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Abstract— In this paper, we propose a mapping approach that
constructs a globally deformable virtual occupancy grid map
(VOG-map) based on local submaps. Such a representation al-
lows pose graph SLAM systems to correct globally accumulated
drift via loop closures while maintaining free space information
for the purpose of path planning. We demonstrate use of such a
representation for implementing an underwater SLAM system
in which the robot actively plans paths to generate accurate 3D
scene reconstructions. We evaluate performance on simulated as
well as real-world experiments. Our work furthers capabilities
of mobile robots actively mapping and exploring unstructured,
three dimensional environments.

I. INTRODUCTION

Active mapping (or exploration) involves controlling robot
motion and sensor configurations so as to gather information
for purposes of geometric or semantic scene reconstruction.
As robotic systems become increasingly autonomous, the
problem of active mapping has received considerable atten-
tion in recent years [1, 14, 16] and has found its way into
a variety of applications including inspection of bridges and
underwater structures, search and rescue, reef mapping, and
crop monitoring.

In order to actively map a 3D environment with high
fidelity, a robot needs to plan paths to informative viewpoints
as well as be able to accurately localize itself within the map.
State-of-the-art planning algorithms [1, 14, 16] for actively
mapping unknown 3D environments require an input map
that can offer both free and occupied space information. The
most commonly employed world representation for such a
purpose is an occupancy grid that divides the entire space
into voxels that can then be classified as free, occupied or
unknown. Voxels in an occupancy grid, however, are rigidly
aligned with respect to each other and can hence not be
updated efficiently for correcting global map drift based on
loop closure constraints from the simultaneous localization
and mapping (SLAM) system.

On the other hand, state-of-the-art SLAM systems like
submap-based pose graph SLAM use a world representation
involving a graph of robot poses with each pose associated
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Fig. 1. Comparison of scene reconstruction quality for active mapping
with standard global occupancy grid map and with our virtual occupancy
grid map (VOG-map). (a) World as a standard global occupancy map as
used in many current path planning algorithms. (¢) The same world as a
VOG-map capable of undergoing corrections from global loop closures from
SLAM. (b), (d) Corresponding 3D reconstructions of a large ship propeller
corresponding to using the world representations in (a) and (c), respectively.

with a local 3D point cloud [4, 8, 15]. Such representations
can correct their global map drift by incorporating loop
closure constraints and optimizing the SLAM graph. They,
however, do not preserve direct free space information as
required by path planning algorithms.

In this paper, we propose a submap-based mapping ap-
proach that can correct global map drift based on loop closure
constraints from the SLAM system while maintaining free
space information for path planning. Our solution is directly
applicable for active mapping and exploration tasks that
robots must perform in the real-world. In particular, our main
contributions are:

(1) We introduce the virtual occupancy grid map (VOG-
map) that can model free and occupied space as well as
correct global map drift based on SLAM loop closures.

(2) We use (1) to implement an underwater SLAM system
that actively plans paths to generate accurate 3D scene
reconstructions.

(3) We evaluate (2) in both simulation and real-world exper-
iments.



II. RELATED WORK

SLAM systems operating in large-scale environments
widely use submap-based methods that represent the world
as a collection of local maps or submaps each with their
own local coordinate frames [2, 6, 8, 10, 15, 17]. In some
of these systems [2, 6] the robot is localized within the
local coordinate system of a submap and gets re-localized
when switching submaps. In other more recent systems
[8, 10, 15, 17] each submap still maintains its own local
coordinate system, but globally there exists a pose graph
that constrains submaps with respect to each other. The pose
graph here is essentially a graph with nodes being local
coordinate frames of each submap and edges being odometry
or loop closure constraints between submaps.

