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Abstract
Reconstruction of marine structures such as pilings underneath piers presents a

plethora of interesting challenges. It is one of those tasks better suited to a robot due to
harsh underwater environments. Underwater reconstruction typically involves human
operators remotely controlling the robot to predetermined way-points based on some
prior knowledge of the location and model of the object of interest. However, it is
impractical and dangerous to manually control the robot to perform the reconstruction
task in an unstructured scene where prior knowledge of the locations and shapes of
objects of interest is not available.

Based on the state-of-the-art mapping and planning methods, this thesis presents
an approach that enables the robot to perform reconstruction task in an underwater un-
structured scene autonomously without any prior knowledge except the bounding box
within which the robot should operate. In particular, the key challenge lies in working
with a world representation that is compatible with both mapping and planning algo-
rithms. We address this challenge with the proposed virtual occupancy grid map or
VOG-Map. VOG-Map is represented by a collection of local occupancy grid maps
whose respective poses are optimized to account for the drift or accumulated noise.

Based on the VOG-Map, a path planning algorithm is able to plan safer way-
points for collision-free paths as well as more informative way-points for accurate
reconstruction than is that based on a global occupancy grid map. By adding additional
constraints on the way-points and modifying how their respective information gains
are computed, we show how our mapping algorithm could work well with the way-
points returned by the planner based on VOG-Map.

The quality of both VOG-Map and scene reconstruction depends on the mapping
algorithm. We employ smoothing-based pose graph simultaneous localization and
mapping (SLAM) algorithm which is capable of correcting for drift upon loop closures
when the algorithm determines that the robot has come back to a previously visited
area. However, in scene that lacks geometric structures, the process of determining
loop closures via methods such as iterative closest point (ICP) is prone to error. We
incorporate the approach of determining degeneracy in the scene into our ICP method
and add a loop closure constraint to the SLAM optimization problem, constraining
only well-conditioned directions based on principal component analysis.

We demonstrate the use of VOG-Map for implementing an underwater system in
which the robot actively plans paths to generate accurate 3D scene reconstructions. We
evaluate our system qualitatively and quantitatively on simulated as well as real-world
experiments.
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Chapter 1

Introduction

1.1 Motivation

High fidelity 3D reconstruction of marine structures is of major importance for security and com-
mercial reasons. Accurate reconstructions of underwater structures such as ship hull and pilings
underneath piers allow authorities to take preventive actions to minimize security risk and eco-
nomic loss. Delegating this reconstruction task to a robot can be cost-effective without jeopar-
dizing the life of human divers. While in cases such as ship reconstruction, controlling the robot
remotely suffices, reconstruction of pilings underneath piers requires the robot to autonomously
explore and map in real-time since it is impractical or even impossible to manually control the
robot in-between the pilings especially when prior knowledge of the pilings is not available.

Currently, Hover, et al. in [Hover et al., 2012] and Teixeira, et al. in [Teixeira et al., 2016]
demonstrate accurate ship reconstruction using a robot. These approaches, however, require the
robot to follow predefined trajectory [Hover et al., 2012] or be manually controlled [Teixeira et al.,
2016], relying on various assumptions and prior knowledge with regard to the ship hull and the
environment. In particular, assumptions about the geometric characteristics of the ship are justified
given the ship’s structural drawing. Such assumptions and prior knowledge are not available when
it comes to reconstruction of pilings underneath piers which is an example of reconstruction in
unstructured scene where there might be multiple separate objects of interest. Enabling the robot
to perform such reconstruction task autonomously is hence necessary.

The task of underwater reconstruction in unstructured scene has gained increased attention as the
object of interest shifts from ship to pilings. Fig. 1.1 shows an example of pilings underneath piers
in a harbor environment. Fig. 1.2 shows the Hovering Autonomous Underwater Vehicle (HAUV)
which is the marine robot developed and used for ship reconstruction tasks in [Hover et al., 2012]
and [Teixeira et al., 2016]. The work presented in this thesis is also based on the HAUV.
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Figure 1.1: Pilings underneath a pier. The spacing between each pair of piles can differ and piles might be slanted.

1.2 Scope and Approach

In this thesis, we develop an approach that enables the HAUV to perform reconstruction of pilings
underneath piers autonomously without any assumptions and prior knowledge except the bounded
region in which the robot should operate. While the method developed is meant for pilings recon-
struction using the HAUV, it could be extended to work with other robotic platforms for unstruc-
tured scene reconstruction tasks for which autonomy is required.

Figure 1.2: Hovering Autonomous Underwater Vehicle

Underwater reconstruction is especially chal-
lenging largely because of the uncertain state es-
timates in underwater environment due to un-
derwater current. In addition, a complicating
factor is the poor visibility in harbor environ-
ments, requiring the use of multi-beam sonar
sensors. Teixeira, et al. in [Teixeira et al.,
2016] address these challenges by formulating a
smoothing-base pose graph SLAM [Kaess et al.,
2007] problem where each pose node is asso-
ciated with a submap, assembled from consec-
utive sonar scans. These submaps when regis-
tered provide additional information that helps
the SLAM optimization problem arrive at better
state estimates. Teixeira’s sonar-based submap
approach has been used in this thesis as the basis of our mapping algorithm. Fig. 1.3 shows the
reconstructed running gear of a ship taken from [Teixeira et al., 2016].

Underwater reconstruction task usually involves a human operator who either specifies a path for
the robot to follow or remotely controls the robot by sending motion commands on the fly. As are
the cases in both [Hover et al., 2012] and Teixeira et al. [2016], predefined trajectory resembling
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Figure 1.3: Reconstruction of SS Curtiss’ running gear using sonar-based submap approach Teixeira et al. [2016]

a vertical lawn-mower pattern is followed by the robot to ensure efficient coverage and sufficient
overlaps for loop closure registration (or equivalently, pairwise submap registration in [Teixeira
et al., 2016]). However, in unstructured scene such as pilings underneath piers as shown by Fig.
1.1, it is impractical or even impossible to determine in advance all the way-points that the robot
should follow. To ensure full coverage, for each way-point, in addition to position in 3D space,
the robot’s heading now has to be considered in unstructured scene. Yet, knowledge of free-
space, the place in space that is safe for robot to move freely, is required to specify a coverage
trajectory beforehand. For ship reconstruction task, assuming unknown-space as free-space is
usually justified as the ship is docked in rather open space. However, in unstructured scene, it is
dangerous to make such free-space assumption since the area of operation is crowded with multiple
unknown objects of interest separate in space.

Figure 1.4: Simulated bridge reconstruction us-
ing sampling-based planner and Octomap Bircher
et al. [2016]

Bircher, et al. in [Bircher et al., 2016] address the
challenge of efficient unknown-space exploration by
using sampling-based planner based on rapidly explor-
ing random tree or RRT [LaValle, 1998] and OctoMap,
an efficient octree-based occupancy grid space repre-
sentation [Hornung et al., 2013]. Bircher’s sampling-
based exploration approach has been used in this thesis
as the basis of our planning algorithm. Fig 1.4 shows
the result of exploring and mapping a simulated bridge
taken from Bircher et al., 2016.

Consider now the combined problem of unknown
space exploration and reconstruction in an unstruc-
tured underwater scene. Naively adopting state-of-
the-art planning approaches such as ”next-best-view”
planner or NBVP in Bircher et al. [2016] which as-
sume the current state estimate coincides with the true
state estimate would produce poor reconstructions due
to drift or accumulated noise. This is where the state-
of-the-art mapping approaches based on SLAM as pre-
sented in [Teixeira et al., 2016] could come to rescue, but it is not straightforward how to bring the
two techniques together. To be specific, the problem with state-of-the-art planning approaches is
that their space representations cannot be corrected for drift. On the other hand, space represen-
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Figure 1.5: Overall system employing a virtual occupancy grid map or VOG-Map for mapping and planning in order
to enable the robot to map autonomously an unknown underwater unstructured scene

tations maintained by state-of-the-art mapping algorithms do not provide free-space information
which is required by the planner. The key challenge lies in working with a space representation
that is compatible with both mapping and planning algorithms. In this thesis, we address this
challenge by proposing virtual occupancy grid map or VOG-Map. VOG-Map is a collection of
local occupancy grid maps, each anchored at the pose nodes of the smoothing-based pose graph
SLAM framework. VOG-Map can be corrected for drift when pose estimates of the poses nodes
get updated upon loop closures. Yet, when considered together, this collection of local occupancy
grid maps has the same expressive power as that of a single global occupancy grid map that can
distinguish between free-space, occupied-space, and unknown-space.

The use of VOG-Map for implementing an underwater system in which the robot autonomously
plans paths to generate accurate 3D scene reconstructions is illustrated in Fig. 1.5. The key to
understand this overall system chart is to consider the mapping and planning algorithms each
running on its own thread. Mapping algorithm’s main interaction with VOG-Map is to update
VOG-Map 3.4.1 upon loop closures while planning algorithm queries VOG-Map 3.4.2 to plan
paths for the robot to follow.

4



1.3 Contributions and Organization

In this thesis, we present an approach that enables the robot to autonomously explore and map in
an underwater unstructured scene where robot’s uncertain state estimates must be considered. This
thesis makes the following main contributions:

• The state-of-the-art mapping approach requires the robot to either be manually controlled
or follow a predetermined trajectory while the state-of-the-art planning approach assumes
accurate state estimates. We propose an approach to unify state-of-the-art smoothing-based
pose graph SLAM mapping approach and state-of-the-art sampling-based planning approach
by constructing a globally deformable virtual occupancy grid map (VOG-Map). This space
representation allows pose graph SLAM systems to correct globally accumulated drift via
loop closures while maintaining free space information for the purpose of path planning.

• The quality of VOG-Map depends on both the pairwise submap registration and the paths
returned by the planner. To avoid bad pairwise submap registration in degenerate scene, we
customize our ICP method to be degeneracy-aware, and add a custom pairwise submap regis-
tration constraint on only well-conditioned direction based on principal component analysis.
In addition, we add constraints to sampled way-points and modify how their respective in-
formation gains are computed. These result in an overall better trajectory that works well
specifically with the sonar-based submap SLAM mapping approach using HAUV.

• A full-fledged autonomous system based on VOG-Map is implemented for reconstruction
tasks in underwater unstructured scenes. The system is evaluated in both simulation and
real-world experiments in terms of reconstruction quality.

