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Abstract

Grasp planning and motion synthesis for dexterous manipulation tasks are tradi-

tionally done given a pre-existing kinematic model for the robotic hand. In this

paper, we introduce a framework for automatically designing hand topologies best

suited for manipulation tasks given high level objectives as input. Our goal is

to ultimately design a program that is able to automatically design robotic hands

that can perform a set of target tasks by leveraging their physical design to encour-

age robust manipulations. Our framework comprises of a sequence of trajectory

optimizations chained together to translate a sequence of objective poses into an

optimized hand mechanism along with a physically feasible motion plan involving

both the constructed hand and the object. We demonstrate the feasibility of this

approach by synthesizing a series of mechanical hand designs optimized to perform

specified in-hand manipulation tasks of varying difficulty. We also briefly explore

the feasibility of constructing multi-purpose hands from scratch that are meant to

perform multiple primitive tasks in sequence.
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Chapter 1

Introduction and Related Work

1.1 Introduction

Dexterous manipulation has long been a topic of interest in robotic manipulation

due to its association with fine motor skills in humans, and the advantages that

it can confer upon factory robots and general purpose robots. In the immediate

future, dexterous manipulation has the potential to create more capable manip-

ulators in factory settings with the benefit of increasing precision in fine tasks

and improving the efficiency of factory work[1]. Dexterous manipulators are able

to accomplish motions more efficiently and operate in limited workspace environ-

ments more easily [2]. However, achieving these types of manipulations remains a

challenge for various reasons[3].

One line of research in dexterous manipulation focuses on the design of manip-

ulators to mirror the kinematics of the human hand[4] [5]. These hands have

shown impressive capabilities with regards to dexterous manipulation [6] tasks,

however the problem of dexterous manipulation remains unsolved [7]. One reason

for this is that we cannot yet fully replicate the capabilities of the human hands

and choices made to simplify the design may end up limiting capabilities of the

hand. We have experienced this in our own research when the thumb of a dexter-

ous hand does not have sufficient range of motion to perform a manipulation or

the geometry of the hand’s inner surfaces impedes rather than aids performing a

manipulation. Progress in this domain is further burdened by the fact that these

hands are prohibitively costly.

1
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Low DOF hands that are optimized for specific manipulation tasks tend to be more

robust to these difficulties due to the fact that they rely less on high fidelity sensing,

precise state estimation, or sophisticated control strategies[8][9]. By restricting

ourselves to specific types of motions we intend to accomplish for a given hand, we

can build in robustness to the mechanical design, thereby offloading some of the

burden on designing control systems or working with expensive sensors. Simple

hands are easier to build and maintain, easier to control, less expensive, and are

less prone to mechanical failure since they have fewer moving parts.

Rather than trying to approach manipulation from the perspective of human hand

kinematics and dynamics, we focus on accomplishing some critical dexterous hu-

man hand functions and optimizing mechanisms to perform specific in-hand ma-

nipulation tasks. Our goal is to create an optimization pipeline for generating low

cost hands that are well tuned for specific tasks or families of tasks. Furthermore,

we would like our hand designs to arise naturally and require minimal user input

to the design process: this would allow our pipeline to be easy to use for both

novice users and experienced mechanical designers. Furthermore, the automated

design process should be capable of exploiting characteristics of the given motions

to output interesting novel designs that may not be readily obvious.

The possibility of creating useful low-cost hands has been well demonstrated, as in

[10][11][12]. In several cases, optimization has been used to tune some of the design

parameters for these types of hands [9]. We go beyond previous work by construct-

ing our hands from scratch based on a given task definition. Our goal is to allow

even novice users to easily design a variety of hands for their intended use cases

and output designs that can be easily fabricated from inexpensive components.

In this paper, we introduce an optimization pipeline that breaks this mechanism

synthesis problem into a sequence of self contained optimization procedures. Our

system takes high level user specifications such as a sequence of goal poses for a

manipulated object and builds a mechanism specifically designed for the given task

with no additional parameter tuning required on the part of the user. Our system

functions end-to-end to produce workable designs given the user’s initial input,

and can be used in an interactive manner to allow the user to explore the space

of suitable designs for their desired task. In this work, we limit ourselves to the

class of in-hand manipulations that can be wholly described as reorientation of the

object with respect to the palm, however the pipeline we have developed is readily

extensible with regards to making it more capable of performing other classes of
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in-hand manipulations. The extensibility of our optimization program is due to

its modularity: each component is self contained and reliably produces an output

that is useful to the next component, thus we can extend the capabilities of our

system via the inclusion of additional self-contained design and planning modules

to produce a more sophisticated design tool. We discuss several additional modules

that may be included in future work to further expand our design capabilities.

1.2 Related Work

1.2.1 Anthropomorphic Hands vs. Simple Manipulators

A large body of work revolves around classifying human manipulation behav-

iors and replicating them with robotic manipulators inspired by the human hand.

Works such as [13] and [14] attempt to classify the spectrum of human hand ma-

nipulations into a hierarchy of grasps and in-hand manipulations covering various

phenomena such as rolling motions, controlled slipping, grasp repositioning, and

finger gaiting [15] with the intention of mimicking these motions on robotic hands.

These types of hierarchies are useful not only for grouping together observed hu-

man manipulations into classes of manipulations that might be implemented by

similar control strategies, but may also be used to select from a list of specialized

grippers in a factory environment, as in [14]. These types of hierarchies are also

relevant in developing grasp synthesis algorithms [16] [17] for robotic hands.

A common viewpoint with respect to classifying and modelling individual manip-

ulation behaviors is that if the robotics community is able to adequately define a

set of motion primitives, these primitives can be implemented on a single anthro-

pomorphic hand that can chain simple manipulations together [18] to accomplish

sophisticated tasks. Much effort has thus been spent in developing increasingly so-

phisticated anthropomorphic hands to more closely resemble the capabilities of the

human hand. Platforms such as the Utah-MIT hand [19], NASA Robonaut hand

[4], DLR-Hand [20], GIFU III [21], ACT hand [22], and Shadow Dexterous [5],

among others, have become standard models on which manipulation algorithms

and controllers have been implemented and tested. These hands are meant to

be generic manipulators that should be able to carry out virtually any manipula-

tion task given an appropriate control policy. To allow for feedback control, these
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hands are built with a wide array of force sensing capabilities. This means that

these hands can be somewhat difficult to manufacture, often have many moving

parts that can be targets of mechanical failure, and are relatively expensive when

compared to simple, less-capable manipulators like parallel jaw grippers.

For the most part, the designs of the anthropomorphic testbed manipulators for

dexterous manipulation research remain fixed regardless of their intended use.

This is understandable due to the complexity and cost of these manipulators; it

is only practical to design a one-size fits all manipulator. One exception to this is

the work of [23], which briefly delves into the optimization of several continuous

design parameters (e.g. pulley radii at joints, tendon stiffness) with respect to the

Stanford-JPL hand to specialize its physical capabilities for performing things like

manipulative (precision) grasps, power grasps, and optimizing for working volume

of the grasp.

A competing viewpoint [8] is that relatively simple manipulators are better for

individual tasks for which they will be used repetitively: therefore robotic manip-

ulation research should focus on developing as many types of specialized simple

manipulators as necessary. In practice, simple manipulators are more commonly

used since they are more straightforward to control, are less likely to encounter

mechanical failures, and tend to be more robust for the tasks for which they are

designed. This of course comes at the cost of having less capability to accomplish

a wide range of motions, meaning that a robot could possibly require multiple

specialized manipulators in order to be general purpose.

Robots that are specifically designed to meet manipulation task requirements have

been designed for many applications. One notable application is agriculture, in

which manipulators are designed to pick specific fruits like cucumbers [24], egg-

plants [25], kiwis [26], and apples[27]. The advantage of these specialized fruit

pickers is that their design can be optimized through repeated physical simulation

to make them particularly robust for their intended purpose.

With respect to grasping in particular, a well known grasp planner introduced

in [28] applies principle components analysis to a range of grasps synthesized by

human hands and robotic hands alike to create ”eigengrasps”. The authors use

simulated annealing in combination with a simple grasp quality metric, evaluated

via the GraspIt! simulator [29], to optimize for the coefficients of the top several

eigengrasps in order to produce stable grasps for a wide variety of objects. A
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related experiment, described in [30] applies simulated annealing to simplify the

morphology of a given high DOF hand design, and shows that effective DOF’s can

be drastically reduced while only experiencing moderate decline in grasp quality.

