORK

A key capability of high throughput phenotyping platforms
is the ability to non-destructively capture plant traits. To
this end, phenotyping platforms deploy a variety of imaging
modalities like 2D/3D visible imaging, multi-spectral imag-
ing, thermal imaging and flourescence imaging. For purposes
of phenotyping, the use of 3D visible imaging is an easy and
cost-effective way of making metric measurements of plant
physical traits purely from imaging.

Most of the state-of-the-art in plant phenotyping using
3D imaging, however, is in controlled greenhouse environ-
ments [4]-[7], where it is possible to obtain high fidelity
3D reconstructions with lower noise and occlusion levels.
Drapikowski et. al in [4] estimate phenotypes like length,
width, and area of leaves using 3D surface mesh opera-
tions on segmented leaf meshes. McCormick et. al in [5]
too generate segmented 3D surface meshes for estimating
phenotypes like leaf area and leaf angle. Such methods,
however, make certain assumptions about the underlying 3D
data such as accurate segmentation into stem and leaf classes,
non-degenerate surface reconstructions, connectedness in re-
constructed 3D surfaces and validity of geometric shape ap-
proximations. In presence of noise and outliers, as commonly
encountered in actual field data, these assumptions may fail
resulting in unpredictable values.

In contrast, approaches leveraging some prior knowledge
related to the 3D plant model are able to reason about the
plant structure in a much more holistic manner and are
hence more robust to noise and occlusions. There have been
methods proposed for recognizing and matching 3D object
models in cluttered point clouds for applications like table
top manipulation, industrial inspection [8], [9]. However,
these methods rely either on geometric primitives or on
a prior library of fixed models. It is difficult to come up
with a library of fixed models that can exhaustively cover
naturally occurring plants. Instead parametric models defined
recursively are more suitable for modeling plant structures.

In graphics and plant biology literature, a popular tool
for modeling plants with recursive branching structures like
trees and bushes is the Lindenmayer System (L-System) [10].

L-system is a type of a formal grammar consisting of an
alphabet of symbols that encode the geometric structure of
the plant like number of branch segments, branching angle,
branch length and branch thicknesses. Binney et. al in [7]
utilize the L-system grammar to parametrically model a tree
branch as a sequence of cylinders. They then utilize a particle
filter based approach to converge to model parameters that
best match an observed tree branch. However, their sequence
of cylinders model is fairly simplistic for modeling sorghum
leaf shapes as required in our case. Moreover, they test their
algorithm on only simulated data and a simplistic real branch
in a controlled indoor environment.

In this paper, we propose an approach that parametrically
models complex leaf shapes as part of the plant phytomer
structure and employs a model-based optimization method to
search in the space of model parameters for the most likely
model. Parameters of the most likely model in-turn gives us
our phenotypes of interest. We show results for both indoor
greenhouse and outdoor field environments.

III. PLANT PHYTOMER EXTRACTION

Before going into the details of our proposed approach
for estimating phenotypes from already extracted 3D plant
phytomers, we will briefly go into the system setup and
algorithms used for obtaining 3D plant phytomers from raw
2D images. Below we describe this for greenhouse and field
environments. This is the focus of our previous work and
more details can be found in [3].

A. Indoor Greenhouse Environments

For generating greenhouse 3D plant phytomers, we use
data collected by McCormick, et al. in [5]. They place
sorghum plants on a turntable and capture 360 degree view
depth images at 30° increments using a Kinect camera. The
multiple depth images obtained are then fused together into a
single 3D point cloud using the iterative closest point (ICP)
algorithm. We then extract plant phytomer structures from
the reconstructed plant point cloud using a 3D variant of
the region growing algorithm. Fig. 3(a) illustrates the input
imaging viewpoints and output 3D plant phytomers for the
greenhouse environment.

Fig. 2. A closeup of the multi-camera sensor pod deployed on the robotic
platform. The sensor pod contains eight forward facing and two additional
cameras verged on either ends at an angle of 30°. The sensor pod is
connected to a robotic arm and can collect images at multiple plant heights.
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Fig. 3. Preprocessing to obtain 3D plant phytomers from raw input images.
(a) shows input depth imaging viewpoints and output 3D plant phytomers
for indoor greenhouse environments. (b) shows input grayscale imaging
viewpoints and output 3D plant phytomers for outdoor field environments.

