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Abstract—In this paper, we address the problem of extrinsic
calibration of a camera and a 3D Light Detection and Ranging
(LiDAR) sensor using a checkerboard. Unlike previous works
which require at least three checkerboard poses, our algorithm
reduces the minimal number of poses to one by combining
3D line and plane correspondences. Besides, we prove that
parallel planar targets with parallel boundaries provide the
same constraints in our algorithm. This allows us to place the
checkerboard close to the LiDAR so that the laser points better
approximate the target boundary without loss of generality.
Moreover, we present an algorithm to estimate the similarity
transformation between the LiDAR and the camera for the ap-
plications where only the correspondences between laser points
and pixels are concerned. Using a similarity transformation
can simplify the calibration process since the physical size of
the checkerboard is not needed. Meanwhile, estimating the
scale can yield a more accurate result due to the inevitable
measurement errors of the checkerboard size and the LiDAR
intrinsic scale factor that transforms the LiDAR measurement
to the metric measurement. Our algorithm is validated through
simulations and experiments. Compared to the plane-only
algorithms, our algorithm can obtain more accurate result by
fewer number of poses. This is beneficial to the large-scale
commercial application.

I. INTRODUCTION

Cameras and LiDARs provide complementary information
of the environment. Cameras capture the color, texture and
appearance information, and LiDARs supply the 3D structure
information of the environment. Therefore, they are often
jointly used to perceive the environment for the robots.
Extrinsic parameters, consisting of rotation and translation,
are prerequisite to fuse the information from the two sensors.
The number of robots equipped with LiDARs and cameras
has been increasing rapidly, with the widespread use of
Unmanned Ground Vehicles (UGVs) and Unmanned Aerial
Vehicles (UAVs). Thus, an effective and efficient extrinsic
calibration algorithm is required for large scale commercial
applications. This paper addresses the extrinsic calibration
of a camera and a 3D LiDAR using 3D line and plane
correspondences from a checkerboard. Our algorithm can
estimate the extrinsic parameters from one pose of the
checkerboard.

In the literature, one or more checkerboards are generally
used to calibrate a camera and a 3D LiDAR [1, 2, 3, 4,
5, 6, 7]. As only the plane correspondence is adopted in
the previous works, at least 3 poses of the checkerboard are
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needed in these algorithms. Generally, we can reduce the
calibration error to a certain level by increasing the number
of poses. In this paper, we aim to reduce the number of
poses required in the extrinsic calibration process, which is
important to large-scale commercial applications. For this
purpose, we utilize the boundaries of the checkerboard. Lines
are generally exploited for the extrinsic calibration between a
camera and a 2D laser range finder [8, 9, 10, 11, 12, 13, 14].
In previous works, they generally use the laser points on
the boundary and the corresponding 2D lines in the image
to generate constraints on the extrinsic parameters. The
resulting polynomial system is not easy to solve [11, 13, 14].
We use the boundaries of the checkerboard to yield 3D line
correspondences between the LiDAR and the camera. The
3D line in the camera frame is obtained by calculating the
intersection of the back-projected plane of a line and the
checkerboard. The 3D line in the LiDAR coordinate system
is estimated from the laser points on the boundary. Com-
bining the plane and line correspondence, our algorithm is
able to estimate the extrinsic parameters by one checkerboard
pose.

Except for the number of poses, the diversity of the mea-
surements is also important for an accurate result. Similar
measurements may cause bias or overfitting. However, this
problem is seldom considered in the previous works. In
this paper, we discuss the equivalent measurements of our
algorithm. This can guide the data collection process.

In some applications, such as object detection [15, 16],
they only need the correspondences between the laser points
and the pixels. The Euclidean metric is not important for
them. We can use the similarity transformation to replace
the rigid transformation for these applications. Using the
similarity transformation, we can simplify the calibration
process, as we do not need to measure the scale of the
calibration target. This avoids the measurement error of the
checkerboard size. Besides, 3D LiDAR needs a scale factor
to transform its measurement to the metric measurement [3].
Using similarity transformation, we can refine the scale
factor. Although similarity transformation has one more
unknown, it can also be estimated from one pose of the
checkerboard. The contributions of this paper are threefold:

Firstly, we propose a new extrinsic calibration algorithm
for a camera and a 3D LiDAR using 3D line and plane
correspondences. The new algorithm reduces the number
of poses required by the extrinsic calibration to one. The
experimental results show that our algorithm obtains more
accurate results given the same number of poses. This is
beneficial to industrial applications.