These works showed that the majority of human generated grasps can be de-

scribed in a low dimensional space, indicating that simplified manipulators could

potentially rival the capabilities of anthropomorphic hands.

1.2.2 Design Parameter Optimization for Manipulators

Even if the discrete parameters of a manipulator are held fixed (such as number of

joints, number of motors, etc.), continuous design parameters such as component

lengths, tendon stiffness, pulley radii, etc. can still be adjusted to make specialized

manipulators. Various works [31][32] have sought to optimize continuous parame-

ters in parallel [33][34] and serial [35] manipulators to address kinematic concerns

such as reachability constraints, avoidance of Jacobian singularities within the

workspace, limits on individual joint torques, etc. The problem of addressing sev-

eral of these objectives at once for a single manipulator design typically lends itself

to methods in multi-objective optimization [32][36].

An interesting sub-domain of design parameter optimization is that of evolutionary

design, in which evolutionary/genetic algorithms are applied to jointly optimize

the morphology and control policies of robots for specific tasks [37][38]. Due to the

high computational costs associated with evolutionary algorithms, the structures

that we plan to evolve must be carefully designed and made amenable to the

evolution process. This usually means that these methods are limited to rather

simple control policies [39][40], with the main focus being the optimization of the

robot design. An important benefit of evolutionary mechanism design is that

one can build a library of evolved mechanisms to use as seeds for similar related

tasks, meaning that future mechanisms do not necessarily have to be designed

from scratch. More recently, evolutionary optimization has been applied to the

domain of soft robotics [41], which has its own set of unique design challenges.
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1.2.3 Trajectory Optimization for Manipulation

Trajectory optimization (with a given, fixed hand design) has shown remarkable

ability to synthesize complex motions in both robot locomotion and manipula-

tion. Works such as [42] have sought to construct anatomically correct models of

human hands in simulation to simulate hand pose control via simulation of mus-

cle contractions. [43] and [44] develop optimization routines in which an initial

grasp pose is specified with a given hand model along with kinematic goals for an

object, and a numerical optimizer is able to construct physically feasible motion

plans to synthesize the target manipulations. Treating manipulation synthesis as

a trajectory optimization problem allows the user to create complicated motions

from high level goals, and create controllers that are able to withstand unexpected

external forces.

Recent work in trajectory optimization has explored the use of discontinuous con-

tacts in locomotion and manipulation tasks [45][46]. Mordatch et. al. [46] in-

troduced the concept of contact invariance, in which contact between two bodies,

which is normally a binary variable, is treated as a continuous variable ranging

from 0 to 1, in which 0 represents no contact and 1 represents full contact: inter-

mediate values can be seen as an in-between phase in deciding whether or not two

bodies should be in contact. Representing contact as a continuous variable allows

contact variables to be jointly optimized alongside other continuous variables in

the trajectory optimization with a gradient based optimizer. Our work draws in-

spiration from the contact invariant method introduced in [47], which applies the

contact invariant method to the domain of manipulation. In this work, contacts

between the hand and object are treated as point contacts and hand dynamics

are not explicitly accounted for, as motions are assumed to be sufficiently slow to

allow for this approximation.

Other work in trajectory optimization for manipulation involves the usage of mo-

tion capture data in conjunction with simulation methods to capture and synthe-

size human-like motion [48][49][50]. These methods supplement motion capture

data in which humans demonstrate target manipulations and supplement the cap-

tured motions with physics-based simulation or optimization to construct feasible

motions.
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1.2.4 Interactive and User Driven Mechanical Design

Gradient-based optimization techniques have been applied to the problem of mech-

anism synthesis for linkage based characters to design mechanical automata for a

variety of purposes such toy design [51][52], design of walking robots [53], and

for use in real-life linkage mechanisms such as those found in robot manipula-

tors. Works like [54] and [55] strongly emphasize user interaction and create tools

through which a non-expert user can more easily design linkages that satisfy their

design requirements. The result is that users are able to provide high level input

with regards to their needs, while the machine takes care of handling kinematic

constraints and designing the pieces of the mechanism. Our work shares a similar

goal in that we wish to ultimately design a tool in which a user can input high

level objectives for manipulations without having to worry about the particulars

of the design process. Other examples of user driven mechanical design programs

include interactive design of walking robots[56] and [57], in which the user spec-

ifies a desired direction in the space of design parameters to change the current

design, while an optimizer applies the Implicit Function Theorem to re-balance

the mechanical constraints.

1.2.5 Design of Compliant Manipulators and Mechanisms

Thus far, we have mainly discussed attempts on the algorithmic side to optimize

for functional and robust mechanical design. Efforts to produce robust special-

ized manipulators on the mechanical engineering side have primarily focused on

the design of compliant hand mechanisms and their physical fabrication [12][58].

Compliant manipulators[59] have the advantage of offsetting some of the burden

on control and state estimation procedures since they are physically designed to

function under environmental uncertainty.

Compliant mechanisms use elastic components to help the gripper grasp objects

of uncertain size, pose, or geometry[9] without unexpected slippage occurring.

These mechanisms naturally conform to the object they are attempting to grasp,

thus reducing the need for specialized control algorithms and/or the need for high

fidelity sensing. Manufacturing techniques have been developed to fabricate com-

pliant hands with embedded sensors[60], so as not to preclude the use of feedback

in designing control policies. Under-actuated compliant mechanisms [61][10] have
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the further advantage of using fewer motors by coupling elastic joints such they are

controlled by the same motor: this leads to the fabrication of simpler, lower-cost,

and more easily controllable hands that are robust to environmental uncertainty.

The recent work of [62] applies the concept of interactive linkage design for rigid

bodies to the design of compliant mechanisms, using simulation and design opti-

mization to create more complicated but expressive mechanisms.



Chapter 2

Optimization Pipeline

2.1 Introduction

We propose a solution to the problem of optimizing specialized hand topology

designs for individually specified manipulation tasks via a pipeline of simpler op-

timizations meant to build up a motion plan and a corresponding manipulator in

steps. Our pipeline consists of 3 main components: initial motion plan genera-

tion with floating contact points, mechanism synthesis, and ”whole hand” motion

planning in which the motion plan is further adapted to the designed hand. The

initial input to our system consists of an object along with several points placed on

the object representing contact point locations. These ”floating” contact points

are each representative of an individual contact with a fingertip in a future hand

design, although at this step these points are not bound to a particular hand de-

sign. A physically feasible motion plan is then generated in terms of contact forces

and locations to move the object between a sequence of specified goal poses (and

fulfill any other specified task requirements). In the second step of our pipeline,

a mechanism is constructed and optimized to fit the end effector positions corre-

sponding to the floating contacts as well as possible. In the third step, differences

between the initial motion plan and mechanism synthesis are reconciled to generate

a physically realistic manipulation plan.

9
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2.2 Optimization Pipeline Description

In this section we provide a full description of each segment of the optimization

pipeline, including each of the objective terms and their significance. We also

provide a list of hyper-parameter values for each optimization that we have found

to have worked well across our experiments.

2.2.1 Floating Contact Optimization

Let

St = [xO fj rj cj] (2.1)

be the state at time t of the object, with xO denoting the object’s location and

orientation in the world frame (location is defined w.r.t. the center or mass of the

object), and ẋO being the derivative at time t of position and orientation. fj de-

notes the force vector at contact point j for j ∈ {1, 2, ..., Ncontacts} expressed w.r.t.

the world frame, and rj denotes the location of contact point j in the local frame of

the object. cj is the contact invariant term described in [46] that is constrained to

lie in the interval [0,1]. The contact invariant term can be interpreted as a fuzzy

set membership value that dictates whether or not a given contact point is active

at time t. The force term is scaled linearly by cj, so if cj = 0 the contact is inactive

and exerts no force, whereas the full force fj is applied if cj = 1 on the object at

the contact location rj. The presence of the contact invariant term allows fingers

to break contact with the object and re-establish contact later on, thereby turning

a discontinuous constraint into a continuous one.

