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Abstract

Autonomous exploration in rich 3D environments requires the construction and mainte-

nance of a representation derived from accumulated 3D observations. Volumetric models,

which are commonly employed to enable joint reasoning about occupied and free space,

scale poorly with the size of the environment. Techniques employed to mitigate this scal-

ing include hierarchical discretization, learning local data summarizations and occupancy

prediction through function approximation. However, these approaches either impose an

a priori environment discretization, which limits resolution adaption, or else require in-

put data sparsification or restrictive modeling assumptions to account for the computa-

tional expense of directly learning the volumetric occupancy model. This thesis proposes

to overcome these limitations through the use of Gaussian Mixture Models (GMMs) to

learn generative models of point cloud data. By learning the density function describing

the distribution of points in a measurement, it becomes possible to reconstruct occupancy

representations at arbitrary resolutions. Furthermore, the scaling issues associated with

large environments can be circumvented through the use of efficient local occupancy re-

construction. Specifically, numerical and approximate analytic techniques are presented for

computing occupancy from GMMs, which enables point-wise occupancy reconstruction in

a low-complexity manner. The proposed approach is evaluated in two complementary sce-

narios: firstly, as a method for generating arbitrary resolution occupancy maps through

comparison against state of the art continuous occupancy techniques and, secondly, as a

compact back-end for multi-robot information theoretic exploration in large scale, commu-

nication constrained environments. Results demonstrate the efficacy of the approach as a

high fidelity, low-bandwidth 3D point cloud representational framework.
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Chapter 1

Introduction

The objective of many exploration tasks include some element of time penalization. A

high rate of exploration is often desirable due to explicit task requirements, e.g. search and

rescue, threat localization or emergency response, or implicit system constraints such as

energy budgets. Achieving a high exploration rate in rich 3D environments requires an ef-

ficient environment inference framework amenable to high sampling rates. Unfortunately,

when cluttered 3D environments increase in size, the volumetric representations, such as

occupancy grids, that are typically employed become computationally expensive to main-

tain and perform inference over. There are several strategies that can be employed to com-

bat this scaling issue: hierarchical representation strategies can be utilized to group homo-

geneous regions, thus maintaining high frequency information only where necessary, local

data approximations can enable coarser discretization while maintaining some measure of

the data distribution, and occupancy data can be predicted through continuous function ap-

proximators which attempt to reduce complexity by capturing regularity in the volumetric

model. Hierarchical representations and local data approximations both suffer from a fixed

minimum representational capacity imposed by the complexity of the volumetric represen-

tation. Continuous function approximators similarly suffer from an minimum represen-
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tation complexity, although, in this case it is imposed by the computational complexity of

online training of high fidelity volumetric models. This thesis elects to follow an alternative

strategy of utilizing a surface model which implicitly encodes volumetric information. By

learning Gaussian Mixture Models (GMMs) as generative models of sensor observations,

both free space and occupied space information can be encoded. Subsequent reconstruction

of volumetric occupancy can be efficiently achieved through interpretation of the occupied

and free space evidence as samples from a Bernoulli Distribution. Furthermore, as the

GMM directly encodes sensor observations, it becomes possible to reconstruct volumetric

models at arbitrary resolutions, bounded primarily by the noise level in the observation.

While the representation capacity of the GMM is determined the model complexity, inte-

gration of the sensor noise into the learning procedure allows the model size to be matched

to sensor data.

Beyond efficient inference frameworks, the rate of exploration can greatly benefit from

the incorporation of multiple robots into the exploration team. This is especially the case

in large environments, where inter-robot trajectory overlap can be significantly reduced.

However, in order to achieve sufficiently high inter-robot separation, it is necessary for

agents to collaborate and share information - see Fig. 1.1 for a qualitative depiction of the

influence of information sharing on trajectory overlap. Unfortunately, sharing information

in rich 3D environments is expensive. For example, depth images generated by RGB-D

cameras have 640 × 480 pixels, which corresponds to 300 kB or 600 kB, depending on

the encoding. When operating at a sensor rate of 30 Hz, a throughput of 9/18 MB/s per

robot will almost certainly saturate any wireless network encountered during time sensitive

applications. This bandwidth restriction necessitates the use of depth image or point cloud

compression techniques. While many such compression techniques exist, computational

complexity is typically inversely proportional to the compression level. Furthermore, typ-

ical compression techniques do not produce a representation that can be utilized in other
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(a) Information sharing disabled. (b) Information sharing enabled.

Figure 1.1: Three agents explore an industrial environment. (b) When no communication occurs
between agents, the trajectories followed by each agent exhibit significant overlap. (a) Conversely,
communication between agents increases trajectory separation, resulting in greater efficiency in
terms of time and energy expended.

components of the robotic system. Through the use of GMMs as a compact representation,

significant compression levels can be achieved. Additionally, beyond use as a volumetric

occupancy model as discussed previously, the GMM can be leveraged to achieve robust

point cloud registration [38] and efficient collision avoidance [11]. Thus, the cost of the

generating the GMM can be amortized over many components in the robotic system.