Secondly, we prove that parallel planar targets with paral-
lel boundaries provide the same constraints in our algorithm.
As the laser point can approximate the boundary more
accurately for a closer checkerboard, we can place the
checkerboard close to the LiDAR and camera without loss
of generality.

Thirdly, we extend our algorithm to estimate the similarity
transformation between the 3D LiDAR and the camera. The
similarity transformation can be applied to the applications
which only concern the correspondence between the laser
point and the pixel [15, 16]. We experimentally show that a
similarity transformation is a better alternative than the rigid
transformation, because there exist inevitable measurement
errors of the checkerboard size and the intrinsic LiDAR
scale factors that transform its measurement to the metric
measurement.

II. RELATED WORK

Checkerboard is widely used for the extrinsic calibration
of various cameras and range sensors. Zhang and Pless [17]
first introduced the checkerboard into the extrinsic calibra-
tion of a perspective camera and a laser rangefinder. They
place a checkerboard with different poses in front of the
laser rangefinder and the camera. The laser points on the
plane together with the plane parameters estimated in the
camera coordinate yield the plane-line correspondence. They
use such correspondences to construct constraints on the
extrinsic parameters. As Zhang and Pless only consider the
linear constraints from the plane-line correspondences, their
algorithm needs at least 5 poses. Theoretically, the extrinsic
parameters can be recovered from 3 poses. Vasconcelos et
al. [18] give solutions to this minimal problem. Unnikrishnan
et al. [1] use the checkerboard to calibrate a perspective
camera and a 3D LiDAR. Plane parameters are estimated
in the 3D LiDAR frame and the camera frame. They use
such plane-plane correspondence to decouple the initial cal-
culation of rotation and translation, then refine the initial
solution by jointly minimizing the point to plane distance.
Their algorithm needs at least 3 poses. Pandey et al. [2]
apply the checkerboard to solve the extrinsic calibration of
a 3D LiDAR and an omnidirectional camera. Mirzaei et
al. [3] also use a checkerboard to yield the plane-plane
correspondence to calibration the intrinsic parameters of the
LiDAR and the extrinsic parameters of the LiDAR and the
camera. Zhou et al. [4] use the uncertainty of the normal
vector estimated from the image to calculate the weight
of the measurement. Their experiments show that farther
poses generally have lower weights. As shown in this paper,
moving the checkerboard is not necessary, thus the effect of
the weight can be replaced by proper data collection scheme.
Geiger et al. [5] place several checkerboards in the scene.
Their algorithm detects the checkerboards and registers them
with the planes in the laser point cloud. As there are several
checkerboards in the scene, their algorithm only needs one
shot of the scene. In [7], they exploit the Branch-and-Bound
algorithm to extract the checkerboard in the laser point cloud.
Checkerboard is also used in the extrinsic calibration of other

range sensors and cameras, such as stereo and laser range
finder [19, 20], color and depth camera [21], and multi-planar
LiDAR and a camera [22]. In these works, they generally
only use the plane information of the checkerboard. They do
not consider the boundary of the checkerboard.

Boundary of the object is generally exploited to calibrate
a 2D laser rangefinder and a camera. In the literature, the
v-shaped target [8, 9], right-angled triangulation board [10],
and a board with intertwining black and white band [11]
are used to generate such correspondence. Gomez-Ojeda et
al. [12] apply an orthogonal trihedron to generate the plane-
line and plane-point constraints to solve the extrinsic cal-
ibration problem. In [13], the line feature is also used to
calibrate depth and color cameras. In [14], they present an
algorithm that can recover the extrinsic parameters from
one observation of a v-shaped target composed of two non-
coplanar triangles with checkerboard inside. In these work,
they generally use the line feature to generate 2D line-
point [8, 9, 10] or plane-point (back-projected plane from 3D
line) [11, 12, 14] or plane-line [12, 13, 14] constraints. The
resulting polynomial system is not easy to solve [11, 13, 14].
In our work, we use the 3D line-line correspondence to
generate constraints on the extrinsic parameters, which can
be easily combined with the constraints from the plane-plane
correspondence.