Of these various SLAM systems, only a few [6, 10]
explicitly model free space information in their submaps
for path planning. Fairfield et al. [6] do so for 3D environ-
ments by maintaining an occupancy grid at each submap
and using a particle filter based approach to maintain a
global structure between submaps. Konolige et al. [10] do
so for 2D environments by maintaining an occupancy grid
at each submap, but instead of particle states, they use
a pose graph to maintain a global structure. Both these
systems, however, require different path planning methods
for short-term planning within local metric maps and for
long-term planning on the global topological map. Moreover,
since the global map structure is topological, they need
further processing for generating metrically consistent global
3D scene reconstructions. Subsequent work by Fairfield et
al. [5] uses an RRT planner within their particle filter based
SegSLAM system [6]. In order to use this RRT planner in the
full global map, they create a new merged occupancy grid by
transforming each local submap voxel into a common global
coordinate frame. This can become an expensive operation
when there are frequent loop closures, since the merged grid
would have to be recomputed every time there is an updated
solution for the local submap transforms.

On the other hand, path planning systems for actively
mapping unknown 3D environments [1, 14, 16] plan paths
using a single global occupancy grid of the world that can
offer both free and occupied space information. However, the
main drawback of such a representation is that the global
occupancy map that they use is unable to correct globally
accumulated drift via loop closures from a SLAM system.

This motivates us to come up with a representation that can
be compatible with both large-scale SLAM and path planning
systems. In this paper, we propose a virtual occupancy grid
map (VOG-map) representation that maintains a submap-
based deformable global map structure but at the same time
can be accessed like any standard global occupancy map by
path planning systems such as [1, 14, 16].

III. VIRTUAL OCCUPANCY GRID MAP

The proposed virtual occupancy grid map (VOG-map) is
implemented based on the OctoMap framework [7]. Oc-
toMap is an octree-based 3D occupancy mapping system that
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Fig. 2. Structure of the virtual occupancy grid map (VOG-map). (a) VOG-
map consists of a set of local occupancy submaps m; (dotted squares),
each with a global pose ¢J tobal (plack circle). (b), (¢) For a queried global
location X9 (red grid), its occupancy value is computed as a sum of log-
odds occupancy of local queries in each submap m;.

can model free and occupied volumes and also implicitly vol-
umes that have not been measured. The octree data structure
used underneath makes OctoMap an efficient representation
for real-time robotics applications in 3D environments.

Unlike a standard global 3D occupancy grid map, however,
VOG-map representation of the world can be deformed and
corrected for globally accumulated drift whenever the SLAM
graph optimization computes an updated solution. It achieves
this by representing the VOG-map as a set of local occu-
pancy submaps whose base poses form nodes in the SLAM
pose graph. Fig. 2 illustrates this VOG-map structure in 2D.
The following subsections describe the VOG-map along with
details on standard map operations like measurement updates
and occupancy queries performed on VOG-map.

A. Map Representation

To represent VOG-map M4, consider a set of IV local
occupancy submaps {m;}_,. Point coordinates in each
submap m; are expressed locally with respect to a reference
frame placed at the base pose x; of the submap. As detailed
in Section IV-A, values for base poses {x;}}¥ , are available
to us as solutions from the SLAM pose graph optimization.
Let t9°°°* denote the global reference frame for submap ;.
This t9'°** simply equals the 6D base pose x; if the SLAM
pose graph represents robot trajectories in the global frame.

The VOG-map M., can now be defined as a set of
local occupancy submaps {m;}~ ; along with their global

reference frames {tfl‘)bal N |, that is,

Mvog _ {{mhtglzlobal}’ {mg,tglobal}, o {mN7t%obal}}
(1
Here we do not explicitly compute M., by merging all
local occupancy submaps {m;}¥ ; together. Instead we do

multiple local lookup queries for any global query made to
M yog. More details are in Section III-D.

B. Construction of Local Submaps

A local occupancy submap m; is created by accumulating
a set of sequential sensor scans over a finite time period,
wherein each scan in this set is registered into a coordinate



frame placed at the pose of the first scan. The pose of this
first scan is referred to as the base pose x; of the resulting
submap m;. Here, we assume that the sensor scan belongs
to a range finder sensor like a sonar or a lidar.

