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Abstract

Ancient hydrothermal systems are a high-priority target for a future Mars sample return mission because they
contain energy sources for microbes and can preserve organic materials (Farmer, 2000; MEPAG Next Decade
Science Analysis Group, 2008; McLennan et al., 2012; Michalski et al., 2017). Characterizing these large,
heterogeneous systems with a remote explorer is difficult due to communications bandwidth and latency; such a
mission will require significant advances in spacecraft autonomy. Science autonomy uses intelligent sensor
platforms that analyze data in real-time, setting measurement and downlink priorities to provide the best
information toward investigation goals. Such automation must relate abstract science hypotheses to the mea-
surable quantities available to the robot. This study captures these relationships by formalizing traditional
‘‘science traceability matrices’’ into probabilistic models. This permits experimental design techniques to
optimize future measurements and maximize information value toward the investigation objectives, directing
remote explorers that respond appropriately to new data. Such models are a rich new language for commanding
informed robotic decision making in physically grounded terms. We apply these models to quantify the
information content of different rover traverses providing profiling spectroscopy of Cuprite Hills, Nevada. We
also develop two methods of representing spatial correlations using human-defined maps and remote sensing
data. Model unit classifications are broadly consistent with prior maps of the site’s alteration mineralogy,
indicating that the model has successfully represented critical spatial and mineralogical relationships at Cuprite.
Key Words: Autonomous science—Imaging spectroscopy—Alteration mineralogy—Field geology—Cuprite—
AVIRIS-NG—Robotic exploration. Astrobiology 18, 934–954.

1. Introduction

Ancient hydrothermal systems are a high-priority
target for a future Mars sample return mission because

they contained energy sources for microbes and can preserve
organic materials (Farmer, 2000; MEPAG Next Decade
Science Analysis Group, 2008; McLennan et al., 2012; Mi-
chalski et al., 2017). Two candidate landing sites (Northeast
Syrtis Major and Gusev Crater) for the Mars 2020 rover have
evidence for alteration at elevated temperatures (Squyres
et al., 2008; Bramble et al., 2017). Determining their fluid
temperature, chemical composition, pH, Eh, and volume will
be key to understanding both their habitability and biosignature
preservation potential. Much of this knowledge is ascertained
from the mineral assemblages and sequences of minerals that
result from the hydrothermal circulation. However, these hy-
drothermal systems are difficult to explore remotely. They are
often spatially heterogeneous and may only be visible at iso-

lated surface locations across the area of interest. While a field
geologist can investigate sites using as many field observations
and laboratory analyses as necessary, a rover on another planet
is more limited. Finite mission lifetimes and slow communi-
cations cadence reduce the amount of data that can be acquired,
making effective time allocation critical to the overall science
return. New operations models will be important for future
planetary missions searching for biosignatures, seeking to
understand whether environments were ever habitable, or
collecting samples to return to Earth.

One promising solution is to engage the remote system as
a more active participant in science data analysis. Histori-
cally, most missions have favored simple scriptlike mea-
surement and action sequences that are transmitted to the
remote explorer for rote execution (Fong, 2017). The robot
completes the plan and transmits the resulting science data
back for analysis and after some delay receives new com-
mands. This is simple but inefficient; it often requires a day
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or more for each decision, limiting the finite mission’s sci-
ence yield. The failure of any one activity in the sequence
costs additional time as the agent pauses and waits for new
instructions. For many missions, downlink bandwidth ac-
commodates a tiny fraction of the potential data ( Jasper
and Xaypraseuth, 2017). More flexible autonomy will be
important to overcome these limits and enable critical
emerging astrobiology investigations for outer planet ex-
ploration (Lorenz and Cabrol, 2018), high-volume instru-
ments (Thompson et al., 2013, 2015a; Bekker et al., 2014),
and wide-area adaptive sensing (Fink et al., 2005; McGuire
et al., 2014; Woods et al., 2014). Such platforms must move
beyond rote execution of command sequences to actively
respond and adapt to the latest data in a more flexible col-
laboration with the operators.

A fundamental challenge of robotic science autonomy is
encoding the best response to an infinite set of potential
measurements. Prior science autonomy systems deployed to
space, such as AEGIS (Estlin et al., 2012; Francis et al., 2017),
EO-1 (Chien et al., 2005), and those in active development at
the time of this writing (Thompson et al., 2015c; Doran et al.,
2016), constrain the challenge by responding to specific trig-
gers in instrument data. It is difficult to automate more fun-
damental autonomy based on abstract properties that are not
directly measurable, such as geologic unit classifications.

Several aspects of abstract science interpretations are
particularly challenging to encode. First, they often hinge on
prior knowledge of the environment and preexisting remote
sensing measurements (Thompson et al., 2015b). Second,
human scientists continually reinterpret their measurements
with a growing contextual knowledge of the environment;
and, contrary to most artificial intelligence applications,
real missions involve frequent reformulation of objectives
throughout the investigation (Hock et al., 2007). Third, sci-
ence decisions must consider complementary information
from multiple sensing modalities and multiscale spatial re-
lationships (Thompson et al., 2011).

These factors are all relevant for hydrothermal systems,
since biosphere-relevant formation conditions are abstract
geophysical processes that are far removed from the in-
strument data values available to the robot. Autonomous
science decisions require a quantitative model relating hy-
potheses to instrument data, in order to calculate the infor-
mation content. It is not typically feasible to encode rich
scientific knowledge that would enable true robotic under-
standing. However, it is possible to describe statistical re-
lationships between abstract hypotheses and measurable
data (Thompson et al., 2011). This could drive principled
experimental design decisions that adapt the measurement
plan (Shewry and Wynn, 1987). Such models can relate
collected data to the investigation questions without having
to capture all the scientists’ knowledge.

This article develops the approach with a case study in-
volving remote in situ exploration of a hydrothermal system.
The Cuprite Hills contain lithologies formed within active
hydrothermal systems with a variety of fluid temperatures and
compositions, and this site has been well characterized with
both traditional geologic field methods and high spatial and
spectral resolution remote sensing (Swayze et al., 2014), pro-
viding ground truth for this study. While we focus on a hy-
drothermally altered site, these methods are equally applicable
to other sites where water was present, including paleolakes,

deltas, and sites of low-temperature weathering, which could
also have hosted and preserved life (McLennan et al., 2012).

We simulate a robotic spacecraft mission using three
general sources of data: (1) geologic maps published from
previous studies; (2) a broadband remote sensing system with
capabilities similar to the Advanced Spaceborne Thermal
Emission and Reflection Radiometer, ASTER (Rowan et al.,
2003); and (3) an in situ robot with a profiling spectrometer
measuring from 0.35 to 2.5 mm, the visible shortwave in-
frared (VSWIR) interval that captures diagnostic features of
alteration minerals. We simulate the profiling spectrometer
with traverses of data from NASA’s Next Generation Air-
borne Visible/Infrared Imaging Spectrometer, AVIRIS-NG
(Hamlin et al., 2011; Thompson et al., 2018). The high-
resolution AVIRIS-NG data provides complete coverage of
the site so that we can simulate any possible robot sampling
strategy and path. For in situ robotic spectroscopy, we use
Tetracorder analyses which identify the minerals and other
materials found in each spectrum. Such an identification
system could be employed on a rover, providing real-time
materials identification. A probabilistic spatial model relates
mineral identifications to investigation objectives, enabling
adaptive information-driven exploration planning (Arora
et al., 2017; Candela et al., 2017) while the robot is out of
touch with operators. In the context of a human scientist and
robotic explorer working together, this transforms the co-
robotic relationship from one in which the scientist plots a
path into a collaboration in which the human and robot work
together to fill in gaps in knowledge and make discoveries.