Some previous works seek to reduce or eliminate the
dependence of a certain calibration target. Gao et al. [23]
use an arbitrary trihedron to establish the plane-plane corre-
spondences to solve the extrinsic calibration problem. Their
algorithm needs at least two observations of the trihedron.
Scaramuzza et al. [24] formulate the extrinsic calibration
problem as a PnP problem [25] and manually generate the
point-point correspondence. Manual operation is not practical
for commercial applications. In [26, 27, 28], they exploit
the stochastic relationship between the laser reflectivity and
the image intensity of a nature scene to address the cali-
bration problem. In [29], a deep neural is trained end-to-
end to calculate the extrinsic parameters. In [30], they solve
the extrinsic calibration problem by minimizing the SURF
descriptor [31] error of the projection of the laser points
among different frames. Generally, extrinsic calibration of a
LiDAR and a camera needs to know the intrinsic parameters
of the camera. Using a checkerboard, we can simultaneously
calibrate the intrinsic parameters of the camera and the
extrinsic parameters of the LiDAR and camera. Therefore,
this paper studies the checkerboard as the calibration target
and focuses on reducing the number of poses in the extrinsic
calibration process.

III. PROBLEM DEFINITION AND NOTATIONS

Throughout this paper we use italic, boldfaced lowercase
and boldfaced uppercase letters to represent scalars, vectors
and matrices, respectively. The extrinsic calibration problem
of a LiIDAR and a camera is to estimate the relative rotation
and translation between the two sensors. We denote the rota-
tion matrix and the translation vector from the LiDAR frame
to the camera frame as R € SO (3) and t, respectively.



In this paper, we use a checkerboard as the calibration target.
The checkerboard plane and its four boundaries are exploited
to estimate RY and t¢, as demonstrated in Fig. 1.

Given the ith pose of the checkerboard, we can estimate
the checkerboard plane 7¢ and its four boundaries licj
(j =1,2,3,4) in image plane. Assume the intrinsic param-
eter of a camera is K, and the homogeneous coordinates
of the 2D line I is 1. The back-projected plane of I
is [K”1¢;0] [32]. Denote the parameterization of 7’ and
LS as [nf; dlc] and [dg,pg] , where n§ is the normal of
7¢, and dg and p% are the direction and a point of L%,
respectively. n¢’ and di(“; are of length one. On the other
hand, we can also estimate the checkerboard plane 7k and its
four boundaries LiLj for the LiDAR. Denote the laser points
on 7/ as {Pf, } (m=1,---,N;), and the points on L}; as
{Qf} (k=1,--- Kij). Given {P],,} and {Q/;}, we can
calculate the normal nf and the centroid P¥ of 7’, and
also the directions diLj and the centroid QZLJ of ij in the
LiDAR frame. In this paper, we exploit the correspondences
7 < wf and LY + Lf; to establish constraints for Rf
and t¢ . We describe the 3D line and plane extraction for
the camera and the LiDAR in section IV, and detail our

calibration algorithm in section V.

IV. AUTOMATIC FEATURE EXTRACTION

We estimate the 3D information of the checkerboard plane
and its boundaries from the image and the laser point cloud,
as shown in Fig. 3.

For the LiDAR, we roughly figure out the area of the
checkerboard. The laser points on the plane are detected by
the RANSAC algorithm [33]. Then we find the boundary
of each scan line. This gives the left and right boundaries
of the checkerboard. We calculate the direction of the line
defined by two consecutive points on the boundary. We
further divide the left and right boundaries into two parts
by finding the largest direction change. As the points on the
boundary sometimes have large noise, we reduce the noise by
the following steps demonstrated in Fig. 2. We first project
all the laser points onto the plane. Next, we fit a line for
each scan line. The boundary points are then projected to
each scan line. Although the scan line should be a conic,
here we use a line to approximate it, as the curvature of the
conic is small, and the checkerboard is not large. Finally,
we use the RANSAC algorithm to get rid of the potential
outliers in these boundary points.