B. Outdoor Field Environments

A close-up of one of the multi-camera sensor pods de-
ployed between sorghum crop rows in the field is shown in
Fig. 2. The sensor pod contains eight forward facing cameras
arranged in two rows along with two additional cameras
verged on either ends at an angle of 30°. The sensor pod
is mounted on a robotic arm that moves vertically to collect
2D images at multiple plant heights inside the canopy. We
utilize a structure-from-motion + multi-view stereo pipeline
proposed in [11] for generating 3D point clouds of the
sorghum plant phytomer from 2D grayscale image sequences
captured in the field.

Fig. 3(b) illustrates the input imaging viewpoints and
output 3D plant phytomers for the field environment. It can
be seen that the plant phytomer reconstructions obtained in
outdoor field environments is much more degraded with high
degree of noise and occlusions. This is primarily due to
constraints in the imaging sensors and viewpoints that can
deployed in a field setting as well as due to added scene
clutter from background and neighboring plants.

IV. PROPOSED APPROACH

We now address the problem of computing phenotype
values from reconstructed 3D plant phytomer structures.
The overall idea is to generate parametric models of plant
phytomers and compare those against the reference plant
phytomer whose phenotypes we wish to estimate. The pa-
rameters used for generating the phytomer models are taken
to be random variables sampled from an underlying proba-
bility distribution. The objective is to make the mass of this
probability distribution approach the true parameters of the
reference plant phytomer. We describe below details related
to the problem formulation (Section I'V-A), parametric model
designed for representing a plant phytomer (Section IV-B),
error metric computation (Section IV-C) and the model-based

optimization employed (Section IV-D). The proposed overall
approach is also illustrated in Fig. 4.

A. Problem Formulation

We represent the parametric model of the phytomer as
G(X) that takes as input a k-dimensional vector X =
(X1 X, Xk]T and outputs a point cloud P of the
phytomer model. The input model parameters X are in turn
random variables sampled from a probability distribution
function f(-;u) parameterized by a finite-dimensional real
vector u. The input model parameters coincide with phe-
notypes that we are interested in estimating for the plant
phytomer. For instance, parameters for leaf angle, leaf length
and leaf width all fall under phenotypes of interest.

The point cloud P generated by G(X) for each sampled
value of the parameter vector X is then compared against
the reference phytomer point cloud P"¢f whose phenotype
values we wish to estimate. An error function E(P,P"¢/)
computes a scalar value representing distance error between
a generated point cloud P and reference point cloud P"¢f.
A corresponding score value S(X) is computed alongside,
and is expressed as S(X) = —E(P,Pre/).

The phytomer model function G(X) and consequently
the score function S(X) that we compute does not have a
closed form expression and is also expensive to compute.
This necessitates the use of stochastic optimization based
techniques for maximizing the score function. The stochastic
optimization routine updates the parameter vector u defining
the family of probability density functions (pdfs) f(-; u) from
which values of X = (X1, Xo,..., X)) are being sampled.
The pdf parameters are updated so as to make the mass of
the pdf f(-;u) approach parameters of the reference plant
phytomer whose phenotypes we wish to estimate.

B. Phytomer Model Description

The phytomer model function G(X) takes as input the k-
dimensional vector X = [X; X, ... X;JT and outputs
a point cloud P of the phytomer model. We design our
parametric sorghum phytomer model based on the structure
of bioenergy sorghum [12]. We consider k = 6 input model
parameters expressed as,

Xq stem diameter
X stem length
| X3 leaf angle
X = Xq| leaf length S
X5 leaf width
X leaf rotate angle

The stages involved in converting input model parameter
vector X into point cloud P are illustrated in Fig. 5(a)-(d).
For generating the initial phytomer skeleton shown in Fig.
5(a), we begin with parameters X2, X3 and X4, with X,
defining length of the stem segment (in red), X, defining
length of the leaf segment (in green), and X3 defining
the angle between stem and leaf segments. The phytomer
skeleton in Fig. 5(a) is then converted to the skeleton in Fig.
5(b) by subdividing the leaf segment into smaller segments
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Overall proposed approach for phenotyping using plant phytomers via model-based optimization. It begins by taking parameters X7 to X as

inputs and using the phytomer model function G(X) to generate a phytomer P corresponding to the input parameters. P is then compared against the
reference phytomer P"¢/ whose phenotypes we wish to estimate. The distance error between P and P"¢/ is minimized by the stochastic optimization
for input parameters X1 to X to best match generated phytomers to reference phytomer.

and rotating each subsegment uniformly by a value of Xg.
The last 20% of the subsegments near the end of the leaf are
rotated by a smaller value of X4/2. This is done since due
to gravity, naturally occurring leaves of bioenergy sorghum
often have a parabolic shape with leaf curvatures changing
less rapidly near the leaf tips.