2. Approach

The Cuprite Hills are located about 200 km northwest of
Las Vegas, Nevada (Fig. 1). They show diverse relict hy-
drothermal alteration minerals formed over specific pH and
temperature ranges. The surface minerals can indicate a range
of geologic conditions and processes. Many passive remote
sensing instruments can identify these minerals, making Cu-
prite an important test site for remote measurement algo-
rithms. Studies began with the first broadband remote sensing
instruments (Rowan et al., 1974; Abrams et al., 1977) and
later included imaging spectrometers in the visible, short-
wave, and thermal infrared regimes (Goetz and Srivastava,
1985; Kruse et al., 1990). This section describes our simu-
lation of a remote surface investigation at Cuprite. We for-
malize exploration objectives using a statistical model with
spatial extent. This defines the distribution of mineralogical
information throughout the site and the information value of
new measurement data with respect to science hypotheses.

2.1. Science traceability

Conventionally, modern NASA missions use a Science
Traceability Matrix (STM—Tables 1 and 2) to relate funda-
mental investigation questions to measurable physical quan-
tities and thence to instrument requirements. Our case study
uses a simple STM corresponding to investigation objec-
tives, physical properties, and measurements. We consider
two alternative missions with different objectives. Objective I
emulates early reconnaissance on a planetary surface with
little advance knowledge. Here, investigators seek a coarse
geologic classification of the major surface units using broad
classes such as Lacustrine, Metamorphic/Hydrothermal,
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Igneous, and so on. We begin with an overcomplete list in-
cluding classes like Evaporitic that have not been observed at
Cuprite (Swayze et al., 2014). Each of these originating
processes is associated with one or more specific detectable
minerals in the second column. Minerals are typically con-
sistent with multiple geologic unit classifications, and vice
versa. The third column shows measurements that can detect
the minerals by using distinctive combination absorption
features in surface reflectance from 2 to 2.5mm (Kruse, 2009;
Van Der Meer, 2004). Example signatures appear in the right
panel of Fig. 1. These are average reflectance spectra drawn
from reference transects A1–A10 and B1–B2, which we will
reference throughout this study. Even these summary averages
reveal clear differences in the spectral shape, indicating com-
positional variability or the presence of relevant minerals at
small abundances (Swayze et al., 2014). Broadband instru-
ments cannot resolve specific minerals in this manner, but
they do indicate coarse differences in geologic units.
Consequently, a multiband instrument with wide coverage
could allow the mission to extrapolate in situ spectroscopic
classifications over wide areas, though with a lower level
of confidence than with direct spectroscopic measure-
ments (Kruse et al., 2009; Thompson et al., 2013).

Table 2 describes our second objective, an in-depth inves-
tigation of hydrothermally altered regions. The alteration scale
of Swayze et al. (2014) associates alteration zones at Cuprite
with the presence of one or more detectable minerals. These
alteration zones represent different regimes of temperature,
pressure, and pH, linking Cuprite’s mineralogy to two over-
lapping hydrothermal systems: (1) an earlier adularia-sericite

system where buddingtonite is found and (2) a later over-
printing advanced argillic system. The younger system is most
widespread in the eastern center. Erosion is greater in the
western center and exposes more of the adularia-sericite al-
teration. Here we use the alteration scale of Swayze et al.
(2014) as an intermediate classification that captures the rel-
evant zones of alteration minerals present on the surface and
directly visible to spectroscopy. Some minerals indicate very
specific alteration zones; for example, chlorite is spectrally
dominant in the zone that bears its name and uniquely iden-
tifies it. In contrast, other minerals like jarosite appear in many
alteration zones. The names of the zones generally indicate the
spectrally dominant minerals. While Objective II is more re-
fined than Objective I, the measurement strategy is similar.
Wide-area multiband images of the site can delineate different
unit areas, while small-scale surface spectroscopy can detect
specific minerals.

2.2. Geospatial data sets

We use a probabilistic map as a structure in which human
scientists initially describe their understanding about the
world and in which the understanding evolves as the robotic
explorer collects information. These maps represent hypoth-
esized arrangements and classifications of properties of an
environment with corresponding probabilities. This expres-
sive representation captures spatial structure at many scales,
with the potential to incorporate categorical, continuous, and
multivariate data. Maps are intuitive and close to the way that
working hypotheses are already expressed in Earth and

Table 2. Science Traceability Matrix (STM) for Objective II: Assessment of Alteration State

Objective II Physical properties Measurements

For each of the hydrothermally altered areas,
determine the spectrally dominant Swayze
(Swayze et al., 2014) alteration type:

Presence of alteration
minerals including

1. Chalcedony
2. Opal Remote surface reflectance, 450–2500 nm

over 9 representative channels at 30 m
spatial resolution and >300 signal-to-noise
ratio (SNR)

3. Alunites
4. Dickite
5. Well-ordered Kaolinite

1. Silica 6. Halloysite
2. Alunite 7. White Mica
3. Kaolinite 8. Chlorite
4. White Mica – Montorillonite 9. Buddingtonite – Smectite In situ surface reflectance, 450–2500 nm at

10 nm spectral resolution and >300 SNR5. Chlorite 10. Hematite
6. Adularia-smectite 11. Jarosite

12. Goethite
13. Others

Table 1. Science Traceability Matrix (STM) for Objective I: Broad Area Geologic Classification

Objective I Physical properties Measurements

Determine the dominant origin
of major geologic units in Cuprite:

Presence of key minerals
including

Remote surface reflectance, 450–2500 nm over
9 representative channels at 30 m spatial resolution
and >300 signal-to-noise ratio (SNR)1. Lacustrine/Marine 1. Alteration minerals

2. Evaporitic 2. Hydrated minerals
3. Metamorphic/Hydrothermal 3. Carbonates
4. Pedogenic/Diagenetic 4. Sulfates
5. Igneous 5. Phyllosilicates In situ surface reflectance, 450–2500 nm at 10 nm

spectral resolution and >300 SNR6. Biogenic 6. Other
7. Other
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planetary exploration (Wray et al., 2009; Milliken et al.,
2010). Robots can use them as a guide to explore efficiently
without the tedium of operator micromanagement or the need
for low-latency communications. By focusing on maps as a
medium for both data understanding and planning, we play to
the advantages of both human (domain expertise) and robot
(formal optimality and immediate responses to new data).

Geologic maps represent spatial relationships—the cor-
relations between measurements, minerals, and geologic
classes at different locations and scales. We consider two
formulations that could capture these relationships to esti-
mate complete maps from point measurements. The first
strategy, which we will call partitioning, ascribes geologic
classifications to contiguous predefined spatial units. Mea-
surements within each partition are treated as Independent,
Identically Distributed (IID) draws from a common under-

lying distribution. Consequently, the measurements within
each predefined partition all contribute equally to the com-
mon classification. The second strategy, which we will call
remote sensing, uses the natural correlations across spatial
locations that appear in wide-area remote measurement data.
Remote sensing reveals spatially continuous properties of
the environment. A mission can incorporate this data into
the model as an additional observable and learn to interpret
it during exploration by assimilating the in situ data as a
reference. The resulting maps will be spatially smooth; nearby
locations will generally have similar remote measurements
and as a consequence similar classifications.

Our partitioned model uses spatial labelings of the scene
created by geologic experts. These partitions are based
on expert domain knowledge about the location of likely
unit boundaries. Each unit could have a different geologic

FIG. 2. Left: Photogeologic unit boundaries drawn by hand using high spatial resolution visible wavelength data. Right:
Alteration unit boundaries drawn by hand during detailed geologic surveys, courtesy of Albers and Stewart (1972), Ashley
and Abrams (1980), and Swayze et al. (2014).