In the floating contact optimization step, the user specifies a set of initial contacts

on the object prior to optimization, with each contact point representing contact

with a different fingertip in our eventual hand mechanism. At this step in the

optimization, we have no concept of a hand kinematic design: each floating contact

point is simply a disembodied point able to exert force on the object subject to

friction cone constraints.

We wish to find a trajectory S = {S1,S2, ...,SNkeyframes
} such that

S = argmin
S

ΣtΣi wi ∗ Li(t) (2.2)

s.t. cj ∈ [0, 1] for 0 ≤ t ≤ T (2.3)
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where each cost Li pertains to the individual cost terms listed below

When calculating the above summation, we interpolate between the keyframes and

calculate the sum at each time according to a time step tstep. Depending on the

number of steps involved, we set our motions to last between 4 and 12 seconds for

most of our example manipulations (more complex manipulations require longer

time horizons for smooth motions), and we evaluate our objective function every

tstep = .1 seconds by splining between the keyframes for our motion. The number

of keyframes we use for a given motion is dependent upon the number of objective

keyframes specified (which is also a measure of the motion’s complexity): we

typically use 1-3 additional keyframes between each of our objective keyframes.

The object position component of xO and contact positions rj are interpolated via

catmull-rom splines, object orientations are computed via the exponential map[63],

and ẋO are calculated via finite differences. The contact forces fj are linearly

interpolated and the cj are evaluated as piecewise-constant terms.

The individual loss terms Li(t) are defined as follows:

• Physics terms:

Lphysics(t) = LlinMom(t) + LangMom(t) (2.4)

LangMom(t) = ||Σi ci(t) ∗ (ri × fi,local)− (ω × (I localobjectω) + Iω̇)||2 (2.5)

LlinMom(t) =
∑
i

ci(t)fi −mẍ (2.6)

where Iobject is the moment of inertia of the object in its own local frame, ω

is angular velocity, and m is the object mass

LforceReg(t) =
∑
i

||ci(t)fi||2 (2.7)

LfrictionCone(t) =
∑
i

ci ∗ exp(α(||fi,local − n ∗ (fi · ni)|| − µfi · ni)) (2.8)

where n is the local surface normal, µ is the coefficient of friction, and α

is a sharpening factor for the exponent that controls how much we penalize

contact forces that are close to the friction cone bounds but are still valid
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• Task objectives:

Ltask =
1

k

∑
k

||p(k)− pgoal(k)||2 + quatdist(o(k), ogoal(k))2 (2.9)

where k is the set of keyframes for which we define goal poses pk and ok, which

represent desired object positions and orientations respectively. In the above

equation, the function quatdist(q1,q2) refers to quaternion distance formula,

which is essentially the angle required to rotate from one frame of reference

to the other. Task objectives can be specified several ways depending on

the desired behavior we want to see from our system. In our experiments,

we have limited the scope of our objectives to achieving intended goal poses

for our object. Other goals, such as tracing out a desired path with an

end effector point on the manipulated object, can easily be translated into

objective function terms.

• Contact Invariant Cost:

Lci object(t) =
∑
i

||Fi||ci||rproj − ri||2 (2.10)

where rproj is the projection (in local coordinates) of the contact point ri

onto the object

• Additional regularization terms:

LfloatingContactAccel(t) =
∑
i

||((ri(t+ tstep)− 2 ∗ ri(t) + ri(t− tstep))/t2step||2

(2.11)

LaccelerationRegularization(t) =
∑
i

ẍ2 (2.12)

where x is object position

LangularAccelerationRegularization(t) =
∑
i

((ω × (Iworldω) + Iworldω̇)/tstep)
2

(2.13)

Except for the Ltask term above, we normalize each of the terms mentioned above

by the number of keyframes in our motion. Given a reasonable starting grasp

pose for our floating contact points, and a sequence of object goal poses, we au-

tomatically construct keyframes for the object and contacts in which the object’s
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position and orientation are smoothly interpolated between objective poses and

contact positions are held constant with respect to the object’s local frame. This

gives the optimization a good initial seed with respect to the motion that it is

expected to produce while requiring minimal input on behalf of the user. Note

that this initialization will give zero Ltask cost on the first step of the optimization,

prompting the optimizer to focus on solving for the forces and contact positions

needed to satisfy the Lphysics term rather than try to find a similar yet more easily

accomplished motion that readily compromises our task objective. The result is

that we tend to see an optimization procedure in which the Ltask cost remains small

in comparison to other terms, while the Lphysics term dominates the optimization,

eventually leading to a solution with only slight deviation from the original task

objective and an acceptably low physics penalty, indicating that we have found a

feasible motion.

We optimize our objective with a standard L-BFGS solver [64]. The motions

output by a first pass through this optimization typically have contact invariant

values ci that are between 0 and 1, and typically cluster around higher values

(above .7) and low values (.3 and below), indicating the importance of the contact

point in the optimization. After this first pass, we run an additional optimization,

called the ”defuzzification step”, in order to set each ci to either 0 or 1, so that

future steps in our pipeline may treat contact as a given binary value (that is

held fixed from hereon out). To accomplish this defuzzification, threshold our ci

values with a threshold of either .1, .2, or .3, setting every ci value above this

threshold to 1 (indicating active contact) and every value below it to 0 (indicating

that the contact is lifted). Holding these binarized ci values fixed, we re-optimize

our motion using the previous optimization result as an initial seed. We select

our threshold by simply testing each of our candidate thresholds and select the

threshold that yields the best optimization objective.

As an additional objective in various test cases, we jointly optimize our motion plan

with another motion in which we aim to accomplish the same task objective, but

under the presence of specified perturbing forces and/or torques about the object’s

center of mass. This type of additional objective is meant to create more robust

grasping policies for circumstances in which the user believes additional perturbing

forces may be present. These perturbing forces are specified by the user prior to

the optimization and can take place at any time and for any duration during the

motion. To accommodate this objective (i.e. optimize a contact placement scheme
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wphysics 10 wci object 100
wtask 50 wforceReg .01

wfloatingContactAccel .01 wobjectAccelRegularization .1
wobjectAngAccelRegularization 1 wfrictionCone .1
α(frictionsharpen) 5

Table 2.1: Table of common weights for floating contact optimization

that can provide the required forces both with and without the presence of external

perturbations), we jointly optimize for an additional scenario in which contact

forces are allowed to be different in each keyframe than in our original motion

plan, but contact invariant (ci) and contact position terms are shared between

the motion plans. At the cost of adding additional variables to our optimization

(thereby increasing computational costs), the result of this additional objective

is often improved contact placement with regards to stable grasps and higher ci

values (indicating greater use of contacts that might otherwise be largely unused

in the optimization). See the Results section for further details.

2.2.2 Mechanism Synthesis Continuous Optimization

After generating an initial motion plan with the trajectory optimization described

above, we next design a mechanism with fingertips that are roughly able to follow

the generated contact point trajectories. This step involves both the optimization

of discrete structures as well as the optimization of continuous parameters gov-

erning the design of the generated mechanism. Below we describe the continuous

optimization, which is used by the discrete optimization procedure described in

the next section. The optimization below assumes that we have all discrete pa-

rameters (i.e. the kinematic structure) fixed, and we are optimizing for continuous

design variables.

We wish to find a set of morphological parameters M = {L A B}, a set of joint

angle poses Q = {Q1,Q2, ...,QNkeyframes
}, and a set of contact points P on the

constructed fingertips. L, A, and B respectively represent the finger segment

lengths, joint axis orientations, and positioning of fingers on the base/palm of the

hand. We select our contact points as variables in the optimization. Additionally,

we make use of the fact that each of the contact invariant terms ci is known for
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each fingertip i for each keyframe: these terms tell us whether or not a given

contact is active. We restrict our contact points p such that active contact points

must remain fixed with respect to the fingertip’s local coordinates for any string

of keyframes where that contact point is active. If that contact becomes inactive,

we are allowed to change the position of that contact point with respect to the

fingertip for the next string of frames in which the contact is active. We do this in

order to promote the selection of stable contact regions such that our final motion

involves as little slipping with respect to the fingertip as possible.