Fig. 5(c) shows a 3D model obtained from the phytomer
skeleton in Fig. 5(b). For generating the stem 3D model, the
stem portion of the skeleton (in red) is expanded cylindrically
with a diameter value of X;. For generating the leaf 3D
model, each subsegment ¢ of the leaf midrib (in green)
is expanded using a locally planar patch with a concavely
decreasing width value. These planar patches are centered at
the leaf midrib and are initially rectangular in shape but later
become trapezoids as the width of the leaf starts to shrink.
The planar patch width X¢ as a function of the leaf midrib
subsegment ¢ can been expressed as

i Wmax 1 <4 <inaz
X5 = k+log(1fri+efk) . .
Wmax k+log(1te—F) tmax S 1 S Npieces
where,
1 — Z’maav
Ty =

Npieces — tmaz

2
where, np;eces represent the total number of leaf midrib sub-
segments and 7,,4, represents the subsegment index where
the leaf width has a maximum value of wW,,qz. Tmaez 1S SEt
to be half of nyicces and Npjeces 1s set to a value of 30. The
parameter k controls the degree of concavity, and is set to a
value between 1 and 3. These leaf width design parameters
were chosen so as to best resemble naturally occurring leaves
of bioenergy sorghum that are typically long and thin with
mostly constant widths that taper near the tips.

The resulting 3D model of the plant phytomer is illustrated
in Fig. 5(c). Finally, 3D points are uniformly sampled from
the surfaces of the phytomer model in Fig. 5(c) to generate
a 3D point cloud representation shown in Fig. 5(d).

This process of generating the phytomer point cloud P

from input model parameters X falls under the phytomer
model function G(X). As can be seen, G(X) (and conse-
quently the score function S(X)) does not have a closed
form expression and thus cannot provide gradient or Hessian
information in closed-form. It is also expensive to compute.
This necessitates the use of stochastic optimization based
techniques for maximizing the score function.

C. Error Function

The error function E(P,P"¢f) computes a scalar value
representing distance error between a generated point cloud
P and the reference point cloud P"¢f. To compute this
distance error, we first align 7 with P"¢/ using the itera-
tive closest point algorithm (ICP) [13]. The ICP algorithm
computes a 6 DOF transformation 7" which when applied to
points in P aligns them to best match the points in P"¢/. The
transformed point cloud P is expressed as P’. This initial
alignment using ICP before computing the distance error
between generated and reference point clouds is important,
otherwise the distance error would give arbitrary values
depending on how P and P"¢/ are initially oriented with
respect to each other.

We then use the Hausdorff distance to compute the
distance error between two 3D point sets P’ and Pf.

(a) (b) (c) (d)

Fig. 5. Different stages of the parametric phytomer model function G(X).
(a) shows initial skeleton generated using parameters Xo, X3, X4. (b) is
derived from (a) by diving leaf segment (in green) into smaller subsegments
and rotating each subsegment cumulatively by a value of Xg. (c) is the 3D
model generated from the skeleton in (b), with stem expanded cylindrically
by diameter X; and leaf expanded in locally planar patches with widths
X g Finally, (d) is the 3D point cloud P generated by uniformly sampling
points from surfaces of 3D phytomer model in (c).
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Hausdorff distance is defined more generally as a distance
metric capturing how far two subsets of a metric space are
from each other. Thus, the Hausdorff distance can be used
to determine the degree of resemblance between two point
clouds P’ and P"¢/ that are aligned with each other via the
ICP algorithm.

For two non-empty subsets S; and S of a metric space,
the Hausdorff distance dg (S1,.52) is given as,

dp(S1,S2) = max{ sup inf d(s1,s2), sup inf d(s1,s2)}
5165182652 5265251651
€))

where, sup represents the supremum and inf the infimum.

In our case, these two subsets .S and S5 are 3D point sets
P’ and P"¢/. The Hausdorff distance d (P’, P"f) between
transformed point cloud P’ and reference point cloud P"¢/
can now be expressed as,

dig (P, Py = max { h(P', P ), (P, P') }
where,

h(P',Prel) = i d(p’, pre
( )=max { min {d@ppres) }}

{ pr,rgg,{ d(pres,7') 1}

WP, P =

max
pref cpres

“4)

where, p’ € P’ and p"®/ € P/, and d(p', pres) is any
distance metric between these points. We take d(p’, pre) as
the Euclidean distance between 3D points p’ and p"¢/f.