FIG. 3. Left: RGB composite. Red is ASTER channel 3N intensity; green and blue are the 2 first principal components of
ASTER channels. Right: RGB composite assigning ASTER principal components 3, 4, and 5 to red, green, and blue,
respectively.
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classification, and they are treated independently. Figure 2
shows some possible partitionings of Cuprite. The left
panel uses geologic units delineated by a geologist ana-
lyzing high-resolution visible wavelength satellite data.
The regions are taken to have different surface compositions
based on visual cues, though their proper classifications are
initially unknown. The right panel shows units described by
Albers and Stewart (1972) and Ashley and Abrams (1980) and
modified in Swayze et al. (2014). These unit boundaries and
classifications are an expert assessment of extensive ground
truth campaigns, in situ fieldwork, rich isotopic measure-
ments, dating, and remote spectroscopy. The true classifica-
tion of these units into their geologic origin and alteration
states is withheld during the simulation and used as ground
truth for comparing measurement strategies. We also rely on
alteration maps reproduced in Figs. 4 and 17(A) of (Swayze
et al., 2014), which show the locations of the different Cuprite
alteration zones.

Our remote sensing alternative begins with multiband
remote data over the entire site acquired by ASTER (Rowan
et al., 2003). The ASTER data can delineate major geologic
unit boundaries, but it cannot recognize unique minerals due
to the limited number and coarse resolution of instrument
channels. ASTER’s visible/shortwave infrared channels have
center wavelengths at 560, 660, 820, 1650, 2165, 2205, 2260,
2330, and 2395 nm and provide spatial resolutions of 15 m
in visible wavelengths and 30 m in the shortwave infrared. The
ASTER data is atmospherically corrected with the additional
cross-talk correction described in Iwasaki and Tonooka
(2005). We discretize ASTER observations into a small
number (n = 1000) of categorical labels. We then apply prin-
cipal component analysis (PCA) that reduces the nine VSWIR
channels to five, capturing 99.9% of total variance (Fig. 3),
and discretize these observations into categorical observations
with k-means clustering. The clustering input space consists
of the five PCA coefficients, and the latitude and longitude
position of the pixel, scaled to even the influence of spatial
and spectral components. The spatial component limits the
geographic extent of ASTER surface categories, permitting
similar ASTER values from separated locations to have dif-
ferent interpretations. This is important because the ASTER
spectra taken alone are ambiguous. The total dimensionality
of Cuprite is significantly higher than the five dimensions
resolved by ASTER. ASTER shows local differences such as
delineations of major surface units, but its measurements do
not uniquely determine geologic origins.

For the experiments that follow, we posit a remote rover
platform with a VSWIR spectrometer. As the in situ explorer
observes minerals within a geologic unit, these measure-
ments gradually provide information about the unit origin
and alteration history. We simulate in situ spectroscopy
using spectra from high-spatial-resolution data cubes ac-
quired by AVIRIS-NG (Green et al., 1998; Hamlin et al.,
2011; Thompson et al., 2018). AVIRIS-NG mapped the area
during overflights in June 2014 with a ground sampling dis-
tance of 3.9 m per pixel, measuring spectral radiance from 380
to 2510 nm at approximately 5 nm sampling. We first calibrate
the AVIRIS-NG data using methods of Thompson et al.
(2018), then project the radiance spectra to a georectified grid
using a camera model, a local Digital Elevation Model, and
the onboard inertial measurement and global positioning
system data from the instrument. Finally, we atmospherically

correct the result using the approach of Thompson et al.
(2015b) with the aerosol estimation of Thompson et al. (2017).
We use a reference spectrum from a spectrally smooth surface,
a dry lakebed known as Stonewall Playa, as a smooth reference.
This defines multiplicative smoothing coefficients to correct
residual errors in the final reflectance data. Such errors are
generally caused by minor inaccuracies in the atmospheric ra-
diative transfer model (Thompson et al., 2015b), and a single
correction vector can correct the entire scene. We validate ra-
diometric calibration and atmospheric correction in com-
bination, by comparing remote measurements to GPS-
tagged hand samples collected at the site. We character-
ized samples in the laboratory with an ASD FieldSpec 3
spectrometer, averaging 100 contact probe measurements to
obtain a noise-free signal. Hand-selected samples inevitably
differ from the heterogeneous pixels observed by AVIRIS-
NG at 4 m spatial sampling, but the reference measurements
can validate that similar mineral features appear remotely.

We interpret spectra with the Tetracorder 5 algorithm for
material detection, identification, and mapping (Clark et al.,
2003, 2010; Clark et al., 2015). Tetracorder 5 includes an
expanded expert system with additional minerals, organics,
and other materials, and more advanced algorithms for analysis
including shoulderness and curved continua. Its core is least-
squares fitting of continuum-removed absorption features and
an extensive library of mineral types found at Cuprite. The
result is a matrix of detections indicating the presence of dif-
ferent minerals at every pixel of the high-resolution AVIRIS-
NG scene. We combine this data set into a mosaic (Fig. 1) and
assign a unique reflectance spectrum to every location. We then
use ground control points to coregister this map with the AS-
TER data. Residual reprojection errors of approximately 10 m
are within the size of the ASTER pixels. Our experiments
simulate in situ data by drawing subsets from the spectroscopic
data set, selecting locations to emulate different rover traverses
and data collection strategies, and the resulting impact on in-
terpretations of remote data.

2.3. Probabilistic model

To quantify the information gain of new measurements, we
refine the STM into a probabilistic model with the investiga-
tion objectives as unknown random variables. The model re-
lates the alternative geologic classifications to the appearance
of different minerals, which in turn determines the probability
of specific instrument measurements. A common information
metric is the Shannon entropy describing the number of bits of
uncertainty (Cover and Thomas, 2006). Beneficial measure-
ments increase confidence in geologic classifications, reduc-
ing the entropy of the objective variables (Lindley, 1956;
Bernardo, 1979; Paninski, 2005). Bayesian experimental de-
sign (Chaloner and Verdinelli, 1995) can then optimize future
measurement plans and provide the best expected reduction in
uncertainty. This could assist mission planning but also enables
more adaptive robotic autonomy. With each communication
event, mission planners can transmit the variables of interest
and the probabilistic models relating them to instrument data.
Then the robot can adapt measurement plans in real time to
reflect incoming data and opportunistic scientific discoveries.

In service of a controlled experiment, we use the simplest
possible model that preserves generality. For the partitioned
model, we split the explored environment into disjoint units,
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each encompassing many potential measurement locations
(Fig. 4), and carry a distinct independent objective hy-
pothesis variable about the origin for each unit. For the
remote sensing model, the AVIRIS-NG pixel locations are
all separate ‘‘units,’’ but neighboring locations are often
implicitly associated by having similar remote measure-
ments. In both cases, the pixels of the AVIRIS-NG image
cube are the measurable locations with high-resolution
AVIRIS-NG data standing in as a simulation of the in situ
spectra that would be obtained. For simplicity, we define all
probabilities over categorical values, permitting inference
by brute force summation of conditional probability tables.

Figure 4 shows the key components of the probabilistic
model:

� The map contains ‘ independent, disjoint unit regions
R¼fr1, . . . , r‘g.

� Both Objective I (broad geologic categories) and Ob-
jective II (alteration state) aim to assign classifications
for each region. We can represent either goal by
treating regions’ classes as variables, written hi, that
together comprise the set H¼fh1, . . . , h‘g, hi ˛ H.

� Variables q describe local physical properties at k different
observation locations for a particular region. Together
they form the region’s set Q¼fq1, . . . , qkg, qi ˛ Q. These
indicate the presence of specific minerals within the unit.
A hyperparameter a governs the strength of association
between the minerals and geologic classes.

� In situ measurements are random variables Y ¼
fy1, . . . , ykg. We assume that each in situ spectrum is
unambiguous and uniquely identifies the mineral at that
location. For any region, the number of independent
locations is k.