The planar parameters in the camera coordinate system can
be easily computed. The checkerboard can be automatically
detected in the image by the off-the-shelf software, such as
MATLAB and OpenCV [34]. Then the planar parameters
are calculated by the homography between the checkerboard
and its image [32, 35]. We detect the lines in the image by
the LSD algorithm [36]. Given the detected checkerboard,
we detect the 4 lines enclosing the checkerboard as the 4
boundaries of the board. The corresponding 3D boundary
is the intersection of the back-projected plane of the 2D
boundary and the checkerboard plane. In the next section,
we will show that our algorithm can estimate Rg and tf
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Fig. 1. Geometrical constraints. The ith pose of the checkerboard yields

7r,b-c > 7rz.L and LZ-C; > LZ.L. (1 =1,2,3,4). LZ-C- is the intersection line of
plane 7§ and the back-projected plane 7ricj of line lfj.
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Fig. 2. Boundary laser points denoise. Left figure gives a schematic of our
denoising approach. The boundary point is first projected onto the plane,
then projected onto the scan line. Right figure demonstrates an example of
denoising. Blue points are original points, and red points are the ones after
denoising.

from N poses of the checkerboard using the aforementioned
features.

V. EXTRINSIC CALIBRATION

In this section, we detail our extrinsic calibration algorithm
for a LiDAR and a camera.

A. Geometric Constraints and Equivalent Set

Considering one line correspondence Licj ~ L

obtain the constraints on R¢ and t¢ as follows:
R{d}; =d, (la)
T
(1-a5(a5)") (REQE, — PG + ) = 041, (1b)

L

ij» We can

where I is the identity matrix, Pg is a point on the line

in camera frame. One L, <> L] gives four independent
constraints on R and tg]. To simplify notation, we define
Ajj=1- dicj (d%)T in the following description.

Given one plane correspondence 7& <+ 7F, we can have
the following equations for R¢ and t¢ :

c.L_ . C
Rin; =n;,

nf - (R{PL, +t) +df =0,

(2a)
(2b)
where - represents the dot product. One 7¢
three independent constraints on Rg and tg.

L .
— w7 gives
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Fig. 3. Extract lines and planes from the image (up) and the laser point
cloud (down). The line segments observed by the LiDAR and the camera
can be different, even without overlap.

We define an equivalent set as the poses of the checker-
board providing the identical constraints on R¢ and t¢ in
our algorithm. To increase the accuracy of the calibration
result, we should increase the diversity of measurements
and avoid equivalent measurements. For the planar target,
we have the following proposition:

Proposition The parallel planar targets with parallel
boundaries form an equivalent set for Rg and tg estimation.

Proof: Firstly, we show that parallel lines give identical
constraints on RY and t¢. Suppose L; and Ly are two
parallel lines with direction d“ in the camera frame. It is
obvious that they give the same constraint as (1a). Assume
that P§ and P{ are arbitrary two points on L; in the camera
and the LiDAR frame, respectively. Let PS and PZ represent
the counterparts on L. Let A represent I—d“ (dC)T. Using
(1b) on Ly and L, , we get

At7 + A (REQf - PY) =0,
AtY + A (REQL —PY) =0.
In (3), we find the first parts of the two equations are the
same. Additionally, we have
A (REQT —PY)
=A (R (Q7 +Qf - Q3) — (P§ +P{ — PY))
=A (R£Q3 - PY) + AR{ (Qf - Qf) — A (P{ - PY)
~A (REQ) — PS).
ARY (Qf — Qf) and A (P — PY) cancel each other out,
since they both represent the vector between and perpendic-
ular to Ly and Lo, as demonstrated in Fig. 4. Therefore, L
and Ly provide the identical constraints on RY and t¢.
Secondly, parallel planes provide equivalent constraints on

R¢ and t¢. Suppose m; and 7o are two parallel planes.
Define [nc; dlc] and [nc; dg] as the parameters of 7; and
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Fig. 4. A schematic of the relationship between two parallel lines (left)
and two parallel planes (right). We use A to represent the projection matrix
I-d%d)T.

w9 in the camera frame. Obviously, they yield the same
constraints on RY as (2a). Assume P{ and PZ are two
points on m; and me in the LiDAR frame, respectively.
Applying (2b) on m; and 7y, we obtain

n® t+n¢ RYPL +df =0, @)
nc-t+nC~R(LjP§—|—d§:0.

In (4), the first parts of the two equations are the same.
Moreover, we have

n® - REPE + df

“.Rf (P +P{ —Py) +d5 +df —df

=n“ . R{Py +d5 + (n“-Rf (P} — P}) +df —d5)
=n“ R{P} +df.