When determining the time period At for accumulating
scans within a submap, the trade-off is that submaps should
be large enough to have sufficient features for doing loop
closures during SLAM but short enough for accumulated
odometry error to stay low. For a submap m;, this time period
At is computed by keeping the pose covariance X; below a
maximum value, where >; is computed as ¥; = At-X.. Here,
> is the covariance matrix for measurement uncertainties in
robot pose values {x,y, 2,0, ¢, 1} every time iteration.

C. Map Update

All sensor measurement updates to the VOG-map are
done locally within the submap in which these readings are
observed. Individual sensor scan readings 2%, observed in the
local occupancy submap m; are integrated by performing a
ray casting operation from sensor scan origins ¢}, to each
measurement endpoint in 2%,. The occupancy probabilities
P(n|2%,,) for all voxels n € m; along each beam are updated
according to [7], [13]

1= P(a]zf) 1= P(nlzh, )
Plal)  Plls)

P(n)
1—P(n)
2
Using log-odds notation and assuming uniform prior prob-
ability P(n) = 0.5, Eq. 2 simplifies to the familiar log-odds
update rule

P(n|z,) = |1+

L(n|zi,) = L(n|z1,,_y) + L(n|z;)
P(n) } 3)

where, L(n) = log L—P(n)

We too use a clamping policy as in OctoMap [7], that
defines an upper and lower bound on the occupancy estimate,

L(n|z{:t) = max (min (L(n\z{:t)7 lmaw) 7lmm) 4)

where, l,,,;, and l,,,4, denote lower and upper bound on log-
odds value. Clamping ensures that confidence in the map
remains bounded and also improves runtime efficiency since
more neighboring voxels can be compressed via pruning.
The measurement update rules in Egs. (2)-(4) can be used
with any kind of distance sensor, as long as an inverse sensor
model is available. For instance, for a beam-based inverse
sensor model as used in our robotic application later, the
ray casting operations from sensor scan origins ¢}, to each
measurement endpoint in z¢ , updates the endpoint voxels as
occupied and all other voxels along the rays as free.

D. Map Query

All occupancy queries to the VOG-map are done by
converting the query (in global coordinates) into multiple
queries (in local coordinates) that are passed onto each local
submap. Let X9 be the global 3D position of the voxel whose
occupancy value needs to be looked up. We use a 4 x 4

transformation matrix 77 to map X9 into a local coordinate
X% computed as X* = TgiX' 9 (in homogeneous coordinates)
which is then passed as an occupancy query to submap m;.
This is done for all submaps m; with ¢ = 1...N. The
transformation matrix Tgi is computed by taking the inverse
of the global reference frame t9'°°* for each submap m;.
The occupancy probability values returned from all local
occupancy submaps {m;}¥; can now be combined together
using the same log-odds update rule as seen in Eq. 3.
This is because combining measurements from multiple
local submaps is a similar operation as combining multiple
measurement updates in a single global map. Also, since
every new sensor measurement is incorporated only once
(in any one of the local submaps), we do not run the risk
of double counting measurements. The log odds occupancy
query for a global 3D location X9 is hence expressed as

N
L(XY) = Z Li(n;)

L(X9) = max (min (L(XY), lnaz), lmin)

®)

where, n; is the voxel in submap m; that contains local 3D
coordinates X®. L;(-) implies that the log odds lookup is
done in local occupancy submap m;. Ly and l,,., are the
same clamping thresholds as used in Eq. 4.

Occupancy queries to the VOG-map are typically made by
the path planner in form of ray casting queries i.e. casting
a ray from a robot pose into a given direction and returning
occupancy values for voxels along that ray. As we’ll see in
Section IV-B, the planner requires such ray casting queries
for computing collision-free paths and for computing view
utility gains of sensor rays casted from next-best-viewpoints.