� Prior remote sensing data at each location is a random
variable Z ¼fz1, . . . , zkg, zi ˛ Z. For convenience, each
remote cluster is also associated with a single unique
(but unknown) mineral. A vector b of free parameters
controls the strength of these relationships.

This model does not restrict the domains of any variables.
We posit a hierarchical dependence structure in which H and
{Y, Z} are independent given Q (Fig. 4). Using the chain
rule, the joint probability model of H, Q, Y, and Z is

P H, Q, Y , Zð Þ¼P Hð ÞP QjHð ÞP Y jQð ÞP ZjQð Þ (1)

The term P(H) represents the prior distribution over geo-
logic classifications, capturing domain knowledge, prior
expectations about the site, or previous rounds of explora-
tion. P(QjH) captures the strength of association between
geologic classes and mineral features observable at the
surface. This is a stochastic relationship because mineral
appearances do not exactly determine the geologic origin.
Even after many minerals are observed from a site, there
may still be uncertainty in the geologic class. P(YjQ) and
P(ZjQ) respectively give the in situ and remote mineral
measurement processes, incorporating physical noise as well
as any algorithmic classification error or ambiguity. In this
case study the spectroscopic data provided by AVIRIS-NG
perfectly describes the mineral Q so P(YjQ) is a Boolean
matrix. In contrast, the remote ASTER data is ambiguous so
P(ZjQ) is stochastic. Integrating over variables yields

P(H, Y , Z)¼P(H) +
Q

P(QjH)P(Y jQ)P(ZjQ) (2)

P(Y , Z)¼+
H

P(H) +
Q

P(QjH)P(Y jQ)P(ZjQ) (3)

From the definition of conditional probability, we have

P Y , ZjHð Þ¼ P(Y , Z, H)

P(H)
(4)

Consequently, the conditional probability of a hypothesis
given a remote measurement is

P HjZð Þ¼ P(Zj H)P(H)

P(Z)
(5)

And the conditional probability of a hypothesis given an in
situ measurement is

P HjZ, Yð Þ¼ P(Y , Zj H)P(H)

P(Y , Z)
(6)

FIG. 4. Graphical representation of random variables in the model.
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Note that this is equivalent to performing Bayesian infer-
ence, with P(H) the initial belief and P(HjY, Z) the posterior
probability.

2.4. Quantification of mineral/unit associations

We use multiple methods to estimate conditional proba-
bility relationships. We first set the relationship between
minerals and geologic classes, P(QjH). Many minerals may
be consistent with one class. We begin by simply eliciting
these consistency assessments from a geologist, and we
write them as a matrix with one row for each geologic class
and one column for each possible mineral. One can interpret
this consistency matrix as a conditional probability table
P(QjH) with each row (geologic class) a categorical distri-
bution. In theory, a binary matrix is inappropriate with real
measurement noise and inevitable spilling of minerals across
adjacent units. However, it is far easier for geologists to state
relationships of logical consistency than to assign quantitative
probabilities. Consequently, we first define a binary (Boolean)
consistency matrix and then use statistical fits with actual data
to soften these hard assessments. Each row is populated by
two continuous probabilities: /(1 - a) when the mineral is
consistent with the class, and /a otherwise. Here, a is a free
parameter, a small value governing the probability that an
inconsistent mineral is observed. It also controls the rate at
which multiple mineral observations within a unit improve its
classification certainty. The variable / is a normalizing factor.

The a parameter depends on the characteristics of the
site and the geographic footprint of the sensor. We fit a
using a set of training data, selecting the value that maxi-
mizes the data likelihood. This is challenging because true
unit labels are usually not available for remote exploration
de novo. Instead, we develop a method to determine a from
arbitrary new scenes, exploiting the fact that, in this case
study, geologic units are spatially uniform and contiguous—
neighboring locations are likely to share the same geologic
class. We define neighboring locations by oversegmenting
an AVIRIS-NG scene, as in prior imaging spectroscopy re-
search using superpixels (Thompson et al., 2011). Since most
of these small regions do not cross geologic class boundaries,
any mutually inconsistent minerals within a superpixel are
related to the influence of a. To form superpixels, we first
reduce the dimensionality of the high-dimensional data set to
a small number (typically 5–10) using PCA, which inten-
tionally eliminates most of the spectral diversity while
leaving a handful of mutually orthogonal color channels that
would capture differentiations between units. We shatter the
image into small spectrally homogeneous neighborhoods
using the SLIC segmentation algorithm (Achanta et al.,
2012). This produces a set of disjoint contiguous regions that
are spectrally homogeneous. We only use the PCA-reduced
representation during the unit segmentation stage, and retain
the full spectrum for spectroscopic mineral detection.

After segmentation, we calculate maximum-likelihood a
values using the most probable assignment of the geologic
class for each segment S. We write the mineral observations
in each segment S as instances q ˛ S and the log likelihood
of the entire dataset as

La¼ +
S

infc +
q2S

log 1q, c/(1� a)þ (1� 1q, c)/(a)
� �

(7)

where c represents the geologic class: a possible value for the
investigation objective H. Infc represents the infinum, the
value of c that minimizes the terms at right. The indicator
function 1q,c evaluates to unity when mineral q is consistent
with the most likely geologic class c, and zero otherwise. A
simple one-parameter optimization over a finds the best fit,
bringing P(HjQ) into agreement with the measurement data.

2.5. Classification with remote sensing data

We take AVIRIS-NG data to be perfectly diagnostic of
each mineral, but ASTER observations have some nonzero
probability of association with multiple minerals. We set
these conditional probabilities by simply counting the ap-
pearance of each mineral within each ASTER observation
type. We define a conditional probability table of size
[number of remote observation possibilities] · [number of
minerals], parameterized by a vector b with one element per
table entry. The table records the number of observations of
each mineral associated with each remote class. We turn
these values into probabilities by normalizing along each
row. This strategy is unstable when the number of mea-
surements is small or biased, leading to overconfident clas-
sifications. To avoid this, we constrain the table with priors,
expressed as a table of Dirichlet pseudocounts parameterized
by b. Specifically, a row bj represents the prior probability,
in pseudocounts, for the appearance of each mineral within
that ASTER label, with a number of elements equal to the
number of minerals. We conservatively initialize the table
with pseudocounts that imply a uniform distribution of
geologic classes, while simultaneously not favoring any one
mineral. There are many potential pseudocount assignments
that would accomplish this. We solve jointly for all pseu-
docounts by nonlinear least-squares optimization of the fol-
lowing cost function, where C is the matrix representing
conditional probabilities P(QjH) and n is the number of
geologic classes:

f ðbjÞ¼ b¢jC� 1=nj2þ cjbj� 0:5j2 (8)

The symbol b¢j is the pseudocount vector normalized to rep-
resent probabilities. Pipe notation j.j2 represents L2 normali-
zation. The second additive cost is a penalty promoting
similarity to a Jeffrys prior, an uninformed prior over mineral
observations. A small regularization coefficient c balances this
tendency against uniform geologic classifications. The end
result is a fully defined initial probability model, with pseu-
docounts that are very similar to an uninformed Jeffrys prior
and that imply a uniform distribution of geologic classes.