The thesis is structured as follows. Chapter 2 discusses background and related work. Chapter 3
presents details on the virtual occupnacy grid map or VOG-Map. Chapter 4 demonstrates the use of
VOG-Map in an underwater unstructured scene reconstruction task. Finally, Chapter 5 summarizes
the thesis’ contributions and presents thoughts for future work.
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Chapter 2

Background and Related Work

We will begin with the discussion of submaps used in SLAM literature, with a focus on related
works that use submaps also for exploration and navigation tasks that involve planning since our
proposed VOG-Map can be considered as a collection of submaps that are meant for simultaneous
mapping and planning. Then, we will summarize state-of-the-art planners for unknown-space
exploration tasks and their underlying assumptions. Finally, we will conclude with the challenges
of making state-of-the-art mapping and planning algorithms work together at the same time.

2.1 Submaps

2.1.1 Submaps and Topological Graph

SLAM or simultaneous localization and mapping is the problem of constructing a map while at the
same time localizng against the map. SLAM systems operating in large-scale environments widely
use submap-based methods that represent the world as a collection of local maps or submaps each
with their own local coordinate frames. A topological graph can be constructed from these submaps
by associating each submap with a node and connecting adjacent submaps using edges. These
submaps decompose environment into smaller manageable pieces such that the robot only need to
operate on one of these fixed-size submaps at any given time so as to bound computational com-
plexity, as used by systems in [Yamauchi and Langley, 1996] [Schultz et al., 1998] [Lisien et al.,
2003] [Jefferies et al., 2004] [Bosse et al., 2004] Estrada et al. [2005] Fairfield et al. [2010] [Fair-
field and Wettergreen, 2010]. In these systems, the robot is localized within the local coordinate
system of a submap and gets re-localized when switching submaps.
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2.1.2 Submaps and Pose Graph

A natural extension to this idea is to replace the topological graph with the pose graph of smoothing-
based pose graph SLAM where each node is associated with a submap and each edge is either a
dead-reckoning or a scan-matching constraint between two submaps, as used in Ni et al. [2007]
Konolige et al. [2011] Wagner et al. [2014] VanMiddlesworth et al. [2015] Teixeira et al. [2016]
[Hsiao et al., 2017]. This construction has the advantage that the global map represented by the
pose graph is metrically consistent. In addition, it can be updated efficiently upon loop closures
since only the poses of submaps’ reference frames have to be updated, and not the submaps them-
selves. As will be discussed in more detail, this is exactly the same reason that our VOG-Map can
be easily deformed upon loop closures.

2.1.3 Exploration and Navigation using Submaps

Of the related works mentioned above, the approaches used in Fairfield et al. [2010], Fairfield and
Wettergreen [2010] and Konolige et al. [2011] look especially similar to our approach at first glance
because of their use of local occupancy grid maps with either filtering-based or smoothing-based
SLAM approach. Fairfield, et al. in Fairfield et al. [2010] use submap-based RaoBlackwellized
particle filter SLAM (a.k.a. SegSLAM) for long-term exploration task in unstructured environ-
ments. While they also use octree-based occupancy grid to represent submap, they associate
submaps with particles, which is different from our approach where each submap is associated
with a pose node. As discussed in their paper, this renders their approach not suitable for recon-
struction task that requires a globally accurate metric map. In addition, in this thesis, we present
ways to use VOG-Map for purpose of path planning whereas how the map produced by SegSLAM
can be adopted to work with state-of-the-art planners is left undiscussed.

In Fairfield and Wettergreen [2010], Fairfield, et al. show how SegSLAM can be used with a
RRT-based planner in an exploration task. In order to work with the RRT-based planner, their
approach first merges submaps into a single occupancy grid map by traversing each octree-based
submap and transforming each grid cell into a common coordinate frame. The RRT-based planner
then generates plans based on the resulting occupancy grid map. Although not discussed in their
paper, merging of all local occupancy grid maps is an expensive operation, and due to their use of
particle filter based SLAM method, their approach requires frequent re-merging whenever particles
are re-sampled and updated with new measurements. While our approach based on VOG-Map
also requires merging of all local occupancy grid maps for planner efficiency, re-merging is only
performed upon loop closures, and VOG-Map can be updated incrementally whenever there is
new local occupancy grid map and no new loop closure is detected, which happens most of the
time. Not only is merging more efficient using our approach, our merged map is also a globally
consistent metric map, whereas the merged map using their approach is not. This is the reason why
our approach is more suitable for reconstruction task.

On the other hand, Konoliege, et al. in Konolige et al. [2011] show an approach that constructs
a map based on local occupancy grid maps and pose graph SLAM. This map is then used for
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generating near-optimal path between two arbitrary locations in the map for navigation. Unlike
our VOG-Map where there is one-to-one correspondence between local occupancy grid maps and
pose nodes, each of their local occupancy grid maps can contain multiple pose nodes. This is
the reason that it is much more costly to update their map upon loop closures, as compared to
our approach which will be discussed later. Nonetheless, for the purpose of navigation where a
global metric map is not required, only some of their local occupancy grid maps are needed to be
re-computed immediately after loop closures. Due to the difference in application, their usage of
local occupancy grid maps is meant for local shortest path planning, whereas, in this thesis, local
occupancy grid maps together with the pose estimates of their respective pose nodes form a global
occupancy grid map that is used for global path planning. Since their global path planning is based
on the pose graph, their approach requires the environment to be mapped using a pose graph SLAM
method as a preprocessing step. This sequential dependence of planning on mapping means their
approach is not suitable for autonomous unknown space exploration and mapping, which demands
concurrent mapping and planning. Contrary to their approach, our approach based on VOG-Map
is capable of mapping and planning at the same time.

2.1.4 Summary

In summary, the use of submaps is fairly common in SLAM literature. Submap or fusion of sensor
data in a local region has been used to bound the computational cost in large-scale applications
and/or to accumulate enough information for purpose of loop closure detection. In this thesis, as
will be discussed later, the reason for using submap is more towards the latter. It is also worth
noting that occupancy grid map is just one way to represent a submap, and is commonly used with
sonar data [Thrun, 2003] Fairfield et al. [2007]. Occupancy grid map is also useful for planning
purpose as will be discussed more in next section. Construction of a global structure based either
on topological graph [Fairfield and Wettergreen, 2010] or on pose graph [Konolige et al., 2011]
has shown to be useful for both mapping and planning.

2.2 Planning for Unknown-Space Exploration

Occupancy grid map is a space representation that can distinguish between free-space, occupied-
space, and unknown-space, therefore making it a popular map representation method in both grid-
based [Likhachev et al., 2005] and sampling-based planning [LaValle, 1998] literature. Contrary to
the navigational path planner [Konolige et al., 2011] that is based on multiple local occupancy grid
maps and a pose graph discussed above, planning approaches Bircher et al. [2016] Papachristos
et al. [2017] Vidal et al. [2017] for exploration and mapping of unknown 3D environments, plan
paths based on a single global occupancy grid map of the world and the rapidly-exploring random
tree or RRT [LaValle, 1998]. The major stages of these planning algorithms involve sampling of
potential next-best future viewpoints, followed by computing an information gain value for each
potential viewpoint, and finally returning path to the viewpoint that provides maximum information
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gain. Of these approaches, the approach implementing ”next-best-view” strategy as in Bircher et al.
[2016] is shown to be advantageous in terms of exploration efficiency over other ”frontier-based”
approachesYamauchi [1997]. As detailed later, our planning algorithm is based on the approach
proposed in Bircher et al. [2016].

In addition to sampling most informative future viewpoints, an equally important criteria for high
fidelity 3D scene reconstruction is the ability to accurately localize the robot within the map. How-
ever, all the aforementioned planning methods for unknown scene exploration and reconstruction
work well under the assumption that the robot state estimate is accurate at least during the dura-
tion of operation. This assumption is justified for aerial robot with access to GPS. However, it
is usually not the case for underwater robots since GPS and other global positioning systems are
generally not available underwater. Direct application of these approaches would produce poor
reconstruction due to drift or accumulated noise.

None of the methods in Bircher et al. [2016] and Vidal et al. [2017] addresses the problem of si-
multaneously taking into account localization and mapping uncertainties during planning. The key
observation is that their use of global occupancy grid maps which cannot be corrected or deformed
for drift or accumulated noise, makes the problem of addressing mapping and localization during
planning difficult. Papachristos, et al. in Papachristos et al. [2017] extend the approach proposed in
Bircher et al. [2016] to also account for minimizing localization and mapping uncertainties. How-
ever, they do this minimization as a post-processing stage on an already selected ”next-best-view”
way-point. A more coherent approach towards minimizing these uncertainties would be leveraging
methods from SLAM literature.

2.3 Mapping and Planning

State-of-the-art SLAM methods increasingly utilize smoothing approaches to SLAM as they have
proven to be more accurate and efficient as compared to original approaches for SLAM based on
nonlinear filtering Cadena et al. [2016]. A popular variation of the smoothing framework is based
on pose graph wherein the variables to be optimized are poses along the robot trajectory subject
to either dead-reckoning or scan-matching constraint between pose nodes. For doing dense scene
reconstruction using a sparse pose graph representation, a typical approach is to attach a submap
to each pose node Ni et al. [2007] Konolige et al. [2011] Wagner et al. [2014] VanMiddlesworth
et al. [2015] Teixeira et al. [2016] [Hsiao et al., 2017].

The challenge of using the planning approaches in Bircher et al. [2016] Papachristos et al. [2017]
Vidal et al. [2017] within a submap-based pose graph SLAM formulation is that these planning
methods work based on a single occupancy grid map while pose graph SLAM methods rely on
a collection of local submaps for space representation. Another complicating factor is that the
map maintained by pose graph SLAM usually does not contain free-space information which is
required by planners.

To address these challenges in a non-trivial manner, this thesis proposes a novel approach that
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makes use of local occupancy grids within the pose graph SLAM formulation and creates a virtual
global occupancy grid map or VOG-Map for purposes of robot path planning. VOG-Map main-
tains a submap-based deformable global map structure but at the same time can be accessed like
any standard global occupancy grid map by path planning systems such as Bircher et al. [2016]
Papachristos et al. [2017] Vidal et al. [2017]. In fact, VOG-Map is fairly general that it can be used
as a drop-in replacement for the global occupancy grid map used by any grid-based [Likhachev
et al., 2005] and sampling-based [LaValle, 1998] planning methods.
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Chapter 3

Virtual Occupancy Grid Map

This chapter presents details on the virtual occupancy grid map or VOG-Map. VOG-Map is at the
core of our overall system as highlighted in Fig. 3.1.

State-of-the-art pose graph SLAM approach Kaess et al. [2007] has been shown capable of pro-
ducing great reconstruction results Teixeira et al. [2016] even in underwater environments where
drift or accumulated noise in robot state estimates is significant. State-of-the-art sampling-base
planner, on the other hand, enables fully autonomous exploration and mapping in priori unknown
unstructured scenes, assuming accurate robot state estimates. VOG-Map provides an unifying map
representation that enables our overall system leverages the advantages of these state-of-the-art
mapping and planning approaches for autonomous underwater unstructured scene reconstruction.

