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Abstract

Microrobots have the potential to impact many areas of medicine such as microsurgery, targeted

drug delivery and minimally invasive sensing. Just like microorganisms themselves, microrobots

developed for these applications need to swim in a low-Reynolds number regime which warrants

locomotive strategies that differ from their macroscopic counterparts. To this end, Purcell’s

three-link planar swimmer has served as an iconic model of a simple mechanism that can

navigate this regime by leveraging internal actuation using analytically computed strokes [39].

We consider two different versions of this swimmer in this thesis. In the first class, we develop

a novel three-dimensional counterpart to this swimmer and describe how enabling yaw-pitch

movements at the two actuated joints as opposed to the conventional yaw-yaw movements allow

it to navigate a three-dimensional environment. Using analytical tools from geometric mechanics,

we design gaits that enable this swimmer to reorient itself and swim along canonical directions

in the inertial frame. We validate these results on a hardware prototype and reproduce the

simulated trajectories on the robot executing these gaits.

While the 3D swimmer is actuated internally, we next consider a second class of swimmers

that are fabricated with elastomagnetic filaments and locomote in response to external magnetic

fields. We demonstrate how the special case of a two link elastomagnetic swimmer is amenable

for control synthesis using similar geometric arguments that apply to internally actuated

swimmers. Additionally, we compute optimum internal magnetization distributions for a three-

link swimmer that maximize its displacement per cycle and develop a principled approach

to encode these distributions in millimeter-scale elastomagnetic filaments. We verify this

procedure experimentally and finally demonstrate translation and turn-in-place locomotion in

these swimmers.
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Chapter 1

Introduction

1.1 Overview

The term locomotion refers to the ability of a living creature or an autonomous robot to move
from place to place. Biological organisms commonly employ periodic changes in their internal
shape to achieve locomotion. The rectification of these periodic inputs coupled with interaction
with the surrounding environment generates a net change in the position of the animal [28].
Such motions are observed at all scales in nature, for example, snakes propagate traveling waves
along their length and exploit frictional contact with ground to advance forward [25]. Likewise,
paramoecia employ periodic beating of hair-like cilia along their cell membrane to move forward
[43]. These principles have also been exploited in mechanical systems to design gaits i.e. a
sequence of periodic joint angle trajectories in the mechanism. For example, in [35], Murray and
Sastry demonstrated the application of sinusoids to design velocity inputs for planning motions
of car-like robots. The design of such gaits that perform a desired locomotory objective requires
a physics-based model of the robot’s interaction with its environment and tools from nonlinear
control that harness this model and synthesize correct-by-construction motion plans.

Perhaps the earliest work employing these tools to locomotion of animals was that of Shapere
and Wilczek who studied the movement of paramoecia in very low-Reynolds (Re) number regimes
using ideas from gauge theory [28, 43]. While there has been significant work on understanding
the motions of biological mircroorganisms in these regimes, more recently micro-swimming [31]
has become a popular subject mainly because the progress in micro-manufacturing has made
the fabrication of artificial microswimmers feasible [9, 36]. Such robotic microswimmers can
have revolutionary impact for biomedical applications such as performing targeted drug delivery,
microsurgery and minimally invasive diagnosis.

While mechanically designing systems at these small scales is challenging, there are also
unanswered questions about how to control their movements, in particular, how to plan motions
for robots that swim at low-Re numbers. In this thesis, we explore the problem of synthesizing
motion primitives for two classes of artificial swimmers in this regime. The first swimmer is an
internally actuated mechanism capable of swimming in a 3D environment with only two degrees
of freedom. The ability to directly control both internal degrees of freedom (yaw and pitch)
allows us to leverage existing geometric gait synthesis tools and extend their application to
this novel prototype. Using tools from nonlinear control, we design translational and rotational
primitives for this swimmer that allow it to turn in place and translate along its principal axes
in the world. We implement these motion primitives on a robotic prototype and verify how
translation in a 3D regime is possible using only two active inputs.

In the second class, we consider an externally actuated swimmer in which we relinquish
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control over internal degrees of freedom. We focus on a millimeter scale elastomagnetic swimmer
which undergoes deformations induced by time varying external magnetic fields that result in
locomotion. This mechanism of swimming has been thoroughly studied in the literature as it
offers an elegant and non-invasive method to drive devices without a wired connection, making
it most suitable for microscopic locomotion. We investigate discrete planar swimmers consisting
of uniformly magnetized links connected with passive revolute joints and springs. Using these
models, we demonstrate how previous geometric arguments can be applied to the special case of
a two link spring-less swimmer and can motivate previously proposed control laws. Secondly,
building on [19], we use standard perturbation theoretic methods to analytically compute the
internal magnetization distributions for a three link swimmer that maximize displacement per
cycle of the actuating field. We also describe a principled approach to encode these distributions
in millimeter scale elastomagnetic filaments which are used to fabricate swimmers. Finally, we
verify results from numerical simulations by demonstrating locomotion in these swimmers in
experiments using Helmholtz coils that generate time-varying magnetic fields.

1.2 Prior Work

In this work, we focus on artificial self-propelled swimmers whose mechanical designs and control,
lend them the ability to navigate the low-Re regime. We provide a brief summary of related
work in this area to give context. For the sake of convenience, we have divided the prior work
in two sections. First we describe existing geometric and numerical tools for computing gaits
for such swimmers and similar robots. We then describe existing magnetic microswimmers in
the literature, their classification and modes of propulsion.

1.2.1 Geometric motion planning and optimal gait synthesis

In the low-Re regime, viscous forces dominate swimming and inertial effects are effectively
negligible. Consequently, any forward momentum gained due to internal body deformations
immediately ceases to exist when the body stops changing its shape, i.e. continuous movement
requires continuous work [4]. Since Purcell’s initial work on the three-link planar swimmer [39],
much of the subsequent research has focused on planning motions and computing optimal gaits
for the planar swimmer [44]. Hatton et. al. [23] demonstrate that using visual tools derived
from geometric analysis, it is possible to synthesize gaits (cyclic changes in the internal shape)
for the planar swimmer that make it move along a desired direction in the world. In addition
to using numerical optimization for computing optimal gaits for these planar systems as in [6],
authors in [45] use the minimum principle to derive efficient gaits. Furthermore, authors in [20]
synthesize a novel suite of gaits for the classic three link swimmer by exploiting the symmetries
in its velocities without leveraging curvature function techniques. Additionally, authors in [17]
and [1] have developed analytical techniques to extend gait design to articulate systems with
more than three links such as a snake like robot locomoting in granular media. While most of
these systems have considered discrete models, authors in [10] consider a planar swimmer with
a flexible tail and a load, and exploit curvature functions like tools (motility maps) to prescribe
joint angles and joint angular velocities for actuation of these flagellar swimmers.

1.2.2 Magnetic microswimmers

In contrast to these works which mostly address motion planning for internally actuated systems,
there has also been significant work on using external actuation to generate propulsion, specifically
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using time varying magnetic fields. Typically in such systems, external magnetic fields create
a torque on uniformly magnetized swimmers which respond to this field by undergoing shape
deformations. [36] provides a comprehensive review on the state of the art in microswimmers.

There are three different types of magnetic microswimmers that currently exist. These
include a swimmer made with a rigid helical tail which propels itself with a corkscrew like
motion under the action of a rotating magnetic field. These swimmers rotate about their
helical axis and translate in a direction perpendicular to the plane of rotation [16, 38, 42]. The
second category consists of swimmers with flexible tails connected to a head as in [29, 26, 15].
Mathematical models for this type of swimmer have been developed in [14]. Under the action
of an oscillating magnetic field, the magnetic head forces the flexible tail to wiggle in a non-
reciprocal manner ultimately resulting in the net propulsion of the swimmer. The third category
which is the focus of this thesis, consists of articulate swimmers made with discrete links attached
to each other which undergo periodic planar undulations under the influence of crossed uniform
and oscillating magnetic fields. We consider this swimmer because the elasticity provided by
articulation inherently confers safety and locomotive efficiency to these swimmers at this scale.
The mechanism of attaching links to each other is a design parameter. For example, authors
in [13, 30] have considered attachment of strepatividin coated paramagnetic beads which bind
to each other using elastic biotinilated DNA linkers. The corresponding elastic deformation
models for these swimmers have been considered in [41] where the swimmer is modeled as
an elastic beam. Similar swimmers and their dynamic models have been investigated using
ferromagnetic filaments in [7, 5]. While these models are very accurate, they are not amenable
to controller synthesis since they typically constitute a high-dimensional system state due to the
continuum deformation of the flexible filaments. On the other end, authors in [27] developed
a swimmer consisting of links connected to each other with flexible hinges. These swimmers
can be modeled using a lumped parameter model which is suitable for motion planning and
parametric optimization as explored in [18]. Moreover, the swimmer proposed in [19] consists of
a non-magnetic spherical cargo connected to a rigid magnetic tail with a torsional spring. This
model lies at the intersection of the swimmers in categories two and three above.

While all these swimmers are driven by magnetic torques induced by spatially uniform
magnetic fields, it is also possible to induce displacement using spatially non-uniform magnetic
fields which generate forces. Technically, force-induced locomotion cannot be termed swimming
since the robot does not interact with the fluid to advance forward. Nevertheless, such gradient
based actuation has been analytically proven to be less efficient in terms maximum achievable
velocity compared to torque driven actuation for the specific case of a spherical head magnetic
swimmer with a flexible tail. Authors in [38, 36] demonstrate analytically how controlling with
field gradients is difficult as the force gradients decay faster with distance away from coils than
field strengths.

1.3 Outline

The outline of this thesis is as follows:
In Chapter 2, we give a brief overview of low-Re locomotion and describe the derivation

of the local connection for a planar three link swimmer. We dwell on how these equations of
motion can be derived using velocities expressed in the world frame and velocities expressed in
the body frame. This distinction is necessary because the mathematical model of the magnetic
swimmer requires that the equations of motion be formulated with respect to world frame. We
also give a brief overview of basic concepts from magnetism.

In Chapter 3, we extend the model of the planar swimmer to the internally actuated 3D
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swimmer based on equations derived in Chapter 2. We numerically evaluate the controllability
of this system and compute motion primitives using curvature functions. We describe the design
of the 3D swimming robot and validate the motion primitives on this robot.

In Chapter 4, we investigate an externally actuated planar magnetic swimmer formed using
uniformly magnetized links. We perform numerical simulations for a two link swimmer and
a three link swimmer. For the three link swimmer, we use tools from perturbation theory to
compute the optimum magnetization distribution for the links that maximizes displacement per
cycle. We describe an approach to encode these constants in millimeter scale swimmers and
validate results from numerical simulations experimentally.

In Chapter 5, we conclude this thesis and present directions for future work.
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Chapter 2

Background

Locomotion at low- Reynolds regime (low-Re) is a very vast topic (See [32] for a detailed
discussion). To keep the discussion brief, we focus here on modeling the dynamics of slender
rigid bodies in low Re regimes which is a common theme in the coming chapters. We describe
the forces and moments on a planar three link swimmer and derive the equations of motion using
world frame velocities and body frame velocities. We briefly describe the effects of magnetic
fields in terms of induced torques and forces.

2.1 Hydrodynamic forces and torques

Re is a characteristic non-dimensional parameter that is engendered by making Navier-Stokes’
equations dimensionless. It is defined as:

Re =
ρuL

µ
=
uL

ν
=
finertial
fviscous

(2.1)

It quantifies the relative magnitude of inertial forces to viscous forces on a body. It depends
on the characteristic length of the body (L), velocity of the body (u), the density (ρ) of the
fluid and the viscosity of the fluid (µ). Sometimes the parameter ν = µ

ρ
is called the kinematic

viscosity. The motion in this regime is highly dampened by viscous forces and inertial effects
are practically negligible. We now state the basic assumptions which will ultimately help us in
deriving the equations of motion.

1. Each link in the swimmer is a slender rod, cylindrical in shape and neutrally buoyant. This
assumption simplifies the analytical expressions for the viscous drag force and moment on
each individual link.

2. The size of the swimmer is in the centimeter-scale range and the swimmer is completely
submerged inside an enclosure filled with a highly viscous liquid. This is approximately
hydrodynamically equivalent to a micro-scale swimmer submerged in a less viscous liquid
like water. We make this assumption because the resulting Re at this size to viscosity
ratio falls in the low-Re number regime.

3. The enclosure containing the fluid does not have any walls. The absence of walls decouples
the motion of the swimmer from boundary effects.

