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Abstract— In recent years, natural language machine inter-
faces have become increasingly common. These interfaces allow
for more intuitive communication with machines, reducing
the complexity of interacting with these systems and enabling
their use by non-expert users. Most of these natural language
interfaces rely on speech, including such well-known devices
as the iPhone’s Siri application, Cortana, Amazon’s Alexa and
Echo devices, and others. Given their intuitive functionality,
natural language interfaces have also been investigated as
a method for controlling unmanned aerial vehicles (UAVs),
allowing non-subject matter experts to use these tools in their
scientific pursuits. This paper examines a speech-based natural
language interface for defining UAV trajectories. To determine
the efficacy of this interface, a user study is also presented that
examines how users perform with this interface compared to a
traditional mouse-based interface. The results of the user study
are described in order to show how accurately users were able
to define trajectories as well as user preference for using the
speech-based system both before and after participating in the
user study. Additional data are presented on whether users had
previous experience with speech-based interfaces and how long
they spent training with the interface before participating in
the study. The user study demonstrates the potential of speech-
based interfaces for UAV trajectory generation and suggests
methods for future improvement and incorporation of natural
language interfaces for UAV pilots.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are becoming increas-
ingly ubiquitous devices in modern society. With recent ad-
vancements in UAV design and increasing availability, these
systems have been given new roles as delivery mechanisms,
hobby devices, and even tools for carrying out scientific
investigations [1]. The power of UAVs makes them an
appealing tool for carrying out repetitive but demanding
tasks, while their ability to operate in enclosed spaces
makes them significant assets to warehouse management
and even product delivery [2]. Furthermore, UAVs enable
researchers to place instruments, gather data, and interact
with environments that would otherwise be prevented. This
includes accessing previously inaccessible locations, such
as beneath the forest canopy or high up in the Earth’s
atmosphere, as well as potentially dangerous locations, such
as near active volcanos [1]. While UAVs themselves have
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become more popular and capable, the interfaces used to
operate them have remained complex, often precluding their
use by any but the highly trained. In fact, the extensive
training required to be able to successfully operate UAVs has
restricted their use to subject matter experts with many hours
spent training and operating these systems [3]. Reducing the
complexity of UAV interfaces would enable greater use of
these powerful tools by a wider subset of the population and
for an increased number of tasks. Specifically, a reduction
in the complexity of the interface would enable UAVs to be
used more extensively in scientific fields.

One way to reduce the complexity of UAV interfaces
is to rely on intuitive methods of interaction between the
user and the machine such as natural language. Natural
language interfaces make use of human speech and gesture
patterns to interact with non-human systems. Because users
are accustomed to interacting using vocal commands and
information sharing, utilizing this already familiar tool to
allow users to interact with UAVs reduces the complexity of
interaction [4]. By reducing this complexity, UAVs become
more accessible and therefore more widely applicable as
tools.

This study presents an initial speech-based natural lan-
guage interface specifically designed for inputting sections
of a UAV flight path (Section III). In order to determine
whether this speech-based interface is accepted by users,
it is compared to a traditional mouse-based interface. The
set-up of this experiment and design of the mouse-based
interface is presented in Section IV. The results of this com-
parative study are presented in Section V, focusing on overall
success, training time, input time, and user preference. A
discussion of these results follows in Section VI, as well as
conclusion and discussion of future work in Section VII. An
initial analysis of this interface appears in [5], however this
paper expands upon the speech-based interface and includes
additional analysis of the effects of previous speech interface
use, training time, and success.