In Eq. 4, distance h(P’, P ¢f) is defined from point set
P’ to P"¢/ while distance h(P"¢/, P’) is defined from P ¢/
to P’. It isn’t necessary that these two directed distances are
equal. The final Hausdorff distance dy (P’, P"¢f) between
P’ and P"¢/ is hence computed as the maximum of the two
directed distances. This is then converted to a score S(X) =
—dy (P, Pref) that is passed on to the optimization routine.

D. Stochastic Optimization

For stochastic optimization, we use the cross-entropy
method (CE) method proposed by Rubinstein in [14] for esti-
mating rare-event probabilities using an importance sampling
procedure with cross-entropy or Kullback-Leibler divergence
as measure of closeness between two sampling distributions.
Subsequent work by Rubinstein in [15] showed that the same
CE algorithm can also be used for optimization by formu-
lating the optimization as a rare-event estimation problem.
Botev et al. in [16] provide a tutorial-based introduction on
use of cross-entropy method for optimization. Our goal is to
maximize score function S(X) so as to minimize distance
error between point clouds 7 and P"¢f. This goal of finding
maximum of S(X) over a given set X' can be expressed as,

S(X*) =77 = max S(X) (5)

We can now associate the optimization in Eq. 5 with the
estimation of rare-event probability | = P(S(X) > 7).,
where X has probability density function (pdf) f(-;u) on
X and « is close to unknown ~*. The objective of cross-
entropy optimization is now to find an importance sampling

Algorithm 1 Cross Entropy Algorithm for Optimization
[pN7]. Set

1: Choose initial parameter vector V. Let N¢ =
t =1 (level counter).

2: while ¢t < t,,,, do

3: Generate X1,Xs,...Xy ~ f(;;¥¢—1). Compute
performances S(X;) for all ¢, and order them from
smallest to largest : S1) < Sy < Spn). Let 4
be the sample (1 — p) quantile of performances, that
is 4t = S(N-Net1)

4: Use the same sample X1, X5, ... Xy and solve the
stochastic program,

N
max 5y ;I{S(xi)zat} In f(Xi;v)

Denote the solution by V.
5: Increment iteration counter as ¢ < ¢ + 1.

distribution that concentrates all its mass in a neighborhood
of point X*. This leads to a multi-level CE algorithm where
a sequence of reference parameters {v;} and levels {%:}
are constructed with the goal that they converge to v* and ~y
respectively. This can be implemented in an iterative manner
as detailed in [16] and summarized in Algorithm 1.

In Algorithm 1, at each iteration ¢, we simulate N in-
dependent random variables X, X, ... Xy from the cur-
rently estimated importance sampling density f(-,¥;—1) and
let 4; be the (1 — p) quantile of the performance values
S(X1),5(X3),...5(X ) where p is a user specified param-
eter called the rarity parameter. We then update the value of
Vy—1 to ¥V, where V; is computed using cross-entropy mini-
mization (or equivalently likelihood maximization) based on
the elite set of random variables N¢ = [pN] for which
S(Xi) = At

For our application, X is the k-dimensional random vari-
able X = [X1 X» X;JT representing the param-
eters used for generating the phytomer model and the set
X constitutes the domain of these parameters. The class of
probability distribution functions (pdf) f(-; ¥;—1) from which
random variables X;,Xs,... X are sampled is taken to
be a multivariate normal distribution. For the k-dimensional
random variable X, this is expressed as,

XNN(/J'tflaztfl) (6)

where, p;—1 is the k-dim mean vector and 3;_; is the k x k
covariance matrix expressed as,
Hi—1 = E[X] = [E[Xl] 5 E[XQ] PPN

S = E[(X = )X = pe-1)7]
= [Cov[X;, X;];1 <i,j < k]

, Elx)] T
)

As part of Step 3 of Algorithm 1 the samples X; are
ordered according to their corresponding score values S(X;)
and top (1—p) quantile of samples are chosen for computing
pdf parameters for the next iteration. It turns out that for
a multivariate normal distribution, the pdf parameters that
minimize the stochastic program in Step 4 of Algorithm 1 is
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simply the sample mean p, and sample variance 3; of the
top (1 — p) quantile of samples having S(X;) > 4. These
newly computed pdf parameters, p; and 3, are the solutions
v; in Algorithm 1. We take p = 0.9 for all our experiments.