Unlike a standard global occupancy grid map, the VOG-map representation of the world can be
deformed and corrected for globally accumulated drift. It achieves this by design, as VOG-Map in a
nutshell is just a set of local occupancy grid maps whose base poses correspond to the pose nodes of
the smoothing-based pose graph SLAM framework. Whenever the pose graph SLAM optimization
happens after adding new constraints, VOG-Map is corrected or deformed accordingly as the base
poses of its local occupancy grid maps get updated. The following sections first provide formal
definition of VOG-Map, and then suggest ways to construct and implement VOG-Map. Finally,
standard and advanced operations that can be performed on the VOG-Map are discussed.

3.1 VOG-Map Definition

To represent VOG-mapMvog, consider a set of N local occupancy grid maps {mi}Ni=1 and a set of
N base poses in global frame {xi}Ni=1. Coordinates of grid cells in each local occupancy grid map
mi are expressed locally with respect to a reference frame placed at the corresponding base pose xi
of the local occupancy grid map. Here, the term base pose is borrowed from [Teixeira et al., 2016],
and refers to the pose with respect to which all sensor data in a local region is fused or merged.
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Figure 3.1: Overall system for autonomous unknown underwater unstructured scene reconstruction. This chapter
details the virtual occupancy grid map or VOG-Map which is highlighted in red. VOG-Map is a collection of local
occupancy grid maps, each anchored at a pose node of a pose graph SLAM system.

Let Ti denotes the reference frame, represented in global frame, for local occupancy grid map mi.
By definition, T globali is represented by the equivalent homogeneous transformation matrix of the
6DOF base pose xi of the local occupancy grid map mi.

The VOG-mapMvog can now be defined as a set of local occupancy grid maps {mi}Ni=1 along with
their corresponding global reference frames {T globali }Ni=1, that is,

Mvog =
{
{m1, T

global
1 }, {m2, T

global
2 }, . . . {mN , T

global
N }

}
(3.1)

3.2 VOG-Map Construction

The construction of VOG-Map comes down to the construction of each of the local occupancy
grid maps {mi}Ni=1. How these local occupancy grid maps are constructed in turn depends on the
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application and sensors used. We present below a way of constructing local occupancy grid maps
specifically suitable for the sensor used in our application.

A local occupancy grid map mi is created by accumulating a set of sequential sensor scans over a
finite time period, wherein each scan in this set is registered into a coordinate frame placed at the
pose of the first scan. The pose of this first scan is referred to as the base pose xi of the resulting
local occupancy grid map mi. Here, we assume that sensor scans are produced by a range-finder
sensor like a sonar or a lidar.

Figure 3.2: Structure of the virtual occupancy grid map (VOG-Map).
(a) VOG-Map consists of a set of local occupancy grid mapsmi (dotted
squares), each with a base pose T global

i (black circle) in global frame.
(b), (c) For a queried global locationXg (red grid), its occupancy value
is computed as a sum of log-odds occupancy values of local queries on
corresponding local occupancy grid maps.

When determining the time period
∆t for accumulating scans within a
local occupancy grid map, the trade-
off is that the local occupancy grid
map should be large enough to have
sufficient features for SLAM loop
closure detection but at the same time
short enough to bound the accumu-
lated odometry error. For a local
occupancy grid map mi, this time
period ∆t is computed by keeping
the base pose covariance Σi below a
maximum value, where Σi is com-
puted as Σi = ∆t · Σ. Here, Σ is the
covariance matrix of measurement
uncertainties in our robot’s odometry
pose estimate.

Incorporation of sensor measure-
ments from a ranger-finder sensor into the VOG-map is done locally within the local occupancy
grid map in which these readings are observed. Individual sensor scan readings zitstart:tend

observed
in the local occupancy submap mi during the time span from tstart to tend = tstart + ∆t are inte-
grated by performing ray casting operations from sensor scan origins citstart:tend

to corresponding
measurement endpoints in zitstart:tend

. The occupancy probabilities P (v|zitstart:tend
) for all voxels

v ∈ mi along each beam are updated according to Moravec and Elfes [1985] and Hornung et al.
[2013]

P (v|zitstart:tend
) =

[
1 +

1− P (v|zitend
)

P (v|ziend)
1− P (v|zitstart:tend−1)

P (v|zitstart:tend−1)

P (v)

1− P (v)

]−1

(3.2)

Using log-odds rule, L(x) = log
[

P (x)
1−P (x)

]
and assuming uniform prior probability P (v) = 0.5,

Eq. 3.2 can be simplified to

L(v|zitstart:tend
) = L(v|zitstart:tend−1) + L(v|zitend

) (3.3)
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When inserting sensor measurements, it is useful to to use a clamping policy that defines an upper
and a lower bound on the occupancy value, that is,

L(v|zitstart:tend
) = max

(
min

(
L(v|zitstart:tend

), lmax
)
, lmin

)
(3.4)

where, lmin and lmax denote the lower and the upper bound on the log-odds occupancy value.
Clamping ensures that confidence in the map remains bounded and also improves runtime effi-
ciency since more neighboring voxels can be compressed via pruning Hornung et al. [2013].

The rules for inserting sensor measurements in Eqs. (3.2)-(3.4) can be used with any kind of
ranger finder sensor, as long as an inverse sensor model is available. For instance, for a beam-
based inverse sensor model as used in our robotics application later, the ray casting operations
from sensor scan origins citstart:tend

to corresponding measurement endpoints in zitstart:tend
update

the voxels at the endpoints based on the sensor’s hit probability and all other voxels along the rays
based on the sensor’s miss probability.

Another factor that should be considered when constructing VOG-Map is the robot motion. Since
the error in robot odometry pose estimate usually is dominated by the heading error, instead of
using a fixed ∆t, determining ∆t for each local occupancy grid maps dynamically based on how
the robot move in terms of translation and heading changes might be a better strategy. As will
be discussed in next chapter, when using sampling-based planner, how the robot moves depends
on the sampled way-points, so it is important to also consider how way-points are sampled when
deciding the strategy used for the construction of local occupancy grid maps.

3.3 VOG-Map Implementation

Since the idea of VOG-Map is based on occupancy grid maps and pose graph SLAM, VOG-Map
can be implemented using the OctoMap framework Hornung et al. [2013] and the iSAM optimiza-
tion library Kaess et al. [2007]. OctoMap is an octree-based occupancy grid space representation
that can model free as well as occupied volumes and also implicitly volumes that have not been
measured. The octree data structure used underneath makes OctoMap an efficient representation
for real-time robotics applications in 3D environments. iSAM, on the other hand, is an optimiza-
tion library for sparse nonlinear problems as encountered in simultaneous localization and map-
ping (SLAM). iSAM provides algorithms that can efficiently recover the robot trajectory or robot
pose estimates of the corresponding pose graph SLAM problem, making it suitable for real-time
application.

By implementing our local occupancy grid maps based on OctoMap, VOG-Map can be stored effi-
ciently, both in memory and on disk. Thanks to the use of OctoMap, standard map operations like
occupancy query can be performed on each local occupancy grid map efficiently. However, as will
be discussed in 3.4.2, the efficiency of standard operations performed on the VOG-Map generally
depends on the number of local occupany grid maps. On the other hand, by using iSAM optimiza-
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tion library, VOG-Map can be deformed or updated efficiently upon loop closures as discussed in
3.4.1.

3.4 VOG-Map Standard Operations

VOG-Map standard operations include VOG-Map deformation and VOG-Map occupancy query.
VOG-Map deformation operation changes the base poses of local occupancy grid maps, thereby
allowing VOG-Map to deform upon loop closures. VOG-Map occupancy query operation returns
either the occupancy value or occupancy status of some queried location in space. We detail these
two operations below.

3.4.1 VOG-Map Deformation

VOG-Map deformation operation allows the underlying spatial arrangement of local occupancy
grid maps to be changed efficiently by replacing the base poses of local occupancy grid maps with
other poses as input parameters. This operation is general but meant to be used to update the base
poses of local occupancy grid maps upon loop closure using the estimated poses obtained from
pose graph SLAM optimization. The runtime of this operation is linear in the number of local
occupancy grid maps in VOG-Map.

Algorithm 1 VOG-Map Deformation
1: Input: poses arr poses
2: N ← total number of local occupancy grid maps
3: for i = 1 to N do
4: xi ← arr poses[i]

Please note that synchronization mechanism is intentionally omitted in Algorithm 1 for clarity.
Since VOG-Map occupancy query operation requires read access to local occupancy grid maps
and their respective base poses, a mutex should be used when replacing the bases poses of local
occupancy grid maps.

3.4.2 VOG-Map Occupancy Query

VOG-Map occupancy query operation receives as input coordinate values of a point in space, and
output the occupancy value or the occupancy status of the queried point in space. Occupancy
value refers to the probability of occupancy while occupancy status refers to the discrete states of
being free, occupied, and unknown. Here, we discuss two strategies that can be used to perfom
VOG-Map Occupancy Query.
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Sequential VOG-Map Occupancy Query

Sequential VOG-Map occupancy query compute the occupancy value or occupancy status of
queried point by iterating through all local occupancy grid maps one by one. An input query
as a 3D position in global frame is first converted into corresponding queries with respect to local
occupancy grid maps’ reference frames {T globali }Ni=1. These queries are then passed onto their re-
spective local occupancy grid maps. Let Xg be the global 3D position of the queried point in space
whose occupancy value needs to be looked up. We use the 4 × 4 homogeneous transformation
matrix T globali to map Xg into a local coordinate X i computed as X̄ i = (T globali )−1X̄g = T igX̄

g (in
homogeneous coordinates) which is then passed as an occupancy query to local occupancy grid
map mi. This is done for all local occupancy grid maps {mi}Ni=1. The transformation matrix T ig
is computed by taking the inverse of the homogeneous transformation matrix T globali for each local
occupancy grid map mi.

The occupancy probability values returned from all local occupancy grid maps {mi}Ni=1 can now
be combined together using the same log-odds update rule as seen in Eq. 3.3. This is because com-
bining measurements from multiple local occupancy grid maps is a similar operation as combining
multiple measurements in a standard occupancy grid map Hornung et al. [2013]. Also, since every
sensor measurement is incorporated only once (in any one of the local occupancy grid maps) by
construction, we do not run the risk of double counting measurements. The log-odds occupancy
probability for a global 3D location Xg is hence expressed as

L(Xg) =
N∑
i=1

Li(X
i)

L(Xg) = max (min (L(Xg), lmax) , lmin)

(3.5)

Li(·) implies that the log odds lookup is done in local occupancy grip map mi. lmin and lmax are
the same clamping thresholds as used in Eq. 3.4.