II. RELATED WORK

The most common speech-based natural language inter-
faces are currently found in smartphones and other smart
home devices. Recent research such as Ruan et al.’s suggests
that speech interfaces are not just novel or convenient but
more efficient for text entry and operation of smartphones
[6]. Kojima et al.’s research indicates that speech recognition
interfaces in cars result in increased usability and satisfaction
as well [7]. Given the widespread use and success of such
speech interfaces, they have also been investigated for use



in human-robot interaction. In a meta-analysis of speech
interfaces for swarm control, Hocraffer and Nam indicate
that a speech interface can help to reduce the workload of
the human operator and increase situation awareness [8].
Novitzky et al. examine how a speech interface can be
utilized in a marine robot to improve team dynamics and
performance [9]. Some research has even explicitely looked
into using speech interfaces to control UAVs, including
Peshkkova et al. [4], Ferreiros et al. [10], and Williamson
et al. [11]. However, these studies focus on how to replicate
expert control systems that are currently in use. Limited
research has been carried out on utilizing simple speech-
based natural language interfaces to extend UAV usability
beyond its traditional scope.

Understanding current research and limitations of natural
language processing is an integral part of incorporating
speech interaction in UAV interfaces. Current trends in deep
learning [12] and neural networks [13] have propelled the
success of speech recognition and enabled speech-based nat-
ural language interfaces. Such powerful language processing
comes at a cost; researchers have noted potential problems
with memory, time and energy consumption, and necessary
power that reduce the usability of interfaces reliant on
these techniques [14]. Ensuring that a speech-based natural
language interface is accurate while minimizing its set of
power, time, energy, and memory needs may be crucial to
allow such interfaces to be accepted. The speech interface
examined in this paper is designed to be simple to reduce
such needs, while still powerful and accurate enough to allow
non-expert users to interact with UAVs to generate flight
paths.

III. SPEECH INTERFACE DESIGN

The speech interface presented in this study allows users
to create flight path trajectories for UAVs using vocal com-
mands. Users are presented with a list of twelve available
trajectory segments (Figure 1), developed by Chandarana
et al. [1]. These segments are presented in the form of
a dropdown menu (Figure 2). Speaking the name of any
trajectory segment selects that specified segment and adds
it to the total flight path. This selection is confirmed by
showing the user an image of the selected trajectory segment
for three seconds, after which they are given a dialogue box
asking if they would like to add an additional trajectory
segment to the overall flight path. The user can then respond
verbally with either a “yes,” continuing to add segments until
the desired flight path is completed, or a “no,” completing the
flight path (Figure 3). The speech interface presented here
is a simple version that does not make use of many of the
current areas of research focus in natural language process-
ing, including deep learning and neural networks. However,
the simplicity of the task favors speed and responsiveness
of the overall interface over power in speech recognition;
the limited vocabulary of the trajectory segment library and
commands of the interface require little parsing effort in
order to allow the system to understand.

The speech interface tested in this study relies on the
CMU-Sphinx speech-to-text software [15]. A product of
more than 20 years of continuous improvement, CMU-
Sphinx is an open source tool produced at Carnegie Mellon
University. It utilizes a pre-fabricated and standard dictionary
of phones and lexicon mapping of phone-groups to words.
In this case, the English lexicon was used, mapping phones
to English phonemes and groups of these phonemes into
English words. The full English dictionary available to the
CMU-Sphinx application contains thousands of words, but
searching through a dictionary of that size is costly in
processing power and time. In order to speed up the speech-
recognition, an application-specific dictionary was created
for this user study that instructs the system to listen only for
the specific words users would use in order to define UAV
flight paths. This small dictionary consisted of a little less
than 100 words, corresponding directly to the possible flight
path trajectories. Each of these words is stored in traditional
English orthography, so the word “up” is stored spelled with
a “u” followed by a “p.” The traditional orthography is then
mapped to a CMU-Sphinx specific pronunciation orthogra-
phy that defines the sounds that compose the word. For the
example word “up,” CMU-Sphinx would map it to “AH P”,
with “AH” representing the sound that the “u” makes. In the
event that a word has multiple pronunciations, CMU-Sphinx
can store multiple pronunciations, accounting for variability
in vowel sounds, pronounced consonants, and even extra
syllables. By storing multiple possible pronunciations for
each word in the dictionary, CMU-Sphinx allows for more
successful word identification even with accent variances,
providing a powerful tool for speech identification.