The process of doing ray casting queries in the VOG-map
is illustrated in Algorithm 1. It begins by finding a subset
S of {m;}}, local occupancy submaps that intersect with
a ray having origin c (in global coordinates) and direction
vector v. It then steps along the ray and computes occupancy

Algorithm 1 Ray casting queries in VOG-map

Initialize: Occupancy values along ray O = (),
Step size As, Number of steps Nsieps
S + RaylIntersectionCheck(c, v, Myoq)
for k£ =1 to ngseps do
X9 =c+ (kAs)v
Set L(X9) =0
for i € S do
Get transform matrix Tgi for submap m;
Compute local coordinates X* = T X9
if X € m; then
n; + searchVoxel(m;, X*)
L(X9) « L(X?) + Li(n,)
L(X9) + max(min(L(X9), lnaz), lmin)
P(X9) + GetOccupancyProbability (L(X9))
O+« 0 U {PX9}
return O
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Fig. 3. Opverall system employing a virtual occupancy grid map (VOG-

map) for real-time planning and SLAM in order to actively map an unknown
underwater 3D environment.

values for global 3D coordinates X9 at each step using the
sum of log odds rule in Eq. 5. As a result, the summation in
Eq. 5 is taken only over a subset S of submaps that intersect
with the viewing ray instead of all {m;}Y ; submaps.

IV. ROBOTIC EXPLORATION APPLICATION

To demonstrate the applicability of our mapping rep-
resentation, we evaluate the proposed VOG-map structure
on an underwater robot actively exploring an unknown 3D
environment. For performing SLAM, we use a submap-based
pose graph SLAM approach [15] while for path planning, we
use a sampling-based next-best-view planning approach [1].
Fig. 3 illustrates our overall system and information flow
between individual modules. We elaborate below the SLAM
and path planning components of our system.

A. Submap-based Pose Graph SLAM

The submap-based pose graph SLAM approach [15] in-
volves creating submaps locally by accumulating individual
sensor scans, followed by using a factor graph representation
to express these submaps and their associated poses. The
factor graph is then optimized for poses using both odometry
links (for sequential poses) and loop closures (for non-
sequential poses) using the iSAM optimization library [9].

1) Pose Graph Formation: For every time instant, there
is a new pose estimate x; and sensor scan available. The
relative pose u; ;11 between two subsequent scans can be
expressed as u; jy1 xj+1 © x;. This is seen in Fig.
4(a), where each pose x; is represented as a node of the
graph and odometry constraints wu; ;4 are represented as
edges connecting nodes. As we saw in Section III-B, we are
interested in constructing a graph of submaps with nodes
representing base poses of these submaps. This is illustrated
in Fig. 4(b) which is formed by accumulating a finite set
of sensor scans with each scan registered into a coordinate
frame placed at the pose of the first scan (referred to as
base pose x; of submap m;). Edges connecting base poses
of submaps m; and m;; are obtained by composition of
odometry constraints of poses associated with submap m;.
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Fig. 4. SLAM pose graph formation. (a) Robot poses x; as nodes of
the graph and odometry constraints uj ;11 as edges. (b) Same graph with
each node being a base pose x; linked to a submap instead of an individual
sensor scan. (¢) The graph with added loop closure constraint 017 between
non-sequential submap base poses x1 and x7.

To add pairwise loop closure constraints between non-
sequential poses {m;, my}, we can utilize a scan matching
technique to get a transformation o;;, that best aligns the two
submaps. For our application, we convert occupancy grid
submaps {m;, my} to point clouds and then use iterative
closest point (ICP) algorithm to obtain transformation o,
that best aligns the two submaps. For increased robustness
to incorrect loop closures, we reject transformations o, that
strongly disagree with expected transformations from the
odometry chain. Additionally, we register only partial con-
straints (in non-degenerate directions) for submap pairs that
give degenerate solutions for transformations o;;, during ICP
registration. This projection of solution to non-degenerate
directions is done based on the method described in [18].