We optimize the parameters such that:

M = argmin
M,Q,P

ΣkΣi wi ∗ Li(k) (2.14)

for k ∈ {1, 2, ..., Nkeyframes} (2.15)

Where Li represent the cost terms listed below:

• Contact point costs:

LeeTarget(k) =
∑
i

ci ∗ ||pi − ptarget||2 (2.16)

LfingerContactDistSurface(k) =
∑
i

||pproj − pi||2 (2.17)

where ci represents the defuzzed contact invariant term (either 0 or 1) given

by the floating contact optimization above for fingertip i at keyframe k.

LeeTarget is the distance between the contact point pi on fingertip i and the

corresponding end effector point on the given trajectory for that contact.

LfingerContactDistSurface is the distance between the contact point and its pro-

jection onto the surface of the fingertip it is attached to: this is paired with

a relatively high coefficient to force contact points to lie on the surfaces of

the fingertips.

• Collision

For collision penalty calculations, we make use a piecewise cubic inter-

polation spline that smoothly interpolates (to the second order) between
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the functions f(x) = 0 for x < 0 and f(x) = x2 for x > 0 as follows:

g(x) =


0 x ≤ −ε
x3

6ε
+ x2

2
+ εx

2
+ ε2

6
−ε ≤ x ≤ ε

x2 + ε2

3
ε ≤ x

Lcollision(k) =
∑

i,j∈bodies

g(penetration(bodyi, bodyj)) (2.18)

where penetration distances are calculated such that non-penetrating bodies

have negative penetration distance (hence no collision cost) and ε is simply

a small arbitrary constant (we use ε = 10−6)

• Finger length costs:

LfingerLengthRegularization =
∑
i

(li)
2 (2.19)

where i ranges over all the capsules present in the hand and li denotes the

length of the principle axis of capsule i.

LfingerMinLengthCost =
∑
i

g(lmin − li) (2.20)

where g denotes the piecewise cubic spline defined above. We include the

minimum finger length cost since it prevents our optimization from finding

unrealistically small finger length capsules.

• Controllability related costs:

Our synthesized mechanisms are required to fulfill two main objectives, the

first being the ability to track the end effector points generated by the floating

contact policy from the first step in our optimization pipeline, and the second

being the ability to supply the necessary forces to accomplish the target

motion. To accomplish the later, we introduce two new terms to penalize

the component of the force that lies along the null space of our mechanism

and to regularize the torque necessary to provide the motion. In this section

we simply list these terms as LjacNull and Ltorque. See Appendix A for a more

in depth analysis of these terms as well as their derivation.

LjacNull =
∑
i

ci ∗
√∑

k

(f · ek)2 (2.21)
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where the vectors ek consist of an orthonormal basis of the null space of the

manipulator Jacobian for each given finger/contact point pair i, f being the

force required for the finger to provide at the end effector, and ci being the

contact invariant weight (either 0 or 1) for the given contact (so that we

don’t penalize inactive contacts).

Ltorque =
∑
i

‖~α‖2 (2.22)

where is the vector of torque magnitudes that must be supplied by the

mechanism to actively provide the desired force (see Appendix A for the

derivation)

• Additional costs:

LfingerPositions =
∑
i

||projbase(bi)− bi||)2 (2.23)

where i ranges over all the bases of the fingers and we find the closest pro-

jected point onto the base: we assign a rather stiff penalty to this term to

ensure that the fingers are always connected to the surface of the palm. This

term can be applied to a variety of base shapes, as long as a smooth pro-

jection formula exists for the surface representing the base. In this work we

focus on flat palms (flat bases) since they are the most conventional type

of palm to work with and the projection function onto a disc in a plane is

sufficiently smooth for our optimization. More generally, base shapes could

consist of a collection of spheres and/or capsule objects as these individual

primitives have convenient projection formulae.

LfingerAcceleration(k) =
∑
i

(1− ci) ∗ ẍi2 (2.24)

where ẍi is the second derivative (estimated via finite differences) of the

position of the center of mass of fingertip i and ci is the contact invariant

term for that fingertip in frame k. Note that the finger acceleration penalty

only applies to fingertip contacts that are inactive in order to encourage

smooth transit when repositioning a finger on the object.

LjointLimits(k) =
∑

i∈keyframes

∑
a∈joints

g(a(i)− amax) + g(amin − a(i)) (2.25)
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In our implementation, the terms amax and amin are constants set to π/2

and −π/2 respectively to limit the range of motion of each of our joints. We

select these particular values due to the fact that these are the maximum

affordances allowable for the joints in our synthesized mechanisms such finger

segments wont collide with their parent and child segments. This term also

tends to steer our mechanisms away from degenerate configurations.

Additionally, to check for collisions between keyframes, we evaluate collision costs

for intermediate poses in which the object position and orientation are catmull-

rom splined and orientations represented via the exponential map are catmull-rom

splined between frames, and joint angles are linearly interpolated. For our test

motions, we have fixed the position and orientation of the base to remain the same

for a given manipulation to prevent base movement from trivially reorienting the

object into its desired pose with no finger movement beyond finding a suitable

grasp. We that we make use of multiple randomly generated initial conditions for

optimization as well as an annealing schedule in which we run the optimization

multiple times with increasingly large collision penalties. See the ”Results and

Discussion” section below for a thorough treatment of this.

weeTarget varies wcollision varies

wfingerLengthRegularization .1 wfingerContactDistSurface 1000

wfingertipAcceleration .001 wjacNull 1

wtorque .05 wjointLimits 1

wfingerPositions 1 wfingertipMinLength 1

Table 2.2: Table of common weights for mechanism synthesis continuous op-
timization: note that weeTarget and wcollision vary with the annealing schedule

2.2.3 Mechanism Synthesis Discrete Optimization

The process by which we optimize the discrete structure of our hand designs is

rather simple: we treat fingers independently and keep adding additional finger

segments (and joints) to each of our fingers until they satisfy their individual

objectives well enough (as determined by a pre-defined threshold) or until we reach

an upper limit on the number of joints we are willing to allocate per finger. After
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designing individual fingers for each contact point trajectory, we take combinations

of these fingers to produce completed hands.

For a given discrete structure, the continuous parameter optimization tends to

be highly non-convex and thus susceptible to many undesirable local minima. To

combat this, we must use multiple randomly initialized seeds to optimize our hand

designs. This introduces a computational bottleneck, which we address by opti-

mizing for each of our fingers separately and then recombining our top performing

fingers at the end. We are able to do this since we treat each of our finger joints

as being independently controlled, thus we don’t have to worry about coupling

between joints on separate fingers. In each iteration, we optimize each of the fin-

gers whose combined LeeTarget and LjacNull scores from the previous iteration lie

above a predefined threshold (user defined) separately according to the continuous

optimization described above.

After optimizing each finger independently for multiple trials, we enter a recom-

bination step in which we combine the top performing fingers into a complete

hand design. Upon recombination, we must re-optimize our hand due to the fact

that we may incur self-collision among the recombined fingers (since they were

optimized independently, their motions can easily overlap). During each of our

recombination trials, we apply the same annealing schedule to discourage unsta-

ble gradient updates caused by collision penalties. The first recombination trial

always takes the top performing fingers from each set of fingers meant to track the

end effector points. Additional recombination trials randomly select fingers from

each set according to a weighting that is inversely proportional to their combined

LeeTarget and LjacNull scores (so that fingers with lower costs have higher chances

of being selected).