In addition to the application specific dictionary, an ap-
plication specific grammar was created. This defined word
combinations that were allowed, specifically the compound
diagonal trajectories “forward right”, “forward left”, “back-
ward right”, and “backward left” (Figure 1). It also indicated
that variations on “yes” such as “yeah” and “yup” should
be interpreted as “yes,” and variations on “no” (including
“nope” or “nah”) should be interpreted as “no.” This further
specifies what type of language the CMU Sphinx system
should be looking for, and improves accuracy in speech
identification as a result. Furthermore, the speech system is
trained to ignore non-speech sounds, such as a cough into
the microphone, or non-content bearing words, such as “um”
or “uh.”

Users accessed this speech interface using an Audio
Technica microphone headset [16]. This microphone sat on
the temples, wrapping around the back of the head, and
provided no audio output or any part that would cover the
ears. The microphone itself extended downward toward the
mouth (Figure 4), and users were given time and instruction
in how to adjust the angle for comfort.

IV. METHODS

The experimental setup utilized here has been previously
described [5]. The speech interface is compared to a simple
yet familiar mouse interface in order to determine usability



Fig. 1: Gesture library of 12 trajectory segments developed by Chandarana et al. [1].

and user preference. A broad level description of how this
mouse interface works is outlined in this section. Addition-
ally, the methodology used to conduct the user studies is
outlined as well.

A. Mouse Interface

The mouse interface is deliberately designed to look like
the speech interface, such that the only major difference
between the two is not in appearance but in how they are
operated. As with the speech interface, the mouse interface
presents users with a drop-down menu listing all 12 trajectory
options (Figure 2). Users select an option from the drop-
down menu and their selection is confirmed by displaying
an image of their selected trajectory segment. Afterwards,
they are presented with a dialog box asking if they would
like to add another segment (Figure 3). Users select “yes”
to add additional segments to the flight path, or “no” to stop
adding segments and generate the final flight path. If a user
selects “yes,” they return to the drop-down menu and can
select another segment. If they select “no,” they are shown
the final flight path. Users were presented with a standard
mouse to operate this interface: the mouse was attached to
the computer via USB cord and contained two buttons and
one wheel. Users were instructed to operate the mouse with
their right hand in order to ensure standardization across the
study.

B. Experimental Setup

Fourteen users participated in this study. All of the users
were asked to generate flight paths with both the mouse

and speech interfaces, but the order in which they used
each interface was randomized and counterbalanced across
all subjects. Users generated all three flight paths (Figure
5), but were asked to create them in a randomly assigned
order that was counterbalanced across all subjects. For each
subject, the same order was used for flight path generation
in both interfaces.

Before beginning trials, subjcts were asked to read and
sign the Privacy Act Notice and Informed Consent Forms,
after which the researcher(s) would outline the purpose of the
user study and describe the participation process. Users then
completed the background questionnaire and began training
on the first interface. Users were given a maximum of ten
minutes to train on the interface, and were provided with
a printout of the library of 12 trajectory segments (Figure
1). Users were allowed to retain this printout during the
actual data collection runs. The amount of time that the
user chose to train on each interface was recorded. After
the user indicated that they were ready to proceed to trial
runs, they were presented with a printout defining the flight
path they would be asked to generate (Figure 5). These
printouts specified an entire flight path consisting of three
unique trajectory segments that the user must define in order.
Each segment was presented visually and also included a
numbered label to ensure correct interpretation of the flight
path by the user. Users were able to study the flight path
for five seconds before the researcher(s) began the test run,
but were allowed to retain this printout and view it during
the entire test run. While the user completed three test
runs with three different flight paths, data were collected on



Fig. 2: Interface drop-down menu listing trajectory segments.
The same drop-down menu was used for the speech and
mouse interfaces.