2.6. Entropy and information gain

The completed model defines different measurement plans’
information value relative to their costs. Given any preexisting
remote data Z, we quantify the current state of classification
certainty using the Shannon entropy of each region in R as

I(HjZ)¼ +
‘

i¼ 1

+
c

�P(hi¼ cjZ) log P(hi¼ cjZ) (9)

This quantity measures the uncertainty of H. After an in situ
observation yj, the resulting posterior entropy is
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I(Hjyj, Z)¼ +
‘

i¼1

+
c

�P(hi¼ cjyj, Z) log P(hi¼ cjyj, Z)

(10)

Reductions in posterior entropy can quantify the im-
provement in uncertainty expected, or achieved, with dif-
ferent sampling strategies, making the quantity important
for experimental design. In particular, the expected infor-
mation gain is a popular objective function for information-
driven action selection (Lindley, 1956; Bernardo, 1979;
Chaloner and Verdinelli, 1995; Paninski, 2005). It is defined
as the expected reduction in Shannon entropy after making a
future observation (Cover and Thomas, 2006). Before ob-
servations are acquired, the expected information gain given
n of a set of in situ measurements is

IG HjY , Zð Þ¼ I HjZð Þ�EP Y jZð Þ I HjY , Zð Þ½ � (11)

During each cycle, the robotic explorer collects a se-
quence of n measurements of minerals. The total number of
different combinations is the same as with the support of
the multinomial distribution, which makes the information
gain challenging to calculate since the expectation in Eq. 11
must consider all possible combinations. In prior work, we
demonstrated how this could be overcome using Monte
Carlo integration (van den Berg et al., 2003), or more effi-
ciently, by fitting generalized logistic function relationships
to Monte Carlo results (Candela et al., 2017). Such measures
are beyond the scope of this study, which focuses on the
empirical performance of different sampling strategies. We
define the empirical information gain as the reduction in
Shannon entropy actually achieved after making the obser-
vation, that is, the observer’s actual improvement in certainty
with respect to investigation hypotheses. For an observation at
time t, leading to a posterior distribution over hypotheses Ht,
the empirical information gain over time t - 1 is

IGemp HtjY , Ztð Þ¼ I HtjZtð Þ� I Ht�1
� �

(12)

This expression is computationally tractable and permits
retrospective comparisons of measurements acquired by
different strategies. We emphasize that the general proba-
bilistic model is also useful for calculating the expected
information gain, enabling remote explorers to form new
plans in response to recent data, based on the information

value they expect from those observation sequences. How-
ever, from now on, when we refer to information gain, we
mean the empirical gain calculated after measurements (Eq.
12 rather than Eq. 11).

Remote sensing is a special case, since each new in situ
measurement provides information to interpret ambiguous
ASTER data. The model can capture this by treating b as a
free variable and reestimating it over time. This simply in-
volves updating b using the counts provided by new mea-
surements, extrapolating from local observations to refine
the entire map. If b is random, this update is implicit in the
equations above. Sampling planners (Arora et al., 2017;
Candela et al., 2017) could exploit this learning on the fly,
refitting models during the sampling step resulting in poli-
cies that ‘‘plan to learn.’’ This would enable the remote
agent to balance (a) information gain provided directly by in
situ observations and (b) that which would occur indirectly
as a result of better interpretations of remote data.

2.7. Experimental method

Our experiments compare different in situ data collection
strategies, evaluating their value with respect to Objectives I
and II (Tables 1 and 2). We use the Tetracorder classifica-
tions of remote AVIRIS-NG data to represent the in situ
measurements. For each site of interest, we simulate a ro-
botic explorer acquiring measurements along a transect and
then updating the probabilistic model. Our experiments
consider long transects B1 and B2 and the short transects
A1–A10. The short transects emulate exploration by a rover
during a single command cycle. Sites A1–A8 in Table 3 are
locations identified in Swayze et al. (2014) and prior liter-
ature as areas of special interest with high spectral purity
and/or representativeness of a specific mineral type. Using
these representative regions minimizes ambiguity in the
spectroscopic measurement, permitting a more controlled test
of the spatial models and inference method. We include site
A9 as a null case—the Stonewall playa traverse, which lies
exclusively on a featureless playa; it is spectrally uniform and
is not representative of the site as a whole. There may be
some trace chalcedony from alteration in the eastern center,
but the playa sediment itself is mostly montmorillonite, and
the latter is spectrally dominant. Therefore, we expect A9 to
provide less information gain toward Objective II. We also
add site A10 to the Swayze et al. list to represent the north-
eastern region. Many of these transects cross multiple surficial

Table 3. Locations of Interest and Transects Illustrated in Figure 1 and Used in Subsequent Simulations

Site Informal name North latitude West longitude Notes

A1 Buddingtonite Bump 37.54319 117.18677 As in Swayze et al. (2014), Figure 5
A2 Opal Hill 37.54729 117.16713 As in Swayze et al. (2014)
A3 Kaolinite Hill 37.52653 117.17752 As in Swayze et al. (2014), Figure 5
A4 Alunite Hill 37.52400 117.21390 As in Swayze et al. (2014), Figure 5
A5 Quartz/Latite Dike 37.52296 117.22102 As in Swayze et al. (2014)
A6 Dickite Ridge 37.52952 117.22267 As in Swayze et al. (2014)
A7 Pediment Basalt 37.54740 117.20618 As in Swayze et al. (2014)
A8 Opal or Chalcedony 37.53355 117.20961 As in Swayze et al. (2014)
A9 Stonewall Playa 37.53260 117.15823 As in Swayze et al. (2014), Figure 5
A10 Three Minerals 37.55688 117.17583
B1 West Transect n/a n/a As in Swayze et al. (2014)
B2 East Transect n/a n/a As in Swayze et al. (2014)
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terrain types, providing the opportunity to sample multiple
different minerals. Figure 5 shows photography from the field
illustrating the sparse vegetation and open nature of the ter-
rain. The clear visibility of surficial minerals from the air
means that a high-spatial-resolution airborne perspective is a
good proxy for in situ instruments. We form sampling tran-
sects for each location by extending a rover path along the
east-west direction with a total length of 200 m, a reasonable
maximum daily traverse distance of a capable modern plan-
etary rover. We imagine a spectroscopic measurement to be
collected at each possible location along the transect, a total
of 50 unique spectra for each site.

We also consider a long traverse emulating a multisite rover
investigation spanning multiple command cycles. Table 3 lo-
cations B1–B2 are the bent linear transect of Swayze et al.
(2014), a piecewise linear slice that bisects the eastern and
western sides of the site. For both short and long traverses, we
evaluate dense sampling that measures every location along the

transects, and sparser measurement strategies that acquire data
at regular intervals. For each alternative, we perform inference
using both prepartitioning and remote sensing representations
of spatial correlation. We quantify the benefits of these mea-
surement plans using the posterior Shannon entropy represent-
ing uncertainty over geologic classifications (from Eq. 9).

3. Results

3.1. Model parameters

The learned parameters of the probability model reveal
the suitability of our conditional probability table repre-
sentation and the predictive power of the observation data.
For example, the best-fitting a values describe the strength
of the mineral/class associations. A value of zero would
mean that the elicited consistency relationships were never
violated. Reassuringly, small a values predominate, mean-
ing the consistency relationships align well with the data.

FIG. 5. Photography from selected sites. The white triangle icons indicate (A1) a hill composed mainly of the ammonium
feldspar buddingtonite, (A3) a hill composed mainly of kaolinite in the eastern center, (A4) jarosite and goethite coatings
imparting an orange hue to alunite minerals, and (A6) Stonewall Playa and Stonewall Mountain features, looking southeast
from a topographic high point on Dickite Ridge.
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This simultaneously validates the elicited consistency table,
the spectroscopic measurements, and the Tetracorder iden-
tification. The best a values range from 0.02 to 0.035 de-
pending on the superpixel segment size. Spatial correlations
are stronger over smaller distances, smaller areas are more
homogeneous, and small segment sizes permit smaller a
values. Figure 6 shows the superpixel segmentation for
different segment length settings. Larger SLIC segments are
more stringent, requiring class homogeneity over wider ar-
eas. Figure 7 (left) shows likelihood values for Objective I at
each of the superpixel resolutions. For segments of length
320 m, approximately 5% of minerals within segments are
mutually inconsistent. For smaller segments of length 40 m,
approximately 3% of minerals are mutually inconsistent.
Such inconsistencies could be a combination of mixing be-
tween units at their peripheries or transport of rock float across
unit boundaries. We cannot exclude occasional measurement
errors or ambiguity in Tetracorder interpretation of mixed
surfaces. Nevertheless, these rates are quite low, indicating
that the mineral detections are strongly related to common
geologic origins for Objective I. We use the conservative
value of a = 0.035 to form conditional probability tables for
Objective I.