2) Pose Graph Optimization: We can now perform maxi-
mum a posteriori (MAP) inference on resulting factor graph
so as to determine value of unknown base poses x; that
maximally agree with the information present in uncertain
measurements. Performing MAP inference for SLAM prob-
lems with Gaussian noise models is equivalent to solving
a nonlinear least-squares problem [3]. For doing MAP es-
timation over sequence of poses X = {x1,Xa,...Xy}, the
associated nonlinear least-squares problem is written as

N
YMAP _ argj{nin Z I| f(xio1,uim1) — Xi||?\i+

i=1

Z Hh(xi7xk) - Oik' %m—"_
(i,k)€O

S IVah(xn %)~ Vaoul vz )
(i,k)€0’

(6)

where f(x;_1,u;—1), h(x;,X}) are the motion and sensor
models respectively subject to additive white gaussian noise.
A; is the covariance matrix associated with motion model
noise, and O is set of all tuples (¢, k) for which a pairwise
registration constraint o;;, exists between poses x; and xy
with associated covariance matrix I';;. O’ is set of all tuples
(i,k) for which we consider partial pairwise registration



constraints (in non-degenerate directions). V,, is the matrix
projecting the 3D ICP registration factor to only the well-
conditioned directions as derived in [18]. We now solve
this least squares optimization for sequence of unknown
poses X using the iISAM optimization library [9]. Each time
the SLAM optimization computes updated solutions for the
sequence of submap base poses X = {x1,X3,...Xn}, the
VOG-map M,,, implicitly gets updated since values for

{t91°b91AN in Eq. 1 will also get updated.

B. Path Planning

Since the 3D environment that we are exploring is un-
known beforehand, the planner must actively map the scene
instead of relying on predefined waypoints. For actively
mapping scenes with no prior information on the scene
structure, a commonly employed approach is next-best-view
(NBV) based path planning [1, 14, 16].

Next-best-view based planning approaches operate by
greedily selecting the next-best robot pose (based on some
information gain criteria) followed by executing a collision-
free path to this pose. The VOG-map structure is compatible
with any path planner that operates off an occupancy grid
map. For purposes of our application, we utilize a sampling-
based next-best-view planning approach briefly described
below. More details can be found in [1].

1) View Sampling and Utility Computation: Starting at
any current pose, the robot incrementally builds a geometric
tree in configuration space using the RRT algorithm [11].
The RRT tree has a branching structure containing nodes
and edges that terminate after a finite number of branches.
Nodes represent robot configurations that are potential next-
best future viewpoints, while edges connecting two nodes
represent collision-free paths between the two configurations.

For each node nj in the sampled RRT tree, a view
utility value Gain(ny) is computed as a summation of the
unmapped volume that can be explored by traversing all
nodes along that branch, that is,

Gain(n;) = Gain(ny_;) + Visible(M,,o, & )e k1),
(7

where ng_1 is the node previous to n; along the same
branch, M, is the VOG-map representation of the world,
&k is the robot configuration at node ny, J,’j_l is the collision-
free path between nj,_; and ny and c(of ) is the path
traversal cost. Finally, Visible(M 4, &) is the total number
of visible and unmapped voxels seen along all sensor rays
cast out from robot configuration & at node ny.

For computing unmapped voxel count Visible(M,,04, 1)
as well for computing the collision-free path o¥_,, the path
planner needs to perform ray casting queries on the VOG-
map using the method illustrated in Algorithm 1.

2) View Planning: Having computed a view utility value
Gain(ny,) for every node ny, in the RRT tree, the best node
npest 1S selected as the node with highest gain, and the
branch connecting current robot configuration to Npes: 1S
considered as the best branch. The robot now executes a path
corresponding to the first segment of this best branch. Only

the first segment of the best branch is executed since as the
robot reaches and observes the world from a new node, its
representation of the world map M., gets updated, which
may lead to choosing of a different branch as the best branch.
For computational efficiency, however, remainder of the best
branch in the previous iteration is used to initialize the RRT
tree in the next planning iteration.