Fig. 3: Interface dialog box for adding an extra segment. This
same dialog box was used in both the speech and mouse
interfaces.

correctness of each flight path segment, overall correctness
of the entire flight path, and the time it took to complete the
generation of each flight path. The user was also asked to
complete a NASA TLX workload assessment and subjective
questionnaire after completing all three flight paths. The user
was then presented with the second interface, repeating the
process of training and generating three flight paths. The
same data were collected for each interface.

An entire flight path was classified as correct if each of the
three contained segments was correct and no additional seg-
ments were added. Five different error types were recorded
throughout the study, described below.

1) System Misinterpretation: A user provided the correct
information to the system, but the system misinter-
preted the information and produced the wrong tra-

Fig. 4: Speech interface set-up.

jectory segment.
2) Extra Segment: A user provided an extra segment to

the entire flight path, resulting in a flight path of four
or more trajectory segments instead of one of three
segments.

3) Human Error: The user provided the wrong informa-
tion to the system.

4) System Misinterpretation + Human Error: The user
provided the wrong information to the system and the
system misinterpreted the information that the user
provided (type 1 + type 3).

5) System Misinterpretation + Extra Segment: The user
provided an extra segment to the entire flight path and
the system misinterpreted the information that the user
provided (type 1 + type 2).

Error types 2 and 5 only appear for overall flight path
correctness and do not appear at the level of individual
trajectory segments. By tracing not only the occurence rate
of errors but the type of errors, we can see how well the
system is performing and how well the user is interacting
with the system.

V. RESULTS

Analyses were conducted using IBM SPSS version 24,
focusing on an analysis of variance (ANOVA). Independent
variables included input interface (speech vs. mouse), previ-
ous experience with UAVs, previous experience with speech-
based interfaces, training time, and flight path. The results
shown here reflect the impact of these independent variables
on the number and type of error segments, the overall
accuracy of the flight path, the input time for each flight
path, as well as a number of subjective workload assessment
variables measured by the NASA TLX, including mental
demand, physical demand, temporal demand, performance,
effort, and frustration. While no results are significant, the
trends are presented here. This lack of statistical significance
suggests that the speech interface worked as well as the
baseline mouse interface. Where the relationship between
independent and dependent variables were continuous and
related, linear regression analysis was applied to demonstrate
the direction and rate of correlation. Where appropriate, error



Fig. 5: Three flight paths that users were asked to create
using speech and mouse interfaces. Each flight path consists
of three segments, and each includes one “right” segment for
comparison [5].

bars indicating standard error and mean are provided with
graphs.

Of the 14 participants, only one user had any previously
experience flying UAVs, and they had been doing so for
roughly 4 years. Ten of the participants had previously
used speech-based interfaces, predominately interacting with
their smart phones and applications in their cars. Nine of
these were satisfied with their interactions with these current
interfaces.

A. Flight Path Accuracy

Overall, users met with success in creating flight paths
using the speech interface. With both the mouse and the
speech interfaces, users created flight paths with a 90.5%
correctness rate (Table I). Most importantly, users were
equally successful with the novel speech interface as they
were with the familiar mouse interface. Two out of the
14 users made mistakes on any portion of the flight paths
using the mouse based interface, while 10 out of 14 made
mistakes using the speech interface (Figure 6). However, the

Fig. 6: Percent of correct flight paths based on subject for
speech and mouse interfaces.

speech system misinterpreted very few commands, and the
majority of errors occurred on only flight path B (Figure 7).
This likely occurred due to the inclusion of the compound
segment “Forward Back” in Flight path B, and indeed
most of the mistakes occurred on this segment (Figure 8).
Interestingly, while this segment proved problematic for the
speech interface, Flight Path B led to the highest performance
for the mouse interface (Figure 9). Otherwise, performance
was relatively standard between users and across flight paths.
All but three users met with a greater than 80% success rate
using the speech interface.