Algorithm 2 Sequential VOG-Map Occupancy Query
1: Input: coordinate values of queried point Xg

2: Output: log-odds occupancy probability L(Xg)
3: L(Xg)← 0
4: N ← total number of local occupancy grid maps
5: for i = 1 to N do
6: T ig ← Inverse(T globali )
7: X̄ i ← T igX̄

g

8: L(Xg)← L(Xg) + Li(X
i)

9: L(Xg)← max (min (L(Xg), lmax) , lmin)
10: return L(Xg)

Please note that synchronization mechanism is intentionally omitted in Algorithm 2 for clarity.
Since VOG-Map occupancy deformation operation requires write access to local occupancy grid
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maps and their respective base poses, a mutex should be used when iterating through local occu-
pancy grid maps.

Sequential VOG-Map occupancy query operation provides a way to retrieve the occupancy value
without having to maintain a global representation of the underlying local occupancy grid maps.
This has the advantage of avoiding storage overhead. However, its runtime is linear in the number
of local occupancy grid maps in VOG-Map.

The term virtual in virtual occupancy grid map refers to the property of VOG-Map that VOG-Map
query operation of a location in global frame can be done without having to merge all the local
occupancy grid maps. This property is desirable if the number of queries is small. If many queries
need to be performed on the VOG-Map, merged VOG-Map occupancy query operation as detailed
in next section is a more efficient alternative whose amortized runtime is constant in the number of
local occupancy grid maps, but at the cost of storage overhead.

Merged VOG-Map Occupancy Query

Merged VOG-Map occupancy query operation requires merging all the local occupancy grid maps
into one global occupancy grid map. The key insight is this merging only needs to be done once
for the first query. Therefore, its amortized runtime is constant with respect to the number of local
occupancy grid maps, at the cost of having to cache the global occupancy grid map.

Algorithm 3 Merged VOG-Map Occupancy Query
1: Input: coordinate values of queried point Xg

2: Output: log-odds occupancy probability L(Xg)
3: L(Xg)← 0
4: G← cached global occupancy grid map
5: if G not available then
6: G← MergeLocalOccupancyGirdMaps()
7: L(Xg)← GetLogOddsOccupancy(G,Xg)
8: L(Xg)← max (min (L(Xg), lmax) , lmin)
9: return L(Xg)

GetLogOddsOccupancy function is a standard operation provided by OctoMap Hornung et al.
[2013]. The next section will detail how to merge local occupancy grid maps and compare sequen-
tial VOG-Map occupancy query operation and merged VOG-Map occupancy query operation in
terms of the occupancy values returned.

Merge VOG-Map

When the number of VOG-Map queries is large, sequential VOG-Map occupancy query operation
can incur a lot of runtime overhead since every time it is called, it has to iterate through all the local
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occupancy grid maps. Merged VOG-Map occupancy query operation can be a better alternative if
storage space is not a concerned.

The merge function first discretizes the global space into smaller voxels based on the resolution
used for local occupancy grid maps. Then, it looks up the occupancy of these voxels one by one
using sequential VOG-Map occupancy query operation (Algorithm 2), and insert the result into a
global occupancy grid map.

Algorithm 4 Merge Local Occupancy Grid Maps
1: Output: global occupancy grid map O
2: V ← array containting coordinate values of the voxels
3: O ← initialized global occupancy grid map
4: for v ∈ V do
5: l←SequentialVOGMapQuery(v)
6: SetOccupancyLogOdds(O, v, l)
7: return O

SetOccupancyLogOdds function is a standard operation provided by OctoMap Hornung et al.
[2013]. Since the merge function relies on the sequential VOG-Map occupancy query operation, it
should be intuitive to see that the occupancy values returned by sequential VOG-Map occupancy
query operation and merged VOG-Map occupancy query operation should be very similar, if not
the same. Fig. 3.3 shows the comparison of queried results using these two VOG-Map occupancy
query operations in terms of misclassification percentage computed with respect to the standard
global occupancy grid map. As can be seen, the two misclassification percentages are indeed very
similar, and the small discrepancy comes from using different queried points for comparison from
those used (the voxels in Algorithm 4) for merging.

Figure 3.3: The number on x-axis is the total number of local occupancy grid maps in the VOG-Map. The number on
y-axis is computed by dividing the number of mis-classified queried points by the total number of queried points. The
red line corresponds to the results using sequential VOG-Map query operation while the blue line corresponds to the
results using merged VOG-Map query operation.
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3.5 VOG-Map Advanced Operations

We have shown how VOG-Map can work with pose graph SLAM through standard operation,
i.e. VOG-Map deformation operation 3.4.1. Also, we have shown how to retrieve occupancy
value of some location in global frame using standard operation 3.4.2. These operations are fairly
application-agnostic. Here, we will discuss a variant of query operation called VOG-Map line
query operation. VOG-Map line query operation takes as input two points in global frame and
returns the occupancy values for all voxels along the line connecting the two points.

3.5.1 VOG-Map Line Query

Occupancy queries to the VOG-Map are typically made by the planner in form of ray casting
queries, i.e. casting a ray into space along a given direction and returning occupancy values for
voxels along that ray. Planning algorithms require such ray casting queries for computing collision-
free paths and view utility gains.

The process of performing ray casting query or line query on VOG-map is illustrated in Algorithm
5. It begins by finding a subset S of the local occupancy grid maps {mi}Ni=1 that intersect with the
line formed by p1 and p2 in global frame. It then steps along the line and computes occupancy value
for each voxel using the sum of log odds rule as expressed in Eq. 3.5. As a result, the summation
in Eq. 3.5 is taken only over a subset S of local occupancy grid maps that intersect with the line
instead of all the local occupancy grid maps.

Algorithm 5 VOG-Map Line Query Operation
1: Input: two points in global frame p1, p2

2: Output: occupancy values O along the line formed by p1 and p2

3: O ← ∅,
4: ∆s← step size (usually just the resolution of each local occupancy grid map)
5: n← number of steps computed by dividing the length of the line by the step size
6: v ← direction vector from p1 to p2

7: S ← GetIntersectedLocalOccupancyGridMap(p1, p2)
8: for k ← 1 to n do
9: Xg = p1 + (k∆s)v

10: L(Xg)← 0
11: for i ∈ S do
12: T ig ← Inverse(T globali )
13: X̄ i ← T igX̄

g

14: L(Xg)← L(Xg) + Li(Xi)

15: L(Xg)← max(min(L(Xg), lmax), lmin)
16: O ← O ∪ {L(Xg)}
17: return O
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GetIntersectedLocalOccupancyGridMap function can be implemented efficiently based on the line
and axis-aligned bounding box test. VOG-Map line query operation exploits the structure of VOG-
Map and the queried line to reduce the number of local occupancy grid maps that need to be looked
up for each voxel along the line. Fig. 3.4 shows a comparison in terms of the time taken for each
planning iteration between a planner using only sequential VOG-Map occupancy query operation
and a planner using VOG-Map line query operation whenever possible. As can be seen from the
figure, planner using VOG-Map line query operation is significantly more efficient. However,
as will be discussed in more detail in next chapter, even with the use of VOG-Map line query
operation, planning based on the VOG-Map can be very slow as each planning iteration requires
way more than a few seconds. As will be discussed later, we can make planning based on VOG-
Map always run in real-time by using merged VOG-Map occupancy query.

Figure 3.4: The number on x-axis is the total number of local occupancy grid maps in the VOG-Map. The number
on y-axis is the time taken to plan in seconds. The red line corresponds to the results using only VOG-Map point
query operation while the blue line corresponds to the results using VOG-Map line query operation whenever possible.
Sequential VOG-Map occupancy query operation is used one query at a time so an alternative name for it is VOG-Map
point query operation.
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Chapter 4

Robotics Application

This chapter shows how VOG-Map can be used to implement an approach that enables a marine
robot to autonomously explore and map in underwater unstructured scenes. The advantage of
using VOG-Map over a standard global occupancy map is that it can be easily deformed and cor-
rected for drift or accumulated noise. This property of VOG-Map is ideal especially in underwater
environment where robot state estimates are uncertain and global position systems are unavailable.

This chapter is organized as follows. We will first introduce the marine robot we use for our
reconstruction task. Then, we discuss the algorithms we used and the changes we made. Finally,
we evaluate our system both in simulation and real-world experiments in terms of reconstruction
quality.

4.1 Platform

A schematic view of the marine robot we used and its sensors payloads is shown by Fig. 4.1.
Hovering Autonomous Underwater Vehicle or HAUV is a marine robot developed by MIT/Bluefin.
It was also used for ship reconstruction task in both Hover et al. [2012] and Teixeira et al. [2016].
Since our mapping algorithm is based on the sonar-based volumetric submaps approach presented
in Teixeira et al. [2016], we use the same sensor payloads as well as the same sensor configurations.
The following detailed description of HAUV is directly taken from Teixeira et al. [2016] with minor
modifications:

HAUV is equipped with five rim-driven thrusters that make it directly controllable in
all axes but roll and pitch. Its navigation payload comprises a Honeywell HG1700 iner-
tial measurement unit (IMU), a 1.2MHz Teledyne/RDI Workhorse Navigator Doppler
Velocity Log (DVL), and a Paroscientific Digiquartz depth sensor. The relevant perfor-
mance characteristics are summarized in table 4.1. The DVL can rotate parallel to the
vehicles pitch axis, allowing for both bottom- and hull-relative motions. The HAUV’s
primary payload is a dual-frequency identification sonar (DIDSON) [Belcher et al.,
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Table 4.1: Navigation Sensor Performance

Sensor Axis Accuracy Unit

IMU
Roll, Pitch 0.02 ◦

Yaw 0.05 ◦

DVL X, Y, Z 0.003 m/s
Depth Z 0.01 %

2002], which we use primarily in its high frequency (1.8MHz) mode, as it provides
greater detail. It has a total of 96 beams, each with 0.3◦ of horizontal beam width.
Since we are interested in complex geometries, we make use of a concentrator lens,
reducing its vertical field of view from the standard 14◦ to 1◦ (-3dB values). While
its range resolution depends on the minimum and maximum range configuration, a
typical window of 9.5 meters will yield a resolution of better than 2 centimeters.