We typically setMAX FINGER TRIALS to 10, MAX RECOMBINATIONS

to 5, andMAX JOINTS to 3. The call to optimizeContinuousParameters(finger)

is a continuous optimization in which we optimize a single finger ignoring the pres-

ence of any other fingers on the hand. The call to optimizeContinuousParame-

ters(hand) then uses the fingers selected by the recombination function as initial

conditions and corrects for any self collision in the robot hand. In generating our

initial seeds for the fingers, we randomly reseed the finger pose, finger segment

lengths, the initial joint angles, joint axes, and the points at which the fingers

connect to the base of the hand as well as the contact points on the fingertips (ex-

pressed in the local coordinate frame of the fingertip). We initialize object poses
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Algorithm 1 Discrete Structure Optimization

1: procedure OptimizeDiscreteStructure
2: fingers = ∅, ∅, ... , ∅
3: allFingersSaturated = False
4: while ¬ allFingersSaturated do
5: for all fingerSet ∈ fingers do
6: if ¬ finger.saturated then
7: addJointToFinger(finger)
8: for i=0; i < MAX FINGER TRIALS; i++ do
9: finger = reseed(finger)

10: for annealingParams ∈ annealingSchedule do
11: optimizeContinuousParameters(finger, annealingParams)
12: end for
13: fingerSet ← finger
14: end for
15: else
16: finger.saturated = True
17: end if
18: end for
19:

20: hands = ∅
21: for trial=0; trial < MAX RECOMBINATIONS; trial++ do
22: recombinedHand = recombineFingers(trial, fingers)
23: for annealingParams ∈ annealingSchedule do
24: optimizeContinuousParameters(recombinedHand,annealingParams)
25: end for
26: hands ← recombinedHand
27: end for
28: bestHand = select hand from hands with minimum hand.objective
29: allFingersSaturated = True
30: for all finger ∈ bestHand.fingers do
31: finger.saturated = finger.numJoints == MAX JOINTS ∨
32: finger.eeTarget + finger.jacNull < SCORE THRESHOLD
33: allFingersSaturated = allFingersSaturated ∧ finger.saturated
34: end for
35: end while
36: end procedure
37:

38: procedure recombineFingers(trial, fingers)
39: hand = ∅
40: for all fingerSet ∈ fingers do
41: finger.score = finger.eeTarget + finger.jacNull
42: if trial == 0 then
43: finger = select finger from fingerSet with minimum finger.score
44: else
45: finger = sample finger from fingerSet ∝ 1/(finger.score)
46: end if
47: hand ← finger
48: end for
49: return hand
50: end procedure
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with the poses calculated from the floating optimization, and propagate the same

random initial pose for the finger across all of the keyframes in this continuous

optimization.

At the end of our recombination step we select the best hand that we have op-

timized so far (in terms of objective score) and determine whether we are done

adding joints to each of our fingers. As mentioned in the above section, we use an

annealing schedule for each of our continuous optimizations in which we gradually

increase the cost for collision to help explore the space of available motions.

Variable Step 1 Step 2 Step 3

weeTarget 50 10 50

wcollision .1 5 100

Table 2.3: Table of weights for the annealing schedule: the complete process
involves 3 steps. The first step is mainly meant to establish a finger capable
of tracking the end effector, while the second step relaxes the importance of
end effector tracking and moderately increases the collision penalty so as not to
induce unstable gradients in the optimization. The third step enforces the final

set of weights we put on collision avoidance and end effector tracking

2.2.4 Whole Hand Optimization

As the final stage in our motion optimization pipeline, we take the generated

motion plan for the object and the constructed hand mechanism and perform a

trajectory optimization similar to the one used in the floating contact optimization

(step 1 of the pipeline). Along with the terms already present in step 1, we intro-

duce several additional terms to the objective function to facilitate the inclusion

of the hand mechanism. These additional optimization terms are meant to create

a valid trajectory optimization procedure in which the hand constructed in the

previous step establishes appropriate contacts with the objects. The result of this

step is a smooth motion plan in which the motion plan is better adapted to the

specified robot hand design.

We also add the joint angles at each keyframe to the list of variables that we intend

to optimize and we do not restrict contact points to be stationary with respect to

the fingertips as we did in the synthesis step (thus allowing us to perform rolling

and slipping motions in this step, similar to the floating contact optimization).
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The result of this step is a physically realistic motion plan involving both the

hand and object. Note that in this optimization (referred to as the ”Whole Hand

Optimization” or step 3), we do not optimize for the morphology of the hand any

further.

We initialize this optimization with the object poses determined by the floating

contact optimization (step 1) and the hand design and poses determined by the

synthesis optimization (step 2). Additionally, we use the contact forces calculated

in step 1, but we reinitialize each contact location to be the closest point on the

object to its assigned fingertip. This provides us with a better seed than the

previously calculated contact positions, which are hand-agnostic.

For the purposes of this work, we assume that each joint in the hand is inde-

pendently controlled at each time step (i.e. linkage dependencies do not exist

between joints), however this limitation can easily be addressed with the inclu-

sion of explicit linkage constraints that reduce degrees of freedom (see the section

Limitations and Future Work). We do not explicitly model slipping or rolling on

the fingertips, though we discourage these via the imposition of soft constraints.

Below we detail the additional terms added to the objective function:

• Additional contact invariant costs:

In addition to the Lci object term introduced in the floating contact optimiza-

tion, we introduce the following terms:

Lci finger(t) =
∑
i

ci||rproj finger − ri||2 (2.26)

where rproj is the projection (in world coordinates) of the contact point ri

(world coordinates) onto the finger

efinger(i, t) = ri,proj finger(t)− ri(t) (2.27)

eobject(i, t) = ri,proj object(t)− ri(t) (2.28)

denote the projection errors of the contact points onto the object and finger.

Slippage costs are defined by:

Lci object slippage(t) =
∑
i

||cifi||2 ∗ ||(ėobject(i, t))||2 (2.29)
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Lci finger slippage(t) =
∑
i

||cifi||2 ∗ ||(ėfinger(i, t))||2 (2.30)

These slippage equations essentially require that the distance slipped with

respect to the finger’s local coordinate frame and the local frame of the object

are equal (if these constraints are satisfied).

• LfrictionConeHand: since our finger may not be perfectly tangent to the object

it makes contact with, we introduce an additional friction cone term that

mirrors the friction cone with respect to the object, but using the outgoing

normal from the fingertip at the contact point instead (similar to equation

??). This prevents us from exerting unrealistic forces with respect to the

fingertip surface.

LfrictionConeHand(t) =
∑
i

ci ∗ exp(α(||fi − n ∗ (fi · ni)|| − µfi · ni)) (2.31)

where n is the surface normal to the fingertip (world frame), µ is the coeffi-

cient of friction, and α is a sharpening factor for the exponent

• Lkinematic: this term enforces joint limit constraints on each of our joints. By

default we set joint limits of −π/2 and π/2 for each joint and penalize joint

angle positions that fall outside this range by the squared error.

• LfingerAcceleration: LfingerAcceleration(k) =
∑

i ẍi
2 taken from the synthesis step

encourages smooth finger transitions

• LCollision: collision penalties are identical to those in the synthesis step

• LjacNull and Ltorque: these are the same terms introduced in the synthesis

step of our optimization pipeline, reproduced below:

LjacNull =
∑
i

ci ∗
√∑

k

(f · ek)2 (2.32)

where the vectors ek consist of an orthonormal basis of the null space of the

manipulator Jacobian for each given finger/contact point pair i

Ltorque =
∑
i

‖~α‖2 (2.33)

where α is the vector of torque magnitudes supplied at the joints
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wci finger 100 wci finger slippage 10
wci object 100 wci object slippage 10

wfingerAcceleration .001 wcollision 100
wtask 50 wphysics 10
wjacNull 1.0 wtorque .05

wfrictionCone .1 wfrictionConeHand .1
α 5 wkinematic 1

Table 2.4: Table of weights for the whole hand optimization: weights for terms
not mentioned above are kept the same as in the floating contact optimization.

• LfrictionConeHand: Ideally our fingertips will be perfectly tangent to the object

they make contact with by the end of the optimization, however there is al-

ways some small error present. Rather than over-constrain our optimization

to enforce that fingertips remain perfectly tangent to the object, we intro-

duce an additional friction cone term that measures how well the applied

force fits into the friction cone with respect to the fingertip normal at the

contact point.

LfrictionConeHand(t) =
∑
i

ci ∗ exp(α(||fi,local−n ∗ (fi ·ni)||−µfi ·ni)) (2.34)

where n is the local surface normal (in the fingertip’s local frame), µ is the

coefficient of friction, and α is a sharpening factor for the exponential cost:

the values for µ and α are kept the same as in the term for friction with

respect to the object (which is also included in this step of the optimization

pipeline)



Chapter 3

Results and Future Work

3.1 Results

We have demonstrated the ability of our pipeline to generate feasible mechanisms

on a variety of in-hand manipulation tasks involving translation and rotation of

the manipulated object with respect to the palm primarily using the motion of

individual fingers. Our set of example motions ranges from simple translations

and rotations to more complex multi-step motions as well as examples of motions

that may be of interest in a factory setting. Videos for the individual example

motions presented in the paper can be found at https://github.com/chazard/

hand-videos.