Interestingly, users performed the best with the mouse
interface on the same Flight Path B that resulted in the
misinterpretation errors with the speech interface (Figure 9).
With this mouse interface, users performed the worst with
Flight Path A, which met with the highest accuracy from the
speech interface.



TABLE I: Segment definition errors by type for both mouse
and speech interfaces

Mouse Speech
Misinterpret 0% 2.38%

Extra Segment 4.76% 0%
Human Error 4.76% 7.14%

Human + Misinterpret 0% 0%
Extra + Misinterpret 0% 0%

Overall Correct 90.48% 90.48%

Fig. 7: Mean number of error segments per flight path
segment for both speech and mouse interfaces.

B. Performance Based on Training Time

Training time was comparable for both speech and mouse
interfaces. While users were offered the opportunity to take
up to ten minutes to train with each interface, users took
on average just over 130 seconds, or slightly more than two
minutes of the allotted ten minutes of training time. This was
similar in length to the time users needed to train with the
mouse interface, an interface with which every user admitted
familiarity. This indicates that no significant extension of
training time is necessary when switching to a speech-based
interface.

Performance improved as training time increased for both
speech and mouse interfaces (Figure 10). The increased rate
of improvement seen in the speech interface suggests that
users improve at a faster rate than on the traditional mouse
interface, indicating that with continued practice and more
frequent use of this novel interface type users would become
even more proficient.

Interestingly, there is a slight downward trend in overall
performance, measured by an increase in the number of error
segments, as training time increases for both the mouse and
speech-based interface (Figure 12). This may suggest a type
of burn-out, with more time spent with each interface leading

Fig. 8: Mean overall flightpath accuracy based on flightpath
segment for both speech and mouse interfaces.

Fig. 9: Mean performance per flight path segment for both
speech and mouse interfaces

to the production of more errors, or it may suggest that those
who felt the least confident with each interface desired more
training time and produced more errors. Because the effect
was measurable in both the speech and mouse interfaces,
however, it seems unlikely that this would lead users to select
one interface over another.

Users also seemed to require increased time to input
their flight paths as the amount of time they spent training
increased (Figure 11). This pattern is visible for both the
speech and mouse interface, but is substantially heightened
for users of the mouse interface. This suggests that there is



Fig. 10: Average performance success based on training time
for both mouse and speech interfaces

a correlation between the amount of time taken to train on
an interface and the amount of time taken to input the flight
path, perhaps out of worry of making mistakes or care taken
to input the correct information.

C. Previous Experience and Overall Opinion

It is worthwhile to note that many participants had pre-
vious experience using speech interfaces. Thanks to the
ubiquity of interfaces such as Siri and Cortana, and recent
advances in aids such as the Amazon Echo and Google
Home devices, many users are familiar with how speech
interfaces operate. The effect that previous exposure has
on user acceptance of this type of interface is therefore
important to examine. To do so, the relationship between
previous experience, as noted in the pre-test questionnaire,
and overall satisfaction, as noted in the NASA-TLX form,
are examined. In addition, user comments from both these
forms are included.

The subjective questionnaire that users completed after
using each interface asked them to rate the overall difficulty
and responsiveness, indicate how likely they would be to
use the interface again, how sufficient the training time was,
and how sufficient the time to view the flight path before
beginning the trial was. Users rated these values on a likert
scale from 1 to 5, were 1 indicated that the interface was
easy, too fast, not likely to use the interface again, too little
training time, and too little viewing time (respectively). A 5
indicates that the interface was difficult, too slow, users were
very likely to use it again, too much training time, and too
much viewing time (respectively). After using both interfaces
and completing both subjective questionnaires, users were
asked whether they preferred the speech based interface or
the mouse based interface overall. A rating of 1 indicated a
preference for the mouse based interface and a rating of 5

Fig. 11: Time to input flight path based on training time for
both speech and mouse interfaces, including regression to
average.