As part of the receding horizon strategy, tree creation
only happens until number of nodes reach a maximum
value N,,q.. However, if Gain(nye.s;) remains zero, tree
construction is continued until number of nodes reach NV,
where Nio; >> Nypoo. If the gain Gain(npes:) in executing
the best branch continues to remain zero, the active mapping
task is considered solved and the algorithm terminates.

V. SIMULATED EXPERIMENTS

We first evaluate our VOG-map based active mapping
approach in a 3D simulated underwater environment being
explored by a hovering autonomous underwater vehicle
(HAUV). We compare the results of our approach against
the next-best-view based active mapping algorithm in [1]
that uses a single global occupancy map for planning.

A. Simulation Setup

For performing simulation-based evaluation, we require
a closed-loop setup interfacing robot state estimation and
low-level control with the path planning and SLAM algo-
rithm. We hence adopt the UUV Simulator [12], a gazebo-
based simulation environment, and customize it based on the
model of our underwater vehicle, the Hovering Autonomous
Underwater Vehicle (HAUV) from MIT/Bluefin as seen in
Fig. 8. For sensing, the simulated vehicle is equipped with
a profiling sonar sensor that produces real-time 1D scan of
its environment. A schematic of the geometry of a profiling
sonar sensor can be seen in Fig. 6. Each sonar scan is
composed of 96 beams evenly spaced within the sonar’s
1 = 29° field of view. The vertical field-of-view of the
profiling sonar sensor is small with a value of § = 1°.

For state estimation, in the roll, pitch and z directions, it
is possible to obtain absolute measurements at each robot
pose using the navigation payload on the Bluefin HAUV.
We hence simply simulate added gaussian noise for state
estimates obtained in these three directions. In the z, y and
yaw directions, the Bluefin HAUV uses IMU/DVL sensors
that suffer from drift that grows unbounded with time. In
order to simulate such a drifting state estimate in the z, y
and yaw directions, we compute corrupted state estimates
P from ground truth state estimates P. The corrupted state
estimate P; at time step ¢ is expressed as

Pii1 = B (P OBGAIN(O, ), (8)

where 131 = Pj. In Eq. 8, each state estimate 13t is computed
by corrupting the difference of current and previous ground
truth state estimates with additive white Gaussian noise
(AWGN) with mean 0 and covariance %, and then adding the
result to the previous estimated state P;. X is the covariance
matrix expressing measurement uncertainties and expressed
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Fig. 6. Geometry of a single sonar scan.
TABLE I

PROPELLER DATASET PARAMETERS

[ Parameter |  Value ] Parameter [ Value |
Area 10x6x9m Octomap resolution r 0.095m
Umax 0.25m/s P 0.15rad/s
FoV [1°,29°] Scans per submap 100

d%zgner 5m dsensor 11m
max
A 0.5 RRT max edge length 2m
Nmax 15 Collision box 1.0x1.0x0.5m
FPSsensor 5 Maximum submaps 156

as ¥ = diag(03, 0, 07,). The variance in x-direction is taken

as 02 = 0.00138 m?/s, the variance in y-direction is taken

as ‘75 = 0.00138 m? /s, and the variance in yaw direction is

taken as o3, = 1077 rad*/s.

B. Dataset: Ship Propeller of SS Curtiss

The simulated environment consists of the propeller model
of SS Curtiss as shown in Fig. 7. The size of the propeller
is approximately 7m X 4m x 6m. The vehicle starts from
the starboard side and navigates around the propeller for
exploration and mapping within a bounding box of size
12m x 7m x 3.5m. Table I lists the dataset parameters that
have been used. When evaluating our approach against the
next-best-view planner in [1], results are obtained based on
multiple runs since the stochasticity in the path planning may
lead to selection of different paths in each experimental run.
We also run each experiment for roughly the same number
of submaps so as to keep the evaluation fair.