Refitting a for the more specific investigation (Objective
II) produces slightly different results. Figure 7 (right) shows
this more refined goal. Here, the best a values are slightly
higher, peaking at 0.045 for a superpixel size of 320 m. This
is not surprising; Cuprite contains many mixtures of alter-
ation minerals from different classes, both at the peripheries
of these zones and in alluvial that source from multiple
locations. Figure 7 maps this effect spatially for the 320 m
superpixel size, showing the fraction of inconsistent min-
erals at each superpixel. The fractions are higher for alluvial
fans than for outcrop.

3.2. Spectroscopic observations of minerals
and geologic class

Contact measurements of field samples align well with the
AVIRIS-NG data. Figure 8 shows remote reflectance with
that of in situ samples. The remote spectra are the average of
a 12 m area from the mosaic. We favor sites A3 (Kaolinite
Hill) and A4 (Alunite Hill) for this comparison, because the
features are highly distinctive and the compounds of interest
are spectrally dominant and more uniformly distributed than
at most other locations. Remote and laboratory measurements

FIG. 6. Segmentations using different superpixel window sizes overlaid on a visible-wavelength fragment of the Cuprite scene.

FIG. 7. Log likelihood values and best a values at different segmentation resolutions. Left: Optimal a value for Objective
I, early reconnaissance. Right: Optimal a values for Objective II, alteration mineralogy.
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generally agree to within 1–2% of absolute reflectance, which
is surprising given that no continuum removal or continuum-
level alignment was performed. The key spectral features
from each mineral are present in both data sets, though the
AVIRIS-NG data offers higher spectral resolution. This
comparison confirms that the reflectance products capture
spectral content observable in situ.

Next we investigate the remote mineral detections and the
geologic classifications they imply for each unit. Initially,
we treat each measurement location independently without
spatial correlations. At this basic level, the model results are
consistent with conventional geologic maps of Cuprite.
Table 4 shows the dominant mineral and the most likely
classification for each transect with respect to both objec-
tives. Bold classification entries are the most consistent with
the mineral map of Swayze et al. (2014). The next columns
show classifications for Objective II. The alteration scale
represents points along a continuum of possibilities, and we
show the two most probable classifications. For Objective I,
the model unsurprisingly classifies nearly all the sites as
metamorphic/hydrothermal zones, at high probability.

The classification results all align well with conventional
interpretations in prior literature. Site A1, Buddingtonite
Bump, contains many detections of the mineral buddingto-

nite, leading to a classification on the alteration scale in the
Adularia/Smectite (AS) position. Site A3, Kaolinite Hill, is
unsurprisingly dominated by kaolinite, while Site A4, Alu-
nite Hill, shows alunite and Fe sulfate signatures. The sul-
fate detection agrees with our ground survey that found
abundant jarosite at this location (Fig. 5). Site A5, the
Quartz/Latite Dike location, was altered after intrusion and
is successfully classified by the model as a Metamorphic/
Hydrothermal zone. Other phylosillicate minerals lead to
a position on the alteration scale near the White Mica –
Montmorillonite category. Site A6, Dickite Ridge, shows
spectral matches consistent with dickite, kaolinite, alunite, and
sulfates. These are all in agreement with prior results from
Swayze et al. (2014). Site A8, labeled Opal or Chalcedony,
lies at a border on the Swayze alteration map between alunite
and hydrated silica alteration zones. The system corroborates
this: a spectrum containing SiOH and Chalcedony is the best
match at 17 locations, leading to a hydrated silicate position
on the alteration scale. Finally, Site A9 is notable since it does
not match cleanly with any hydrothermal alteration minerals.
In fact, this uniform playa contains just one spectral signa-
ture, a smectite, leading to an ambiguous classification for
both objectives. The coarse geologic classification for Ob-
jective I is equally consistent with both Lacustrine/Marine

FIG. 8. Laboratory contact measurements of samples from each location align well with geolocated AVIRIS-NG spectra
from the Cuprite scene.

Table 4. Transect Results

Site z Dominant spectrum match (n) Obj. I Obj. II

A1. Buddingtonite Bump 7 feldspar-buddington.namont2 (16) MH AS, A
A2. Opal Hill 5 sioh-hydrated-basaltic-glass (33) MH A, K
A3. Kaolinite Hill 7 kaol.75+alun.25 (25) MH K, A
A4. Alunite Hill 7 sulfate-alunNa03 (17) MH A, K
A5. Quartz/Latite Dike 10 carbonate-calcite (22) MH K, WM
A6. Dickite Ridge 9 sulfate+kaolingrp-natroalun+dickite (13) MH K, A
A7. Pediment Basalt 8 Kalun+kaol.intmx (11) MH K, A
A8. Opal or Chalcedony 9 sioh-chalcedony (17) MH HS, A
A9. Stonewall Playa 1 smectite-montmorillonite-na-highswelling (50) LM, MH n/a

A10. Three Minerals 10 sioh-hydrated-basaltic-glass (16) MH K, A

Columns from left to right indicate the site, the number z of distinct minerals detected, the dominant mineral type and its number of
appearances in parenthesis, the dominant classifications for Objective I and Objective II. Objective I classifications are MH (Metamorphic/
Hydrothermal), I (Igneous), LM (Lacustrine/Marine). Objective II classifications describe alteration zones including AS (Adularia
Smectite), A (Alunite), K (Kaolinite), WM (White Mica – Montmorillonite), and HS (Hydrated Silica). All classifications are consistent
with prior literature. Bold entries align with those of (Swayze et al., 2014).
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and Metamorphic/Hydrothermal zones. It provides no in-
formation with respect to the alteration scale, where classi-
fication probabilities remain uniform.

3.3. Spatial correlations to infer geologic maps

Next, we incorporate spatial correlations using both par-
titioning and remote sensing and calculate information gain
as well as the posterior unit classifications. Table 5 shows
the empirical reduction in entropy of geologic classifications
H resulting from each transect. Higher numbers indicate a
larger empirical information gain. For the remote sensing
case, we show the mean information gain per location in the
map. Crossing multiple regions can influence the posterior
classification of large areas. For the remote sensing strategy,
we show the average information gain per pixel in the re-
sulting map. Due to the spatial clustering used to produce the
ASTER labels, each traverse affects only the local area near
its spectra, so the overall information gain across the Cuprite
scene is relatively low. However, this permits a meaningful
comparison between traverses using remote sensing data. The
final two columns show the information gain from the pre-
partitioning strategy. Here, we calculate the total information
gain counting each unit’s classification as a separate random
variable. This results in elevated information gain for tra-
verses like B1 and B2 that cross multiple predefined units.

Information gains for Objective I are mostly uniform,
differing at most by factors of 2–3. This reflects the fact that
nearly all traverses contain very compelling evidence for a
metamorphic or hydrothermal origin. In other words, nearly
any spectra within the Cuprite region will quickly indicate
this option as the most likely classification. It is likely that a
rover would find it immediately upon arrival at one of sites
A1–A8. The exception is site A9, which still provides in-
formation toward Objective I due to the fact that it contains
very consistent spectra. Information gains for Objective II
are generally smaller by an order of magnitude when using
the broadband ASTER-class remote sensing. This objective
is much subtler than Objective I, and many minerals are
consistent with multiple alteration zones. Consequently,
splitting traverses across multiple ASTER observation la-
bels dilutes the effects of the most discriminative minerals.