Fig. 12: Overall flight path accuracy based on training time
for both speech and mouse interfaces, including regression
to average.

indicated a preference for the speech based interface.
Table II shows that users indicated a lower overall dif-

ficulty score for the mouse interface than for the speech
interface. Both interfaces, however, were rated within one
full point of each other and below the median score of 3.
Both speech and mouse interfaces were rated similarly close
in responsiveness as well. Both interfaces were rated slightly
below the median score, indicating that both were viewed by
users as slightly too slow. Users indicated that they would



TABLE II: Subjective Questionnaire Values for Speech and Mouse Interfaces

Speech Total Mouse Total
Difficulty 2.11 1.43

Responsiveness 2.36 2.79
Likely Use Again 3.43 4.14

Sufficient Practice Time 3.07 3.07
Sufficient Flight Path Study Time 2.92 2.93

be willing to use both interfaces again, with each being rated
above the median line. Users did indicate, however, that they
would be more likely to use the mouse interface than the
speech interface. Users rated both interfaces identically when
considering whether they were given enough time to practice
with each interface, and nearly identically when asked if they
were given enough time to study the flight path before being
asked to create it.

The NASA TLX form also allowed for the collection of
data on user’s workload. Users were asked to rate the mental,
physical, and temporal demands that both the speech and
mouse interfaced required. Users rated these demands on a
scale from 0 to 10, with low numbers corresponding to a
low demand and high numbers to a high demand. Users also
rated their overall performance on the interface from 0 to 10,
with a low score indicating good performance and a high
score indicating poor performance. Finally, users rated the
amount of effort they put in to operate the interface and their
level of frustration on a scale from 0 to 10. Lower measures
corresponded to lower levels of effort and frustration, while
high measures indicated higher levels. Table III shows the
TLX measures for the speech interface. It also shows the
TLX measures for those users who had previous experience
with speech based interfaces and those users who were
satisfied with previous speech based interfaces.

Overall, users indicated very low mental, physical, and
temporal demand, as well as low levels of effort and
frustration for the speech interface. The physical demand
of the speech interface was the lowest, with an average
measure below 1, while the mental demand required was
the highest, but still only slightly above 2.5. The amount
of effort was similarly rated an average of just above 2.5,
while users indicated a frustration level averaging just under
3.3. Generally, users indicated lower TLX ratings for the
mouse interface than the speech interface. However, the
low demand, effort, and frustration values given to the
speech interface demonstrate that this novel interface was
similarly acceptable to users. Users also indicated that they
performed fairly well with the speech interface, rating their
performance on average at 3.32. Interestingly, users with
previous experience with a speech interface suggested that
the interface required less demand and effort and produced
less frustration, but indicated that their performance was
slightly worse than the overall average with a score of 3.9
compared to the average of 3.32. Moreover, users who had
previously used a speech interface and were satisfied with
how it worked rated this speech interface as requiring less
demand and effort and producing less frustration than the

overall average, but also viewed their performance with the
interface as better than the average at 3.22 compared to 3.32.

D. Subjective Information

Users were also able to provide general subjective feed-
back on the questionnaire. Generally users seemed to sub-
stantially favor the mouse interface to the speech interface.
However, a majority of these responses listed the predomi-
nant reason for this preference as the “system delay.” During
the study, it became clear that the time taken to show the
user the trajectory segment they selected before asking if
they would like to input another segment was interpreted as
a delay. While this delay was programmed in and intentional,
lasting only three seconds, users viewed it (perhaps correctly)
as a system flaw. This delay was specifically included in
order to allow the results of this study to be compared with
additional user interface studies that required a delay for
timing. Future versions of this interface should certainly omit
any unnecessary delays.

Users also suggested that while the speech interface was
easy to use overall, creating full flight paths by selecting
individual trajectory segments from a dropdown menu could
become cumbersome no matter what interface style was used.
Another common comment was that users would like some
sort of error correction, a way to undo the selection of
a trajectory segment. Addressing these user comments on
artificial delay, how cumbersome the task was, and providing
error correction could go a long way in improving the
usability of the interface.