4. Likewise, in the case of a three-link swimmer, the motion of one link does not effect the
motion of another link i.e., the links are hydrodynamically isolated from one another.
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With these assumptions, we can now analyze the constraints imposed due to interaction with
the surrounding medium. Swimming in the low-Re number regime imposes what are known as
nonholonomic constraints on the swimmer’s velocity. These constraints approximately indicate
the directions in which the swimmer is forbidden to move. These are as follows:

1. The resistive force theory (RFT) states that the drag force acting on a slender body in a
viscous medium is directly proportional to its velocity. The faster the swimmer tries to
change its internal shape, the greater is the amount of damping.

2. Secondly, the net drag force on an isolated system interacting with a viscous liquid vanishes,
i.e. the swimmer is always in a state of quasistatic equilibrium.

3. Finally, viscous forces (and moments) in the lateral directions are twice as large as those
in the longitudinal direction, i.e., it is twice as difficult to move along any of the lateral
axes as it is to move along the longitudinal axis.

2.1.1 Equations of motion (body frame):

Consider a three link swimmer as shown in Figure. 2.1. The body frame of link i is attached
rigidly to the center of the link as shown in the figure and is denoted as {xib, yib} for i ∈ {1, 2, 3}.
The body velocity of link i is denoted by ξi, where ξi= (ξx, ξy, ξθx)i and i ∈ {1, 2, 3} corresponding
to the three links. The body velocity represents the velocity of a body fixed frame that is
measured relative to the inertial frame but expressed in the body frame. The drag force relative
to the body frame F bi (superscript b is for body-frame) and drag torque relative to the body
frame τ bi on link i are collectively denoted by a wrench

Wi =
[
F bi τ bi

]
∈ T ∗gG (2.2)

which according to RFT is defined as

Wi = Kξi, (2.3)

where

K =

kTL 0 0
0 2kTL 0
0 0 2

3
kTL

3

 . (2.4)

Here kT is the viscous drag coefficient that depends on the length and radii of the links and
viscosity of the medium. It is assumed that all three links are identical in geometry so that the
drag matrix K is identical for all three of them. We are interested in tracking the position and
orientation of the reference link (link 2) of the swimmer. It is therefore desirable to express the
body velocities of links 1 and 3 as a function of the body velocity of the reference link. We use
standard relations from [34]

ξ1 =

 cosα1 sinα1 −L
2

sinα1

− sinα1 cosα1
L
2
(1 + cosα1)

0 0 1


︸ ︷︷ ︸

M1

ξ2 +

 0
L
2

−1


︸ ︷︷ ︸

J1

α̇1 (2.5)

= M1ξ2 + J1α̇1 (2.6)

7



Figure 2.1: Top view of the three link planar swimmer

ξ3 =

 cosα2 sinα2
L
2

sinα2

− sinα2 cosα2
L
2
(1 + cosα1)

0 0 1


︸ ︷︷ ︸

M2

ξ2 +

0
L
2

1


︸︷︷︸
J2

α̇2 (2.7)

= M2ξ2 + J2α̇2 (2.8)

Likewise, we can also express the forces expressed in the body frames of links 1 and 3 (Eq. 2.3)
respectively relative to the body frame of link 2. This is necessary because we eventually want
to write the net wrench on the system which requires that all individual forces be expressed in
the same frame.

W̃1 = MT
1 W1 = MT

1 Kξ1 (2.9)

W̃3 = MT
2 W3 = MT

2 Kξ3 (2.10)

Finally from the quasistatic equilibrium constraint, we get:

W̃1 +W2 + W̃3 = 0

=⇒MT
1 Kξ1 +Kξ2 +MT

2 Kξ3 = 0

=⇒MT
1 K(M1ξ2 + J1α̇1) +Kξ2 +MT

2 K(M2ξ2 + J2α̇2) = 0

=⇒ (MT
1 KM1 +K +MT

2 KM2)ξ2 +
[
MT

1 KJ1 MT
2 KJ2

]
α̇ = 0

=⇒ ωξξ2 + ωαα̇ = 0

=⇒ ξ2 = −ω−1ξ ωαα̇

=⇒ ξ2 = −A(α)α̇ (2.11)

where A(α) ∈ R3×2 is known as the local form of connection, which maps shape velocities to
body velocities i.e. A(α) : Tα1S

1 × Tα2S
1 −→ se(2). Eq. 2.11 is known as the Kinematic

Reconstruction Equation which relates changes in the internal shape of the planar swimmer to
its body velocity. We will now derive this same equation by analyzing the forces on the swimmer
measured directly relative to the world frame.
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(a) Top view of a single link for world calculations (b) Top view of the three-link planar swimmer

Figure 2.2: Hydrodynamic drag forces and torques on a single link and the three-link swimmer

2.1.2 Equations of motion (world frame)

We now analyze forces and moments on each individual link relative to the world frame. Refer
to Figure. 2.2a. Let v0 = ṗ0 denote the velocity of the point p0 expressed relative to the world
frame W. From the assumptions of resistive force theory, we know that the drag force per unit
length on this slender link depends linearly on its velocity. We will use these assumptions
to compute the net hydrodynamic drag force and the associated torque as a function of the
swimmer’s velocity.

Drag Force

Let s ∈ [0, 1] denote the arc length parameter that sweeps along the length of the link. Using
this representation, any point along the longitudinal axis of the link can be represented using

p(s) = p0 + sLt̂ (2.12)

where t̂ is the unit vector along the tangent/longitudinal axis of the link and is given by
t̂ = (cos θ, sin θ). Similarly, n̂ is the unit vector along the normal/lateral axis of the link and
is given by n̂ = (− sin θ, cos θ). The velocity of each point on the link can be computed by
differentiating Eq. 2.12 giving Eq. 2.13

ṗ(s) = ṗ0 + sLn̂θ̇ (2.13)

because dt̂
dt

= n̂θ̇. The hydrodynamic force per unit length is given by

fp.u.l(s) = −ct〈ṗ(s), t̂〉t̂− cn〈ṗ(s), n̂〉n̂ (2.14)

where cn, ct are the lateral and longitudinal drag coefficients respectively. They are related by
cn = 2ct = 2kT . By substituting Eq. 2.13 in Eq. 2.14, we get

fp.u.l(s) = −ct〈ṗ0 + sLn̂θ̇, t̂〉t̂− cn〈ṗ0 + sLn̂θ̇, n̂〉n̂ (2.15)

= −ct〈ṗ0, t̂〉t̂− cn〈ṗ0, n̂〉n̂− cnsLθ̇n̂ (2.16)

9



The total force on a patch between points parameterized by L(s+ ds) and Ls is given by

Fpatch = fp.u.l(s)

(
L(s+ ds)− Ls

)
(2.17)

The net hydrodynamic force is obtained by integrating Eq. 2.17 over the length of the link

Fh =

∫ 1

0

Fpatch

= L

∫ 1

0

fp.u.l(s)ds

= −ctL〈ṗ0, t̂〉t̂− cnL〈ṗ0, n̂〉n̂−
L2

2
θ̇n̂ (2.18)

Drag Torque

We will now compute the net drag torque on the link about an arbitrary point x0. This torque
arises due to the resistance of the fluid to the link’s rotation. Using the expression for the drag
force per unit length from Eq. 2.14, we compute the torque per unit length below

τx0
p.u.l(s) = (p(s)− x0)× fp.u.l(s)

= (p0 + sLt̂− x0)× fp.u.l(s)
= (p0 − x0)× fp.u.l(s) + sLt̂× fp.u.l(s) (2.19)

The net torque is thus given by integrating this torque per unit length over a patch of length
Lds

τx0
h =

∫ 1

0

τx0
p.u.l(s)Lds

=

∫ 1

0

(
(p0 − x0)× fp.u.l(s) + sLt̂× fp.u.l(s)

)
Lds

= L

∫ 1

0

(
(p0 − x0)× fp.u.l(s)

)
ds+ L2

∫ 1

0

(
st̂× fp.u.l(s)

)
ds

=

(
(p0 − x0)× L

∫ 1

0

fp.u.l(s)ds︸ ︷︷ ︸
Fh

)
− cnL2

(
〈ṗ0, n̂〉

∫ 1

0

sds+ Lθ̇

∫ 1

0

s2ds

)
êz

=

(
(p0 − x0)× Fh

)
− cn

(
L2

2
〈ṗ0, n̂〉+

L3

3
θ̇

)
êz (2.20)

Now, refer to Figure 2.2b, using these expressions for the force and torque on a single link, we
can write the quasi-static equilibrium condition for the three link swimmer as:

F1,h + F2,h + F3,h = 0

êz · (τ p11,h + τ p12,h + τ p13,h) = 0 (2.21)
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where êz = (0, 0, 1)T . In order to reference all the hydrodynamic forces and torques relative to
o2 (see Figure 2.2b), we use

ṗ2 = ȯ2 −
L

2
n̂2θ̇

ṗ1 = ṗ2 − Ln̂1θ̇1 = ṗ2 − Ln̂1(θ̇ − α̇1) = ȯ2 −
L

2
n̂2θ̇ − Ln̂1(θ̇ − α̇1)

ṗ3 = ṗ2 + Ln̂2θ̇ = ȯ2 −
L

2
n̂2θ̇ + Ln̂2θ̇ (2.22)

Finally substituting ȯ2 = R−θξ in Eq. 2.22 and substituting Eqs. 2.22, 2.18 and 2.20 in Eq.
2.21 gives the desired result.

2.2 Magnetic forces and torques

The basic principle of actuation using magnetic fields is to apply either a magnetic force or a
magnetic torque. Magnetic forces arise due to spatial gradients of the magnetic field whereas
magnetic torques arise due to misalignment of the internal moments of the magnetic links
relative to the external magnetic field. Figure 2.3 shows the top view of a slender magnetic link.
Point p0 denotes the origin of the body frame attached rigidly to the tip of the link with respect
to O, the origin of the (Xw, Yw) plane. The longitudinal axis of the body frame is denoted by t̂
and the lateral axis of the body frame is denoted by n̂. In the given representation, it is easy
to see that t̂ = (cos θ, sin θ) and n̂ = (− sin θ, cos θ). The entire plane is under the influence
of a magnetic field B(x, t) = (Bx(x, t), By(x, t)) where Bx denotes the horizontal (along Xw)
component of the spatial magnetic field B(x, t) and likewise By denotes the vertical (along Yw)
component of the spatial magnetic field. In the current form, the magnetic field vector at a
given point x depends on the position of the point with respect to Ow as well as on time t.

Forces due to spatial gradients:

Given a spatial magnetic field denoted as B(x, t) = (Bx(x, t), By(x, t)), the jacobian of this
field is defined as:

∇B(x, t) =

(
∂Bx(x,t)

∂x
∂Bx(x,t)

∂y
∂By(x,t)

∂x

∂By(x,t)

∂y

)
(2.23)

The internal magnetization of a link is expressed relative to the body frame that is rigidly
attached to the link as shown in Figure 2.3. It has components along the longitudinal axis as
well as along the lateral axis of the link given by mth and mnh respectively. Relative to the
local body frame, the magnetization of the link can be written as M b = (mth,mnh) where the
first component is along t̂ and the second component is along n̂. On the other hand, relative to
the world frame W, the magnetization of the link can be written as:

Mw = (mtt̂+mnn̂)h

= (mt cos θ −mn sin θ,mt sin θ +mn cos θ)h (2.24)

where mt ∈ [−1, 1] and mn ∈ [−1, 1] are dimensionless numbers. h > 0 is the actual internal
magnetization with units Am−1. The splitting of individual components into a dimensionless
number and a base value h is done to ensure that the behavior of the swimmer as a function of
external magnetic fields and internal magnetizations (Section 4.3) can be described qualitatively
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Figure 2.3: Illustration of a single magnetic link in a low-Re regime. mt and mn denote the
tangential and normal components of internal magnetization

using dimensionless parameters. Additionally, we assume that the link is made up of a ferro-
magnetic material, which makes h independent of the external actuating field. This is not true
in the case of a paramagnetic material. From this point onwards, we will always assume that
magnetizations are expressed relative to the world frame while still respecting that they are
intrinsically defined with respect to the body frame. Given a magnetic link with volume V and
internal magnetization M (=Mw), one can compute the total magnetic force on the link using

Fmag = VM · ∇B(x, t) (2.25)

In the case where the magnetic field is spatially uniform i.e. ∇B(x, t) = 0, there is no magnetic
force on the link. Such a field is generated by a pair of equal current carrying coils facing each
other in the Helmholtz configuration [40].