Additionally, when applying cross-entropy optimization
we observed that the distribution converges around a small
set of samples too quickly. In order to prevent this early
convergence, we employ a trick frequently used in particle
filtering, that is to add some variance noise to the distribution
at each iteration [17]. Hence for each iteration ¢, a matrix Z;
is added to the sample covariance matrix as 3; < X; + Z;.
When selecting the magnitude of this additional covariance
noise Z;, there is a trade-off between convergence and
robustness. If there is more added noise, the model will
converge more slowly but be more robust to ill-conditioned
error surfaces. We take Z; to be a diagonal matrix with
each diagonal entry linearly decreasing with iterations ¢ and
initialized as {Zo}” = 0.5 x {20}“’, i=1...k.

V. EXPERIMENTAL RESULTS
Implementation Details

We have implemented our approach in C++ making use
of the Visualization Toolkit (VTK) [18] and Point Cloud
Library (PCL) [19] libraries.

Runtime Performance

The runtime performance of our approach is primarily
a function of the number of samples used in the cross-
entropy optimization and the total number of 3D points in
the phytomer point cloud. Table I shows average runtime
values per optimization iteration for our implementation
(parallelized across 8 threads) running on a Linux system
with an Intel i7 2.9GHz CPU. We typically use 500 samples,

Iteration 5

Iteration 3

Iteration 1

Simulated
(with noise)

Greenhouse

Field

(a)

Fig. 6.

TABLE I
AVERAGE RUNTIME PER OPTIMIZATION ITERATION (IN SECONDS)

Number of 3D Points

1000 5000 10000
Number 100 0.67 3.61 7.98
of 500 3.31 18.8 40.3
samples 1000 6.80 37.1 80.4

~5000 3D points and 10 optimization iterations in all our
results. For the present application we do not require the
system to be real-time since the data processing is being
done offline. However, since operations for each sample are
independent, the proposed approach is highly parallelizable.

Optimization results each iteration

Fig. 6(a) shows qualitative results of the proposed ap-
proach on 3D plant phytomers in simulated, greenhouse and
field environments. It visualizes the parametric model gener-
ated using mean parameter values of the elite samples for the
start and end optimization iterations and for two iterations
in between. It can be seen that the model parameters used
in the optimization are expressive enough to capture varying
plant anatomies across environments.

Fig. 6(b) shows corresponding elite sample mean and
variance plots for leaf length, leaf angle estimation for the
field plant phytomer visualized in Fig. 6(a). It can be seen
that with each iteration of the optimization, estimated values
approach actual values with decreasing variance with the leaf
length estimate converging faster than the leaf angle estimate.

Robustness Analysis

To analyze robustness of the proposed approach, we take
the field phytomer visualized in Fig. 6 and corrupt it with

Iteration 10

150 —— Mean- Variance
= | Ground truth
<
100
=
()

“E I — S
[
A
50 * : ' :
0 2 4 6 8 10
Number of iterations
80 )
—— Mean} Variance
@ 60 . e Ground truth
=
EIE L
<
= 20
Q
=

Number of iterations

(b)

(a) shows qualitative results for phytomers from simulated with noise (top), greenhouse (middle), and field (bottom) environments. Reference

phytomer whose phenotypes are to be estimated is colored black and phytomers generated using mean parameter estimates of elite samples each iteration
are colored red and green. (b) shows corresponding elite sample mean and variance plots for the field phytomer visualized in (a).
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(c) (d)

(a) shows two phytomer point clouds taken from a dataset corrupted with noise and occlusions respectively. (b) shows corresponding model fits

using the proposed model-based optimization approach (c) shows (degenerate) 3D surface reconstructions of (a) as used by baseline model-free methods.
(d) shows quantitative results from proposed model-based optimization for leaf length estimation on both corrupted datasets containing 50 phytomers each.

noise and occlusions to create two augmented datasets of 50
phytomers each. In the absence of sufficient field data, this
enables us to validate our approach on an larger, augmented
dataset. For creating the first (noisy) dataset, we add Gaus-
sian noise with zero mean and 0.5 cm standard deviation
to each 3D point of the original phytomer point cloud. For
creating the second (occluded) dataset, we randomly sample
a sphere of diameter 6 cm in the original phytomer point
cloud and remove all 3D points falling inside it.

Fig 7(a) shows two phytomer point clouds, one taken
from the noisy and one taken from the occluded dataset
respectively. Fig 7(b) shows corresponding mean model fits
using the proposed model-based optimization approach. Fig
7(c) shows (degenerate) 3D surface reconstructions generated
using Poisson surface reconstruction method [20] as used by
model-free methods like [4], [5]. Such model-free methods
working primarily on a surface mesh representation of the
plant without leveraging prior information on the plant
structure break down under such noise and occlusions since
assumptions like connectivity and non-degeneracy of the
reconstructed 3D surface mesh are violated in such cases.