1.1 Thesis Problem

This thesis focuses on the problem of environmental modeling frameworks for efficient

multi-robot exploration. Therein, this thesis tackles two sub-problems:

1. Generation of a compact occupancy representation that scales to rich, large-scale

3D environments and is amenable to efficient inference without overly restricting

representation scale.

2. Achieving a consistent global environment representation between distributed mem-
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bers in a multi-robot team through the use of low-bandwidth information transfer

between agents.

1.2 Contributions and Outline

This this provides three distinct contributions. First, an evaluation of Gaussian mixture

modeling techniques and their limitations is presented. Second, a framework is developed

to leverage GMMs as a compact generative model of sensor observations, from which a

volumetric representation of occupancy can be derived. As part of this framework, method-

ologies for evaluating the probability occupancy at individual points is presented. Finally,

the GMM based occupancy framework is applied as a back end to a multi-robot explo-

ration problem, demonstrating the ability of the approach to operate as a low bandwidth

representation for distributed teams.

The structure of the thesis is as follows. Chapter 2 presents background material and

relevant concepts. Specifically, extensive discussion of Gaussian Mixture Models and tech-

niques for learning their hyperparamters is presented. Additionally, relevant concepts and

the state of the art in probabilistic modeling, point cloud compression and information the-

oretic exploration are also introduced. Chapter 3 presents the GMM occupancy framework

along with evaluation of its accuracy in both 2D and 3D. Chapter 4 details the application

of the occupancy mapping system to a multi-robot exploration team and presents evalu-

ation in a large-scale, rich 3D simulated environment. Finally, conclusions and potential

directions for future work are presented in Chapter 5.
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Chapter 2

Background

This section will act as primer to the topics discussed in the body of the thesis. Firstly,

generative modeling of point clouds will be discussed, which will lead to a more focused

discussion on the learning of Gaussian Mixture Models over point clouds and the tech-

niques commonly employed to improve efficiency and/or accuracy of the learning process.

Secondly, the topic of occupancy mapping and surface modeling will be introduced. At-

tention will then switch to point cloud compression techniques - both lossy and lossless.

Finally, a brief background to information theoretic exploration will be provided, which

will motivate the need for probabilistic occupancy representations.

2.1 Generative Point Cloud Modeling through Gaussian

Mixture Models

We elect to model a point cloud of size N , Z = {zi ∈ Rn, i = 1, . . . , N}, as a set of i.i.d

samples drawn from a distribution p(z), which is supported over some subset of Rn. In

the applications discussed in this thesis, discussion will focus on n = 3 and in some cases

n = 2. The true nature of p(z) is unknown to us and, accordingly, we focus on techniques
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that approximate p(z), without necessarily capturing its true form.

A Gaussian Mixture Model (GMM) is a mixture distribution defined as weighted sum

of Gaussian distributions. Specifically, a K-component GMM, G, is defined as

G =
K∑
k=1

πkN (x|µk,Σk) (2.1)

where the component-wise hyper-parameters θk = {πk,µk,Σk} are the prior, mean, and

covariance, respectively. In order to maintain the validity of the distribution, the priors

(also known as the weights) must sum to one:
∑

k πk = 1.

While GMMs are often used as an unsupervised clustering method, they can also be

leveraged as a powerful density estimator. We approximate the point cloud generating dis-

tribution p(z) as a K - component GMM, denoted as G. Accordingly, we assume the point

cloud Z consists of N i.i.d samples from G. The maximum-likelihood framework can then

by applied to determine the hyper-parameters of G. Applying the independence assumption

and utilizing the GMM likelihood function Eq. (2.1), the log-likelihood function is given

by

ln p̂(Z|θ) = ln
N∏
i=1

p̂(zi|θ) =
N∑
i=1

ln
K∑
k=1

πkN (zi|µk,Σk) (2.2)

Equation (2.2) is non-convex and further more, due to the non-identifiability of the Gaus-

sian components, for each local-minima, there will be K! − 1 alternative parameter se-

lections that yield the same log-likelihood, i.e. switching the parameters of components i

and j will yield the same density. Of course, when performing density estimation, any of

the K! permutations will be equally valid, but the non-convexity of the function renders

the solution sensitive to initialization - a point we will re-visit later. Another issue with

Eq. (2.2) is that the sum inside of the log renders the cost function computationally ex-
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pensive to optimize, since optimization variables cannot be easily isolated. The de facto

standard approach to deal with this is the Expectation Maximization algorithm, which will

be introduced next.