Torques due to misalignment:

The potential energy stored in a link due to misalignment of its internal magnetization relative
to the external magnetic field is defined as

U = −VM ·B(x, t) (2.26)

This stored potential energy is analogous to the energy stored in a deformed linear spring. Just
like the spring, the natural tendency of an unhinged magnet is to align itself with the external
magnetic field until the stored energy is minimized. This motion is facilitated by a torque
exerted by the external magnetic field on the link. This restoring torque is computed using

τmag = VM ×B(x, t) (2.27)

Note here that if the magnetic field is spatially uniform i.e. it varies only in time but not in
space, then the magnetic torque will not vanish i.e. τmag = VM ×B(t) 6= 0 even though the
force does. In the rest of the chapter, we assume that the swimmer is placed in a region of
spatially uniform magnetic field. Since the field and the motion of the swimmer are restricted to
the {Xw, Yw} plane, the magnetic torque acts about the Zw axis only and can simply be written
as a scalar given by τmag = V h

(
By(t)(mt cos θ −mn sin θ)−Bx(t)(mt sin θ +mn cos θ)

)
using

Eq. 2.24 in Eq. 2.27.
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2.3 Summary

In this chapter, we derived expressions for the hydrodynamic drag force and hydrodynamic
drag torque on slender rigid bodies using calculations in the body frame and the world frame.
This distinction will be useful when deriving the equations of motion for the 3D swimmer and
the magnetic swimmer. In particular, since the 3D swimmer is internally actuated, local body
frame calculations are more revealing and directly lead to the formulation of the kinematic
reconstruction equation. Hence, the derivation for the equations of motion for 3D swimmer in
the Chapter 3 will be more akin to the derivation for the planar swimmer in this chapter. On
the other hand, since the moments on the magnetic swimmer depend on its orientation relative
to the world, it becomes necessary to write the equations relative to the world frame. This will
be described in Chapter 4.
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Chapter 3

Internally actuated 3D Swimmer

3.1 Introduction

As mentioned in the introduction, we consider a 3D swimmer which is closely related to the
classic planar swimmer. In our design, we allow for out-of-plane motions in the swimmer using
yaw and pitch control of two non-coplanar revolute joints in contrast to only yaw-yaw type
motions of the planar swimmer. We test the hypothesis of being able to reach any position
and assume any orientation in 3D space using the test of small time local controllability, the
Chow-Rashevsky theorem [34]. For this test, we study the kinematics of swimming in this
regime, derive a mathematical model and investigate how direct command over the internal
degrees of freedom can be used to control the position and orientation of the 3D swimmer in
the world, eventually paving the way for motion planning in a 3D regime.

The rest of the chapter is organized as follows: In Section 3.2, we describe the mathematical
model of the 3D swimmer and derive the equations of motion based on resistive force theory
[11]. In Section 3.3, we demonstrate empirically that the kinematic model of the swimmer is
small time locally controllable, i.e. we can synthesize control inputs that can steer the swimmer
between any two arbitrary configurations in the world. In Section 3.4, we derive gaits for steering
the swimmer along a desired direction in the world frame using connection curvature functions.
In Section 3.5, we show experimental results on a robotic swimmer and finally in Section 3.6,
we present conclusions and directions for future work.

3.2 Mathematical Model

3.2.1 Configuration Space

The 3D swimmer consists of three links connected by two revolute joints, where the axes of
rotation of the two joints are orthogonal. As shown in Fig. 3.1, joint one admits motion in the
body yaw direction which is parameterized by α1 and joint two admits motion in the body pitch
direction which is parametrized by α2. Each of the three links has length L and is considered to
be slender, as required by resistive force theory [11].

The configuration space Q of any locomoting system such as the 3D swimmer, can generally
be split into a position space G and an internal shape space M , i.e., Q = G ×M [37]. Any
element g ∈ G, where in our case G = SE(3), represents the position and orientation of the body
frame of the swimmer with respect to the world frame. The internal shape space M = S1 × S1

is characterized by angles α1 and α2. With this natural splitting, we now derive a kinematic
expression that relates changes in the internal shape of the swimmer to its motion in the inertial
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Figure 3.1: 3D Swimmer Schematic

frame. In the following sections, we assume that the swimmer has a frame which is rigidly
attached to the center of the middle link as shown in Fig. 3.1. We will be interested in analyzing
the motion of this body fixed frame through the rest of the paper.

3.2.2 Equations of Motion

We refer the reader to Section 2.1 for a brief review on the derivation of forces and moments
on slender rods submerged in viscous media. The derivation of the equations of motion for
the 3D swimmer is very similar to one for the planar swimmer presented in Section 2.1. The
body velocity of link i is denoted by ξi, where ξi= (ξx, ξy, ξz, ξθx , ξθy , ξθz)i and i ∈ {1, 2, 3}
corresponding to each link. The body velocity denotes the velocity of a body-fixed frame
measured relative to the inertial frame and expressed in the body frame. The drag force F bi
and drag torque τ bi on link i are collectively denoted by a wrench

Wi =
[
F bi τ bi

]
∈ T ∗gG (3.1)

which according to RFT is defined as

Wi = Kξi, (3.2)

where

K =


2kTL 0 0 0 0 0

0 kTL 0 0 0 0
0 0 2kTL 0 0 0
0 0 0 2

3
kRL

3 0 0
0 0 0 0 1

3
kRL

3 0
0 0 0 0 0 2

3
kRL

3

 . (3.3)

Here, kR and kT are the rotational and translational viscous drag coefficients respectively that
depend on the length and radii of the links. It is assumed that all three links are identical in

15



geometry so that the drag matrix K is identical for all three of them. We identify the motion of
the swimmer with the position and orientation of the reference link i.e. link 2 of the swimmer.
It is therefore desirable to express the body velocities of links 1 and 3 as a function of the body
velocity of the reference link. We use standard relations from [34]:

ξ1 = Adg−1
L2L1

ξ2 + ξL2
L2L1

(3.4)

ξ3 = Adg−1
L2L3

ξ2 + ξL2
L2L3

(3.5)

Here

ξL2
L2L1

= (−L
2

0 0 0 0 1)T α̇1 = J1α̇1, (3.6)

ξL2
L2L3

= (0 0 L
2
−1 0 0)T α̇2 = J3α̇2. (3.7)

where Adg : se(3) −→ se(3) maps body velocity twists to spatial velocity twists. se(3) is the Lie
algebra for the Lie group SE(3). gL2L1 represents the relative transformation between the body
frame of link 1 and link 2 and similarly gL2L3 represents the relative transformation between
the body frame of link 3 and link 2. ξL2

L2L1
is the body velocity of link 1 relative to link 2 and

expressed in link 2’s reference frame. Similarly, ξL2
L2L3

is the body velocity of link 3 relative to
link 2 and expressed in link 2’s reference frame. We can rewrite the wrenches W1 and W3 in
terms of a wrench applied at the origin of the body frame and with respect to the body frame
using

W̃1 = AdT
g−1
L2L1

W1 = AdT
g−1
L2L1

Kξ1 = AdT
g−1
L2L1

K
(
Adg−1

L2L1

ξ2 + ξL2
L2L1

)
(3.8)

W̃3 = AdT
g−1
L2L3

W3 = AdT
g−1
L2L3

Kξ3 = AdT
g−1
L2L3

K
(
Adg−1

L2L3

ξ2 + ξL2
L2L3

)
(3.9)

From the quasistatic equilibrium assumption, we know that the net force and moment on the
swimmer vanishes, i.e.,

W̃1 + W2 + W̃3 = 0

=⇒ AdT
g−1
L2L1

W1 + W2 + AdT
g−1
L2L3

W3 = 0

=⇒
(
AdT

g−1
L2L1

KAdg−1
L2L1

+K + AdT
g−1
L2L3

KAdg−1
L2L3

)︸ ︷︷ ︸
ωξ

ξ2+
(
AdT

g−1
L2L1

KJ1 + AdT
g−1
L2L3

KJ3
)

︸ ︷︷ ︸
ωα

α̇ = 0

=⇒ ωξξ2 + ωαα̇ = 0

=⇒ ξ2 = −ω−1ξ ωαα̇

=⇒ ξ2 = −A(α)α̇ = −
[
A1(α), A2(α)

] [α̇1

α̇2

]
(3.10)

where A(α) ∈ R6×2 is known as the local form of a connection. It maps shape velocities to body
velocities: A(α) : Tα1S

1 × Tα2S
1 −→ se(3). Eq. 3.10 is known as the Kinematic Reconstruction

Equation.

3.3 Test for Controllability

Given the kinematic reconstruction equation, we are interested in determining a sequence of
internal shape changes which steer the swimmer between two arbitrary poses i.e., position and
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orientation. We interpret the kinematic reconstruction equation, Eq. 3.10 as a nonlinear control
system and use a controllability test to determine whether the system is controllable. Consider
a non-linear control system with two inputs:

ẋ = f(x,u) = u1g1 + u2g2 (3.11)

x ∈ Rn

f : Rn × U −→ TxRn

g1, g2 : Rn −→ TxRn

u1, u2 : [0, T ] −→ R

Definition 1 [34] The nonlinear control system defined by Eq. (3.11) is controllable if for
any x1,x2 ∈ Rn, there exist control inputs u1 : [0, T ] −→ R and u2 : [0, T ] −→ R, such that
x(0) = x1 and x(T ) = x2 where x(t) is the solution to the differential equation defined by Eq.
(3.11).

Definition 2 [34] The accessibility Lie algebra C for the system defined in Eq. (3.11)
consists of linear combinations of repeated Lie brackets of the form

[gp, [gq, [. . . , [g1, g2] . . . ]]], (3.12)

p, q, ... = {1, 2}.

Definition 3 [34] The accessibility distribution C(x) is the subspace of Rn, generated by
evaluating the vector fields in C at a given point x ∈ Rn, where

C(x) = span{X(x)|X ∈ C, x ∈ Rn}. (3.13)

Theorem 1 (Chow) The system defined by Eq. (3.11), is locally controllable near a point
x ∈ Rn, if

dim C(x) = n.

For the swimmer, we assume that the state is defined using the integral of the body velocity
x(t) =

∫ t
t0
ξ(τ)dτ . The quantity x(t) refers to the raw odometry for the robot, i.e., the forwards

minus backwards motion in each direction of the body frame. It does not account for the
displacement of the body frame relative to the world frame, which is what we are interested in
controlling (i.e. g(t)).

Nevertheless, it is known that for very small amplitude gaits, the raw odometry is approx-
imately equal to the displacement of the swimmer in the world frame [22]. Hence, given a
desired value of position and orientation of the swimmer’s body frame relative to the world
frame gdes(T ), we can seek small amplitude gaits, which result in x(T ) ≈ gdes(T ). Further, if
the swimmer’s kinematic model i.e. Eq.3.10 is controllable, then there exist control inputs
u1(t) = α̇1 and u2(t) = α̇2 which can result in this desired value of raw odometry. By scaling
the duration and amplitude of these controls, we can ensure that the resulting gaits have small
amplitude, which will ensure that the swimmer’s raw odometry (and hence its displacement
in the inertial frame) is equal to the displacement we desire. Hence, directly performing the
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Figure 3.2: Minimum singular value of the controllability Lie algebra

test on Eq. 3.10 gives us a guarantee about the existence of control inputs for controlling the
position and orientation of the swimmer in the inertial frame.