Figure 4.1: Hovering Autonomous Underwater Vehicle

The takeaway from the excerpt is that the depth
sensor provides absolute measurement along z-
axis and the IMU provides absolute roll and pitch
measurements. Since magnetometer is not used,
measurement of yaw is not drift-free. And, since
the heading estimate drifts over time, the posi-
tion of HAUV along x-axis and y-axis is bound
to drift over time too even though DVL is used.
The reason is although DVL provides accurate
velocity estimates with zero-mean bias, integra-
tion of these velocity estimates into position es-
timates relies on heading estimates. So, the 6
degrees of freedom (DOF) pose estimation is re-
duced to only 3 DOF, i.e. x, y, and yaw. Another
important takeaway from the excerpt is the sen-
sor used for perception. The DIDSON sonar comprises an array of transducers that produce one or
more narrow beams. Each beam is a cone-like structure with 0.3◦ horizontal beam width and 14◦

vertical beam width. But, with concentrator lens, each beam now approximates a single line into
space with 0.3◦ horizontal beam width and 1◦ vertical beam width. The usage of concentrator lens
removes much of the ambiguity along beam’s vertical field of view and allows us to treat the range
measurement from each beam as corresponding more or less to some unique point in space. With
96 beams, each sonar scan swipes everything in an arc in the horizontal plane. After denoising,
filtering, enhancement, and range extraction as presented in [Teixeira et al., 2016], each sonar scan
is represented by a set of points in the horizontal plane.

Since HAUV cannot roll or pitch, the Didson sonar is rotated 90◦ along x axis as illustrated by Fig.
4.2. In this setup, HAUV can rotate in place while gathering 3D volumetric data of its surrounding,
which is important for unknown-space exploration.
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Figure 4.2: Simulated HAUV and simulated sonar scan as viewed from the side. The blue cone comprised of 96 beams
each is modeled as a line. While a line is not an accurate representation of how the actual sonar beam filtered by a
concentrator lens looks like, the blue cone should give an idea of how the actual sonar scan looks like using our sonar
setup.

4.2 VOG-Map and Mapping

In this section, we will describe the main components of the sonar-based volumetric submaps
approach [Teixeira et al., 2016] which we use as the basis of our mapping algorithm. In particular,
we will focus on how VOG-Map can be constructed upon Pedro’s mapping approach, or more
generally upon the smoothing-base pose graph SLAM framework.

Figure 4.3: Local occupancy grid
map assembled from consecutive
real sonar scans. Blue voxels repre-
sent occupied-space and green vox-
els represent free-space.

As discussed in 3.2, we assemble consecutive sonar scans to form
local occupancy grid maps. Fig. 4.3 shows an example of local oc-
cupancy grid map assembled from real sonar scans. To understand
how the local occupancy grid map is constructed, it is important to
note that the HAUV initially sits at the bottom-left corner of Fig.
4.3. Then, HAUV rotates in place for about 90◦ while constructing
the local occupancy grid map. Once the local occupancy grid map
is created, we say it is anchored at a pose node of the pose graph
SLAM [Kaess et al., 2007] when we create the said pose node us-
ing the base pose of the local occupancy grid map. With multiple
local occupancy grid maps and their respective bases poses, a pose
graph as illustrated by Fig. 4.4 is constructed. The binary con-
straint between consecutive pose node is obtained by computing
the relative transformation between two consecutive base poses
along x, y, and yaw directions. This is the dead-reckoning con-
straint based on HAUV’s odometry. The unary constraint associated with each pose node is ob-
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Figure 4.4: The pose graph as formulated in [Teixeira et al., 2016] upon which VOG-Map is built. When the SLAM
optimization updates the pose estimates of the pose nodes, base poses of the local occupancy grid maps are also
updated using VOG-Map deformation operation as discussed in 3.4.1 which effectively and efficiently corrects the
VOG-Map for drift or accumulated noise.

tained by using the absolute measurements along roll, pitch, and z. Another type of binary con-
straint is obtained by computing the relative transformation between two local occupancy grid
maps via iterative closest point (ICP).

Figure 4.5: Point-cloud represen-
tation of the local occupancy grid
map shown in Fig. 4.3. It is ob-
tained by down-sampling the raw
point-cloud data collected from a
set of consecutive sonar scans.

ICP is a method that tries to bring two point-clouds together by
minimizing some error metric. Therefore, to make ICP more ef-
ficient, we cache a point-cloud representation for each local occu-
pancy grid map. Since local occupancy grid maps are never mod-
ified and only their base poses are changed, their point-cloud rep-
resentations once created will not need to be changed either. As an
example, Fig. 4.5 shows the corresponding point-cloud represen-
tation of the local occupancy grid map shown in Fig. 4.3.

So far, the formulation of the pose graph SLAM problem is ex-
actly the same as presented in [Teixeira et al., 2016]. We have
shown how VOG-Map can be constructed upon the pose graph
of the SLAM problem. By building VOG-Map upon the pose
graph SLAM framework, VOG-Map can be deformed efficiently
as the bases poses of the underlying local occupancy grid maps get
updated based on the optimized pose estimates from SLAM opti-
mization. Therefore, the quality or accuracy of VOG-Map depends
on the pose graph SLAM optimization, which in turn depends on the ICP method used which will
be discussed in next section.
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4.2.1 Point-to-Point Iterative Closest Point

In this section, we will discuss how to find potential relative pose constraint between any two local
occupancy grids via the ICP method presented in Teixeira et al. [2016]. It is important to note
that the ICP method is performed on the corresponding point-cloud representations of the local
occupancy grid maps.

Since the pose estimation is a 3 DOF problem along x, y, and yaw, as described in 4.1, the 2D
Point-to-Point ICP method provided by Point Cloud Library [Rusu and Cousins, 2011] is used.
This method iteratively find the rotation (yaw only) and translation (x and y only) that aligns two
set of corresponding points. A detailed derivation of the math behind can be founded in [Sorkine-
Hornung and Rabinovich, 2017].

Figure 4.6: Source point-cloud is in red, with
the red sphere denotes its corresponding centroid.
Target point-cloud is in green, with the green
sphere denotes its corresponding centroid. The
source point-cloud is first transformed into the co-
ordinate frame of the target point-cloud. Then, the
centroids and bounding boxes of the two point-
clouds are computed. Since the centroid of the
source point-cloud is inside the bounding box of
the target point-cloud, the initial relative transfor-
mation between these two point-clouds is consid-
ered good.

The key insight is if perfect correspondences between
points in two point-clouds are known, the formula de-
rived in [Sorkine-Hornung and Rabinovich, 2017] can
find the best-fitting rigid transformation that aligns two
point-clouds in one step. When data association is
not available, ICP methods are able to converge to the
best-fitting rigid transformation only if good initial rel-
ative transformation is available. The strategy used
in Teixeira et al. [2016] for deciding whether or not
a good initial relative transformation is available is to
first transform the source point-cloud into the reference
frame of the target point-cloud using the initial relative
transformation from odometry. Then, centroids of the
two point-clouds are computed. If either of the two
centroids is inside the bounding box of the other point-
cloud, ICP is performed on these two point-clouds.
Otherwise, ICP is skipped for the two point-clouds.
Fig. 4.6 illustrates the strategy used for determining
good initial relative transformation.

This precondition avoids unnecessary computation
overhead of performing ICP on two point-clouds that
do not have good initial relative transformation. To
make the result of ICP more robust, even if ICP con-
verges, some criteria need to be met for the ICP result to be accepted. Algorithm 6 summarizes the
important components of the ICP pipeline as used in [Teixeira et al., 2016].

2D-Point-to-Point-ICP is considered converged - criterion (1) if a maximum number of iterations
has been reached, or the difference between consecutive estimated transformation is smaller than
a threshold, or the mean squared error (MSE) between the current set of correspondences and
the previous one is smaller than some threshold. If 2D-Point-to-Point-ICP converges, we first
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Algorithm 6 ICP Pipeline
1: Input: source point-cloud PC1, target point-cloud PC2, initial relative transformation T0

2: Output: relative transformation T
3: T ← null
4: if PC1 dose not have enough points or PC2 does not have enough points then
5: return T
6: if centroid of PC1 not in bounding box of PC2 and
7: centroid of PC2 not in bounding box of PC1 then
8: return T
9: converged← 2D-Point-to-Point-ICP(PC1, PC2, T0, T )

10: if (1) converged and (2) averaged sum of squared distance
11: between corresponding points after ICP trasformation is less than some threshold and
12: (3) the difference between T and the relative transformation obtained from odometry
13: is smaller than the maximum possible drift computed based on the covariance of
14: odometry measurements and the time difference betwee the two point-clounds then
15: return T
16: else
17: return null

transform the source point-cloud into the coordinate frame of the target point-cloud using the
relative transformation obtained from ICP. Then, we find the correspondences between source
and target point-clouds. Finally, we add up the squared distance between each pair of points
and take average. This number is also called score and can be retrieved using PCL API. This
score check corresponds to the criterion (2) in the pseudocode above. Criterion (3) is a bit more
complicated and is implemented as follows: Let T(x) be the estimated translation along x-axis
from ICP. Let O(x) be the translation along x-axis from odometry. Let T(y) be the estimated
translation along y-axis from ICP. Let O(y) be the translation along y-axis from odometry. Then,
we compute dx = T(x) - O(x) and dy = T(y) - O(y). The difference between T and the relative
transformation obtained from odometry is δ =

√
dx2 + dy2. Let dt be the time elapsed since the

construction of source point-cloud till the construction of target point-cloud. Let Cov(x) be the
assumed odometry measurement covariance along x-axis per second. Let Cov(y) be the assumed
odometry measurement covariance along y-axis per second. Then the maximum possible drift is
σ =
√

Cov(x) ∗ dt + Cov(y) ∗ dt. If δ is greater than σ, then the ICP result is rejected. Otherwise,
the criterion is met. Once the ICP converges and all the criteria are met, a relative pose constraint
based on the relative transformation from ICP is created and added to the pose graph.

4.2.2 Degeneracy

The criteria in Algorithm 6 are used in order to avoid wrong ICP registration as shown in Fig. 4.7.
Wrong registration can happen even when good initial relative transformation is available if the
underlying optimization problem solved by ICP is degenerate. As defined in [Zhang et al., 2016],
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Figure 4.7: Illutration of wrong relative transformation obtained from ICP due to degeneracy in the underlying opti-
mization problem. Since these submaps are obtained in simulation, the groundtruth relative transformation between
source point-cloud (red) and target point-cloud (green) is available and is used to visualize the two point-clouds in
target-cloud coordinate frame as shown in (a). (b) shows the result of using initial relative transformation from odom-
etry, and (c) shows the result of using relative transformation from wrong ICP registration.

an optimization problem is degenerate if some direction in the state space of the optimization prob-
lem is not well-conditioned. A direction is not well-conditioned if there are no enough constraints
along that direction. In Fig. 4.7, since some direction in the horizontal plane formed by x-axis and
y-axis is not well-conditioned, the optimization problem is degenerate, resulting in wrong relative
transformation from ICP.