2.1.1 Expectation Maximization

Expectation-Maximization (EM) is an iterative procedure first introduced by Dempster et

al. [10] that maximizes a lower bound on the log-likelihood. In the EM algorithm, we

note that maximization of Eq. (2.2) in closed form would be made possible if the latent

correspondence variables were known - i.e. which component generated each point. The

expectation step computes the expected value of the latent correspondence between point

zi and component k, which are commonly referred to as the “responsibilities”, γik

γik =
πkN (zi|µk,Σk)∑
k πkN (zi|µk,Σk)

(2.3)

Given the responsibilities, Eq. (2.2) becomes convex and can be optimized in closed

form by setting the respective derivatives to zero. The M-step updates the component

parameters through the following equations

πn+1
k =

1

N

N∑
i=1

γik (2.4)

µn+1
k =

∑N
i=1 γikxi∑N
i=1 γik

(2.5)

Σn+1
k =

∑N
i=1 γikxix

T
i∑N

n=1 γik
− µ(n+1)

k µ
(n+1)T

k (2.6)

The EM algorithm proceeds by iteratively performing the expectation (E) and maximiza-

tion (M) steps until the log-likelihood Eq. (2.2) converges to within some pre-defined

threshold. It is important to note that due to the introduction of the latent correspondence
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variables, the EM algorithm is in fact maximizing a lower bound on the log likelihood. For

more information on the application of the EM algorithm to GMMs, the reader is referred

to Chapter 9 of [5] and the tutorial by Sridharan [35].

2.1.2 Hierarchical Expectation Maximization

A significant issue encountered when learning GMMs through the vanilla EM algorithm

outlined in the previous section is the cost of computing the responsibility matrix Eq. (2.3).

Due to the nature of 3D geometry, the point cloud generating function, p(z), will be sup-

ported over some 2D manifold embedded in R3. This arises due to the fact that sensors

observe surfaces and not volumes.1 Accordingly, the responsibility matrix will have many

terms that are almost zero - note that due to the infinite support of the Gaussian distribution,

all entries will be non-zero given infinite numerical precision. The sparsity of the responsi-

bility matrix can be leveraged to achieve an efficient hierarchical EM approach as proposed

by Eckart et al. [14].

A K-component GMM is learned iteratively through a succession of smaller EM prob-

lems. For example, a K̂-component GMM is first learned on the point cloud Z of size N ,

which produces a K̂ ×N responsibility matrix. The point cloud is then partitioned into K̂

chunks according to the sparsity of the responsibility matrix, γij . Specifically, given some

threshold parameter λp, point i is assigned to all chunks j satisfying γij > λp. In order to

prevent points being discarded, each point is always assigned to its maximum responsibil-

ity component, that is γ∗i = argmaxj γij . Furthermore, in order to make λp more intuitive,

the partitioning function can be restated as

γij > λpγ
∗
i (2.7)

1 This may not be strictly true. In the case of transparent materials, it may be possible to observe the the
volume of points. This case will not be considered further.
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The partitioned point cloud can be considered as K̂ independent data sets for which K̂

GMMs must be learned. However, in order to prevent double counting data, point-wise

weighting must be introduced. Each point in the data set will be assigned a weight pi

derived from the partitioning process - this is initialized to 1 at the first layer. After the child

GMM has been learned, the partitioning stage allocates a weight to each point according

to the parent weight, p−i and the responsibility across the assigned chunks, C. The new

weight is given by

p+
i,j =

γij∑
j′∈C γij′

p−i (2.8)

In order to account for the new point wise weighting, the m-step of the EM algorithm must

be updated. In this case, the normalizing constant N in the mixing weights Eq. (2.4) is

replaced by
∑

i pi.

The iterative procedure outlined above is repeated for L iterations or until some alter-

native stopping criteria is achieved. Eckart et al. propose a stopping criteria based on the

ratio of eigenvalues of the covariance matrix. As stated previously, the generating distri-

bution p(z) is some 2D surface, and as a result, the Gaussian components learned will

tend towards becoming degenerate along one dimension. Using this insight, expansion of

the hierarchy along a given branch is terminated when a parent component satisfies the

criterion
mini λi,Σ

λ0,Σ + λ1,Σ + λ2,Σ

< λp (2.9)

where λi,Σ is the i-th eigenvalue of the covariance matrix Σ.

The hierarchical EM procedure can achieve a substantial reduction in computation. For

the purpose of illustration, assume that after learning a K̂ component GMM, the partition-

ing step yields K̂ equal sized chunks with some factor κ of soft assignments. This yields

K̂ problems each with data sets of size κN
K̂

. This process is repeated for L levels, which

can be determined based on the desired number of components L = logK̂ K. Thus, we see
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that the computation is reduced from O(NK) to O(κNK̂L) = O(κNK̂ log(K)), which

is an exponential reduction in K. Empirical results show a dramatic performance increase

with relatively little impact on modeling accuracy, see [14] for more details.

2.1.3 Initialization Strategies

The non-convexity of the log-likelihood cost function Eq. (2.2) makes the density estima-

tion problem sensitive to initialization. In order to increase the efficiency of the algorithm,

along with the accuracy of the solution it is important to consider the effect of initialization.

Here we briefly compare three initialization strategies:

• Random sampling: The means are determined by sampling K points from the input

point cloud. The covariances are isotropic with magnitude equal to the square of the

maximum dimension of the point cloud bounding box. The responsibility matrix is

computed using uniform weights.