We perform this test as follows: from Eq. 3.11 and Eq. 3.10 , note that vector fields g1
and g2 can be chosen to be −A1(α) and −A2(α) respectively, where A1(α) and A2(α) are
respectively the first and second column of the local connection A(α) from Eq. 3.10. Since
n = 6, we need at least 6 vector fields to perform the controllability test. These vector fields are
computed by taking Lie brackets of g1 and g2 as shown here:

g1, g2 = −A1(α),−A2(α) (3.14)

g3 = [g1, g2]

g4, g5 = [g1, g3], [g2, g3]

g6 = [g1, g5]

and we define

C(α) = span{g1(α), g2(α), g3(α), g4(α), g5(α), g6(α)|α ∈ D}. (3.15)

Note that these vector fields only depend on the shape angles α1 and α2. This allows us to
numerically find the minimum singular value (σmin) of the accessibility distribution over a
domain D = D1 ×D2 ⊂ S1 × S1 where D1 = (0, 2π) and D2 = (−π, π) such that α1 ∈ D1 and
α2 ∈ D2. The ranges for D1 and D2 are chosen to ensure that the links of the swimmer do
not intersect each other. The minimum singular value gives a measure of linear independence
amongst a set of vectors; if the minimum singular value of a square matrix C is greater than zero,
then C is full rank and dim C(α) = n. By numerically evaluating C(α) over D, we find that
σmin(C(α)) > 0 for ∀α ∈ D. This empirical calculation demonstrates that it is theoretically
possible to determine controls u1(t) and u2(t) to steer the swimmer from an initial body frame
odometry x(0) = x1 to a final body frame odometry x(T ) = x2. In the next section, we
demonstrate how we can use connection curvature functions to synthesize gaits, or a sequence
of internal shape changes, for the swimmer.
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Figure 3.3: Connection Curvature Functions for the 3D swimmer computed using Eq. 3.18

3.4 Designing motion primitives

In the literature on geometric theory of swimming, the kinematic models in the form of Eq.3.10
have been successfully utilized to design gaits for the planar swimmer in low and high Re number
regimes. According to [21, 24], Eq. 3.10 can be integrated over a gait γ (a closed loop in the
shape space D ⊂ S1 × S1), to obtain the swimmer’s raw odometry, i.e., its net displacement
along the body frame directions. Interpreting each row of A(α) as a vector field and the gait γ
as defining an area on each of these fields, the line integral in Eq. 3.16 can be simplified by
converting it into a surface integral Eq. 3.18 using the generalized Stokes theorem:∫

ξdt = −
∫
A(α(t))α̇(t)dt (3.16)

= −
∫
γ

A(α)dα (3.17)

= −
∫∫
S

curl A(α) dα1dα2. (3.18)

Here, the integrand in Eq. 3.18 is the curvature of the local connection while S is the signed
area enclosed by γ. We have converted the problem of finding line integrals of the rows of the
local connection along gaits γ in Eq. (3.16) to calculating a surface integral of scalar curvature
functions over S in Eq. (3.18). Since our shape space is two dimensional, we can visualize the
connection curvature functions as surfaces over this two dimensional plane. This allows us to
visually determine regions which enclose a net positive, negative or zero volume. The net volume
enclosed by the curvature function over the area enclosed by the gait, is a direct measure of the
displacement of the swimmer in that component on the body frame, as illustrated in Eq. (3.18).
Fig. 3.3 shows the (x, y, z, θx, θy, θz) components of the connection curvature functions plotted
as 2D surfaces over D where the surface height corresponds to the magnitude of curl A(α). We
can use these surfaces as a visual tool for gait design by suitably parameterizing α1 and α2 to
achieve a desired motion in the body frame.

Note that we are interested in steering the swimmer to a desired position and orientation
in the world. For that, we would like to determine regions of the shape space which result in
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Figure 3.4: Translation gait overlaid on connection curvature functions.

a desired displacement of the swimmer relative to the world frame i.e. g(T ). On the other
hand, the curvature function technique only gives us the ability to select gaits that results in
displacement along a given body frame direction i.e. x(T ) =

∫ T
t0
ξ(τ)dτ . These two physical

quantities are in general not equal, except for very small amplitude gaits in systems where the
action of the Lie group can approximated to be Abelian [33]. Nevertheless, we know that these
small amplitude gaits are inefficient as they expend a lot of energy in high frequency oscillations
and produce small displacements per cycle, so it is desirable to consider large amplitude gaits
for motion planning. We adopt this latter approach and explain how large amplitude gaits can
be used make the swimmer translate along a fixed direction the world.

3.4.1 Translational Gaits

Designing gaits using the connection curvature functions poses a technical challenge as explained
before. Thus, if we pick a circular gait as shown in Fig. 3.4 and parametrized in Eq. (3.19),(3.20),

α1(t) = 0.7 sin(2πt) + 4.2 (3.19)

α2(t) = 0.7 cos(2πt) + 1.1 (3.20)

hoping to get displacement predominantly along the YW axis of the world frame (which will serve
as a YW motion primitive), we do end up getting displacement along other axes as well as shown
in Fig. 3.5. Nevertheless, executing this gait for T = 200 cycles results in a displacement of
approximately 13 body lengths along d̂ = [−0.5, 0.6,−0.62] where this displacement is calculated
as follows (3.21):

d(T ) =
‖p(T )− p(0)‖2

L
(3.21)

where p(t) ∈ R3 is the position of the origin of the body frame attached to link 2 at time t
and L is the length of the link. Note in the figure that the overall heading of the swimmer is
along predominantly along d̂ = [−0.498, 0.599,−0.622]. In the next section, we demonstrate a
technique to adjust the initial orientation of the swimmer such that the overall heading during
translation is predominantly along a desired direction.
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Figure 3.5: Trajectory resulting from executing N = 200 cycles of the gait in Eq. (3.19), (3.20).

3.4.2 Compensation for heading error

As we saw in Fig. 3.5, execution of the translation gait Eq. (3.19),(3.20) does not result in
predominant motion along the YW axis as was desired, and instead makes the swimmer move
along d̂ = [−0.5, 0.6,−0.62] . To compensate for this difference, we propose to reorient the
swimmer at t = 0s, in such a way that the new orientation, when followed by the same gait,
makes the swimmer move along the desired direction. This can be interpreted as a point and
shoot method where the first step of pointing corresponds to turning in place (reorienting) and
the second step of shooting corresponds to executing the translational gait. We first describe
how to compute the orientation into which the swimmer should be steered which will result in a
desired direction of movement during translation. Following this, we synthesize gaits which can
make the swimmer orient itself into that desired orientation Rdes.

3.4.3 Averaged Body Frame

Starting from an orientation where the body frame of the swimmer is completely aligned with
the world frame, we run the translational gait (Eq. 3.19,3.20) for N = 100 cycles and collect the
trajectory data, pi ∈ R3 for i = {1, 2, ...,M} corresponding to the position of the origin of the
body fixed frame, where M = N × f where dt = 1

f
= 0.01s is the sampling rate. Using singular

value decomposition, we can extract the principal components of motion in the swimmer’s
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trajectory as follows:

P =


p1
p2
...
pM

 ∈ RM×3

(3.22)

svd(P ) = [U, S, V ]

In this decomposition, U and V are orthogonal matrices whose columns are the left and right
singular vectors of P . The columns of V form an orthonormal basis for R3. Hence, V can be
interpreted as a rotation matrix that gives the principal components in the directions of the
motion of the body frame through the duration of the trajectory. The first column of V gives
the direction of maximum displacement. Now, if we want the average motion of the swimmer
to be along XW axis of the world frame, we use Rdes = V −1 = V ∗ as the initial body frame
orientation. In order to steer the swimmer to this orientation, we execute a sequence of rotation
gaits as described below.

3.4.4 Gaits for rotations

From the connection curvature functions corresponding to rotation about the body frame’s
x, y, z axes, we can synthesize gaits which achieve a desired rotation about those axes. The gait
for rotation about xb axis of the body frame can be chosen to be:

α1(t) = −0.707 sin(2πt) + π (3.23)

α2(t) = −0.707 sin(4πt)

The gait for rotation about yb axis of the body frame is:

α1(t) = 0.3 sin(2πt) + π (3.24)

α2(t) = 0.3 cos(2πt)

The gait for rotation about zb axis of the body frame is:

α1(t) = −0.707 sin(4πt) + π (3.25)

α2(t) = 0.707 sin(2πt)

The plots in Figs. 3.6, 3.7, 3.8 show that each rotation gait is decoupled from other gaits. For
example, executing the gait for rotation about the longitudinal axis i.e. Eq. 3.24 does not result
in rotation about the lateral axes. This is because the total area enclosed in the circle in the
curvature functions for xb and zb is zero. Similarly, executing the gait for rotation about xb axis
i.e. Eq.3.23 does not result in rotation about the yb and zb axes. Hence these gaits are decouple
from one another. We can execute these gaits sequentially in order to to steer the swimmer to
any orientation. To steer the swimmer into the desired orientation i.e. Rdes, we refer the reader
to approach outlined in Algorithm ∼ 1.

Using V −1 as an initial orientation, we are able to get translation of the swimmer along XW

axis of the world frame as shown in Fig. 3.9. Following a similar approach, we can determine
the initial orientation which will result in dominant motion along other direction in the world
frame. Finally, starting from those orientations, we can execute the translation gait that will
make the swimmer move along those directions.
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Algorithm 1 Algorithm for turning in place

1: Execute the gait for rotation about xb axis for one cycle starting from the identity orientation
and record its geometric phase i.e. total rotation increment about the xb axis through this
cycle: Gθx . Repeat this for other rotation gaits and record their phases as Gθy , Gθz

2: Convert the desired orientation Rdes to body frame angles α, β, γ which correspond to
rotation about xb, yb, zb axes

3: Determine number of cycles for each gait using Nθx = α/Gθx , Nθy = β/Gθy , Nθz = γ/Gθz

4: Execute Rotxb gait for Nθx cycles, followed by Rotyb gait for Nθy cycles and Rotzb gait for
Nθz cycles

Figure 3.6: Gait for rotation about xb

Figure 3.7: Gait for rotation about yb

Figure 3.8: Gait for rotation about zb
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Figure 3.9: Trajectory resulting from executing the gait in Eq. (3.19),(3.20) with initial
orientation V −1

3.5 Experimental Validation

We devised a 3D swimming robot shown in Fig. 3.10 as a testbed for our simulations. This
robot consists of two Longrunner metal gear microservos that are controlled by direct PWM
using an ESP8266 microcontroller with an integrated WiFi module. A mobile application
communicates directly with the onboard controller that allows different gaits to be programmed
on the swimmer. Using this application, we can also update gait parameters such as offsets,
frequencies, cycles and amplitudes for each of the two servos. Each link of the swimmer has a
length of 7 cms. The first and third links are paddles whereas the second link contains all the
electronics, so it is comparatively bulkier. The swimmer was submerged in a tank of corn syrup
which has a viscosity in the range of 50-100 cps and density close to 1.37 g/ml. Several gaits

Figure 3.10: 3D Swimmer Robot

were implemented on the 3D swimmer to demonstrate the validity of the trajectories derived in
simulations. For the sake of brevity, only results for a translation gait along the length of the
tank and rotation about yb axis of the body frame are shown here.

In the translation gait 1, the frequency at which the links rotate results in an average

1https://youtu.be/BcT5ps1mTFE
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Figure 3.11: Trajectory of the 3D Swimmer executing the translational gait (Side View)

translational velocity close to 0.0017 m/s (determined from experiments). Using these parameters,
the resulting Re number Re ≈ 1.5 < 100. Hence swimming at this regime with these parameters
is largely dominated by low-Re number hydrodynamics. To ensure that the swimmer has
dominant motion along the longer side of the tank (YW ), we experimented with the initial
orientation of the swimmer and through several trials empirically determined an approximate
orientation that would make it swim along the longer side of the tank. Fig. 3.11 shows the
trajectory of the center of mass of the 3D swimmer as it executes the translation gait. These
points were hand tracked using Tracker: Video Analysis and Modeling Tool. Notice in Fig. 3.11
that the swimmer has maximal displacement along the longer length of the tank (YW ) ∼ 65
cms, however, it also has nonzero displacement along the other sides as well, which are ∼10
cms along the depth (ZW ) and ∼15 cms along the width (XW ) of the tank. This extraneous
displacement can be attributed to two reasons: First, the swimmer is not perfectly neutrally
buoyant. This could be the result of unwanted air bubbles in the swimmer. These bubbles
cannot easily escape the swimmer’s body because of the viscosity of the corn syrup. As a result,
the swimmer is not perfectly neutrally buoyant like it was assumed in the model. The swimmer’s
body experiences a torque about the lateral axes due to the force of buoyancy and this torque
warps the orientation the swimmer. Moreover, this deviation keeps changing throughout the
duration of the experiment as the swimmer’s body rotates. Due to this, when the swimmer
executes the translation gait, we observe displacement along the lateral side of the tank as well.
However, as we can see in Fig. 3.11, the dominant displacement is still along the length of the
tank as was expected.