Degeneracy is a common problem especially in scenes that lack geometrical structures. When ICP
is performed on submaps assembled from range sensor data (when using sonar or lidar) in such
scenes, the underlying optimization problem often contains one or more ill-conditioned direction
in the state space of the variables for which ICP tries to optimize. It is important to avoid wrong
ICP registrations because incorrect relative pose constraints obtained from wrong ICP registrations
will in turn result in erroneous pose estimates from SLAM optimization problem, causing both the
VOG-Map and the scene reconstruction to deform incorrectly.

While the ICP pipleine in Algorithm 6 determines and discards bad ICP registrations using heuris-
tics, a more robust way is to separate well-conditioned directions from ill-conditioned directions in
the state space of the optimization problem and update the solution only along the well-conditioned
directions as presented in [Zhang et al., 2016]. As will discussed in 4.5.1, we improve the ICP
pipeline of Teixeira et al. [2016] and make it more robust to degeneracy in the scene by incorpo-
rating ideas from [Zhang et al., 2016] into our custom ICP methods.
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4.3 VOG-Map and Planning

As mentioned in 1.2, we base our planning algorithm on Bircher’s sampling-based exploration
approach detailed in [Bircher et al., 2016]. In this section, we discuss the key components of the
planning algorithm with a focus on the changes we made.

The key compoents of Bircher’s sampling-based exploration approach include (1) a space represen-
tation that can distinguish between free-space, occupied-space, and unknown-space, (2) a sampling
technique for generating collision-free paths, and (3) a strategy for computing the information gain
of each waypoint.

4.3.1 Space Representation, Way-point Sampling, and Gain Computation

The space representation maintained by Bircher’s planning algorithm is an octree-based occupancy
grid map implemented using OctoMap Hornung et al. [2013]. This occupancy grid map represents
the entire exploration bounding box within which the robot operates. If the robot state estimate is
accurate, using one occuapncy grid map to represent the entire area of interest works well as shown
in [Bircher et al., 2016]. However, with uncertain robot state estimates, the occupancy grid map
will not be an accurate space representation over time due to drift or accumulated noise. While our
VOG-Map also suffers from drift or accumulated noise, it can be deformed or corrected efficiently
upon loop closure detection via ICP method as described in the previous section. Therefore, we
replace the occupancy grid map used by Bircher’s planning algorithm with our VOG-Map.

Bircher’s planning algorithm builds upon rapidly-exploring random tree or RRT LaValle [1998]
to generate paths for exploration and mapping. RRT is a sampling-based algorithm designed for
efficient space exploration by building a space-filling tree. During each iteration of RRT, a new
way-point wnew is sampled, and the closest way-point wclosest in the tree usually in terms of eu-
clidean distance is found. wnew is then updated so that the distance between wnew and wclosest is
within some user-defined maximum extension range between adjacent way-points. wnew is added
to the tree only if the path segment from wclosest to wnew is collision-free. To check whether or
not it is collision free, multiple ray-tracing or line queries need to be performed on the VOG-Map.
This can be done by using VOG-Map line query operation as described in 5.

To determine where the robot should move once the way-points are sampled, we need to compute
for each way-point the expected reward or the information gain. For the computation of a way-
point’s information gain, sensor measurements as viewed from the way-point need to be simulated
based on the sensor model. We simulate sonar measurements in sonar’s local frame using some
simple trigonometry based on the horizontal field of view, vertical field of view, minimum range,
and maximum range of our sonar. These simulated measurements in local frame are then converted
into global frame using the way-point’s global pose. Once these simulated measurements are in
global frame, we query each simulated measurment for its corresponding occupancy status using
VOG-Map sequential or point query operation as described in 2, and increment the information
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Figure 4.8: Illutration of sampled paths using RRT and the simulated measurements used for information gain com-
putation. Cyan and magenta arrows show the path segments between way-points. Blue and red arrows/disks show
the way-points. For each way-point, there is a corresponding cone-like structure that is made up of points with dif-
ferent colors. Blue point means the measurement corresponds to free-space in the VOG-Map. Green point means
the measurement corresponds to occupied-space in the VOG-Map. Red point means the measurement corresponds to
unknown-space in the VOG-Map. The information gain for a way-point is then computed by adding up the value as-
sociated with each point in the corresponding cone. Some cones are incomplete because when computing information
gain for a way-point, invisible simulated measurement points as viewed from the way-point are discarded. Since a
sensor measurement is considered invisible when it is behind occupied-space, these cones terminate at green points or
occupied-space. Some points can still appear after green points since the visibility check depends on the resolution of
VOG-Map.

gain by some user-defined value corresponding to the type of occupancy status. In practice, we
assoicate most gain with unknown occupancy status. This is done for all simulated measurements,
and the resulting sum is basically the way-point’s information gain. Fig. 4.8 shows an example of
simulated sonar measurements used when computing information gain for a sampled way-point.

4.3.2 Unconstrained Sampling

As can be seen in Fig. 4.8, the sampled way-points are very arbitrary. The difference in heading
between consecutive way-points can be larger than 90 ◦, and the robot can virtually move in any di-
rection between adjacent way-waypoints as indicated by the path segments. This works great when
using Micro Aerial Vehicle or MAV equipped with camera as in [Bircher et al., 2016]. However,
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Figure 4.9: Illustration of how unconstrained sampling can result in bad submap for both loop closure detection and
path planning. The local occupancy grid map shown on the left contains unknown-space in-between known-space.
This is bad because when checking collision, unknown-space is considered in-traversable. Hence, even though a lot
space is free as shown in green, the planner will still not be able to return a collision-free path. The point-cloud
representation of the local occupancy grid map as shown on the right is very sparse and therefore not suitable for
robust loop closure detection.

since our sonar perceives space slice by slice, if we don’t constrain the yaw difference between
consecutive way-points and allow the robot to move arbitrarily along x-axis, y-axis, and z-axis, the
submap we construct would not be very suitable for both loop closure detection and path planning
as shown by Fig. 4.9. In addition, since the error in robot state estimate is dominated by the head-
ing error, adding constraint to the change in heading between consecutive way-points can avoid
unnecessary drift or accumulated error due to frequent and large heading change. As will be dis-
cussed in 4.5.3, adding constraints to how the way-points are sampled can improve the quality of
both VOG-Map and scene reconstruction when working with HAUV and using our sensor setup.

4.4 Simulated Experiments in Structured Scene

So far, we have shown show to use VOG-Map as the core component in bringing together smoothing-
based pose graph SLAM mapping approach [Teixeira et al., 2016] and sampling-based planner
Bircher et al. [2016]. Our overall system is shown again in Fig. 4.10 for convenience. So far,
we have only made necessary changes to the mapping and planning algorithms. To be more spe-
cific, we built VOG-Map upon the mapping algorithm and added a function to update the base
poses of local occupancy grid maps upon loop closure detection. For the planning algorithm, we
replaced the global occupancy grid map used with VOG-Map and modified how information gain
is computed based on our sensor model.

In this section, we evaluate our system in a 3D simulated structured underwater environment,
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Figure 4.10: Overall system using virtual occupancy grid map or VOG-Map for concurrent mapping and planning

being explored by the simulated HAUV. We compare the results of our VOG-Map-based approach
against the exploration and mapping approach by Bircher et al. [2016] that uses a single global
occupancy map for planning.

4.4.1 Simulation Setup

For performing simulation-based evaluation, we require a closed-loop setup interfacing robot state
estimator and low-level control with mapping and planning algorithms. We hence adopt the UUV
Simulator Manhães et al. [2016], a gazebo-based simulation environment, and customize it based
on the model of our underwater vehicle, the Hovering Autonomous Underwater Vehicle (HAUV)
from MIT/Bluefin as seen in Fig. 4.1. For sensing, the simulated vehicle is equipped with a
profiling sonar sensor that produces real-time 1D scan of its environment. Each sonar scan is
composed of 96 beams evenly spaced within the sonar’s ψ = 29o field of view. The vertical field-
of-view of the profiling sonar sensor is small with a value of θ = 1o. However, for simplicity, the
profiling sonar sensor is simulated using a laser plugin, and therefore each beam is basically just
a ray or line into space. As a result, this vertical field-of-view is not reflected by the simulated
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profiling sonar.

For state estimation, in the roll, pitch and z directions, it is possible to obtain absolute measure-
ments at each robot pose using the navigation payload as described in 4.1. We hence simply
simulate added gaussian noise for state estimates obtained in these three directions. In the x, y
and yaw directions, the sensor measurements from IMU/DVL are not that drift-free and the error
grows unbounded over time. In order to simulate such a drifting state estimate in the x, y and
yaw directions, we compute corrupted state estimates P̂ from ground truth state estimates P . The
corrupted state estimate P̂t at time step t is expressed as

P̂t+1 = P̂t⊕ (Pt+1	Pt⊕∆tN (0, Σ)) , (4.1)

where P̂1 = P1. In Eq. 4.1, each state estimate P̂t is computed by corrupting the difference of
current and previous ground truth state estimates with additive white Gaussian noise (AWGN) with
mean 0 and covariance Σ, and then adding the result to the previous estimated state P̂t. Σ is the
covariance matrix expressing measurement uncertainties and expressed as Σ = diag(σ2

x, σ
2
y, σ

2
ψ).

The variance in x-direction is taken as σ2
x = 0.00138 m2/s, the variance in y-direction is taken as

σ2
y = 0.00138 m2/s, and the variance in yaw direction is taken as σ2

ψ = 10−7 rad2/s.

4.4.2 Dataset: Ship Propeller of SS Curtiss

The simulated environment consists of the propeller model of SS Curtiss as shown in Fig. 4.11.
The size of the propeller is approximately 7m× 4m× 6m.

Figure 4.11: Propeller of SS Curtiss and HAUV

The vehicle starts from the starboard side and
navigates around the propeller for exploration
and mapping within a bounding box of size
12m × 7m × 3.5m. Table 4.2 lists the dataset
parameters that have been used. When eval-
uating our approach against the next-best-view
planner in Bircher et al. [2016], results are ob-
tained based on multiple runs since the stochas-
ticity in the path planning may lead to selection
of different paths in each experimental run. We
also run each experiment for roughly the same
number of submaps so as to keep the evaluation
fair.