• Uniform sampling over bounding box: The means are determined by sampling K

points uniformly from the the volume defined by the bounding box. The covariances

and responsibility computation is the same as the previous case.

• k-means: Points are hard-partitioned according to the k-means algorithm. Yielding

N 1 × K one-hot vectors, which are stacked to give the responsibility matrix. The

Scikit-learn implementation of k-means was used for this evaluation [27].

The listed initialization strategies were evaluated on point cloud data to assess both

efficiency and quality. The computational efficiency of the approach was determined by run

time and number of iterations required to converge. The initialization time was recorded to

account for the increased complexity of k-means.
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The quality of the model was assessed using the Peak Signal to Noise Ratio (PSNR)

as proposed by Eckart et al. [14]. The PSNR is computed by taking the inverse root-

mean-square-error (RMSE) between the source point cloud and a point cloud generated by

resampling from the Gaussian distribution. The error for a point in the resampled cloud is

defined as the minimum squared euclidean distance to any point in the source cloud, which

can be efficiently computed using a k-d tree. The RMSE is normalized with respect the

length of the diagonal of the bounding box containing the source point cloud. We note

that the PSNR as presented is non-symmetric, which results in no penalization for failing

to model regions in the source point cloud. We amend this through the two-sided PNSR,

defined as

PSNR2[dB] = 20 log
BBmax

RMSE(X, X̂)
+ 20 log

BBmax

RMSE(X̂,X)
(2.10)

where BBmax is the length of the bounding box diagonal and X̂ is the point cloud resam-

pled from the GMM.

The results of the initialization trials are shown in Fig. 2.1.

2.1.4 Component Pruning

Component pruning strategies are typically employed to reduce the complexity of the fi-

nal mixture models. The strategies employed are typically heuristic in nature, leveraging

geometric insights to discard components that do not capture a sufficient portion of the ob-

served distribution. In order to prevent data being discarded due to pruning, in the case of

hierarchical EM, the pruning strategies are applied before partitioning.

The most simple pruning strategy is based on the support size of the component, which

can be computed as Nj = Nπj (or Nj =
∑

i piπj in the case of hierarchical EM). When

the support - the number of points a component accounts for - is less than some threshold
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Figure 2.1: Comparison of initialization strategies on the training time (a) and the resulting quality
(b) of the GMM. Results indicate that while k-means initialization is more expensive, the subsequent
reduced number of EM iterations required to converge gives an overall reduction in run time. The
highest PSNR is seen for k-means with multiple restarts incurs a greater run-time cost, it results in
a higher quality model. Although, a single run of k-means demonstrates strong performance, with a
significant reduction in running time ( 25%). Results were generated for the numbers of components
in the set {4, 8, 32, 64, 128, 256, 512}.

λs, then component is discarded. This thresholding strategy heavily depends on the envi-

ronment of interest and can be overly aggressive in pruning components describing small

features.

A more robust pruning strategy can be achieved by leveraging the sensor model of the

component. Specifically, given a known range dependent point density, σ(r), components

with a support density below this value can be pruned. The (2− sigma) support density is

given by Nj

4π
√
λ0,Σλ1,Σ

, where λ0,Σ and λ1,Σ are the two largest eigenvalues of the covariance

Σj . This criterion implicitly assumes that the component is planar and as such, will strictly

over-estimate the point density, leading to a more conservative pruning policy than the

naı̈ve support based strategy.
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2.1.5 Alternative Learning Strategies

While expectation maximization is almost certainly the most widely used approach for

learning GMMs, other approaches exist and their competitiveness has been increasing in

recent times. Hosseini et al.[18] reformulate the log-likelihood objective on the product

manifold of (Rn × Pn)K , where P n is the manifold of n × n positive semi-definite ma-

trices. The reformulated cost function is optimized using first order techniques modified

for optimization on Riemannian manifolds: Conjugate-Gradient, LBFGS and stochastic

gradient descent. The results suggest faster convergence time than EM in some scenar-

ios. However, their algorithms were evaluated on high-dimensional data-sets with small

numbers of components (3-7), which may inhibit scaling as the dimension of the product

manifold scales exponentially in the number of components.

A not yet discussed problem associated with the maximum likelihood formulation is the

impact of singular components. As a component mean converges to an individual sample

point, the summation inside the log of Eq. (2.2) will contain a term of the form 1
(2π)d/2|Σ|1/2 .

Should the covariance go to towards zero (due to insufficient attractive forces from other

data points), this term will go to∞, which is desirable in terms of maximizing Eq. (2.2),

but is useless in terms of density estimation. While this problem can be alleviated through

component conditioning and singular component pruning, alternative strategies to MLE

exist which do not suffer from this problem.

Kolouri et al.[21] proposed application of the Wasserstein distance to GMM learn-

ing. In order to overcome the intractability of Wasserstein distance, a 1D sliced variation

is proposed, which utilizes random projections to approximate the full 3D cost function.