The longer transects (B1 and B2) have higher values due to
the number of measurements collected and their intersection
with many units. The most information-rich short traverses
are those crossing large quantities of pure alteration min-
erals, such as those at the Alunite Hill and Kaolinite Hill
transects. This is not surprising, because the high concen-
tration of easily measurable alteration materials provides
strong diagnostic information toward both objectives. The
Stonewall Playa transect is the least informative. It is
completely uniform and contains no spectrally detectable
alteration minerals, so it is not actually relevant to Objective
II. Indeed, we find this transect provides no significant in-
formation gain toward those variables.

These information gains have spatial extent, since they
represent improvements in the interpretation of the unit
partitions (for the partitioned model) and ASTER observa-
tions (for the remote sensing model). Figure 9 shows the
posterior entropy improvement per pixel for traverse A1,
calculated with respect to the first objective of general
coarse geologic classification. This traverse, the ‘‘Bud-
dingtonite Bump Transect,’’ significantly reduces the en-
tropy of terrain units that it crosses. The model learns to
interpret the ASTER data, producing an information benefit
for areas outside the literal path of the traverse. Improve-
ments in posterior certainty range from over 0.1 bits per
pixel to near 0, depending on the consistency of the minerals
and the number of distinct spectra associated with each
ASTER label. The central area of the transect crosses a
uniform Buddingtonite feature and produces the most sig-
nificant improvement. The right panel shows the relative
change in classifications, with red, green, and blue colors
corresponding to the Ternary plot at lower right. Green in-
dicates areas of the image that, after the traverse, become
more consistent with a hydrothermally altered zone. Indeed,
acquiring any in situ data soon results in a higher probability
for hydrothermal/metamorphic origins throughout the entire
area, consistent with the true geologic interpretation of the
site. Figures 10 and 11 show similar patterns for site A3,
Kaolinite Hill, and Site A4, Alunite Hill, respectively, which
also contain abundant alteration minerals. In contrast, Fig. 12
shows traverse A9, Stonewall Playa, crossing an area that is
entirely uniform and devoid of alteration minerals. Here the

Table 5. Transect Results

Remote sensing Predefined regions

ID Site Obj. I Obj. II Obj. I Obj. II

A1 Buddingtonite Bump 0.001112 0.000130 1.609438 2.377291
A2 Opal Hill 0.001543 0.000003 3.911741 1.097388
A3 Kaolinite Hill 0.002006 0.000178 4.581315 1.791759
A4 Alunite Hill 0.002064 0.000346 3.218876 4.774528
A5 Quartz/Latite Dike 0.001265 0.000087 4.533764 2.466650
A6 Dickite Ridge 0.000678 0.000093 1.609438 2.890371
A7 Pediment Basalt 0.000430 0.000025 2.302584 2.811499
A8 Opal or Chalcedony 0.001267 0.000088 4.605170 3.538221
A9 Stonewall Playa 0.005555 -0.000002 1.203973 0.000000
A10 Three Minerals 0.001537 0.000033 4.605158 2.734835
B1 Eastern Traverse 0.001899 0.000095 4.581315 5.736077
B2 Western Traverse 0.001404 0.000048 4.581315 5.875901

Columns from left to right indicate the transect ID; the informal name of the site or transect; the empirical bits of information gain per
map location with respect to Objectives I and II, for a model incorporating remote sensing data; and the empirical bits of information gain
per map location for models using predefined homogeneous regions.
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FIG. 9. Left: improvement in posterior entropy (bits per location) calculated for traverse A1 across Buddingtonite
Bump. Right: Change in posterior classification probabilities for three of the Objective I geologic classes.

FIG. 10. Left: Improvement in posterior entropy (bits per location) calculated for traverse A3 across Kaolinite Hill. Right:
Change in posterior classification probabilities for three of the Objective I geologic classes.
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classification map indicates less consistency with alteration
zones. After assimilating the observations, the model indicates
that the playa has a different geologic classification altogether,
in agreement with the geologists’ interpretation of the site.
The information gain is still relatively high, indicating that the
spectra acquired along this transect are not yet redundant;
acquiring a large number of spectra is useful for overcoming
the intrinsic ambiguity of the remote sensing data.

Figure 13 shows a more interesting case where the traverse
crosses a boundary between two units. Traverse A8, across
the Opal or Chalcedony region, moves from an area domi-
nated by Alunite alteration to one containing hydrated silica
(Swayze et al., 2014). The classification is more diverse; the
southwest area is more consistent with hydrothermal alter-
ation than the eastern side. These two units are also distinct in
the original Ashley and Abrams alteration maps (Ashley and
Abrams, 1980; Swayze et al., 2014). The eastern side is as-

sociated with silicified minerals, though Objective I does not
discriminate beyond the fact that they are hydrothermally
altered. These silicified minerals are also highly consistent
with an igneous formation process. In contrast, Objective II is
specifically tuned to the question of different alteration zones.
The right panels of Fig. 13 show traverse results calculated
with respect to Objective II. Information gain is lower overall
due to the greater intrinsic ambiguity between minerals and
alteration zones, reflected in the higher a value and the more
consistency possibilities in the conditional probability matrix.
In other words, the in situ explorer gets a lower bit yield per
measurement for this subtle investigation and must acquire
more spectra to achieve the same map certainty. The lower
right panel shows the posterior classification; a slight tint
indicates a tenuous classification favoring silicified minerals.
This categorization is consistent with the Ashley and Abrams
map (Ashley and Abrams, 1980).

FIG. 11. Left: Improvement in posterior entropy (bits per location) calculated for traverse A4 across Alunite Hill. Right:
Change in posterior classification probabilities for three of the Objective I geologic classes.
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Figures 14 and 15 show a partitioned model. In this ap-
proach, all spectra contribute equally to the classification of
the units that contain them; no remote sensing data is used.
The left and right panels of Fig. 14 show the change in
classification probabilities for traverses across sites A4 and
A8 of the western region. These two classification maps are
broadly consistent, but the traverses at the sites cross different
geologic units leading to different map updates. For reference,
the rectangular insets show the area appearing in the prior
remote sensing figures. The green area in the left panel is
generally correct, but the blue area in the right panel is
not consistent with field experience. We emphasize the blue
coloration in this figure does not indicate that this region is
actually classified as igneous in origin but simply that it be-
comes more consistent with the igneous classification after the
traverse. In fact, the geologic unit is largely hydrothermal with
virtually no igneous rock; the model extrapolates incorrectly
based on only a glancing intersection of the traverse near an
unrepresentative edge. This underscores the dangers of pre-
suming class uniformity over large areas, particularly with
pre-segmented regions devised in advance of data collection.
Figure 15 compares the same two traverses but calculated
with respect to Objective II (alteration zones) and using the
prepartitioning of Swayze et al. (2014). Here there is a minor
discrepancy; the two traverses lead to different labels for a
thin strip classified as kaolinite by A4 but as hydrated silica by
A8. The latter is more consistent with Swayze et al. (2014).
The incorrect classification implied by traverse A4 comes
from a tiny isolated portion of the unit, from which the A4
traverse acquires a small number of spectra. In contrast, A8
crosses a more central location in the unit, acquiring far more
spectra and achieving the most reliable classification.

While the precise borders differ, classifications based on
partitions are generally consistent with maps derived from
remote sensing. However, the remote sensing results appear
more robust and agree better with conventional interpreta-
tions. We attribute this to several factors. First, the remote
sensing–based regions are smaller and more appropriate to the
level of homogeneity implied by small a values. Second, the
remote sensing partitions arise from the ASTER observations
at specific pixels and are tied directly to data actually observed
at each location. Finally, learning b values provides some
additional slack in the model that helps prevent overconfident
extrapolations. This carries lessons for future models. We see
significant additional benefits of incorporating remote sensing
data, even if the measurements themselves are ambiguous on
their own. Additionally, it appears safer to oversegment geo-
logic maps with extra boundaries, which helps prevent over-
confident extrapolations of geologic classes over wide areas.