Fig. 4.12 shows the obtained 3D reconstructions
registered using ICP against the ground truth 3D reconstruction for three different scenarios. Fig.
4.12(a) shows the 3D reconstructions obtained from the baseline next-best-view algorithm Bircher
et al. [2016] operating using a standard single global occupancy map, Fig. 4.12(b) shows recon-
structions using the VOG-map without loop closures and finally Fig. 4.12(c) shows reconstructions
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Table 4.2: Propeller dataset parameters

Parameter Value Parameter Value
Area 10x6x9m Octomap resolution r 0.095m
vmax 0.25m/s ψ̇ 0.15rad/s
FoV [1◦,29◦] Scans per submap 100
dplannermax 5m dsensormax 11m
λ 0.5 RRT max edge length 2m

Nmax 15 Collision box 1.0x1.0x0.5m
FPSsensor 5 Maximum submaps 156

using the VOG-map with loop closures. It should be noted that the results in Fig. 4.12(b), Fig.
4.12(c) are from the same experimental run with the loop closure information not being used for
mapping for Fig. 4.12(b). Fig. 4.12(a) is from a different experimental run. Table 4.3 shows the
root-mean-square error (RMSE) for each of these three 3D reconstructions when registered using
ICP against the ground truth point cloud. It can be seen that the 3D reconstruction in Fig. 4.12(c)
has the lowest RMSE errors and looks least noisy due to fixing of globally accumulated drift by
loop closures. Such globally accumulated drift can be corrected for our system as a result of using
the VOG-map representation underneath.

(a) (b) (c)

Figure 4.12: 3D Reconstruction results registered using ICP against 3D reconstruction from ground truth odometry
for three different scenarios. (a) shows reconstruction from baseline next-best-view algorithm Bircher et al. [2016]
operating using a single global occupancy map, (b) shows reconstruction using VOG-map without loop closures and (c)
shows reconstruction using VOG-map with loop closures. 3D reconstruction generated using ground truth odometry
is in black for each figure. Registered 3D points change color from blue to yellow as distance from ground truth point
cloud increases. Scale of the plots is in meters.
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Table 4.3: RMSE Errors in 3D Reconstructions

Run Standard Virtual Global Map Virtual Global Map
No. Global Map without loop closure with loop closures
1 0.19792 m 0.14902 m 0.13345 m
2 0.20491 m 0.14176 m 0.13357 m

4.5 Improved Mapping and Planning

While the result from the simulated experiments is very promising, we observe several problems
that can cause our VOG-Map-based system to perform even more poorly at times as compared to
the base-line planning algorithm. These problems can be broadly classified into (1) incorrect loop
closure and (2) slow planning speed. In this section, we present the improvements we made on the
mapping and planning algorithm as we try to address these problems

4.5.1 Degeneracy-aware ICP

As was discussed in 4.2.2, wrong ICP registration or wrong loop closure can happen even with
informative initial relative transformation from odometry. While there are criteria that we can use
to reject the relative transformation obtained from ICP heuristically, it is better if we can tackle
the problem at the source, i.e. detect the degenerate direction in the state space of underlying
optimization problem. Zhang, et al. in Zhang et al. [2016] prove this can be done by performing
principal component analysis, and present a technique called solution remapping that updates the
optimization problem along only well-conditioned directions. Algorithm 7 shows the pseudo-code
of our degeneracy-aware ICP method based on the solution remapping technique presented in
Zhang et al. [2016].

Algorithm 7 Degeneracy-aware ICP
1: Input: initial relative transformation from odometry Todom
2: Output: relative transformation from ICP Ticp
3: Ticp ← Todom
4: while nonlinear iterations do
5: Linearize the optimization problem at Ticp to get ATA and AT b
6: Compute eigenvalue λi and eigenvector vi of ATA for i = 1 . . . 6
7: Determine an eigenvalue threshold λmin
8: Construct matrix Vf containing all the eigenvectors
9: Construct matrix Vu containing only well-conditioned directions based on λmin

10: ∆xu ← (ATA)−1AT b
11: Ticp ← Ticp + V −1

f Vu∆xu

12: return Ticp
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We implement degeneracy-aware ICP by extending PCL’s [Rusu and Cousins, 2011] Point-to-
Plane ICP method. The derivation and construction of ATA and AT b based on Point-to-Plane error
metric can be found in [Low, 2004]. The key difference of degeneracy-aware ICP from solution
remapping technique presented in [Zhang et al., 2016] is that we re-compute the well-conditioned
directions based on a different covariance matrix (ATA) at each non-linear iteration. Theoretically,

Figure 4.13: Illutration of relative transformation obtained from degenerate-aware ICP. Since these submaps are ob-
tained in simulation, the groundtruth relative transformation between source point-cloud (red) and target point-cloud
(green) is available and is used to visualize the two point-clouds in target-cloud coordinate frame as shown in (a). (b)
shows the result of using initial relative transformation from odometry. (c) shows the result of using relative trans-
formation from degeneate-aware ICP with λmin = 0, which essentially becomes the original Point-to-Plane ICP. (d)
and (e) show the results of using relative transformation from degeneate-aware ICP with λmin > 0. While the results
are way better than that shown in Fig. 4.7 based on 2D-Point-to-Point-ICP, the relative tranformation obtained from
degenerate-aware ICP can still be worse than odometry transformation as compared to the groundtruth transformation.
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this re-computation captures the fact that at each iteration when we linearize at an updated Ticp,
the degenerate directions might change. It is also important to note that how to determine the λmin
for separating well-conditioned directions from degenerate directions is still an open question. For
now, we choose λmin heuristically and for each non-linear iteration, we use the same λmin.

Fig. 4.13 shows the result obtained using degenerate-aware ICP. We use the same point-clouds as
those used in Fig. 4.7 for comparison. It is obvious that degenerate-aware ICP coverges to a better
solution as seen in Fig. 4.13 (d) and (e), but the relative transformation obtained can still be worse
than the relative transformation from odometry. It is especially obvious along the horizontal axis
where the two point-clouds can slide freely as a result of using the Point-to-Plane error metric. If
we simply construct a relative pose constraint from the resulting relative transformation without
considering the degenerate directions along horizontal axis, and add the relative pose constraint
to the pose graph SLAM framework, the SLAM optimization will converge to erroneous pose
estimates. We therefore want to construct a relative pose constraint that only constrains well-
conditioned directions. The relative pose constraint that only constrains well-conditioned direction
is also called custom factor, as will be detailed in next section.

4.5.2 Custom Factor

As mentioned above, custom factor provides constraints only along well-conditioned directions.
Algorithm 8 details the construction of custom factor.

Algorithm 8 Custom Factor
1: Input: relative transformation from ICP as 6 DOF vector Xicp and
2: 6×6 measurement covariance matrix Cov
3: Output: custom factor F
4: Linearize the ICP optimization problem at Xicp to get ATA and AT b
5: Compute eigenvalue λi and eigenvector vi of ATA for i = 1 . . . 6
6: Determine an eigenvalue threshold λmin
7: Construct matrix Vu containing only well-conditioned directions based on λmin
8: F.measurement← VuXicp

9: F.covariance← VuCovV
T
u

10: return F

We first use the similiar approach as in Algorithm 7 to computeATA andAT b. Then, measurement
or relative transformation from degenerate-aware ICP is projected onto only well-conditioned di-
rections. Finally, the heuristically chosen measurement covariance Cov is transformed based on
the well-conditioned directions as well.

Once the custom factor is constructed and added to the pose graph SLAM framework, we can per-
form maximum a posteriori (MAP) inference on resulting pose graph so as to determine value of
unknown base poses xj that maximally agree with the information present in uncertain measure-
ments. Performing MAP inference for SLAM problems with Gaussian noise models is equivalent
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to solving a nonlinear least-squares problem Dellaert and Kaess [2017]. For doing MAP estima-
tion over sequence of poses X = {x1,x2, . . .xN}, the associated nonlinear least-squares problem
is written as

XMAP = argmin
X

(
N∑
i=1

||f(xi−1, ui−1)− xi||2Λi
+∑

(i,k)∈O′

||Vuh(xi,xk)− Vuoik||2VuΓikVT
u

)
,

(4.2)

where f(xi−1, ui−1), h(xi,xk) are the motion and sensor models respectively subject to additive
white gaussian noise. Λi is the covariance matrix associated with motion model noise, and O′ is
the set of all tuples (i, k) for which we consider partial pairwise registration constraints (in non-
degenerate directions). Vu is the matrix projecting the relative transformation from degenerate-
aware ICP to only the well-conditioned directions. We now solve this least squares optimization
for sequence of unknown poses X using the iSAM optimization library [Kaess et al., 2007].

The motion and sensor models in Eq. 4.2 can be linearized using Taylor expansion as shown in
Dellaert and Kaess [2017], and Eq. 4.2 becomes

∆∗ = argmin
∆

(
N∑
i=1

||f(x0
i ) + Fi∆i − xi||2Λi

+∑
(i,k)∈O′

||Vuh(x0
i ,x

0
k) + VuH(i,k)∆(i,k) − Vuoik||2VuΓikVT

u

)

= argmin
∆

(
N∑
i=1

||Fi∆i − {xi − f(x0
i )}||2Λi

+∑
(i,k)∈O′

||VuH(i,k)∆(i,k) − Vu{oik − h(x0
i ,x

0
k)}||2VuΓikVT

u

)
,

(4.3)

where Fi and H(i,k) are the measurement Jacobians for motion model and sensor model respec-
tively. ∆∗ is the state update vector. xi − f(x0

i ) and oik − h(x0
i ,x

0
k) are the prediction errors, i.e.

the difference between actual and predicted measurement. ∆∗ denotes the solution to the locally
linearized problem.

We can eliminate the covariances Λi and VuΓikVT
u in Eq. 4.3 by pre-multiplying the Jacobians and

prediction errors with Λ
− 1

2
i and {VuΓikVT

u}−
1
2 respectively.

Ai = Λ
− 1

2
i Fi Ai,k = (VuΓikVT

u )−
1
2H(i,k)

bi = Λ
− 1

2
i (xi − f(x0

i )) bi,k = (VuΓikVT
u )−

1
2 Vu{oik − h(x0

i ,x
0
k)}

This whitening process eliminates the units of measurements. Therefore, custom factor that con-
strains along well-conditioned directions with mixed units can be used with other factors that
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provide constraints in the original bases, i.e. x, y, z, yaw, pitch, roll. For completeness, Eq. 4.3
becomes a standard least-squares problem as shown by Eq. 4.4.

∆∗ = argmin
∆

(
N∑
i=1

||Ai∆i − bi||22+∑
(i,k)∈O′

||Ai,k∆(i,k) − bi,k||22
)
,

(4.4)

4.5.3 Constrained Sampling

As was discussed in 4.3.2, sampled way-points have a large impact on the submaps we obtained
and the amount of drift. To address these issues, we add constraints during our sampling process
such that the heading difference between consecutive way-points is bounded by some threshold.
In addition, we separate the sampling process into two steps. The first step generates way-points
on the x-y plane with a fixed z or depth. The second step generates way-points along the z-axis
with fixed x and y coordinate values. We use the current robot position for the fixed values during
the sampling process. Fig. 4.14 illustrates the resulting sampled paths. Fig. 4.15 shows the typical
submap we obtained using the constrained sampling strategy.