The optimization problem then consists of minimizing the distance between the target K-

component distribution and a distribution constructed from the original data set by placing

Gaussian kernels over each of the data points. Once again, the results are presented for rel-
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atively small mixtures (25 components), but the dimensionality is high (128-dimensional),

so scaling may be impeded.

Another strategy to overcome the limitations of MLE is maximum a posteriori estima-

tion through variational inference (see Chapter 10 of [5]). Variational inference can prevent

the solution overfitting individual data points through a suitably defined prior. Additionally,

the estimated posterior distribution gives a measure of uncertainty for the model, which can

be leveraged for the purposes of exploration. The approaches described thus far have each

required a pre-specified number of components (although this is somewhat overcome in

the hierarchical formulation). Rasmussen overcame this problem through the formulation

of the infinite GMM variational inference problem [30], which includes estimation of the

number of components into the inference problem. While this sounds promising, it is not

immediately clear how applicable such an approach would be to density estimation (as

opposed to clustering).

2.2 Probabilistic Environment Modeling

In the robotics community, occupancy grid mapping is the dominant technique used for

modeling occupancy. Occupancy grid mapping was first introduced by Elfes [16] as a

tractable framework to accumulate sensor measurements and interpret their combined in-

formation probabilistically. In order to render the approach tractable, cells in the grid are

assumed to be independent. This independence assumption coupled with a fixed discretiza-

tion of the environment can result in the classical jagged occupancy representation. The

independence assumption can be lessened through the use of ray potentials and surface

priors [26]. The result of this is an occupancy grid with smoother variations, which can

have the negative side effect of less defined edges. However, as with any MAP estimation,

sufficiently large data samples will force the ML solution to dominate.
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The many variants that have been proposed seek to overcome one or both of these

limitations. OctoMap [17], which is arguably the de facto standard occupancy mapping

framework, reduces the impact of fixed resolution through a memory efficient hierarchical

structure, enabling the use of significantly higher resolution. However, OctoMap still incurs

discretization errors due to fixed resolution at the lowest level. Recent work by Sun et al.

proposes to tackle the independence assumption in grid maps through a Gaussian Markov

Random Field, which decomposes a grid model into sub-grids with known inter- and intra

sub-grid dependencies [37]. Once again, the underlying discretization limits the resolution

of the model.

Continuous and semi-continuous approaches have been presented to mitigate against

discretization errors. NDT-OM [32] builds a 3D occupancy grid map where each occupied

cell contains a Gaussian Distribution to enable reasoning about the distribution of evidence

in the cells. Extensions to the NDT method have proposed OctoMap-like techniques to

allow for variable resolution NDT maps [15, 23]. Gaussian Processes (GP) occupancy

mapping techniques first introduced by O’Callaghan and Ramos [24] learn a continuous

representation of the environment using GP regression. GP occupancy maps, as first intro-

duced, suffer from poor training and test complexity, O(N3) and O(N2M), respectively

where N and M are the number of training and testing points. Several extensions have

improved data efficiency, the most recent of which achieves reduced training complexity

through recursive updates and reduced testing complexity through test data partitioning

[13]. Recently, Hilbert Maps [29] have been proposed as an efficient method of learning

occupancy models by training a classifier in a reproducing kernel Hilbert space. However,

due to the sharp transitions between occupied and free space, capturing the classification

boundary directly can be difficult, see Chapter 3 for more information.
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2.3 Point Cloud Compression

Compressing data requires a trade off between efficiency and fidelity. An increased com-

pression rate will typically require an increase in computation and conversely, increased

computational efficiency will typical result in lower compression rates. In mobile robotics

applications, real time viability on mobile computational hardware is a rigid constraint on

the design of a compression system.

An octree is commonly used as the base of compression algorithms due to the compact

representation and the discrete nature yielding regular bit patterns amenable to compres-

sion [33, 34]. Alternatively, depth images can be compressed directly [6] or images con-

structed from the 3D model [4]. Bell et al. utilize standard video compression techniques

to achieve streaming of high-resolution 3D data at sensor frame rate (30 Hz) - although,

a high powered desktop CPU and GPU were leveraged [4]. The results demonstrated us-

ing standard compression techniques are interesting given that lossy compression formats,

such as JPEG, are biased towards preserving colors in a manner consistent with the human

visual system. Recently, there has been increased focus on the streaming of high-resolution

depth video for augmented and virtual reality applications [4, 36]. Stotko et al. utilize local

model updates through voxel hashing to achieve a compact representation for transmission

[36]. While the authors demonstrate that compression can be achieved on a low compute

system, the discretization of measurements suffers from the same problems associated with

vanilla occupancy mapping.

There has been increased focus on the application of deep neural networks to point

clouds and training on small datasets has yielded some promising results [1]. Given a model

pre-trained on a sufficiently diverse dataset, only the relatively small latent space represen-

tation of an input point cloud would need to be transmitted (since each agent would have

an identical copy of the generative network). However, this approach has two limitations

16



that must be overcome: firstly, the need for pre-training requires the existence of a large,

diverse depth image database, which is currently unavailable. Secondly, it is likely that

online updating of the model would be necessary to ensure robust operation, which would

require efficient training schemes and a means for synchronizing distributed models.