Our work is primarily concerned with in-hand manipulation tasks. We require

the user to set a preliminary base motion for each of our examples (usually this

means the base is held fixed at a given point and orientation). In appropriate

examples, we allow our optimizer to adjust the motion of the base in the third

(”whole hand”) step of the pipeline.

In our optimization, we allow for one point contact on each fingertip on our hand

and a single point contact to allow the object to interact with the ground (e.g.

when the target object is lying on a table). Whether or not these contacts are

active is determined by the floating contact optimization in the first step of the

pipeline, namely the ”de-fuzzification” step, in which we threshold the contact

invariant terms to binary values for use in later steps. Additionally, our current

implementation requires that the simple objects being manipulated be composed

25
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of capsule and sphere primitives due to the fact that these surfaces lend themselves

to smooth/differentiable projection and collision formulas used by our gradient-

based optimization. We also represent the underlying collision detection primitives

of our fingers as capsules with a fixed radius, and the flat palm of our hand as a

cylinder with a predefined height and radius.

Figure 3.1 demonstrates several examples of simple manipulations that we have

used to evaluate our pipeline. Figures 3.2 and 3.4 demonstrate several motions

that may be of interest in a real-world setting such as a factory assembly line

or on a mobile robot. Figure 3.3 demonstrates two different drawing motions, in

which the regular position-based task objective is replaced with an objective that

attempts to track the shown objective points with a specific end effector point

located on the bottom of the ”pen” object it is holding: the result is a motion

plan and a mechanism that draws lines between the end effector targets on the

ground plane.

We briefly touch upon the topic of designing hands meant for multiple tasks in

Figures 3.6 and 3.7, in which we demonstrate two sequences in which we build up

progressively more complex motions from a set of simple primitive motions. From

these examples we can get a sense of how our optimization procedure handles the

need for additional degrees of freedom, as well as what combinations of motion

primitives necessitate the inclusion of additional DOF’s.

Our optimization program is able to discover quirks in our motions that lead to

non-trivial mechanical designs. For example, in Figure 3.1(d), our optimization

was able to suggest a mechanism in which we use one of our upper fingers to push

out our capsule to bow it out while rotating it 90 degrees perpendicular to our palm

surface, using the other two fingers to pivot the object. Our mechanism originally

bows out the mechanism beyond the 45 degree target, then slides the pushing

finger upward and reduces the force it exerts to achieve the desired position. In

Figure 3.3(a), we replace our usual pose objective with an objective that attempts

to track the shown goal points with the tip of the gripped ”pencil”. In this

motion, our optimization discovered a cyclic manipulation in which the finger on

the bottom left of the pencil automatically resets itself while still maintaining

contact on the object. In the middle motion shown in Figure 3.7(b) we dictate

that our mechanism is to rotate the sphere 180 degrees either way followed by a

translation in and out from the palm. Surprisingly, our optimization found a way

to do this with only two degrees of freedom per finger by discovering that our hand
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can ”lock” in our object by folding the distal joints. Normally one would expect

such a manipulation to require at least 3 DOF’s per finger as in the succeeding

motion, in which we require that the sphere also be able to translate side to side

as well as in and out.

We are often able to create distinctly different mechanisms for the same motion

simply by varying the initial contacts placed on the object or by varying the initial

position of the base. We demonstrate this in Figure 3.4 in which we place our

contacts in the same positions but placed our base differently: the result is that our

floating motion plans are identical, but we get two completely different mechanisms

out of the initial conditions. Similarly, we can get distinct mechanisms from placing

our initial contacts differently. The fact that our pipeline gives different results for

different initial conditions means that the user can select their ideal mechanism

by trying out different initial conditions, as well as gain intuition about how the

base and contact initialization affect the optimal mechanism design in general.
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(a) Horizontal Translation (b) Vertical Rotation

(c) 180 Rotation

(d) Rotate and Bow Out

Figure 3.1:
(a) This is a simple translation motion inward and outward from the palm.

(b) A vertical rotation motion.
(c) 180 degree rotation, where the top finger moves from one side of the capsule
to the other. This is a rare case in which the floating contact optimization

breaks contact in a meaningful way and re-positions it.
(d) This rotation motion moves the object vertically (as in the vertical rotation
motion) and bows out the object using the uppermost finger to push outward.
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(a) Pick Up and Rotate

(b) Vertical Flip

(c) Sphere Rotation

Figure 3.2:
(a) This is a pick and place type of motion in which an object is picked up
from a table surface and then rotated and held parallel to the surface (as if to
set it back down). In this motion we allow the optimizer in the ”whole hand”
step (step 3) to modify the base degrees of freedom (using the initially provided
base motion as a seed), with a slight regularization on acceleration of the hand’s

base.
(b) This is a vertical flipping motion that could be potentially applied to a part

feeding mechanism.
(c) Rotation of a sphere 180 degrees in either direction about an axis perpen-
dicular to the palm. This type of motion could be used for an inspection sort

of task.
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(a) Drawing a Box

(b) Drawing a Triangle

Figure 3.3: In (a) and (b) we demonstrate the construction of mechanisms
meant to draw shapes on the ground plane using a ”pen” object. This pen
object has a designated end effector point on its tip, and we use a different
task objective function (instead of our usual position and orientation objective
for the object) in which we replace the Ltask term with the squared distance

between the pen tip and the intended target points (in red) for the pen tip.
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(a) Overhead Tabletop Rotation

(b) Tabletop Rotation from the Side

Figure 3.4:
(a) The target object is rotated around while remaining level on the tabletop
surface. The purple force drawn in this scenario represents the force supplied

at the ground contact point, which is determined via the optimization.
(b) In this case, we accomplish the same motion, but with the base placed on the
side of the object. The case is part (a) is a more natural base placement, while
this example illustrates that our system is able to adapt to non-conventional

base placements and create a feasible mechanism.
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(a) Pencil Pickup Motion

(b) Pencil Pickup Motion with Excessive Slippage

Figure 3.5: Each of the motions we have discussed thus far has displayed only
minor slippage behavior primarily due to the fact that we regularize out most
of the slippage by the time we have completed the ”whole hand” optimization.
However, in some cases in which slippage occurs at the very tips of the fingers,
even if the actual distance slipped is relatively small, we can encounter some
unrealistic slipping behavior. Examples (a) and (b) show a motion in which a
pencil is picked up off of a table and put in a position as if to write with it. The
design in example (a) shows an acceptable amount of slippage for reference,
whereas example (b), although a similar design, has the contact point on its
upper left finger migrate from the front of the finger to the back of the finger
during the motion, which seems somewhat infeasible. In future work, explicit

modelling of slippage and rolling constraints could resolve this issue.
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(a) Horizontal Movement (Grav-

ity Disabled)

(b) Horizontal Movement (with

Gravity)

(c) Outward Translate

(d) Circular Rotation

(e) Hemispherical Rotation

Figure 3.6: In this set of examples, we build up a 2 finger gripper by specifying
an increasingly complex set of objectives, creating an increasingly complex set
of floating motion plans. The optimization builds more capable versions of these
manipulators as needed to follow the required trajectories and actively supply
the necessary force. We can also view the later hand designs in this sequence
as multi-objective hands, since they can accomplish multiple distinct primitive

motions (which happen to be chained together).
(a) This is a simple horizontal translation that can be achieved by a one link
finger mechanism: we disable gravity since inclusion of gravity would necessi-
tate the use of a second joint on each finger due to the fact that the fingers
are required to actively supply the force applied to the object (as opposed to

passively applying force to counteract gravity through static friction).
(b) Same motion as in (a), but with gravity enabled, causing our optimization

to produce fingers with two links.
(c) This is a simple outward translation motion, and is one of the primitives we

use in building up our larger motion.
(d) Rotation of the capsule in a circle parallel to the ground (no up and down

motion). This combines the motions from (b) and (c).
(e) A hemispherical rotation motion in which we add an up/down component

to the motion in (d).
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(a) Sphere Rotation

(b) Sphere Rotation and Translation

(c) Sphere Rotation with Bi-directional Translation

Figure 3.7: In a vein similar to that of Figure 3.6, here we build up a pro-
gressive sequence of motions based on the sphere rotation introduced in Figure

3.2.
(a) Is a reproduction of the previously introduced sphere rotation example.