Figure 4.14: Illustration of sampled paths generated using the constrained sampling strategy after one planning itera-
tion. The heading difference threshold used is 90◦
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Figure 4.15: Illustration of typical submap obtained using constrained sampling strategy. The local occupancy grid
map shown on the left is more compact, and the point-cloud shown on the right is more dense as compared to those in
Fig. 4.9.

4.5.4 Gain Computation

After way-points are sampled and paths generated, the way-point robot chooses to move to depends
on the information gain associated with the way-point. In 4.3.2, we compute the gain for each way-
point only at the way-point’s location using our sensor model. However, due to our sensor model,
computing gain this way won’t be too informative. A better strategy is to compute the gain along
path segment that connects consecutive way-points as illustrated by Fig. 4.16.

Figure 4.16: Illustration of the new gain computation strategy. We first interpolate consecutive way-points based on
the resolution used to build local occupancy grid maps. Then, we compute the gain for each intermediate way-points
obtained via interpolation. Finally, the information gain for the destination way-point is set to be the sum of these
intermediate gains.
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4.5.5 Cached VOG-Map

As was discussed in 3.5.1, the planning time for each planning iteration quickly exceeds beyond
just a few seconds even when using VOG-Map line query operation 3.5.1, as shown by Fig. 3.4.
The reason is that planner made too many queries to the VOG-Map each planning iteration as
illustrated in Fig. 4.17. This slow planning time can be problematic because the robot will stay
still for more than a few seconds each time the planning algorithm re-plans, which happens very
frequently for exploration task.

Figure 4.17: The number on x-axis shows the current planning iteration number (1st itr, 2nd itr, etc.). The number
on y-axis shows the total number of calls to VOG-Map made by each planner function call. The magenta line is due
to the overlap of red and blue lines. The red line corresponds to the number of times get cell probability is called.
This function is called when computing gain for each way-point. The blue line corresponds to the number of times
get visibility is called. This function is called when computing gain for each way-point. The green line corresponds
to the number of time get line status is called. This function is called when checking collision between consecutive
way-points. get cell probability corresponds to sequential VOG-Map query operation 3.4.2 while get visibility and
get line status correspond to VOG-Map line query operation 3.5.1.

A potential fix to this problem is to use merged VOG-Map occupancy query operation as discussed
in 3.4.2. However, it won’t be much better if we have to merge all local occupancy grid maps from
scratch each time new local occupancy grid map is available. The key insight is that we don’t
have to merge all local occupancy grid maps from scratch each time new local occupancy grid map
is available. This is because when new odometry constraint and new pose node is added to the
pose graph SLAM framework, the SLAM optimized pose estimates for all the previous pose nodes
won’t be changed. Therefore, most of the time, we only need to merge the new local occupancy
grid map into the cached VOG-Map. This incremental update to the cached VOG-Map can be
done efficiently as shown by Fig. 4.18. The spikes in the figure indicate that we occasionally have
to merge all local occupancy grid maps from scratch when new relative pose constraint from ICP
is added.

By using merged VOG-Map occupancy query operation and more efficient merging strategy, the
planning time taken for each planning iteration is consistently under one second. This is possible
because the operation to merge all the local occupancy grid maps from scratch runs on a different
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Figure 4.18: Illustration of our merging strategy. The number on x-axis is the total number of local occupancy grid
maps in the VOG-Map. The number on y-axis is the time taken to merge in seconds. As can be seen, most of time, we
update the cached VOG-Map incrementally with the new local occupancy grid map. We only have to re-merge from
scratch upon loop closure.

thread from the thread that the planner runs on.

4.6 Real-world Experiments

We conduct real-world experiments with the HAUV shown in Fig. 4.1 and compare the results of
our VOG-Map-based approach against the approach based on a single global occupancy grid map
as presented in Bircher et al. [2016].

4.6.1 Real-world Experiment Setup

The HAUV used in our real-world experiments is equipped with the same navigation payload and
sonar sensor as described in 4.1. We design a scenario as shown in Fig. 4.19 in which the HAUV
starts in a position in a tank where it can only see a limited portion of its environment. It has

Table 4.4: Real-world experiment parameters

Parameter Value Parameter Value
Area 12x12x2.5m Octomap resolution r 0.095m
FoV [1◦,29◦] Scans per submap 100
dplannermax 5.63m dsensormax 5.63m
λ 0 RRT max edge length 1m

Nmax 15 Collision box 1.0x1.0x0.5m
FPSsensor 10 Maximum submaps 105
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to autonomously map the tank based on VOG-Map to create a reconstruction of the scene that
includes the walls of the cylindrical tank, the rectangular aluminum box, and the ladder. Table
4.4 lists the experiment parameters that have been used. In particular, the size of the tank is
7m × 7m × 3m while the bounding box we use for exploration is much larger since the HAUV’s
starting position is not necessarily at the center of the tank.

4.6.2 Real-world Experiment Results

The navigation payload of the HAUV is quite accurate in this rather small contained environment.
To more readily see the effect of drift, we artificially corrupt values obtained from the state esti-
mates given by the IMU/DVL in the same way in Eq. 4.1. Since there is no ground truth model,
we qualitatively compare the resulting occupancy maps and the reconstructed models. To keep
the comparison fair, the HAUV while operating based on the VOG-map, also simultaneously con-
structs a standard global occupancy grid using raw odometry without loop closures.

Figure 4.19: HAUV in the tank with an aluminum box
and a ladder

Fig. 4.20 shows the standard global occupancy
map and the VOG-map reconstructed from local
submaps. We reconstruct the VOG-map from lo-
cal submaps only for a visual comparison. Fig.
4.21 shows 3D scene reconstructions generated
without and with loop closures. It can be seen
that, as a result of loop closures, the reconstruc-
tion in Fig. 4.21(b) has corrected drift. Since the
tank environment is small, the drift accumulation
is not as significant as for the simulated propeller
dataset. Such globally accumulated drift can be
corrected for our system as a result of using the
VOG-map representation underneath.

The effect of improvement in scene reconstruc-
tion quality is more easily seen than the effect of
VOG-map on planning. Since this is a small en-
vironment, it is difficult to conclude that the planner based on VOG-map returns better overall plan
in terms of collision avoidance and information gathering. However, based on the occupancy grid
maps in Fig. 4.20, it is expected that a planner operating using the VOG-map would be able to
generate waypoints that account for drift better than a planner using a standard global occupancy
map.
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Figure 4.20: (a) Top view of standard global occupancy grid. (b) Top view of VOG-map, reconstructed from local
submaps only for comparison. The yellow background shows the extent of the exploration bounding box. Regions
indicated with red arrows show the areas where loop closures using the VOG-map are able to correct accumulated
drift.

Figure 4.21: 3D scene reconstructions: (a) Without loop closures. (b) With loop closures. Regions indicated with red
arrows show the areas where loop closures using the VOG-map are able to correct accumulated drift. Since the tank
environment is small, the drift accumulation is not as significant as for the simulated propeller dataset.
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Chapter 5

Conclusions

5.1 Contributions

This thesis presents the following contributions towards autonomous reconstruction task in under-
water unstructed scenes,

• It presents a general space representation called virtual occupancy grid map or VOG-Map
that can work with any smoothing-based pose graph SLAM approaches and any planning
approaches that are based on occupancy grid map.

• It shows VOG-Map is a better space representation than the standard occupancy grid map
especially when robot state estimates are uncertain since VOG-Map can be deformed effi-
ciently to correct globally accumulated drift via loop closures while maintaining free space
information for the purpose of path planning.

• It presents degenerate-aware ICP which is shown to be more robust than normal ICP method
especially in degenerate scenes that lack geometric details. In addition, it shows how to
construct a custom factor that constrains arbitrary directions, and proves the correctness of
using custom factor in the SLAM optimization problem.

• It presents strategies that can be used to sample way-points that work better with our platform
and sensor used. It also shows a different way that information gain associated with each
way-point can be computed.

• It shows how VOG-Map can be a unifying space representation that combines state-of-the-art
mapping and planning approaches by implementing a full-fledged autonomous system. The
system is evaluated in both simulation and real-world experiments in terms of reconstruction
quality.
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5.2 Observations and Future Work

As future work, we would like to look into the following problems which can be broadly catego-
rized as (1) correspondences for ICP and (2) planning time based on VOG-Map.

Currently, even with degeneracy-aware ICP and custom factor, our ICP method is still prone to
error, and wrong relative pose constraint could still be added to the pose graph SLAM framework,
resulting in worse VOG-Map and scene reconstruction than those based on odometry. The obvious
reason is that we use the same heuristically chosen λmin at each non-linear iteration of the ICP
algorithm. The same λmin is also used for constructing custom factor. The better way would be
to determine λmin in a systematic way based on statistics. And, instead of using a fixed λmin at
each non-linear iteration, we could use a dynamically chosen λmin at each non-linear iteration, as
well as for the construction of custom factor. However, λmin is not the main reason. The main
cause of our problem is wrong data association. The performance of ICP algorithms depends on
correct correspondences between points. Currently, we simply use the nearest point heuristics for
the computation of correspondences. But, often times, the correspondences are not correct, and
the best-case scenario when using incorrect correspondences is that the ICP algorithms converge
to local minima. We would like to examine more advanced techniques for determining correct cor-
respondences and for removing correspondences that are likely to be wrong. We hope to make our
degenerate-aware ICP more robust by using dynamically chosen λmin and better correspondences.

As shown by Fig. 4.18, merging all the local occupancy grid maps can take more than a minute
when the number of local occupancy grid maps approaches 300. Although we only need to merge
from scratch occasionally upon loop closure, and merging happens on a separate thread, merging
from scratch is not an ideal solution. The first reason is some mobile platform might not have
the storage space to cache the additional merged VOG-Map. The second reason is that during the
time to merge from scratch, planner would have to plan based an outdated VOG-Map. This means
increased chance for the robot to run into obstacles. One strategy that we can use to avoid keeping
a cached VOG-Map is to bound the number of local occupancy grid maps in the VOG-Map below
some number so that planner can use VOG-Map line query operation to plan efficiently. This can
be done by selectively merging some local occupancy grid maps based on their corresponding base
pose uncertainty. However, the resulting VOG-Map would become just an approximation to the
original VOG-Map. This might not be ideal depending on application and tolerance. If we have to
cache a merged VOG-Map, we probably don’t have to merge from scratch upon loop closure. This
is because even when loop closure is detected, the resulting relative pose constraint most likely
only affects pose nodes in a local region. Therefore, we can speed up the merging time by only
re-merge from scratch only those local occupancy grid maps whose base poses are changed.
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