2.4 Information Theoretic Exploration

Given a probabilistic representation of the environment, it becomes possible to perform

robot exploration through the optimization of an information theoretic objective. Charrow

et al. presented a objective based on the Cauchy-Schwarz Quadratic Mutual Information

(CSQMI)[8], which is derived from the Renyi’s entropy - a generalization of the Shannon

entropy (see [8] or Chapter 2 of [28] for more information). The CSQMI objective enables

trajectories to be selected based on a measure of the information they contain about the

environment being explored. Trajectories can be generated through optimization proce-

dures that maximize the CSQMI objective [7] or, after noting that mutual information is a

sub-modular function [22], through sampling based strategies.
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Chapter 3

Variable Resolution Occupancy

Modeling

Occupancy mapping is often applied as a basic framework for core capabilities of au-

tonomous systems. Occupancy maps have been leveraged for many applications: local-

ization, collision avoidance, exploration, environment reasoning, etc. Representing occu-

pancy in a probabilistic manner enables reasoning about the uncertainty in the occupancy

model that arises due to imperfect state estimation and noise in sensor measurements. Ap-

propriate accounting for this uncertainty is useful for increased robustness and a necessity

where error in the environmental model can result in catastrophic failure, e.g. planning

infeasible trajectories due to occupied space being modeled as free.

Although the world we seek to model is continuous, reasoning over continuous mod-

els is difficult due to the requisite integration over non-trivial spaces, which often ne-

cessitates numerical evaluation. A commonly employed mitigation strategy is the pre-

emptive discretization of the environment, typically through the imposition of a grid struc-

ture [15, 17, 20, 23, 24, 32], which renders evaluation of the model significantly less com-

plex. However, a priori discretization results in loss of information due to the non-invertible
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(a) (b) (c)

Figure 3.1: Gaussian mixture model occupancy mapping pipeline. (a) input pointcloud. (b) 850
component GMM with laser pointcloud overlaid. (c) Resampled pointcloud can be back-projected
to obtain free rays and integrated into an occupancy model to derive probability of occupancy.

mapping from measurements to discrete cells, i.e. it is known that a cell contains a mea-

surement, but it is not known where in the cell it lies. Approaches have been proposed

to mitigate against this ambiguity through increased resolution made feasible by multiple

levels of discretization that can be matched to the observed data [17]. Recently, there has

been a growing interest in direct modeling of the continuous distributions, from which oc-

cupancy models can be derived, or in some cases, the models can be leveraged for direct

evaluation [13, 29]. We propose to continue in this direction and build a compact generative

model of sensor measurements using Gaussian Mixture Models (GMMs).

By leveraging GMMs as a model of observed surfaces, we build what we term as a

mixture of Gaussian cones, which fully describes the continuous distribution of free space

evidence contained within the measurement. In this manner, we determine the evidence

of free space approximately for arbitrary shapes in 2D and polyhedra in 3D. We utilize a

Bernoulli Distribution to model the opposing evidence for occupied space encoded by the

GMM and the evidence for free space derived from the corresponding cones. We demon-

strate the accuracy and efficiency of this approach compared to state of the art discrete and

continuous methods.

This chapter details work presented in [25].
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3.1 Free Space Modeling

While a GMM G models the observed occupied space, it ignores the information contained

in the beams between the sensor and the end points. Free space can be modeled explicitly

by additionally learning a free space GMM F , whose components lie along the beams

associated with a component of G. However, this approach has two principle limitations:

Firstly, each occupied point corresponds to an infinite number of free space points lying on

the beam from the occupied point to the sensor location; Secondly, the free space evidence

resulting from an individual point is constant along the entire beam between the sensor

location and the occupied point, making Gaussian decay an inappropriate modeling choice.

We can overcome both of these limitations by acknowledging the implicit modeling of free

space embedded in the occupied space GMM G.

3.2 Mixtures of Gaussian Cones

Making use of the fact that the free space is entirely defined by the beam end point, we

propose to derive the free space model from the tuple {Gt, st}t=1,··· ,T , where st is the sensor

pose corresponding to the observation Zt on which the mixture model Gt was trained. The

free-space beams that connect the sensor location to a given occupied component, when

clustered, form an oblique cone, as shown in Fig. 3.2. The evidence of free space at a

given point x is the evidence of an occupied point lying beyond x along the ray originating

at the sensor location and passing through x. The evidence for free-space in a region V ,

is given by the evidence of occupancy contained within the truncated polygonal pyramid,

with apex and shape defined by the spherical polygon derived from the projection of the

volume V onto a sphere centered at the sensor location. We utilize this fact to derive an

analytic expression for the free-space evidence in 2D. However, due to a non-trivial region

20



(a) (b)

Figure 3.2: Probability cone for a Gaussian component of the observation model. (a) The 3σ gray
ellipsoid shows the input space occupancy distribution. The free space distribution is shown by
the blue rays. The orange rays show the evidence for free space in the red voxel. (b) The same
ellipsoid and voxel after applying the isotropic transformation to enable the analytic free space
computation. Note the significant stretching induced along the radial direction (in arbitrary units)
due to the approximate planar nature of the input space GMM.

of integration, to the best of the authors’ knowledge, direct extension of this approach to 3D

is not possible (see Section 5.2 for more information). Instead, we develop two alternative

techniques: integration over bivariate Gaussians through polygon projection and fast Monte

Carlo ray tracing.