We have the final eqaution, because the absolute value of
n“.RY (PlL - Pk ) and d§ —d$ is the distance between the
two planes, and they are of opposite signs, as demonstrated in
Fig. 4. Therefore, 1 and 7o provide the identical constraints.

According to the above results, the parallel planar targets
with parallel boundaries provide identical constraints on RY
and t¢. They are equivalent in our algorithm. n

Although all the parallel planar targets with parallel
boundaries are equivalent in theory, they are different in
practice as laser points are discrete. They only approxi-
mate the ground truth boundaries. Therefore, the closer the
checkerboard is, the better the approximation is. The above
proposition ensures that simply rotating the checkerboard
near the LiDAR can yield all the constraints, and moving
the checkerboard is not necessary.

B. Pose Estimation from One Pose

One pose of the checkerboard can provide enough con-
straints for RY and t§. As a checkerboard has two pairs of
parallel boundaries, one pose of the checkerboard provides 1
plane correspondence and 2 line correspondences according
to the proposition mentioned above. As described in (1a) and
(2a), three constraints only involving R$ can be obtained.
If we treat the normal and the two directions as three points,
RY can be easily calculated according to [37]. For t¢,
we consider the constraints (1b) generated by the two non-
parallel boundaries with direction d$; and d$. The ranks
of A;; and A, are two. Additionally, the rows of Aj;;
and A;, span the spaces perpendicular to d§; and d$,
respectively. Thus, the span of rows in A;; and A ;5 should
have dimension 3, otherwise the two lines must be parallel.
This contradicts the fact that the two lines are perpendicular.



Therefore, the two line correspondences are already adequate
for t¢ estimation.

C. Pose Estimation from N Poses

Given N poses of the checkerboard, we can use (la) and
(2a) to get RY. In [1], they only use the normal constraint
(1a). Here we add the direction constraint (2a). As niL is
perpendicular to d”, introducing the line correspondences
significantly increase the diversity of the measurements.
As the data have noises, we solve R§ by minimizing the
following cost function:

RL = argmlnzz HRfdfj —

df||" +||REnf —nf "

RI =1 j=1
%)
This problem has a closed-form solution [37]. Define
Mé: Ffdd%,... 7dlLé“... 7nngd%u“' 7d%4]]’
M* = nladllf" ad14a"' 7nN7dN1,"' vd14 :

Assume that the Singular Value Decomposition (SVD) of
MFE (MC)T is USVT. Then ]::{2j = VU7 according to [37]

Given the estimation of RY, t§ can be solved by the
constraints 1(b) and 2(b). The points on the boundary are
much fewer than the points on the plane. To avoid bias, we
use the centroid of the plane PF and the centroids of the
lines Q5 to estimate t§'. Using (1b), (2b), and the definition

of Ajj mentloned above we have

—n¢ RYPL — df

C.tC _
¢ A (RCOL _ pC 6)
—A;; (RY Qi — Pij) .

7

A tY =
Stacking the above equations for all the poses, we get a linear
system for t¢'. This is a linear least-squares problem and has
a closed-form solution t¢.

After obtaining the initial estimation f{g and ‘Eg, we

jointly optimize them by minimizing the following cost
function:

)
argmlnz Z Hn RCPL +t dicH2+ 7
REtE 4

ZZ ZHAw (REQ, — PG +¢7)||"

i=1 j=1

We adopt Levenberg-Marquardt (LM) method [38] to solve
this nonlinear optimization problem.

D. Similarity Transformation

In some applications, such as [15, 16], they only need the
correspondence between the laser point and the pixel. The
real Euclidean relationship between the two sensors is not
necessary. Under this condition, we can use the similarity
transformation to replace the rigid transformation. Using
similarity transformation, we can simplify the calibration
process, as we do not need to measure the physical size of the
checkerboard. This in turn avoids the potential measurement
error of gauging. Furthermore, there is a scale factor that

transforms the LiDAR data to the physical measurements [3].
Denote the distance measured by the kth shot of the ith laser
beam as p;;. As shown in [3], the real distance p;; to the
object is calculated by

pir = o (Pik + Poi) » &)

where «; is the scale factor for the ith laser beam, and p,;
is the range offset. These parameters are provided by the
manufactory. Here we use a common scale s to refine «.
This is a similarity transformation.