In Fig. 3.12, we show a qualitative comparison of the robot’s trajectory with the trajectory
derived from the simulation. The simulated trajectory has been rotated and superimposed on the
robot’s trajectory for a better comparison. The values of the physical dimensions of the model in
the simulation were kept the same as those of the actual robot. The duration of simulation was
T = 236s which was roughly the number of cycles for which the swimmer’s paddles oscillated.
The only difference between the simulation and experiment was the angular speed of the joint
angles. We notice in the figure that the observed trajectory behaves qualitatively similar to the
trajectory calculated from simulations. However, we do not observe full circles in the helix of
the robot’s trajectory, which can be attributed to the non-slender shape of the robot’s links.
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Figure 3.12: Translation gait comparison

In the next experiment we implement the rotation gait on the robot. The swimmer was
placed in the tank with its body frame aligned with the world frame. Following this, the gait
corresponding to rotation about the longitudinal axis of the body frame yb was implemented.
This gait is depicted in Fig. 4b and described in Eq. 3.24. The corresponding video can be
found in the link at the footnote 2. Fig. 3.14 shows snapshots of the side view and top view of
the robot. This gait rotates the swimmer about its longitudinal axis with negligible rotation
about other axes, which is also in agreement with simulated results.

2https://youtu.be/2o0w4attCmE
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Figure 3.13: Snapshots of the side view of the 3D Swimmer executing the translation gait
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Figure 3.14: Snapshots of the top view and side view of the 3D Swimmer executing the gait
that results in rotation about its longitudinal axis
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3.6 Conclusions

In this chapter, we have considered the problem of synthesizing motion primitives for a three
dimensional version of Purcell’s planar swimmer. Using the notion of connection curvature
functions, we have designed gaits for the 3D swimmer which result in translation and rotation of
the swimmer’s body frame. These custom gaits have also been implemented on a robot and we
have demonstrated that with a suitable choice of initial orientation, we can make the swimmer
move along a desired direction in the world frame in simulation. From the experiments, we
observed errors in the heading of the swimmer which were attributed to imperfect assumption
of neutral buoyancy and the torque acting on the swimmer’s body due to the force of buoyancy.
Additionally, the links of the robot are not perfectly slender as is required in RFT. As a part of
future work, we propose to model the effects of non-slenderness and buoyancy in the swimmer’s
motion, and accommodate their effects in the gait design approach. Furthermore, we are also
interested in extending the gait design technique to a multiple link version of the 3D swimmer by
interpreting this as a discretization of a continuum snake. We hypothesize that this redundancy
in design will allow the swimmer to execute dexterous maneuvers which could be useful for
navigating in a constrained environment.
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Chapter 4

Motion planning for an externally
actuated swimmer

4.1 Introduction

In the last chapter, we described a swimmer capable of locomoting in a three dimensional low-Re
number regime. This swimmer was internally actuated using servos at the two joints which allow
for direct control over its internal shape. However, in such a regime, the minimum joint torque
that is required to produce a desired angular velocity imposes a constraint on the capacity of the
motors. This restriction on the minimum size of the motors and ultimately the size of the robot
prevents scaling these swimmers to micrometer dimensions. Additionally, the overall system
integration with sensors, computation and actuation at the microscale becomes even more
challenging [38]. Finally, the susceptibility of internally actuated robots to electrical/mechanical
failure prohibits the application of such systems for in-situ operations. These limitations point
towards the need to develop a system with minimal complexity whilst still retaining the basic
locomotive functionalities at the micrometer scale. Towards that end, actuation using external
time-varying magnetic fields has been proposed as a feasible approach to generate propulsion in
robots at the microscopic scale [8, 36]. In this chapter, we will explore mathematical models of
articulate discrete swimmers consisting of magnetic links connected via rotary joints / springs
and dwell on how to synthesize motion primitives for these swimmers. We conclude this chapter
with experimental results and directions for future work.

4.1.1 Contributions

In this chapter, we consider a two link and three link magnetic swimmer similar to the ones
proposed in [1, 18, 19, 3]. The links in these swimmers are assumed to be ferromagnetic and
connected to each other with flexible rotary joints.

1. Building on these works, we demonstrate how a richer class of magnetic fields can be
generated to induce net locomotion in these swimmers by exploiting structural properties
in the system dynamics. We describe how tools similar to curvature functions can be used
to motivate the control inputs proposed in previous works and how new control inputs can
be computed using these tools without having to use numerical trajectory optimization
algorithms which are susceptible to local minima.

2. We perform a systematic design optimization of a three-link swimmer to determine the
numerical values of internal magnetizations for optimizing swimmer performance. We
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describe a principled approach on how to encode these precise magnetization patterns in
millimeter scale magnetoelastic swimmers and demonstrate locomotion and turn-in-place
maneuvers in a viscous regime using two pairs of Helmholtz coils.

4.1.2 Outline

In Section 4.2, we present the mathematical model of a two link and three link magnetoelastic
swimmer based on the derivations in Chapter 2. In Section 4.3, we describe the trajectories
of two and three link swimmer resulting from crossed uniform and transverse oscillating fields
and dwell on how to modify these control inputs to generate a turning in place motion for the
two link swimmer. Using tools from perturbation theory, we perform a numerical optimization
to compute the optimum magnetization constants for a three link swimmer which maximize
is forward displacement per cycle. In Section 4.5, we demonstrate how to motivate previously
proposed control inputs using a geometric argument and describe how novel control inputs can
be synthesized. In Section 4.6 we describe our approach to fabricate millimeter scale swimmers
and a principled method of encoding the optimal magnetization constants in these swimmers.
We describe the setup and experimentally verify the trajectories from simulations on these
swimmers using Helmholtz coils.

4.2 Mathematical Model

We will focus on a planar model of a two link and three link swimmer. We refer the reader to
the derivations introduced in Section 2.1 and 2.2 in Chapter 2. A brief review of notation is
presented here.

Figures 4.1a and 4.1b shows the top view of a two and three link swimmer which is made
up slender uniformly magnetized links. In each of the swimmers, the longitudinal axis of the
body frame is denoted by t̂ and the lateral axis of the body frame is denoted by n̂. In the
given representation, it is easy to see that t̂ = (cos θ, sin θ) and n̂ = (− sin θ, cos θ) where θ is
the angle between t̂ and Xw. The swimmers are submerged in a liquid of uniform viscosity
and the associated drag coefficients are ct, cn. The entire plane is under the influence of a
spatially uniform magnetic field B(t) = (Bx(t), By(t)) where Bx denotes the horizontal (along
XW ) component of the spatial magnetic field B(t) and likewise By denotes the vertical (along
YW ) component of the spatial magnetic field.

Elastic Effects

In the derivations introduced in Section 2.1 and 2.2 in Chapter 2, we did not account for elastic
effects at the spring joint between the links. We now consider the effects of adding a flexible
joint between two links. This can be modeled by assuming that each consecutive pair of links is
connected to each other via flexible torsional springs. In an articulate swimmer which is made
using a continuum filament, the value of the spring stiffness is determined using the modulus of
elasticity, the second moment of area and length of the filament. The spring at joint serves to
provide a restoring torque on both links in accordance with Hooke’s law:

τspring = −κ(θl+1 − θl) (4.1)

where l is the index of the link.
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(a) Top view of a two link magneto elastic swimmer(b) Top view of a three link magneto elastic swimmer

Figure 4.1: Schematic of Two and Three link magnetic swimmers

4.2.1 Complete Model

We now present the complete model of a two link and a three link magnetic swimmer, by
incorporating hydrodynamic, elastic and magnetic effects.

Two-Link Swimmer

Consider a two link swimmer as shown in Figure 4.1a. The configuration space of this swimmer
is Q = SE(2)×S1 where the first component SE(2) corresponds to the position and orientation
of the body fixed frame of the first link relative to the world. The second component corresponds
to the orientation of the second link relative to the world. Hence the configuration variable is
q = (x, y, θ1, θ2) = (p1, θ1, θ2). Let the corresponding velocity be denoted by q̇ = (ṗ1, θ̇1, θ̇2).
The position and velocity of the body frame attached to link 2 can be expressed using

p2(t) = p1(t) + Lt̂(t)

ṗ2(t) = ṗ1(t) + Lθ̇1n̂(t)

ṗ3(t) = ṗ3(t) + Lθ̇3n̂(t) (in three link)

To analyze the complete dynamics, we describe all the sources of forces and torques acting on
the two links. These are listed here:

1. Hydrodynamic Drag Forces

(a) F1,h: Hydrodynamic drag force on link 1 expressed in the world frame

(b) F2,h: Hydrodynamic drag force on link 2 expressed in the world frame

2. Hydrodynamic Drag Torques

(a) τ p11,h: Hydrodynamic drag torque on link 1 relative to p1 expressed in the world frame

(b) τ p12,h: Hydrodynamic drag torque on link 2 relative to p1 expressed in the world frame

(c) τ p22,h: Hydrodynamic drag torque on link 2 relative to p2 expressed in the world frame
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3. Magnetic Torques

(a) τ1,m: Magnetic torque on link 1 expressed in the world frame

(b) τ2,m: Magnetic torque on link 2 expressed in the world frame

4. Spring Torque

(a) τ2,spring: Torque due to the torsional on link 2.

From the assumptions of resistive force theory, the net force and moment on a system in a
quasi-static equilibrium vanishes. This gives:

F1,h + F2,h = 0 (4.2a)

êz · (τ p11,h + τ p12,h + τ1,m + τ2,m) = 0 (4.2b)

êz · (τ p22,h + τ2,m) = τ2,spring (4.2c)

We can rewrite Eqs. 4.2a-4.2c in the form of a control affine system. The control input to
the system is defined by the spatial magnetic fields i.e. u = (Bx(t), By(t)) and the state of
the system is precisely given by q(t). The following system of equations demonstrates how the
dynamics of the system is captured by first order nonlinear ODEs:

q̇ = f(q) + g1(q)Bx(t) + g2(q)By(t)

= f(q) +G(q)u

q ∈ R4 (SE(2)× S1) (4.3)

f : R4 −→ TxR4

Bx, By : [0, T ] −→ R

The drift component f(q) arises due to the restoring torque of the spring, whereas the driftless
components g1(q), g2(q) are due to the drag forces and magnetic torques. If we make the
assumption that the links are connected with pinned joints, we can eliminate the effects of
compliance by setting κ = 0 in Eq. 4.3 above. The resulting dynamics are akin with driftless
control affine systems as described in Eq. 4.4.

q̇ = g1(q)Bx(t) + g2(q)By(t)

= G(q)u (4.4)

Three link swimmer

Following the derivation of the two link swimmer, we can write the force and torque balance
equations for the three link swimmer as well.

F1,h + F2,h + F3,h = 0 (4.5a)

êz · (τ p11,h + τ p12,h + τ p13,h + τ1,m + τ2,m + τ3,m) = 0 (4.5b)

êz · (τ p22,h + τ p23,h + τ2,m + τ3,m) = τ2,spring (4.5c)

êz · (τ p33,h + τ3,m) = τ3,spring (4.5d)

Once again, we can rewrite Eq. 4.5a-4.5d in the form of a control affine system in the state
variable q(t). The state variable q(t) in the case of a three link swimmer includes the additional
orientation of the third link. Hence the total configuration space is Q = SE(2)× S1 × S1 i.e.
q = (p1, θ1, θ2, θ3). The control inputs in this case would still be the spatial components of the
magnetic field in the Xw, Yw frame. The resulting equations of motion are similar to Eq. 4.3
above.
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4.2.2 Making the equations of motion dimensionless

Table 4.1: Physical parameters relevant to the dynamics of the magneto-elastic swimmer

Parameter Symbol Numerical value with units
Spring constant κ 0.01 [Nm]
Drag Coefficient ξ 0.1 [Nsm−2]
Magnetic field amplitude B 1 [T]
Saturation magnetization M or h 1 [Am−1]
Internal magnetization parameters (mt,mn) [−1, 1] [Unitless]
Characteristic Length L 1 [m]

In order to reduce the dimension of the parameter space, we use a technique called normalization
or non-dimensionalization. This procedure helps to reduce the number of physical parameters
used to describe the dynamics in way that retains the original information in the dynamics.
Instead of dealing with several physical parameters, the idea is to deal with ratios of these
parameters by converting the governing differential equations into a unit-less form. This is
not only suitable for numerical simulations, it also gives an intuitive insight on the behavior
of the system as a function of few characteristic parameters. While the technique followed in
[18] identifies the characteristic time scales based on breaking the full system into individual
sub-systems, we arrive at identical scales based on investigating the full dynamics. There are
three characteristic parameters that determine the dynamics of the system (1) the visco-magnetic

time constant Tm = ξL2

BM
(2) the visco-elastic time constant Tk = ξL3

κ
and (3) the characteristic

length L. From now onwards, we will assume that the equations of motion have been converted
to a non-dimensional form (Eq. 4.7)

˙̄q = f̄(q̄) + ḡ1(q̄)B̄x(t̄) + ḡ2(q̄)B̄y(t̄)

(4.6)

where

q̄ = Tq, t̄ =
t

Tm
, α =

Tm
Tk

(4.7)

The transformation matrix T is defined as

T =


1
L

0 0 0
0 1

L
0 0

0 0 1 0
0 0 0 1

 (4.8)

We will omit the overbar in the subsequent sections and assume the equations of motion are
dimensionless implicitly.
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4.3 Two Link Swimmer Simulations

In the previous sections, we formulated the equations of motion for a two and three link
magnetoelastic swimmer. Based on those equations, we can explore the behavior of the
swimmer’s motion as a function of different types of control inputs. We first investigate the
trajectories of the swimmer based on control inputs previously proposed in literature and
in Section 4.5 describe how to design novel motion plans using geometric arguments. For
simplicity, we will consider swimmers with tangential magnetization components only i.e.
mi
n = 0 ∀i ∈ {1, 2} where index i corresponds to the link number. Authors in [18] demonstrated

that the two link swimmer with tangential magnetizations can achieve net locomotion in crossed
uniform and oscillating fields when either of the following conditions are met:

1. The tangential magnetizations in the two links are non-zero, mutually unequal m1
t 6= m2

t

and the joint connecting the links is pinned with no spring i.e. κ = 0

2. The tangential magnetizations in the two links are mutually unequal m1
t 6= m2

t and the
joint connecting the links has a torsional spring i.e. κ 6= 0

3. One of the links is non-magnetic i.e. m1
t = 0,m2

t 6= 0 and the joint connecting the links is
equipped with a torsional spring i.e. κ 6= 0

In consonance with these conditions, we now provide simulation results corresponding to the
case where m1

t 6= m2
t , κ = 0 and for m1

t = 0,m2
t 6= 0, κ 6= 0. The physical parameters we use for

these simulations are provided in Table 4.2.2.