VI. DISCUSSION

Post-study questionnaires indicate that users preferred the
mouse interface to the speech interface. Comments suggested
that this was predominately a matter of what users were
already familiar with and therefore what they felt more
comfortable and confident using. They also suggested that
the built-in time delay, added to both the mouse and speech
interfaces, proved more troublesome in the speech-based
interface. Despite this preference, users met with sufficient
success when using the speech interface (90.5% success rate
for each).

Flight path B proved to be the most significant source
of errors generated while using the speech interface (Figure
7). The predominate difference in this flight path was the
inclusion of a diagonal segment that contained the word
“backward.” While users were prompted to say the word
“backward” by the listing of flight path segments, and trained
using this correct form, when presented with this flight path



TABLE III: NASA TLX Measures for Speech Interface

Total Previous Speech Interface Experience Previous Speech Interface Satisfaction
Mental 2.54 2.35 2.28

Physical 0.93 0.7 0.72
Temporal 1.46 1.15 1.22

Performance 3.32 3.9 3.22
Effort 2.57 2.55 2.67

Frustration 3.25 2.9 2.44

during the study they often fell back on alternative forms
(e.g., “back” or “backwards”.) Accounting for all options
would provide a more robust and more successful interface.

Overall, users did not make use of the full allotted ten
minutes of training time for either the speech or mouse
interfaces. However, the amount of training time was largely
correlated with overall success, and generally the amount
of time taken to input the flight path. This may suggest an
overall trend of carefulness – those users who took more
time to ensure they were comfortable with the interface also
took more time and care in the input of the flight path, thus
meeting with higher success rates but also longer input time.
Likely, experience also contributed to the limited training
time necessary for both the speech and mouse interfaces.
Because speech-based interfaces were not wholly new to
most participants, little of the offered training time was ever
used.

Another point that users made when selecting between
the mouse and speech interface systems was that the mouse
system was more familiar to them. This familiarity was
expected, and understandably impacts levels of comfort and
confidence experienced by users. The impact that famil-
iarity with an interface has on the overall acceptance of
that interface can be seen even within the data from the
speech interface. Users who had previous experience with a
speech-based interface rated this interface as less demanding,
requiring less effort, and overall less frustrating than the
overall average for these scores (Table III). Similarly, the
longer that users spent training on the speech-based interface
the more successful they were at using it to generate flight
paths (Figure 10). This relationship suggests that the more
time a user spends with the speech-based interface the more
effective they are at using it to generate flight paths. As
natural language interfaces become more ubiquitous and
users become more familiar with their operation, acceptance
of these interfaces should likewise increase.

Users also brought up the question of accent and language.
For non-native English speakers, ensuring that each word was
pronounced with accurate English accent increased workload
significantly. Future systems should be prepared for multiple
accents, as well as multiple languages, to ensure that a speech
based interface can be used by as broad a spectrum of
potential users as possible. Many participants switched to
over-articulated and exact speech patterns when operating
the speech-based interface. This is perhaps indicative of low
expectations for machine performance – users expected the
system to perform poorly, and as a result switched their

speech patterns in an attempt to provide the system with
exact language to digest. However, these shifting speech pat-
terns had the opposite effect. The speech parsing system used
in this study was built and trained upon colloquial speech
data and expected users to pronounce and pace language
as they would in everyday human-to-human communication.
Over-enunciation of commands changed the way in which
they were pronounced enough to cause potential trouble for
the speech recognition system.

The over-enunciation problem encountered by some sub-
jects has some interesting implications for the future of a
speech-based interface. Should the interface be designed to
accommodate such unusual speech patterns if they occur
due to expected low capabilities of the system? Contrarily,
should human users be trained to expect better of machines
and communicate using the same basic speech patterns they
would use for other humans? Due to the small size of the
dictionary in operation for this study, the simplest solution
would be to include alternate pronunciation options for each
flight path segment, thereby allowing the system to anticipate
and account for over-enunciated commands. However, future
systems with more extensive vocabularies (e.g., the entire
English language) may not have such luxury. It is also an
interesting problem to consider whether human-to-machine
communication relying on distinct pronunciation patterns
may constitute its own dialect of sorts.