The calculation of R for the similarity transformation is
the same as the rigid transformation. For the s and t¢, we
change (1b) and (2b) to

nf -t + nf RYPFs = e, ©

s and tg can be estimated by solving the linear system.
After we obtain the initial solution 3, RY, and t€, we
refine them by minimizing the cost function for the similarity
transformation as

<S R¢ tc) —

argrmnz Z Hn

C
SRt’Ll

We summarize our algorithm in Algorithm 1.

 (SREPE, +t) + dZ||*+(10)

Ky
Z i (REQL, — PG +e7)||"
J k=

Algorithm 1. Extrinsic calibration using plane and line
correspondences from a checkerboard

Input: N checkerboard poses
Output: Rigid transformation or similarity transforma-
tion from the LiDAR to the camera.

1. Detect the checkerboard and its boundaries in the
image, and calculate their corresponding 3D plane
7¢ and 3D boundaries L, j =1,2,3,4

2. Specify a rough position for the checkerboard.
Detect the checkerboard by RANSAC to get the
plane 7% and the boundary LZ-Lj, 7=1,2,3,4.

3. Use (5) and (6) to get (f{(Lj,E(Lj , or use (5) and
9) to get (5 RY,19).

4. Refine the solution by minimizing (7) to get
(Rg,ff) for the rigid transformation, or min-
imizing (10) to get (§

,RY, ff) for the similarity
transformation.

VI. EXPERIMENTS

As we mentioned in section II, the algorithms [1, 2, 4, 5]
which only use the plane information have the similar
formulation. We compare our algorithm with Unnikrishnan’s
algorithm [1] by synthetic and real experiments. Given the
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Fig. 5. Median and mean rotation (up) and translation (down) errors of
200 Monte-Carlo trials for each number of checkerboard poses.

estimation (R, %) and the ground truth (R,t), the rotation
error is evaluated by the rotation angle of the angle-axis
representation of RR ! asin [39], and the translation error
is calculated by ||t —t||,/[[t]l,-

A. Synthetic Results

In the simulation, we randomly generate the configuration
of LiDAR, camera and checkerboard poses. Specifically, the
roll, pitch and yaw angle of the camera are within £45°,
and the translation elements are uniformly distributed in
+0.3m w.r.t the LiDAR. For the checkerboard frame, its x
and y components of the translation are within £0.5m, its
z component is within [1.5m,2.5m], and its orientation is
within +45° relative to the camera. The checkerboard pose
is generated in the view of the camera.

We add zero mean Gaussian noise to LiDAR and camera
measurements to test the performance of different algorithms
under various noise levels. The standard deviation of the
LiDAR noise is set to lcm, 2cm and 3cm, while the
standard deviation of the image noise is fixed at 1 pixel.
The number of checkerboard poses N is within [1,10]. We
run each algorithm 200 times for each N. Fig. 5 gives the
results. It is clear that our algorithm has smaller rotation
and translation errors under different noise levels compared
to [1]. Additionally, our rotation and translation error are
around 1.5° and 12% when only one pose is used and the
standard deviation of the LiDAR noise is 3cm. It verifies
that our algorithm is able to provide accurate result using a
single snapshot under large noise.

B. Quantitative Results

We use a Velodyne VLP-16 LiDAR and a ZED stereo
camera to verify our algorithm, as shown in Fig. 6. The

-

Fig. 6. Velodyne VLP-16 LiDAR and ZED stereo camera used in our
experiments.
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Fig. 7. Checkerboard poses (left) and their normals (right). The orientation
of the checkerboard is well-distributed.

Velodyne VLP-16 LiDAR has 16 scan lines, £3cm range
error and 360 degree horizontal and £15° vertical field of
view. The threshold of the RANSAC algorithm is set to 3cm
in the experiments. The ZED stereo camera has about 12cm
baseline and 1280 x 720 resolution.

As we do not have the ground truth of the extrinsic
parameters of the LiDAR and the camera, we use the
extrinsic parameters of the stereo camera to evaluate the
performance of the algorithm as in [14]. Specifically, we
estimate the extrinsic parameters of the LiDAR and the
left camera (f{?,ﬁfl), and the extrinsic parameters of the
LiDAR and right camera (f{g'”,f%'), respectively. Then
we compute the relative pose (Rs,t,) between the left
and right camera from (R$',t$") and (R$™, 7). (Rs, t,)
is compared with the stereo extrinsic parameters (R, ts)
calculated by the MATLAB tool box. We also calculate the
similarity transformation, and compute the error as the rigid
transformation.