Fig. 7(d) shows quantitative results for leaf length esti-
mation for both datasets respectively. The optimizer starts at
random initialization points for the leaf length parameter for
all 50 phytomers in both datasets. It can be seen that the leaf
length estimate converges to approximately a £5 cm band
(slightly smaller for dataset 2) around the ground truth leaf
length value of 75 cm.

Estimation of phenotypes across varying plant anatomies

To evaluate phenotype estimation quantitatively across
plant phytomers with varying anatomies, we run the algo-
rithm on a simulated dataset of 50 simulated plant phytomer

with added Gaussian noise and on a real-world dataset of 30
real world plant phytomers (20 greenhouse, 10 field).

The simulated phytomer dataset is generated using the
parameteric model described in Section IV-B and varying
values of X; (stem diameter) between 2 and 5 cm, X
(stem length) between 10 and 20 cm, X3 (leaf angle)
between 30° and 60°, X4 (leaf length) between 40 and 70
cm, X5 (leaf width) between 4 and 8 cm and Xg (leaf
rotate angle) between 3° and 4°. To each 3D point in the
simulated point cloud, Gaussian noise with zero mean and
0.5cm standard deviation is added. The greenhouse and field
phytomer datasets were collected using methods described
in Sections III-A and III-B respectively. The ground truth
phenotype values for greenhouse and field phytomers were
determined manually using MeshLab [21].

We show results for estimation of leaf phenotypes like
leaf length and leaf angle since those are typically hard for
traditional 3D geometric methods to estimate. Additionally,
ground truth for these two leaf phenotypes can be estimated
with least ambiguity (unlike leaf width or leaf area). Table
IT tabulates correlation coefficients for leaf length and leaf
angle estimates for simulated and real-world datasets. Fig.
8 additionally shows correlations plots for the real-world
dataset consisting of 30 plant phytomers. For phenotyping
applications, a metric like correlation coefficient is more rel-
evant than absolute error values since the eventual goal is to
study correlation of phenotypes with underlying genotypes.

From the correlation values it can be seen that leaf length
estimation has a high positive correlation with R > 0.95 for
both simulated and real-world datasets. Leaf angle estimation
too is positively correlated but with lower values than leaf
length estimation especially for the real-world dataset. From
the optimization point of view, this happens because the
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TABLE I
CORRELATION COEFFICIENT VALUES FOR PHENOTYPE ESTIMATION

Simulated with noise Greenhouse+Field
(50 phytomers) (30 phytomers)
Leaf Length 0.99 0.96
Leaf Angle 0.97 0.82
5 90 _\éj 80
£ 80 .
2 & 70 o °° o
8 70 g 0% o ©
= 50 = ° ° .
] ]
%40 % 50 . o
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(a) (b)

Fig. 8. Correlation plots for (a) leaf length estimation and (b) leaf angle
estimation on the real-world dataset of 30 plant phytomers.

error landscape is flatter in the leaf angle axis than in the
leaf length axis. A possible reason for that could be is that
the ICP algorithm is able to align the leaf surface curvature
(that affects leaf length directly) better than the stem/leaf
intersection point (that affects leaf angle directly).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a model-based approach for
estimating phenotype values from 3D plant phytomers by
reformulating the phenotyping problem as that of an opti-
mization in the space of plant model parameters. We saw
that, while the effectiveness of a model-based approach relies
on the expressiveness of the underlying model used, it is
a powerful paradigm that can provide reasonable estimates
even under noise and occlusions. We evaluated the perfor-
mance and robustness of our approach in estimating leaf
phenotypes in both simulated and real-world environments.

Currently, we perform preprocessing on collected data so
as to extract plant phytomers that are then used for pheno-
typing. As future work, one direction would be to extend
the proposed approach to more complete plant anatomies
consisting of multiple plant phytomers. One way to model
that could be to define a L-system grammar for multiple
phytomers and including these L-system grammar symbols
as variables in the stochastic optimization. This would,
however, come at the cost of increased search space due to
added dimensionality. Another interesting direction for future
work would be to use semantic class labels (like stem and
leaf) for 3D points and add that as a label mismatch cost to
the current optimization objective. This can help in weighting
stem and leaf points differently ensuring more robust fits.
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