Fig. 5.

Fig. 7. Propeller of SS Curtiss and simulated HAUV.
TABLE II

RMSE ERRORS IN 3D RECONSTRUCTIONS

Run Standard Virtual Global Map Virtual Global Map
No. Global Map without loop closure with loop closures
1 0.19792 m 0.14902 m 0.13345 m
2 0.20491 m 0.14176 m 0.13357 m

Fig. 5 shows the obtained 3D reconstructions registered
using ICP against the ground truth 3D reconstruction for
three different scenarios. Fig. 5(a) shows the 3D reconstruc-
tions obtained from the baseline next-best-view algorithm
[1] operating using a standard single global occupancy map,
Fig. 5(b) shows reconstructions using the VOG-map without
loop closures and finally Fig. 5(c) shows reconstructions
using the VOG-map with loop closures. It should be noted
that the results in Fig. 5(b), Fig. 5(c) are from the same
experimental run with the loop closure information not being
used for mapping for Fig. 5(b). Fig. 5(a) is from a different
experimental run. Table II shows the root-mean-square error
(RMSE) for each of these three 3D reconstructions when
registered using ICP against the ground truth point cloud. It
can be seen that the 3D reconstruction in Fig. 5(c) has the
lowest RMSE errors and looks least noisy due to fixing of
globally accumulated drift by loop closures. Such globally
accumulated drift can be corrected for our system as a result
of using the VOG-map representation underneath.

3D Reconstruction results registered using ICP against 3D reconstruction from ground truth odometry for three different scenarios. (a) shows

reconstruction from baseline next-best-view algorithm [1] operating using a single global occupancy map, (b) shows reconstruction using VOG-map without
loop closures and (c) shows reconstruction using VOG-map with loop closures. 3D reconstruction generated using ground truth odometry is in black for
each figure. Registered 3D points change color from blue to yellow as distance from ground truth point cloud increases. Scale of the plots is in meters.



VI. REAL-WORLD EXPERIMENTS

We also conduct real-world experiments with the HAUV
shown in Fig. 8 and compare the results of our VOG-map
based active mapping approach against active mapping using
a single global occupancy map as used in [1].

A. Real-world Experiment Setup

The HAUYV used in our real-world experiments is equipped
with the same navigation payload and sonar sensor as
described in Section V-A. We design a scenario as shown
in Fig. 9 in which the HAUV starts in a position in an
underwater tank where it can only see a limited portion of
its environment. It has to now actively map the tank using
the VOG-map to create a reconstruction of the scene that
includes cylindrical tank walls, rectangular aluminum box,
and the ladder. Table III lists the experiment parameters. The
size of the tank is 7m X 7m x 3m while the bounding box we
use for exploration is much larger since the HAUV’s starting
position is not necessarily at the center of the tank.

B. Real-world Experiment Results

The navigation payload of the HAUV is quite accurate in
this rather small contained environment. Since there is no
ground truth model, we qualitatively compare the resulting
occupancy maps and the reconstructed models. To keep the
comparison fair, the HAUV while operating based on the
VOG-map, also simultaneously constructs a standard global
occupancy grid using raw odometry without loop closures.

Fig. 10 shows standard global occupancy map and VOG-
map reconstructed from local submaps. We reconstruct the
VOG-map from local submaps only for a visual comparison.
Fig. 11 shows 3D scene reconstructions generated without
and with loop closures. It can be seen that, due to loop
closures, the reconstruction in Fig. 11(b) has corrected drift.
Since the tank environment is small, the drift accumulation
is not as significant as for the simulated propeller dataset.

The effect of improvement in scene reconstruction quality
is more easily seen than the effect of VOG-map on planning.
Since this is a small environment, it is difficult to conclude
that the planner based on VOG-map returns better overall
plan in terms of collision avoidance and information gather-
ing. However, based on the occupancy grid maps in Fig. 10,
it is expected that a planner operating using the VOG-map

Fig. 8. Bluefin hovering autonomous underwater vehicle (HAUV).

would be able to generate waypoints that account for drift
better than a planner using a standard global occupancy map.