The free space evidence integral can be expressed as

Evidence(x) =

∫
V

p(x)dx (3.1)

The nature of the volume V makes parameterization in spherical coordinates a natural

choice. Before performing the coordinate transformation, it is necessary to transform the

occupied Gaussian to be isotropic. This is achieved by the mapping xI = S
−1/2
k V T

k (x −

µk), where V kSkV
T
k = Σk is the singular-value decomposition of the anisotropic covari-

ance matrix.

A single Gaussian component in this new space is given by

p(xI) =
1

(2π)3/2
exp (−1

2
(xI − pk)T (xI − pk))
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where pk is the sensor location corresponding to component k. Finally, we apply a rotation

Rk, such that the component mean lies along a co-ordinate axis, i.e. in 2D, we rotate the

mean onto the x-axis, such thatRkpk =

[
pk,x 0

]>
.

3.2.1 2D Occupancy Grids

In the 2D case, we reparameterize Eq. (3.1) to polar coordinates and rotate the mean onto

the x-axis

E(x) =
1

2π

∫
V

re

− 1
2

∥∥∥∥∥∥∥∥∥∥


r cos θ

r sin θ

−

px

0


∥∥∥∥∥∥∥∥∥∥

2

2drdθ

=
1

2π

∫
V

e−
1
2
p2x sin2 θre−

1
2

(r−px cos θ)2drdθ

=
1

2π

∫
θ

e−
1
2
p2x sin2 θ

∫ ∞
r′

re−
1
2

(r−px cos θ)2drdθ

=
1

2π

∫
θ

e−
1
2
p2x sin2 θ

[
e−

1
2

(r′−px cos θ)2+(
1− erf

(
r′−px cos θ√

2

))√
π
2
px cos θ

]
dθ

(3.2)

The final integral has no closed form solution in general. However, we note that due to

the phase offset between sine and cosine, the first term has negligible contribution except

around θ ≈ 0. In this case the term reduces to exp(−(1/2)(r′ − px)
2), which has value

of 1 for r′ ≈ px. However, since the mean px is typically very large (due to the isotropic

transform significantly stretching the along beam direction, see Fig. 3.2), the contribution

of this term to the integral is negligible. We can apply the same logic to approximate the
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(a) Error in Eq. (3.3) for 1cm cell.
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(b) Error in Eq. (3.7) for 10cm voxel.

Figure 3.3: Absolute error in the free space approximation for 2D (a) and 3D (b). The error was
calculated as the difference between the Monte Carlo ray tracing estimate and the analytic value for
the probability of occupancy due to a single Gaussian component observed from the origin.

term inside the error function as constant evaluated at θ = 0.

E(x)≈ 1
√

8π

∫
θ

e−
1
2
p2x sin2 θ

(
1−erf

(
r′−px cos θ√

2

))
px cos θdθ

≈ 1
√

8π

(
1−erf

(
r′−px√

2

))∫
θ

e−
1
2
p2x sin2 θpx cos θdθ

≈ 1

4

(
1−erf

(
r′−px√

2

))(
erf
(
px sin θ2√

2

)
−erf

(
px sin θ1√

2

))
(3.3)

Here, we determine θ1 and θ2 from angle centered on the sensing location that bounds the

transformed cell. Additionally, the radial term r′ is given by the closest radial point, which

is a faithful approximation for cells outside of the 3-sigma occupied ellipse. Fig. 3.3a shows

the approximation error for a range of values for r′ and px.

3.2.2 3D Voxel Grid

Direct extension of the 2D approach to 3D is not possible, see Section 5.2. However,

noticing that components are approximately planar (see Fig. 3.2a), the problem can be
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converted to the integration of a bivariate Gaussian over a convex polygonal domain. The

domain of integration is determined by the projection of the voxel of interest to the plane

defined by the eigenvector of the Gaussian covariance corresponding to the the smallest

eigenvalue. The bivariate Gaussian is defined by the remaining two dimensions of the

3D Gaussian and the isotropic transform outlined in Section 3.2 is applied. As this is an

affine transform, the convexity of the projected polygon is preserved. This 2D integral

has received some attention in the numerical integration literature [3, 12], however, these

approaches are designed to provide significantly higher accuracy than is necessary for our

application. A less complex, albeit less accurate, strategy can then be achieved through

application of Green’s Theorem

1

2π

∫
P

e−
1
2

(x2+y2)dxdy =
1√
8π

∮
∂P

e−
1
2
x2erf(

y(x)
√

2
)dx (3.4)