4.3.1 Trajectories without elastic effects

For the case where the two link swimmer does not have a torsional spring at the joint, we will
use Eq. 4.4 for numerical simulations. The drift component in these equations is zero because
there is no spring. Hence, as soon as the external magnetic field is switched off, the configuration
of the swimmer just before switching the field off, persists forever. In the following subsections,
we will demonstrate how using different versions of crossed uniform and oscillating magnetic
fields can result in net locomotion. We will assume that link two has a magnetization component
that is twice as strong as the magnetization of link one i.e. m1

t = 0.5,m2
t = 1. Analytical proofs

for why such asymmetry is necessary for locomotion are provided in [2].

Translation

Using Bx(t) = 1, By(t) = sinωt results in locomotion of the swimmer along Xw axis of the world
frame. From now on, we will denote this primitive as utrans i.e. utrans = (1, sinωt). For this
simulation, we selected the actuating frequency using by numerically simulating the dynamics
over a range of frequencies and selected the one that gives the maximum displacement per
cycle. Results from [27] describe that for a given number of cycles of the external field, the
displacement of the swimmer depends on the frequency of the field in a way that is akin to a
resonance like behavior. The swimmer undergoes almost negligible displacement at very low
and very high frequencies, while a peak value of displacement is obtained at some intermediary
frequency. Through a sweep over a range of 0 to 100 Hz, we concluded that the swimmer
translates by the maximum (over Tmax = 100s) at f ∼ 8Hz (ω = 16π[rad/s]) (see Figure 4.2).
The exact value was 7.6Hz. The corresponding trajectory of the swimmer is shown in Figure. 4.4.
The direction of motion of the swimmer is along the constant component of the external field
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Figure 4.2: Displacement of the two link swimmer in 100s as a function of frequency

whenever m1
t > m2

t > 0. The individual links of the swimmer remain aligned with the constant
component of the field demonstrating how the constant component acts like a magnetization
spring that tries to stabilize the orientation of the two links around itself. Since the links have
only longitudinal magnetizations, it is technically correct to refer to the orientation of the link as
the orientation of the internal magnetic moment and vice versa. However, if the links did have
lateral components as well, we would have to be more careful about the terminology. For these
simulations, we achieved an average velocity of vavg = 0.092BL/s. Additionally, for the same
control inputs, we initialized the swimmer’s orientation from several random configurations.
The flows of the system state demonstrate that all these initial orientations converge to the
same limit cycle in the (θ1, θ2) space as shown in Figure. 4.3. In Section 4.5, we will exploit this
fact to demonstrate that this limit cycle is indeed sufficient to generate net displacement along
Xw of the world.

Trajectory Tracking

From Figure 4.3, we notice that the limit cycle in the (θ1, θ2) has a large basin of attraction.
This demonstrates that it is possible to align the swimmer with the external magnetic field even
when the initial orientation of individual links of the swimmer is off by π radians relative to
the direction of the constant component of the external field. The dual to this scenario is the
case when the initial orientation of the swimmer is always along the world Xw axis while the
constant component of the field changes direction. By symmetry arguments, it is possible to
prove that both situations are equivalent. Hence, we can exploit this fact to make the swimmer
translate along a given trajectory in the world by suitably switching the direction of the constant
component and the oscillating component. For example, given a desired rectangular trajectory
in the workspace as defined by the red track in Figure 4.5a, we can synthesize the switching time
instants (t1, t2, t3, t4) and control inputs u(t) which make the swimmer to track this trajectory
using Eq. 4.9

u(t) =


utrans(t) 0 ≤ t ≤ t1

Rπ
2
utrans(t) t1 < t ≤ t2

Rπutrans(t) t2 < t ≤ t3

R 3π
2
utrans(t) t3 < t ≤ t4

(4.9)
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Figure 4.3: Limit cycle behavior of the (θ1, θ2) from different initial orientations using
Bx = 1, By = sinωt

Figure 4.4: Translation Trajectory of the two-link swimmer with Bx = 1, By = sinωt

For the example in Figure 4.5a, we can chose t1, t2, t3, t4 using the knowledge of the average
velocity of the swimmer corresponding to the utrans(t) primitive and the displacement of the
swimmer in the desired trajectory during each piecewise defined interval. From Figure 4.5a,
note that the swimmer exhibits a transient response when the control input switches. This
behavior is expected as the swimmer uses this time to adjust the orientation of its links, with
the new direction of the constant component of the external field. The corresponding limit
cycles are shown in Figure 4.5b.

Tracing a circle

In the previous section, we demonstrated how translation along a desired trajectory in the world
can be obtained by using discontinuous jumps in the control input (Eq. 4.9). Following a similar
approach, we can can compose utrans = (1, sinωt) with a slower frequency component which
rotates utrans continuously and makes the swimmer track an arc of a circle (Figure. 4.6). This
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(a) Tracking a rectangular trajectory using piecewise
defined magnetic fields

(b) Limit cycles in the (θ1, θ2) space corresponding
to the rectangular trajectory

control input is described in Eq. 4.10

ucircle =

[
cosωslowt − sinωslowt
sinωslowt cosωslowt

] [
1

sinωt

]
︸ ︷︷ ︸
utrans

(4.10)

where ωslow < ω. The slow frequency is needed for the swimmer to accumulate some displacement
along the instantaneous direction of the constant component of the field. Since the constant
vector eventually goes through a full circle, the swimmer’s trajectory also follows that cycle
which results in a motion that traces the perimeter of a circle. In the figure on the left, we
selected ωslow = ω

20
and in the figure on the right ωslow = ω

200
. The purpose of this simulation

is to demonstrate how a fast rotating utrans does not result in significant translation and can
be interpreted as resulting in a turning in place locomotion. On the other hand, choosing
ωslow = ω

200
allows the swimmer to advance forward while also causing it to turn, and the net

effect results in the swimmer tracking a circle, as depicted in the figure on the right.
In addition to the control inputs presented here, we also considered simulating the response

of the swimmer to fields with only constant components, fields with only sinusoidal components
and fields with high amplitude sinusoids. The results from these simulations for different
magnetization values are presented in Table 4.2. As is expected, for the case where the swimmer
has complete front back symmetry with respect to magnetization (i.e. (1,1)), the swimmer
undergoes no displacement for any control input. The small displacements the swimmer
undergoes for sinusoids are periodic back and forth motions which average out to zero over a
full cycle, thus resulting in zero net motion over a given number of cycles. The only significant
motion experienced by the swimmer is when the magnetization is asymmetric i.e. (1, 2) case
and when the swimmer is excited with crossed uniform and oscillating fields as described in this
section.

4.3.2 Trajectories with elastic effects

We now consider the case of the swimmer where elastic effects are also present i.e. κ 6= 0. The
results of numerical simulations are summarized in Table 4.3. We describe key interesting results
here:

For the case where the magnetizations are asymmetric (i.e.
m2
t

m1
t

= 2), the swimmer exhibits

translational displacement under crossed oscillating and uniform fields like before as was expected
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Figure 4.6: Trajectory of the two-link swimmer with Bx = cosωslowt − sinωslowt sinωt,
By = sinωslowt+ cosωslowt sinωt

Table 4.2: Translation of two link swimmer without spring under different inputs and magneti-
zations

hhhhhhhhhhhhhhhhhhhhhControl Input

Magnetization (1,
m2
t

m1
t
)

(1,1) (1,2) (0,1)

Bx = 1, By = sinωt 0.04 18.12 0.14
Bx = 1, By = 0 0 0 0
Bx = 0, By = sinωt 0.013 0.104 0

based on condition 2 mentioned in the beginning of Section 4.3. Additionally, for the same
magnetizations, we also get displacement when the constant component is switched off i.e.
Bx(t) = 0 and the vertical component By(t) is a high-amplitude sinusoid. Since the constant
component is switched off, the swimmer tends to align its links with the oscillating component
which changes in the vertical spatial direction. Therefore, the swimmer is executes a swing
π radians. Nevertheless, the limit cycle behavior in this case indeed depends on the initial
orientation of the internal magnetizations relative to the external field. This is because the
attractive limit cycle will correspond to the one that is in some sense ’closest’ to stabilize to.
Since the external field vector exhibits a full π radians of swing, it can be tracked from either
’side’ of the B = (0, 8 sinωt) vector at a given t . Based on geometric arguments, it can then be
proven that the net translational displacement of the swimmer will also depend on the resulting
limit cycle and hence on the initial orientation of the internal magnetizations relative to the
external field. For the simulation in the table, we assumed θ(0) = (0, 0).

Secondly, the swimmer with (0, 1) magnetization also undergoes displacement in Bx =
1, By = sinωt field as was expected from condition 3 in the beginning of Section 4.3. This is
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because the nonmagnetic link is paired to the magnetic link via the torsional spring. Since the
magnetic link is coupled to the external magnetic field via the virtual ‘magnetization’ spring,
the non-magnetic link also indirectly becomes receptive to the ‘magnetization’ spring due to
the torsional coupling. Hence, it exhibits undulations which tend to emulate the presence of
magnetization even though it is magnetically passive. Although not as effective as the (1, 2)
case, this scenario can be used to transport a non-magnetic load with a single magnetic link as
was explored in [19] and [2]. We can extend this case to transporting a cargo with two magnetic
links which will be described in the simulations for the three link swimmer in the next section.

Table 4.3: Translation of two link swimmer with spring under different inputs and magnetizations

hhhhhhhhhhhhhhhhhhhhhControl Input

Magnetization (1,
m2
t

m1
t
)

(1,1) (1,2) (0,1)

Bx = 1, By = sinωt 0.26 17.12 2.4
Bx = 1, By = 0 0 0 0
Bx = 0, By = sinωt 0.02 1.504 2.49
Bx = 0, By = 8 sinωt 2.251 19 1.9
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4.4 Three-link Swimmer Simulations

We now describe the trajectories resulting from the simulations of three link swimmer. As
mentioned in Section 4.2.1, the dynamics of the three link swimmer are very similar to the
two link swimmer with the difference being that in addition to the two orientations, we also
have the orientation of the third link in the state. Therefore, some qualitative properties of
the simulations can be readily explained based on the results from the two link swimmer. For
example, whenever the three link swimmer possess front back symmetry i.e. m1

t = m3
t , the

swimmer does not undergo net translation. Similarly, when one of the links is non-magnetic, the
swimmer is qualitatively similar to a two link swimmer with a nonmagnetic cargo. To keep the
discussion brief, we have summarized the results in Tables 4.4 and 4.5. In the next section, we a
systematic procedure that we used to compute the (m1

t ,m
2
t ,m

3
t ) which maximize the translation

over a given cycle of the oscillating magnetic field.