(b) This is the sphere rotation motion with an additional translation toward
the palm. Interestingly enough, this motion does not seem to require additional
degrees of freedom, however the translation motion can only be achieved from

the initial configuration of the manipulator.
(c) Finally we add an additional translation to translate the sphere from side

to side, causing our system to add another link to each of our fingers.
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3.2 Discussion

3.2.1 Significance of the Contact Invariant Term

In the floating contact optimization step, it is important to note the significance

of the contact invariant (ci) term. In most cases, contact is never broken and, if

contacts need to be re-positioned to accomplish the motion, the optimizer tends to

prefer a reasonable degree of sliding along the object while still actively providing

force (which does not preclude the successful synthesis of a working mechanism).

When contact is broken, it is due to the fact that the contact in question was under-

utilized for a sequence of timesteps during the motion (i.e. it was not required to

actively supply force for a significant period of time), as indicated by a low ci value

for the contact prior to ”defuzzification”. In other words, contacts are not broken

due to any perceived kinematic constraints on the part of a would be hand (for

the simple reason that the floating contact optimization has no concept of a hand

in the first place). This, along with several other factors is responsible for the

apparent disconnect between the floating contact and mechanism synthesis steps

of our optimization (see Limitations and Future Work for further discussion). In

most of our motions however, the contacts are adequately utilized throughout the

optimization to warrant never breaking contact.

If we desired to force our optimized motion to break contact in some fashion to

purposefully re-position the grasp on the object (in which case we would already

have an idea of a hand design in mind), we could do so with this optimization by

manually setting the contact invariant weights. However, in this paper we refrain

from doing this since our goal is to be able to synthesize hand designs from scratch

with minimal human input. As a result, we observe few motions in which floating

contacts break naturally.

In the absence of perturbing forces, we have observed cases in which contacts have

been ignored altogether (depending on the initial location at which the contact

is placed) in our floating optimization due to the simple fact that these contacts

weren’t strictly necessary to accomplish the motion, as in the sphere translation

part of the example shown in Figure 3.7(b). In this particular example, the contact

on the top of the sphere is rendered inactive in the absence of external perturba-

tions. When we specify a perturbing force (as an additional objective) in the same

direction as the translation part of the motion for the duration of that segment
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(i.e. a force perpendicular to the plane of the palm), we observe that the contact

becomes active. This is due to the fact that this contact is necessary to hedge

against unexpected acceleration (on a physical robot) when the object is moved

toward the palm.

The addition of perturbing forces in the objective typically forces the unused

contacts to function as supports against the perturbing force; in other words,

they still do not provide active force in the unperturbed case but their ci values

increase well above the threshold value, rendering them active and making for a

more robust manipulation.

3.2.2 Annealing Schedule in the Mechanism Synthesis Op-

timization

The mechanism synthesis step is usually very sensitive to initial conditions regard-

ing regarding the initial hand morphology and the initial pose of the hand (which

is propogated across all of the keyframes in the motion). It is essential that this

step be run with multiple random seeds over the initial hand pose, finger segment

lengths, joint axes, and positions on the palm in order to generate fingers that

are able to both track the desired end effector positions and supply the required

forces. We have not found any overt correspondence between initial guesses for

hand topologies and objective motions, thus limiting us to selecting seeds randomly

to overcome the many local minima associated with this optimization.

We have also found it necessary to include an annealing schedule in which we pro-

gressively increase the penalty for collision between the hand and object through

multiple optimization iterations. This schedule is necessary for searching through

the space of synthesized motions because it allows us to begin by exploring infea-

sible motions that involve a fair amount of object collision and progressively clean

up our motions to make them acceptable with regards to object collision.

Use of this annealing schedule allows us to overcome many situations in which the

optimization would normally get stuck, such as the common case in which fingers

are trapped on the wrong side of the object and are unable to change positions

mid-optimization because ”phasing through” the object will incur large penalties

due to prohibitive weights on object collision. Starting off with a weighting scheme

in which collisions carry a minor cost, we are able to establish fingers that track
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the end effector trajectories well. As we progressively increase the relative cost of

collision, we see that the fingers are able to find a compromise between collision

and end effector tracking while avoiding the unstable gradients that would result if

we were to immediately enforce the full collision penalty after only the first step of

the annealing schedule (hence the need for an intermediate annealing step). This

results in a final motion plan with very little collision as well as minimal tracking

and controllability errors.

As another example of how our annealing schedule improves optimization results,

consider the case of a finger that must be lifted off one side of a vertically placed

capsule object to move around to the opposite side of the object to place a con-

tact as in Figure 3.1(c). Depending on the seed given to the optimization, it is

likely that shortening the finger length immediately rather than changing the joint

angles for that finger while in transit will be the fastest way to get to a local min-

imum if we were to use the full collision weighting right off the bat. Although

reasonable, this sort of design decision can lead to a local minimum in which the

finger length can not be extended to reach the intended contact location. Instead,

the annealing schedule would first allow the finger to phase through the object,

then gradually push the finger outside of the object while allowing it to generate

a smooth transition from one target point to another.

3.2.3 Initial Contact Point Seeds in the Floating Optimiza-

tion

It is important to note that the motion plans generated by the contact planner in

the first step of the optimization pipeline are not bound to any given kinematic

design. While this allows for non-biased exploration of mechanisms/motion plans,

it does have the potential to generate motion plans that are infeasible with respect

to any reasonable hand design or yield extremely brittle motion plans. For this

reason, we currently require that the user input a set of reasonable (though not

necessarily optimal) initial contact points on the object for the first frame only:

these contact points are then propagated across all of the keyframes in the op-

timization such that they remain stationary in the local coordinate frame of the

object being manipulated. In most cases, this gives the floating contact optimiza-

tion a good seed from which it can optimize for the forces and contact positions

needed to accomplish the task at hand.
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We have explored the possibility of using many randomly initialized contact points

as seeds to our floating optimization. As it stands, we not been able to devise a

scheme that ensures the construction of a reasonable hand given these contact

seeds. This is due to the fact that even if the randomly seeded floating contact

optimization generates a result that has objective score competitive with that of a

manually initialized seed, the resulting motion can easily be infeasible or awkward

given the position of the palm. Although the additional specification of perturbing

forces seems to aid in finding good contact positions, we have not yet found a

reliable solution to this problem. This limitation arises from the fact that the

floating contact optimization has no concept of what a finger is and simply treats

the palm of the hand as an external object that it needs to avoid collision with.

Since the contact points in the floating optimization are treated as independent

and no spatial constraints exist with respect to the base position, we are limited in

our ability to synthesize more complex multi-step motions without explicit human

guidance with regards to contact placement on the object. Future work should

concern itself with improving this aspect of the floating contact planner: several

suggestions are listed in the following section.

3.3 Limitations and Future Work

3.3.1 Future Additions to the Floating Contact Optimiza-

tion

Our method is able to produce physically valid motion plans and automatically

constructed hand topologies for an array of in-hand manipulation tasks. In this

work, we have limited ourselves to in-hand manipulations whose goal is to reorient

the object with respect to the palm. This class of manipulations does not include

manipulations whose main purpose is to shift the grasp on the object using finger

manipulations. An example of this type of motion would be re-positioning the

fingers on a pencil object to go from a grasp concentrated on the lower portion of

the pencil (as if to write with it) to the upper portion of the pencil as if to turn

it by pivoting along the eraser end of the pencil. In this example, if the goal were

to simply rotate the object, our floating contacting planner would come out with

a very different answer than the more complex behavior of walking the hand’s

fingers up the length of the object to re-position the grasp. This is mainly due
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to the fact that the floating contact optimization has no sense of what a finger is

or how the contact points are related to the base of the hand. For this particular

reason, we currently require that the user supply a reasonable guess at initial

contact placement on the object in the floating optimization.

Ideally, our pipeline should be able to figure out proper contact placement such

that there is no disconnect between the synthesis and floating steps of our opti-

mization, however we leave this to future work. In the future, we may build in the

ability for the contact planner to strategically re-position contacts with the concept

of fingers and finger collisions in mind: this, combined with some additional object

terms to express the underlying purpose of grasp-changing manipulations, could

allow us to automatically replicate motions such as walking fingers up an object

while maintaining control over it or gaiting fingers along the object to reposition

it such that the fingers will not self collide. One possible way to address this issue

is to create a planner that selects the initial contact positions as a seed for the

optimization at each keyframe (rather than simply propagating a user-provided

initial seed throughout all the keyframes as it is done now). This would hopefully

give a rough sketch of the motion we plan to accomplish to the floating contact

optimization, which would then fine tune the contact placement and determine the

necessary forces to create a physically valid motion plan that displays the desired

complex behavior. In this framework, the floating contact optimization would re-

main largely unchanged and would not be directly responsible for directing the

more high-level purpose driven behavior of the manipulation. Successful inclusion

of an additional planning step would likely open up the pipeline to automatically

creating hands capable of much more sophisticated manipulations.