C. Runtime Performance

The computation time for each location query in VOG-
map by the planner is of the order O(N) + N;O(logvy,)
where N is total number of submaps up till current iteration,
N is a subset of submaps returned from the ray intersection
check as seen in Algorithm 1, and vz, is number of voxels in
each local submap (assumed to be same for all submaps for
simplicity). O(N) represents time taken to do ray intersec-
tion check for N submaps which is typically a fast check as
it computes intersection of ray with an axis aligned bounding
box around each submap. O(logvy,) represents query time
in each local octree having vy, number of voxels.

In contrast, a merging approach that generates a merged
global map by transforming each local submap voxel into
a common global coordinate frame and uses that merged
map for planning will have a location query complexity of
order N,,O(vy) + O(log(N*vr)), where N,, is number of
local submaps to be merged in current iteration. O(vr) is
time taken for converting local submap voxel coordinates
into global coordinates incorporated in the merged global
map. O(log(N*vy)) is the query time in a merged global
octree with N*vy, voxels. An incremental merge strategy that
merges only the most recent local submap into a previously
merged global map will have N,, = 1 for all iterations
except when there is a loop closure. For iterations with loop
closures, N,,, = N since all submaps now need to be re-
merged and that results in a very expensive operation.

When operating in the same environment for a long time,
number of overlapping submaps would increase causing Ny
in the NyO(logvy,) term in the VOG-map query time to

TABLE III
REAL-WORLD EXPERIMENT PARAMETERS

[ Parameter | Value Parameter Value
Area 12x12x2.5m Octomap resolution r 0.095m
FoV [1°,29°] Scans per submap 100

dimaz" | 563m vl 5.63m
A 0 RRT max edge length Im
Nmaz 15 Collision box 1.0x1.0x0.5m
FPSsensor 10 Maximum submaps 105

Fig. 9. Bluefin hovering autonomous underwater vehicle (HAUV) placed

in an underwater tank with an aluminum box and a ladder.
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Fig. 10. (a) Top view of standard global occupancy grid. (b) Top view
of VOG-map, reconstructed from local submaps for comparison. Yellow
background shows extent of exploration bounding box. Regions indicated
with red arrows show areas where loop closures using the VOG-map are
able to correct accumulated drift.

dominate and rise linearly with number of submaps. This
causes the planner runtime using VOG-map to increase with
time. Currently our system planning using VOG-map in
the underwater tank exhibits real-time behaviour until ~75
submaps. This increasing runtime issue can be alleviated to
some degree with the incremental merging strategy since rise
of runtime with number of submaps there is logarithmic.
However, it comes at the cost of having very expensive loop
closure iterations where the term N,,O(vz) would have a
large value. In that case, it is still possible to have the planner
run in real-time by having it on a separate thread, but the
planner would then plan based on an outdated map.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented the virtual occupancy grid map
(VOG-map), a submap-based mapping approach, that can
correct global map drift using loop closure constraints from
the SLAM system while maintaining free space information
for path planning. We demonstrated use of VOG-map based
representation for an underwater SLAM system that actively
plans paths in both simulated and real-world environments.

As future work, on the experimental side, we intend to test
our approach for actively mapping unstructured underwater
3D environments out in the field. On the algorithmic side,
we would firstly like to make our degeneracy-based loop
closure checks more robust. The degeneracy check currently
relies on a manually tuned threshold for determination of
degenerate directions. Secondly, our current planning time
increases with number of submaps if operating in the same
environment for long times. One way to address this issue is
to merge and restrict number of submaps. It is also possible
to group overlapping local occupancy maps together for more
efficient query. Thirdly, we would like to extend our active
mapping approach to an active SLAM approach by taking
into account minimization of localization uncertainties in
computing information gain for future viewpoints.
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