Table 4.4: Translation of three link swimmer without spring under different inputs and magneti-
zations

hhhhhhhhhhhhhhhhhhhhhhhControl Input

Magnetization (1,
m2
t

m1
t
,
m3
t

m1
t
)

(1,4.54,0) (1,4.54,1) (1,4.54,4.54)

Bx = 1, By = sinωt 21.47 0.1 35.81
Bx = 1, By = 0 0 0 0
Bx = 0, By = sinωt 0.133 0.03 0.02
Bx = 0, By = 8 sinωt 3.48 2.4 1.56

Table 4.5: Translation of three link swimmer with spring under different inputs and magnetiza-
tions

hhhhhhhhhhhhhhhhhhhhhhhControl Input

Magnetization (1,
m2
t

m1
t
,
m3
t

m1
t
)

(1,4.54,0) (1,4.54,1) (1,4.54,4.54)

Bx = 1, By = sinωt 20.525 0.33 35.88
Bx = 1, By = 0 0 0 0
Bx = 0, By = sinωt 2.68 0..260 3.054
Bx = 0, By = 8 sinωt 21.69 2.06 2.713

4.4.1 Numerical optimization for magnetization constants

For the simulations in the previous section, we used
m2
t

m1
t

= 4.54 and
m3
t

m1
t

= 4.54. In this section,

we explain a systematic approach to compute these numbers. From this section forth, we will
assume that the magnetization of the first link is unit magnitude, whereas the magnetizations
of link two relative to link one, and link three relative to link one are the optimization variables.

Hence, we have two parameters γ =
m2
t

m1
t

and β =
m3
t

m1
t

that we are interested in computing. We

will choose the objective function to be the displacement the swimmer undergoes per cycle of
the external magnetic field. There are two methods of computing these values.

1. Brute Force Optimization: This technique would require us to sample these parameters
γ ∈ D and β ∈ D from a large domain D = [0, 100]. After randomly selecting these
parameters, we forward simulate the system dynamics with these parameters for one cycle
of the actuating field and record the forward displacement. Once we have a full database of
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the forward displacement for several parameters, we can pick up the parameter from this
lookup table that results in maximum displacement. It suffices to say that this technique
is computationally expensive and does not scale easily to systems with more than three
links.

2. Function Optimization: As a way to circumvent computationally expensive brute-force
optimization, we resort to ideas from asymptotic approximations explored in [19]. The idea
is to compute an approximate analytical solution to the differential equations governing
the dynamics of the swimmer in parameters γ and β. Given this expression, it becomes
easy to use off-the-shelf function optimization routines such as fmincon, to compute

parameters that maximize this function. The numerical values
m2
t

m1
t

= 4.54 and
m3
t

m1
t

= 4.54

were computed using this method.

Consider the dynamics of the two-link swimmer without spring as follows:

q(0) =
[
0 0 0 0

]T
q̇ = g1(q)Bx(t) + g2(q)By(t)

= G(q)u (4.11)

where q = [x, y, θ1, θ2]. For the function optimization, we will assume that the control input
is prespecified i.e. u(t) = utrans = (1, w) where w = sinωt, and the initial condition is fixed

i.e. q(0) =
[
0 0 0 0

]T
. This is important because the solutions to Eq. 4.11 depend on

the control input and the initial conditions. We are interested in computing an approximate
expression for forward displacement of the swimmer over one cycle. This corresponds to the x
component of the state.

Additionally, since the links have magnetization along the length (m1
t > 0,m2

t > 0,m3
t > 0),

and the constant component of the field is along the Xw axis of the world frame, it suffices
to assume that the angles θ1, θ2, θ3 oscillate about 0 i.e. θi ∈ [−θmax, θmax] for i ∈ {1, 2, 3}.
Moreover, if we scale the amplitude of w −→ εw, where ε� 1, we would expect that θmax −→ 0.
Hence, we can approximate the solution to Eq. 4.11 with u = (1, εw) using the following Taylor
series

q(t) = q(0)(t) + εq(1)(t) + ε2q(2)(t) + · · · (4.12)

and the corresponding derivatives become:

q̇(t) = q̇(0)(t) + εq̇(1)(t) + ε2q̇(2)(t) + · · · (4.13)

Now, we can compute simplified expressions for q(t) using leading order terms q0, q1, q2. It
turns out q(0)(t) ≡ 0 because when the oscillating component of the magnetic field is off (i.e.

ε = 0) and the swimmer initially is at q(0) =
[
0 0 0 0

]T
, it persists to stay in that state.

Additionally, the ẋ(1) and ẏ(1) dynamics of the first order terms q(1)(t) turn out to be identically

zero from calculations, whereas the dynamics for θ
(1)
1 (t), θ

(1)
2 (t), θ

(1)
3 (t) are nonzero. Hence, we

need only compute second order terms x(2) and y(2) as a function of t . Finally, we notice that
since the expressions for g1(q) and g2(q) depend only on the orientation variables θ1, θ2, θ3, we

can first compute leading order solutions for θ1, θ2, θ3 i.e. θ
(1)
1 (t),θ

(1)
2 (t), θ

(1)
3 (t) and use those

expressions to then compute solutions for the x(2)(t) and y(2)(t) components of the state. In
this process, we have ignored the second order terms corresponding to orientation variables i.e.
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θ
(2)
1 (t),θ

(2)
2 (t), θ

(2)
3 (t). Hence, we now write the dynamics for the θ components using Eq. 4.11.

θ(0) =
[
0 0 0

]T
θ̇ = f(θ, w) = f1(θ) + f2(θ)w

The dynamics for first order terms θ
(1)
1 (t),θ

(1)
2 (t), θ

(1)
3 (t) can be written as a linear dynamical

system as follows.

θ̇(1) = Aθ(1) +Bw (4.14)

where

A =
∂f

∂θ

∣∣∣∣
(θ,w)=(0,0)

=
∂f1
∂θ

∣∣∣∣
(θ,w)=(0,0)

B =
∂f

∂w

∣∣∣∣
(θ,w)=(0,0)

= f2(0) (4.15)

For a sinusoid input w = sinωt, the solution to this system is

θ(1)(t) = C(γ, β) sinωt+D(γ, β) cosωt (4.16)

where C ∈ R3 and D ∈ R3. We have explicity shown the dependence of C and D on the
magnetization parameters γ, β. The dynamics for the x component can be invoked from Eq.
4.11 as

x(0) = 0

ẋ = h(θ, w) = h1(θ) + h2(θ)w

The second order dynamics for x(2)(t) can be written as follows:

ẋ(2)(t) = 0.5
3∑
i=1

∂2h

∂θ2i

∣∣∣∣
(0,0)

θ2i +
3∑
i 6=j

∂2h

∂θi∂θj

∣∣∣∣
(0,0)

θiθj +
3∑
i=1

∂2h

∂θi∂w

∣∣∣∣
(0,0)

θiw + 0.5
∂2h

∂w2

∣∣∣∣
(0,0)

w2

(4.17)

Finally, substituting Eq. 4.16 in Eq. 4.17 and integrating Eq. 4.17 over one cycle T = 2π
ω

gives
an analytic expression of x(T ) = f(γ, β, ω). We use this analytic expression in fmincon for
γ, β ∈ D and compute the the optimum γ∗, β∗ values. For more details we refer the reader to
the supplementary materials provided in [19]. To illustrate the power of this method, we show a
comparison of the per cycle displacement of the swimmer as function to the frequency using
full numerical simulations and this approximate expression. For this simulation, we chose the
magnetization parameters γ and β arbitrarily. As can be seen from the graph, the solution using
asymptotic methods is a very good approximation to the true numerical solution. In Section
4.6.2, we describe the procedure to encode these magnetizations in elastomagnetic filaments.
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Figure 4.7: Comparison of three swimmer displacement v/s frequency using asymptotic method
and exact numerical simulations. For this simulation γ = 2, β = 3 were chosen arbitrarily

4.5 Geometric approach to synthesizing motion plans

In the previous sections, we demonstrated that the existence of the limit cycle in the (θ1, θ2)
portrait was related to the net translation of the swimmer. Indeed, for the rectangular trajectory,
we noted that the direction of the swimmer’s net motion was correlated with the external magnetic
field’s constant component, and whenever the direction switched by π

2
, the corresponding limit

cycle also changed. Additionally, as we noted in the turn in place motions, the the (θ1, θ2) cycle
was continuously evolving which prevented the swimmer to accumulate net displacement along
one direction, instead causing it to turn in place. From these simulations, we can conclude that
existence of a periodic limit cycle is necessary to accumulate displacement. In this section, we
give a mathematical proof for why such a limit cycle exists and additionally, why it results in
displacement. We resort to arguments developed in Chapter 3 of this thesis and demonstrate that
the limit cycle can be interpreted as a ‘gait’. While technically the limit cycle is not a periodic
internal shape change, the resulting arguments can still be extended to periodic trajectories in
the orientation angle space. We will only consider the case where the swimmer does not have a
spring, as the driftlessness of the dynamics is essential to the ensuing development.

4.5.1 Decoupling system dynamics

Consider the differential equations governing the dynamics of the two link swimmer (Eq. 4.18).

q̇ = g1(q)Bx(t) + g2(q)By(t)

= G(q)u (4.18)

where q = (x, y, θ1, θ2), G(q) = [g1(q), g2(q)], u = (Bx(t), By(t)). We know that since the
magnetic field is spatially uniform, the (x, y) position coordinates do not have an effect on the
swimmer’s motion. The only state variables that influence the dynamics the orientation of the
swimmer’s links with respect to the external magnetic field. Therefore, the dynamics of the
position variables i.e. ṗ exclusively depend on the orientation variables (θ1, θ2). Similarly, the
dynamics of the orientation variables (θ̇1, θ̇2) also depend exclusively on (θ1, θ2). Hence, we can
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break Eq. 4.18 into two separate sub-systems as follows:

q̇ = G(q)u = G(θ)u

=⇒
[
ṗ

θ̇

]
=

[
P (θ)
H(θ)

]
u

=⇒ ṗ = P (θ)u (4.19)

θ̇ = H(θ)u (4.20)

where P (θ) ∈ R2×2 and H(θ) ∈ R2×2 . Assuming H(θ) is invertible on [−2π, 2π]× [−2π, 2π],
we can compute u from Eq. 4.20 and substitute in 4.19 as follows:

u = H−1(θ)θ̇ (4.21a)

=⇒ ṗ = P (θ)H−1(θ)θ̇ (4.21b)

=⇒ ṗ = J(θ)θ̇ (4.21c)

=⇒
[
ẋ
ẏ

]
=

[
j11(θ1, θ2) j12(θ1, θ2)
j21(θ1, θ2) j22(θ1, θ2)

] [
θ̇1
θ̇2

]
(4.21d)

where J(θ) = P (θ)H−1(θ). Note that Eq. 4.21c is in a form similar to the kinematic
reconstruction equation (Eq. ). However, note that in Eq. 4.21c the variables (θ1, θ2) refer to the
orientation of the swimmer relative to the world. They are indeed not internal shape variables
(which in this case would be α = θ2 − θ1). Additionally, the left hand side of Eq. 4.21c also
involves fiber velocities referenced relative to the inertial frame as opposed to the body velocities
ξ expressed in the body frame. Hence, we cannot model the problem with a principal fiber
bundle structure as in the case of the planar and 3D internally actuated swimmers. Nevertheless,
assuming for the moment that we can fully and independently control (θ1, θ2), it is possible to
compute the total displacement over a cyclic change in (θ1, θ2) as follows:

p(T ) =

∫ T

0

p(t)dt

=

∫ T

0

J(θ)θ̇dt

= −
∫
γ

J(θ)dθ

= −
∫∫
S

curl J dθ1dθ2. (4.22)

In Eq. 4.22, we have used Stokes’ theorem to simplify the problem of computing line integral
of the rows of J(θ) along (θ1, θ2) curves, to computing volume integrals defined over loops in
(θ1, θ2). Just like in the case of internally actuated 3D swimmer, we can now compute loops in
the (θ1, θ2) space to get a desired displacement of the swimmer in the world. Note however, that
since the left hand side of Eq. 4.22 gives the displacement in the world frame directly, we do not
have to worry about the discrepancy in the body velocity integral and the displacement in the
world. To illustrate this point further, we plot the curl of x and y components of curl J(θ1, θ2) in
Figure. 4.8. Additionally, we also superimpose the limit cycle (white) that results from exciting
the two link swimmer with crossed uniform and oscillating magnetic fields from Section. 4.3. As
one can notice, the white loop covers a net positive area in the x component of the curl J(θ1, θ2)
whereas it encloses a zero area in the y component of curl J(θ1, θ2). Hence, one can argue that
the swimmer undergoes a net translation in the Xw axis along the world, consistent with the
results from numerical simulations in Section 4.3.
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Figure 4.8: curl J computed over a [−π, π] × [−π, π] range for the magnetic swimmer. The
white loop illustrates the limit cycle behavior that results from applying utrans = (1, sinωt) to
two link magnetic swimmer. The loop in black is a candidate loop that also results in translation
along Xw axis