4. Discussion

The study offers several specific contributions. First, we
formalize the science traceability relationships from an
ad hoc STM into a rigorous probabilistic model. This
enables hypothesis-driven exploration with quantitative claims
that are objectively verifiable and related mathematically to the
measurements made by the robot. It contrasts with much
adaptive sensing research that focuses on directly measurable
quantities. Instead, our approach respects the fundamental in-
vestigation questions, in a fashion more appropriate to searches
by multiple complementary sensors for abstract or subtle de-
rived geophysical hypotheses. Formalizing hypotheses (as
maps) and their relationship to raw data (as a measurement

FIG. 12. Left: Improvement in posterior entropy (bits per location) calculated for traverse A9. Right: Change in posterior
classification probabilities for three of the Objective I geologic classes.
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model) permits principled statistical inference and experimental
design with direct traceability to mission objectives. We show
how to assign model parameters using appropriate combina-
tions of analyst domain knowledge, logical consistency rela-
tionships, and statistical learning from training data to fit the
remaining free parameters. The resulting system reproduces
conventional geologic interpretations of the Cuprite site in two
different investigation scenarios.

Our second contribution is the use of partitioning and
remote sensing methods to propagate information spatially.
Capturing spatial relationships is critical for planning autono-
mous robotic exploration, since it bears on the information
value of future measurements given the data already collected.
This allows robotic activity plans to be optimized by computer,
playing to the strengths of the automated half of the co-robotic
pair. It also allows the system to react to unanticipated events
that occur while the robot is out of touch with users. For ex-
ample, delays in navigation are common due to hazard
avoidance (Thompson et al., 2011) or unanticipated air/sea
currents. Robots that understand the hypotheses under study,
and their manifestation at different locations, can recover from
navigation or execution delays by optimizing a fallback strat-
egy. They can exploit resource surpluses in a similar fashion
(Thompson et al., 2011). Another benefit for exploration effi-
ciency is to overcome requirements for tedious close interaction

with each field robot. Probabilistic maps can communicate the
latest objectives simply and intuitively, defining the appropriate
behaviors without the tedium of low-level action planning.

Third, the Cuprite experiments provide the first ex-
perimental evidence for an intuitive but hitherto un-
demonstrated claim: that the distribution of spectroscopic
information is highly dependent on investigation objec-
tives. The simple coarse geologic classification (Objective I)
is relatively easy, and any location within a unit soon results
in an appropriate classification. The relationships between
minerals and geologic class are definitive, with relatively few
ambiguous minerals and a low appearance of mutually in-
consistent minerals as indicated by empirical a values. In
contrast, Objective II is subtler; it requires many measure-
ments (and ideally, multiple kinds of minerals per unit) to
overcome observation ambiguity. This is most pronounced
when extrapolating spatially using remote sensing data,
where the investigation must also battle the uncertainty in the
interpretation of multiband measurements. Other things equal,
certainty in the identification increases with the number of
spectral channels (Swayze et al., 2003). Rigorous tracking of
these conditional distributions, and propagation of these un-
certainties to the end maps, is a key feature of our approach.
We do find a strong statistical link between measured spectra,
mineralogy, and the geologic unit classes. This is not self-

FIG. 13. Top: improvement in posterior entropy (bits per location) calculated for the traverse A8, Opal or Chalcedony, for
Objectives I (left) and II (right). Bottom: Change in posterior classification probabilities for Objectives I and II.
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evident because geologists form origin and alteration classifi-
cations from countless other features such as local morphology,
elevation, the wide-area three-dimensional structure of dif-
ferent strata, and domain knowledge. The ability to corrob-
orate these insights with just a few spectra makes the Cuprite
data set an excellent test case for our study.

This general approach can drive automatic decision-
making for measurement and downlink wherever an agent
must explore an environment while balancing data collec-
tion and resource costs against science information gain.
Existing path and observation planners able to use these
models include the P-SPIEL approach of Singh et al. (2009);
branch and bound algorithms such as those in Binney and
Sukhatme (2012), or Hollinger and Sukhatme (2014); the
optimization strategy of Candela et al. (2017); and the
sampling-based planner of Arora et al. (2017). The model
applies to many different exploration problems including time
series sampling, selective in situ sampling within a rover arm
workspace, and allocation of orbital observations. Operators
can guide the process in multiple ways, such as by defining
the map and probabilistic model, by manually revising the
robot’s belief state, or by imposing constraints such as re-
source limits, goal waypoints, or required measurements.

A wide range of planetary missions might benefit from
some degree of science autonomy. Here we show a test case

involving remote exploration of hydrothermal systems,
which are important sites for biopreservation on Mars. More
generally, the techniques apply to other time-limited remote
astrobiology investigations, the science return of which
scales with their ability to fully utilize the in situ instruments
during long periods between communications. Naturally,
future missions will be more challenging than the Cuprite
case study. The most interesting astrobiology questions
relate to highly localized phenomena—organics or evi-
dence of life. These would likely require more than just a
geologic map, remote sensing, and a profiling spectrome-
ter. Instead, they would require a full imaging spectrometer
at orbital spatial resolution coupled with in situ imaging
spectroscopy and perhaps microscale imaging as well.
Maps would be less accurate than the terrestrial case. This
research aims to help establish a mathematical foundation
for science autonomy that could generalize to these more
complex and dynamic missions. Recent robotics advances in
the areas of long-duration autonomy and long-distance mobility
illustrate the need for human co-robot exploration leveraging
adaptive data collection. Robots can now spend days in the
field and travel multiple kilometers per single uplink/downlink
communications cycle. These platforms can deploy instruments
over wide areas, augmenting human explorers and acting on
their behalf when appropriate. Our future work will continue to

FIG. 14. Inferring geologic origin using predefined spatial partitions. Left: Change in geologic origin classification labels
after assimilating spectra from traverse A4. The rectangle indicates the inset zoomed-in region of Fig. 11 for reference. Right:
Change in geologic origin labels after assimilating spectra from traverse A8. The rectangle indicates the extent of Fig. 13.
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investigate this problem as a venue to refine the relationship
between human scientists and robotic explorers, ultimately in-
creasing the productivity and yield of both.

5. Conclusion

A case study of Cuprite Hills, Nevada, quantifies the infor-
mation gain of different in situ spectroscopic measurements
with respect to more abstract questions about hydrothermal
alteration, in the context of prior knowledge and ASTER re-
mote sensing data. We demonstrate efficient estimation of
model parameters and automatic inference of posterior classi-
fications consistent with prior literature. The case study gives
insight into the exploration process, as well as the spatial dis-
tribution of spectroscopic information at Cuprite, a site of
significant historical and geologic value.

Acknowledgments

We thank the members of the AVIRIS-NG team who par-
ticipated in data acquisition and analysis, including Michael
Eastwood and Sarah Lundeen. We thank Raymond Kokaly

(United States Geographical Survey) for his counsel. AVIRIS-
NG is sponsored by the National Aeronautics and Space Ad-
ministration (NASA) Earth Science Division. This research
was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National
Aeronautics and Space Administration. This project was sup-
ported by the National Science Foundation’s National Robotics
Initiative, Award No. 1526667. Gregg Swayze’s participation
was made possible by synergistic projects at the United States
Geological Survey. Any use of trade, firm, or product names in
this publication is for descriptive purposes only and does not
imply endorsement by the U.S. Government.

References

Abrams, M.J., Ashley, R.P., Rowan, L.C., Goetz, A.F., and
Kahle, A.B. (1977) Mapping of hydrothermal alteration in the
Cuprite mining district, Nevada, using aircraft scanner images
for the spectral region 0.46 to 2.36mm. Geology 5:713–718.

Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and
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