3.3.2 Extension To Multi-objective Hands

Since we are currently restricting our design pipeline to build hands for individ-

ual motions, most of our generated designs involve simple, yet valid constructions

that are capable of carrying out the desired manipulations. Understandably, these

hands are only suited for specific individual manipulation tasks: therefore a main

focus of future work will be to extend this methodology to generating simplified

hands that are able to accomplish a variety of related manipulation tasks. We re-

fer to this extension as creating ”multi-objective hands”, in which the hand being

designed is meant to accomplish two or more distinct motions. In this work, we
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have partially addressed this problem by creating sequences of increasingly com-

plex motions that essentially chain together simpler manipulations and optimizing

hand designs for these motions. In general, a multi-objective hand need not be

created such that the motions it is designed to accomplish trivially chain together

as in the examples presented in this paper. Furthermore, we would seek to solve

the more general problem of designing a procedure that could scale to more than

just two or three simple manipulations for a given hand.

This extension is non-trivial given our current framework because it would require

that we solve the problem of assigning fingertips to each of the contact point

trajectories produced by the floating contact optimization. In the case of designing

a hand for a single task this assignment problem is trivial since we are assigning

each finger to only one trajectory. A naive implementation would simply try every

combination of mapping fingers to trajectories in each floating motion, however

this would quickly lead to a combinatorial explosion for even a small number of

motions. We would thus seek to design a good heuristic for generating priors

over (discrete) distributions for fingertip assignments as well as an efficient search

procedure over these assignments to generate a multi-objective hand.

Phrasing the multi-objective problem as a set of parallel tasks involving the same

hand has the additional benefit of avoiding speed bottlenecks introduced by a

growing number of parameters introduced to the BFGS optimization algorithm

[64]. Speed related issues effectively limit how many manipulations we could rea-

sonably expect to chain together to get a multiobjective hand (as is done in this

work).

3.3.3 Additional Future Improvements

Similar to [46], the final step of our pipeline does not explicitly model slipping

and rolling interactions between the fingertips and the object [65]. This leaves the

potential for it to generate unrealistic slipping/rolling interactions, however this

only becomes problematic in areas of high curvature on the object or fingertip

surfaces. We have also limited ourselves to considering point contacts between the

fingertips and the object, rather than surface contact relationships.

Issues with building robust manipulators can be addressed by adding a simulation

based optimization to the end of our pipeline, in which we take the trajectory



Automated Design of Manipulators for In-Hand Tasks 41

optimization based design and put it in a physics engine to carry out the intended

motion, perhaps with the addition of unexpected perturbing forces or other uncer-

tainties to encourage robust behavior. We could apply a gradient free optimization

to jointly optimize the robot and the control policy given the warm start provided

by our current third step.

Our synthesized hand mechanisms currently assume independent actuation of

joints. We could potentially interleave our ”whole hand” optimization with a

dimensionality reduction step meant to couple joints together via linkage relation-

ships. Using an implementation of an automatic linkage designer [54], we could

iteratively update linkage relationships and re-plan with our mechanism until we

reach a sufficiently low number of DOF’s.

We believe that the pipeline introduced in this paper can serve as the basis for de-

velopment of a scalable and increasingly sophisticated design tool that is intuitive,

user-friendly, and allows users to generate designs to suit their particular needs.



Appendix A

Appendix A: Additional Notes on

the Optimization Terms

A.1 Synthesis Optimization

A.1.1 Controllability Constraints

In this section we provide a more thorough examination of the Jacobian null space

penalty and torque regularization terms as well as a complete derivation of these

terms.

Null Space of Jacobian: First we compute the Jacobian Ji for finger i for i ranging

over all fingers (we may treat these Jacobians seperately since we are assuming that

joints are independently controlled) for the set of contact points currently selected

by our optimization [see MLS chapter 4 for details on Jacobian calculation] [65]

From here we collect an orthonormal basis for the for the null space of J (i.e. a basis

for the set of unit vectors x satisfying Jx = 0) consisting of vectors E = e0, ..., ek,

where there are at most two elements of set E given that every finger must have

at least one joint. Then

LjacNull =
∑
i

ci ∗
√∑

k

(f · ek)2 (A.1)

42
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Torque Regularization: It is not enough to simply penalize the component of the

force lying in the null space of the Jacobian as demonstrated in the figure below,

in which two joint axes that are slightly misaligned can eliminate the null space in

the single finger case shown. The Jacobian null space term must be paired with a

regularization on the active torques that must be applied at each joint to create

the resultant force. This encourages the optimization to produce designs that can

efficiently provide the needed force. We derive this term as follows:

For any given finger we have T = r×F , where T is the torque applied with respect

to a given joint, F is the force at the selected contact point (the end effector), and

r is the lever arm. We can decompose this into

F = T × rperp/‖ ~rperp‖2 + k ∗ rperp (A.2)

where rperp = r− (r · a) ∗ a is the component of r perpendicular to the unit vector

a aligned with the rotation axis of the joint in question. In the above equation, k

is a constant, and k ∗ rperp represents the passive force applied to this joint (i.e.

force that the joint can not actively generate): we set k = 0 since we want our

joint to actively provide all the force. The torque about the joint with unit axis

a can be expressed as T = αi ∗ a where αi is the scalar torque for joint i. From

here, the force at the end effector is equal to the sum of the supplied forces from

each joint, i.e. F =
∑

j∈joints Fj. Expressed in matrix form:

F = X ∗ α (A.3)

where X is the matrix consisting of column vectors T ×rperp/‖ ~rperp‖2 concatenated

for each joint and α is the vector of torque magnitudes actively applied at the

joints. Thus we want to minimize the term

Ltorque = ‖~α‖2 (A.4)

where

~α = (XTX + λ2I)−1XTF (A.5)

is the singularity robust psuedo-inverse solution to equation A.3 above with lambda

being a small constant (we use λ = .001)
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[55] Moritz Bächer, Stelian Coros, and Bernhard Thomaszewski. Linkedit: in-

teractive linkage editing using symbolic kinematics. ACM Transactions on

Graphics (TOG), 34(4):99, 2015.

[56] Vittorio Megaro, Bernhard Thomaszewski, Maurizio Nitti, Otmar Hilliges,

Markus Gross, and Stelian Coros. Interactive design of 3d-printable robotic

creatures. ACM Transactions on Graphics (TOG), 34(6):216, 2015.



Bibliography 50

[57] Sehoon Ha, Stelian Coros, Alexander Alspach, Joohyung Kim, and Katsu

Yamane. Joint optimization of robot design and motion parameters using the

implicit function theorem. In Robotics: Science and Systems, 2017.

[58] Lael U Odhner, Leif P Jentoft, Mark R Claffee, Nicholas Corson, Yaroslav

Tenzer, Raymond R Ma, Martin Buehler, Robert Kohout, Robert D Howe,

and Aaron M Dollar. A compliant, underactuated hand for robust manipu-

lation. The International Journal of Robotics Research, 33(5):736–752, 2014.

[59] Aaron M Dollar and Robert D Howe. Simple, robust autonomous grasp-

ing in unstructured environments. In Robotics and Automation, 2007 IEEE

International Conference on, pages 4693–4700. IEEE, 2007.

[60] Aaron M Dollar and Robert D Howe. The highly adaptive sdm hand: Design

and performance evaluation. The international journal of robotics research,

29(5):585–597, 2010.

[61] Aaron M Dollar and Robert D Howe. Joint coupling design of underactuated

grippers. In ASME 2006 International Design Engineering Technical Con-

ferences and Computers and Information in Engineering Conference, pages

903–911. American Society of Mechanical Engineers, 2006.

[62] Vittorio Megaro, Jonas Zehnder, Moritz Bächer, Stelian Coros, Markus Gross,
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