Finally, the speech interface examined in this user study
included a number of characteristics that were designed
not to be optimal for performance or user acceptance, but
rather to allow for comparison of results with additional
user studies. As a result, design choices such as the drop-
down menu, the inclusion of a delay in between selecting a
trajectory segment and selecting whether to add an additional
segment, and the lack of any error correction methods were
all purposefully included. In comments on their subjective
questionnaires, users often identified these areas as prob-
lematic and factored them into their overall opinion of
the speech-based interface. These are all obvious areas of
improvement for the next generation of speech interfaces,
and should substantially improve overall user acceptance of
the interface once accounted for.

VII. CONCLUSION AND FUTURE WORK

This paper presented an initial design of a speech-based
interface for defining flight path trajectories for UAVs. It
also presented the results of a user study designed to test the
acceptability of such an interface.



The compound flight path segments, such as “Backward-
Left”, resulted in the lowest success rate, with an average
of 1.1 errors per user for the speech interface compared to
the 0 errors averaged for the mouse interface. This indicates
one specific area where this current speech interface can be
improved. However, despite the lowered success rate on this
segment, users in general demonstrated comparable success
with the speech interface as they did with the mouse interface
(90.5% for both), suggesting that even with minimal training
a novel speech interface can prove as effective as other
common interfaces. Training time was, however, directly
correlated to overall success, both for the mouse interface
and to an even larger extent for the speech interface.

Most users did have prior experience with speech inter-
faces (71% of all participants), and most were satisfied with
the speech interfaces they were using (90% of all participants
with previous experience with speech interfaces, including
common interfaces such as Siri, Amazon’s Alexa, and other
GPS/car interfaces.) Users with previous experience with
these interfaces indicated that this speech interface required
less mental, physical, and temporal demand as well as effort
from them, and produced less frustration. However, these
same users suggested that their overall performance was
worse than the overall average. This suggests that as users
become more familiar with speech based natural language
interfaces, their ability to effectively use these interfaces will
increase.

In addition, a high success rate and a higher user prefer-
ence rate could be reached if several areas identified this
study were improved during future work. Improving the
CMU Sphinx dictionary and grammar to better recognize
compound trajectory segments and over-enunciated word
pronunciations and reducing the imposed delay between
entering trajectory segments. Continued research on speech-
based natural language interfaces could also improve the
overall accuracy of the system by making use of recent
advances in deep learning. By increasing the level of intel-
ligence of the speech recognition system, the UAV interface
can work with a wider range of users at a high speed, and
produce even higher accuracy. This study has identified areas
of improvement for next generation speech interfaces for
UAVs.

This study has shown that users are willing to accept a
speech-based natural language interface for defining flight
paths. Prior research has also shown that natural language
interfaces allow for a wider user-base than more complex
subject-matter specific interfaces [1]. Together, this indicates
that utilizing a speech-based interface will allow for an
increase in UAV usability as well as an increase in the type
of tasks that UAVs are used for.

However, previous research has also indicated that speech-
based interfaces carry their own limitations [5]. Speech-based
interfaces work best when a system can be trained to a
particular voice, let alone a particular accent or language.
Moreover, speech interfaces may become problematic in
noisy environments. Additionally, truly intuitive natural lan-
guage communication relies on speech used in conjunction

with other forms of natural language. In order to compensate
for these limitations, providing a highly intuitive natural
language interface that works in the broadest possible set of
circumstances, a multimodal interface should be considered.
Such an interface should incorporate not only a speech-based
system but also a gesture-based system, thereby combining
two different natural language modalities for enhanced per-
formance and more intuitive operation.
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