We collected 32 LiDAR and image pairs for the experi-
ment, as shown in Fig. 7. N LiDAR and image pairs are
randomly chosen from them. N is within [1,25] for our
algorithm and [3, 25] for Unnikrishnan’s algorithm. For each
N € [2,25], we run the experiment 200 times. For N = 1,
we estimate the extrinsic parameters for all the 32 poses
of the checkerboard. Fig. 8 gives the result. It is obvious
that our algorithm gives more accurate result. The result
of our algorithm from 1 pose is comparable to the result
of Unnikrishnan’s algorithm when 6 poses are used. Using
similarity transformation, we get very similar rotation error,
but smaller translation error than using rigid transformation.
This is because there exist inevitable measurement errors for
the checkerboard size and the scale factor of the LiDAR in
(8). These measurement errors mainly affect the estimation
of the translation rather than the rotation, since the rotation
matrix can be decoupled from the scale factor and the
translation vector as shown in (5) and (9). Unnikrishnan’s
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Fig. 8. Compare our algorithm with Unnikrishnan’s algorithm [1]. N

poses are randomly chosen from 32 poses. We run the experiment 200
times for each N € [2, 25], and evaluate our algorithm for each pose when
N = 1. Unnikrishnan’s result converges to our result as the number of
checkerboard poses increases. 3D Line correspondences can significantly
reduce the number of checkerboard poses required.

algorithm has large translation estimation error when N =
3. This is because there exist some planes with similar
orientations, as shown in Fig. 7. These planes are degenerate
for Unnikrishnan’s algorithm, but they are valid for our
algorithm. The 3D line constraints significantly increase the
diversity of the measurements. Therefore, our algorithm is
more robust to the configuration of the poses and can get
better result with fewer number of poses. This profits the
large-scale commercial application.

C. Qualitative Results

Fig. 9 shows the extrinsic calibration results from one pose
of the checkerboard. The boundaries of the checkerboard
in the laser point cloud match the ones in the image. This
verifies that our algorithm can provide accurate result even
if only one pose is used. Fig. 10 shows the laser point
back-projection results of our algorithm and Unnikrishnan’s
algorithm using 3 poses. In this case, Unnikrishnan’s algo-
rithm obtains poor results, as the configuration is degenerate
for their algorithm. But our algorithm still gets accurate
results. Fig. 11 shows the back-projection results from our
similarity and rigid transformation using one pose. The
results are very similar. Carefully observing the boundary,
we find that the result from the similarity transformation is
slightly better, as the projections of the boundary laser points
are closer to the boundary in the image. As estimating the
similarity transformation do not need the physical size of
the checkerboard, this simplifies the calibration process and
avoids the measurement error of the checkerboard size. This
property is beneficial to the applications that do not consider
the Euclidean metric information.

Fig. 9. Back-projection of the laser points using the extrinsic parameters
from our algorithm using one pose.

¢ Unnikrishnan’s algorithm * Our rigid transformation

Fig. 10. Back-projection of the laser points using the extrinsic parameters
from our algorithm (red dot) and Unnikrishnan’s algorithm (blue dot). Three
poses are used in this example.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present a new algorithm to solve
the extrinsic calibration problem of a 3D LiDAR and a
camera using the checkerboard. We introduce the 3D line
correspondence into the original plane correspondence. This
reduces the minimal number of poses required for this
problem to one. We prove that the parallel planar targets
with parallel boundaries are equivalent in our algorithm.
This guarantees that we can obtain sufficient constraints by
rotating the checkerboard near the LiDAR, where laser points
approximate the real boundary better and have lower noise.
We extend our algorithm to the similarity transformation that
does not require the metric information of the checkerboard.
This simplifies the calibration and avoids the measurement
error of the checkerboard size. Experimental results show
that our algorithm can get accurate result from one shot of the
checkerboard. In addition, we can obtain better results with
fewer poses compared to the plane-only algorithm. This is
useful for the large-scale industrial application. Besides, we
experimentally show that the similarity transformation is a
better alternative to the rigid transformation if the application
does not require the scale information.

For the future work, we plan to study the estimation of the
LiDAR intrinsic parameters [3] by introducing the constraints
on the boundary. We also plan to test our algorithm with
different sets of sensors (different camera lens type and
different 3D LiDAR).
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