4.5.2 Novel motion primitives

One can extend this tool to synthesizing new control inputs that also result in translation along
Xw axis in the world. To that end, consider a time parametrized loop in the (θ1, θ2) defined as
below:

θd1(t) = 0.5 cosωt cos
π

4
− 0.25 sinωt sin

π

4
+

5π

4
(4.23a)

θd2(t) = 0.5 cosωt sin
π

4
+ 0.25 sinωt cos

π

4
+

3π

4
(4.23b)

This loop is depicted in black in Figure. 4.8. As one can notice, like the white loop, this
loop is also a candidate trajectory that should result in net translation of the swimmer along
Xw axis in the world. Using this parametrization, it is possible to compute a control law using
Eq. 4.21a which is computed point-wise in time:

u(t) = H−1(θd1(t), θd2(t))

[
θ̇d1
θ̇d2

]
(4.24)

We can then simulate the full system dynamics using this control law. The resulting displacement
of the swimmer is shown in Figure 4.9. As can be noticed from the figure, the swimmer indeed
undergoes translation along Xw axis in the world. Note that central to do designing control
inputs using this technique was the assumption that the matrix H be invertible. However,
we notice that H(θ) loses rank whenever the swimmer instantaneously passes through the
straightened configuration i.e. θ1 = θ2 as shown in Figure 4.8. We circumvented this problem in
defining the desired (θ1, θ2) trajectory to be away from this singularity.
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Figure 4.9: Translation of the two link swimmer corresponding to the magnetic fields computed
using Eq. 4.24 for the trajectory defined in Eq. 4.23a-4.23b

4.6 Experimental Results

4.6.1 Design of the setup

Figure 4.10 gives a solidworks schematic of the setup. The workspace is surrounded by four
coils. Since our swimmers our planar, we require a planar magnetic field i.e. it should have
two components B(t) = (Bx(t), By(t)). We use two pairs of Helmholtz coils to generate the
magnetic fields. Coils from Pair 1 generate magnetic field in Xw direction whereas coils from
Pair 2 generate magnetic field in the Yw direction. We use two Roboclaw motor drivers to
regulate the current through each pair. Using these drivers, we are able to command a desired
mathematical function of the required magnetic field at the center of the workspace. We used
a magnetometer to calibrate the current input to the coils with the generated magnetic field.
This calibration was ultimately reverse engineered to compute inputs to the drivers that will
generate a desired temporal field profile at the center of the workspace. Feedback information is
provided by a top view camera (Logitech C920). The coil system is able to generate a nearly
uniform magnetic field (∼ 200 Gauss) in the small region in the workspace in arbitrary planar
directions.

4.6.2 Swimmer Fabrication

We follow the procedure outlined in [12] to design elastomagnetic swimmers. However, instead
of encoding continuously distributed magnetization profiles in a continuum flexible swimmer, we
focus on magnetizations in individual links since we are interested in discrete swimmers. The
swimmer is fabricated by patching two/three elastomagnetic links with non-magnetic elastomer.
The patch constituting the bond between two links is flexible and it emulates the presence of a
torsional spring. Each individual elastomagnetic link is made using a mixture of equal parts of
unmagnetized ferromagnetic particles MQFP-B(D50=15µm) and Ecoflex 00-40 elastomer. The
resulting mixture is poured in molds of size 10 mm× 4 mm× 2 mm and allowed to cure for a
period of three hours.

The next step in the procedure is to encode the desired magnetization profile in the swimmer.
To be consistent with numerical simulations, we only encode longitudinal magnetization profiles
i.e. magnetization along the length of the link. We first describe the general procedure of
how to magnetize a single link, and then describe how to ensure a desired ratio of internal
magnetizations between consecutive links to respect the front back asymmetry.
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Figure 4.10: Illustration of the experimental setup used to generate planar magnetic fields

Figure 4.11: Schematic of the setup that generates H = 0.6 T field for programming the
magnetization profiles in magnetic elastomers

General Procedure:

We use a pair of strong neodymium magnets facing each other to generate a strong magnetizing
field to magnetize these a single link (see Figure. 4.11). Each link is suspended in the region
between these magnets at a suitable level and left for 24 hours to allow sufficient time for
magnetic domains to align unidirectionally. We assume that the strength of the magnetization
induced inside the elastomer M is directly proportional to the strength of the field at the
particular height in the space between the two magnets. We use a magnetometer to calibrate
the strength of the magnetic field between the two neodymium magnets against the height at
which the sensor is placed. This graph is depicted in Figure. 4.12. As can be seen, the variance
in the magnetic field over a height of 3 cms is very large, which warrants careful placement of
the single at the correct height.
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Figure 4.12: Distribution of magnetic field inside the magnetization setup as a function of height
(see Fig. 4.11)

Breaking front-back magnetic symmetry :

In this section, we describe a principled approach to program a desired ratio magnetization
profiles in individual links of the swimmers. As was demonstrated through numerical simulations
in Section 4.3, the two link and three link swimmers are capable of undergoing net displacement
only when the front back symmetry is broken i.e. m1

t 6= m2
t for the two link case and m1

t 6= m3
t

for the three link case. While in simulation it is easy to set these numbers to arbitrary values,
here we describe a systematic procedure to encode these ratios in the elastomagnetic swimmers.
To illustrate the idea, we recall the model of a single link magnetic swimmer. Using Eq. 4.4, we
can expand the dynamics as:ẋẏ

θ̇

 =
1

Tm

 3 cos2 θ
1.5 sin 2θ
−6 sin θ

Bx(t) +
1

Tm

1.5 sin 2θ
−3 cos2 θ

6 cos θ

By(t) (4.25)

where Tm = ξL2

MB
is the magneto-viscous time scale. We will consider the solutions to Eq. 4.25

with initial conditions θ(0) = 0 under the effect of the field Bx(t) = 0 and By(t) = 1. We are
interested in investigating the time the swimmer takes to turn to align itself with the magnetic
field as a function of the internal magnetization. Intuitively, the time the link takes to turn to
align itself with the external field should be inversely related to the internal magnetization as
a stronger magnet should respond faster. Hence the turning time can give us a good metric
to compare the relative strengths of two magnets, which can ultimately be used to verify the
ratios needed between two links of the magnetic swimmer.

For θ(0) = 0, Bx(t) = 0, By(t) = 1, the differential equations have an analytical solution
given by

θ(t) = 2 tan−1
(

tanh

(
3t

Tm

))
(4.26)

From this solution, we can see that eventually the link will align with the magnetic field i.e. as
t −→∞, θ(t) −→ π

2
. Instead, there is a finite time in which the link will be close to π

2
. From
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Figure 4.13: Turning time as a function of internal link magnetization. The blue curve is from
simulations while the red curve is from experimental data.

the analytical solution, one can easily compute that the time to turn Tturn ∝ 1
M

. Figure. ??
depicts the dependence of the time to turn by π

2
as predicted from simulations (blue) and as

determined from experiments (red). From the graph, one can verify that indeed the time to
turn varies inversely internal magnetization. Hence, this test can be used to compare internal
magnetizations of two links. Once we identify two links with different magnetizations such
as in the ratio of 1:2, we patch them together with an elastomeric bond which results in the
complete swimmer. From numerical simulations, we know for the two link swimmer that as
m2
t

m1
t

increases, the per cycle displacement of the swimmer increases until it saturates. To verify

this, we conducted experiments with three different swimmers with internal magnetizations in
the ratio of 1:2,1:3 and 1:4. In these experiments, the control input utrans(t) was applied for a
total duration of 200 cycles. Figure 4.14 depicts the displacements of the swimmer for these

different magnetizations and it is evident from the figure that increasing the
m2
t

m1
t

increases the

total distance traveled. In subsequent sections, we will demonstrate our results of translation

and turning in place using a two link swimmer with
m2
t

m1
t

= 4

Results for translation

We now present our results from applying utrans(t) = B0(1, sinωt). For these experiments, we
used B0 = 30 Gauss and ω = 2πrad/s. The swimmer was placed in the center of the workspace
where the field is approximately uniform. Then, we powered the coils which creates constant
field along Xw direction and sinusoidal in Yw. This was done by supplying time varying current
to the coils. The plot shown in Figure 4.15 depicts the translation of the tail of the two link
swimmer. These points were hand tracked using Tracker: Video Analysis and Modeling Tool.
As can be seen from the plot, the y component of the tail exhibits oscillations where as the x
component is monotonically increasing. We limited the duration of the experiment because the
region in which the swimmer is submerged does not have fully uniform magnetic field. Hence, as
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Figure 4.14: Distance traveled by three magnetic swimmers as a function of internal magnetiza-
tion ratios under B = 30 Gauss

the swimmer comes closer to the coils, eventually, the effect of force gradients starts to dominate
which creates an acceleration.

Results for turning in place

In this section, we depict the results of turning in place on the two link swimmer. For these
experiments, we used urot = Rωslowtutrans(t). The oscillating field frequency was still 1 Hz. We
considered two different frequencies for the slow rotation i.e. ω1

slow = ω
10

and ω2
slow = ω

100
. The

corresponding graphs from the locomotion are shown in Figure 4.16. In the Figure on the left,
the tail of the swimmer traces a circle. However, the undulations in the tip of the tail are not as
pronounced.
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Figure 4.15: x and y components of the trajectory of the two-link swimmer under utrans(t) =
B0(1, sinωt)
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Figure 4.16: x and y components of the trajectory of the two-link swimmer under urot =
Rωslowtutrans(t) for ωslow = 0.1(2π), 0.01(2π) rad/s
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Chapter 5

Conclusions and Future Work

In this thesis, we explored motion planning methods for two different types of swimmers
in the low-Re regime. We developed a mathematical model for a novel 3D swimmer and
demonstrated how using tools from geometric mechanics, we can synthesize motion primitives
for this swimmer that make it swim along a desired direction in the world. We also considered a
planar elastomagnetic swimmer, which was actuated using external magnetic fields. Due to this
form of actuation, we are unable to pose a reconstruction equation for this system. However, we
demonstrated that the special case of the two link swimmer is amenable to control synthesis
using similar geometric methods that were leveraged for gait synthesis for internally actuated
swimmers.

As an extension to these results, we would naturally like to extend these tools to design-
ing control inputs for three link magnetic swimmers and beyond. Although prior work has
demonstrated that numerical optimization and knowledge of backbone curves in snakes can
be leveraged to simplify geometric gait synthesis for internally actuated ‘N’ link snake robots,
these techniques cannot easily be extended to ‘N’ link magnetic swimmers. This is because
the magnetization constants in the links enforce a constraint on how links bend relative to one
another and hence a template serpenoid curve cannot be fitted without reasoning about internal
magnetizations. In the internally actuated robots, direct command over internal joint variables
provides the freedom to follow any backbone curve which reduces the dimensionality of the gait
synthesis problem. However, the process of reducing dimensionality for an ‘N’ link magnetic
swimmer requires reasoning about internal magnetizations as well.

Additionally, we would like to investigate stability properties of the limit cycles that result
from applying crossed uniform and transverse oscillating fields to the two link swimmer. As we
verified numerically, the two link magnetic swimmer has a large basin of attraction. However, the
stability properties of this limit cycle change depending on the relative internal magnetizations
between links. Hence, quantifying the stability as a function of internal magnetizations can be
used to inform the procedure to program these profiles in elastomagnetic swimmers.

Finally, although much of prior work has used numerical tools to identify conditions which
result in locomotion, we would like to explore if there are underlying symmetries in the problem
which give an intuitive reason behind the conditions that result in locomotion. For example,
when the links have front back symmetry in magnetizations, identifying velocity symmetries in
orientation dynamics provides an analytic way to reason about steady state solutions to the
system without having to numerically simulate the dynamics. The hope is that by identifying
structural symmetries in the dynamics, control inputs which exploit those symmetries can be
designed.
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[41] Marcus Roper, Rémi Dreyfus, Jean Baudry, Marc Fermigier, Jérôme Bibette, and Howard A
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