The path of integration ∂P is defined piece-wise as the line segments defining the edges

of the polygon traversed in counter clock-wise order. Unfortunately, the path integral

Eq. (3.4) has no-analytic solution. This is remedied by introducing the function e(x) =

1 − exp
(
− 2
π
x(x+

√
π)
)
, from which a piece-wise approximation of the error function is

constructed.

erf(x) ≈ ê(x) =


e(x) x ≥ 0

−e(−x) x < 0

(3.5)

This approximation has a maximum absolute error of 0.0140, a maximum absolute relative

error of 0.0166 and an average absolute error of 0.0048, which is sufficiently accurate for

our application.

Each edge k of the NP edges in ∂P is defined by the line y = mkx + ck. The path
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integral Eq. (3.4) can be decomposed into a sum of integrals along the edges

1√
8π

NP∑
k=1

∫ xk+1

xk

e−
1
2
x2 ê(mkx+ ck)dx (3.6)

The solution for each edge integral, Ik, is given by

π
√

2

em2
k−ck(2syck+

√
2π)

dk

√
dk

erf
(
mk(2syck+

√
2π)+sydkx

√
2πdk

)
−syerf(

x
√

2
)


where dk = 2m2

k + π and sy = sign(y(x)). Due to the piece-wise definition of ê(x), it is

necessary to evaluate Ik in a piece-wise manner. If the sign of yk and yk+1 differ, then the

Ik must be evaluated at the x intercept (xz = − c
m

). In general, the solution to Eq. (3.4) is

given by
1√
8π

NP∑
k=1

(
Ik|xk+1

xz − Ik|xzxk
)

(3.7)

3.2.3 Monte Carlo Estimation

While the previous expression is useful for computing the free-space evidence at a point,

a more efficient method can be used for computing the voxel grid representation of the

environment through the use of ray-tracing [2]. Specifically, we utilize the intuition from

Fig. 3.2 and sample beam end points from the occupancy model. For each sampled point,

we perform ray tracing to the corresponding sensor location to determine the intersected

voxels. This method naturally captures the dependence of the free space on the observations

and removes the need to store two separate mixture models.
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3.3 Occupancy Modeling

It is possible to determine the number of observed points in any volume by solving the

integral

NH
V = N

K∑
k=1

πk

∫
V

N (x|µk,Σk) (3.8)

Since this integral cannot be computed in closed form, we evaluate Eq. (3.8) for G using

Monte Carlo sampling. The free space evidence NH
V is then determined by performing

ray casting using the resampled points as described in Section 3.1. Alternatively, we can

compute the free space evidence using the result Eq. (3.3) in 2D or Eq. (3.7) in 3D. We

model the probability of occupancy as a Bernoulli distribution over every volume V in

space. Specifically, we have p(o|V ) ∼ θ(o)(1 − θ)(1−o), where o = {0, 1} is the binary

occupancy variable. The maximum a posteriori estimate of the distribution parameters is

given by

θMAP =
NH
V +Np

NH
V +NM

V + 2Np

(3.9)

where Np is the contribution due to the prior and is user-defined to control the sensitivity of

the distribution to new observations. The prior model forces all unobserved points to have

a probability of occupancy of 0.5.

It is important to note that the voxelization presented here is not the same as standard

voxel grid mapping, since we merely use the voxel grid as a convenient interpretation of

the underlying, continuous GMM. We could equivalently compute the occupancy in an

arbitrary discretization of the space. However, this would likely preclude the use of the

proposed efficient Monte Carlo ray tracing strategy and would instead require computation

of the intersection between the discretized shapes and the sampled beams.
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Figure 3.4: Area under the ROC curve for 10cm and 1cm resolution occupancy grids. Raw occu-
pancy maps and both GMM variants show equivalent performance superior to that of Hilbert maps.
The strong performance of standard occupancy grids can be attributed to the density of the data
relative to the resolution. In the case of 1cm grids, this measurement density is no longer sufficient.

3.4 Results - 2D GMM Occupancy Modeling

The 2D occupancy model was tested on the Intel Research Lab environment from the

Robotics Data Set Repository (Radish) [19]. The Monte Carlo and Analytic Approxi-

mation GMM occupancy reconstruction approaches were compared against standard occu-

pancy grid mapping and the recently proposed Hilbert maps [29]. We evaluate the robust

of the approaches to data sparsity and the accuracy of the approaches for reconstruction at

high fidelity. In order to compare against Hilbert Maps, we use the code provided by the
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Figure 3.5: Occupancy Grid maps generated at 1cm resolution. Both GMM methods demonstrate
the ability to generalize beyond the raw sensor measurement. The basic occupancy grid map (bot-
tom right) shows inadequacy of the sensor density for this mapping resolution. The Hilbert Map
generates an overly conservative estimate, resulting in incorrectly modeling free space as occupied.

authors1 with the recommended parameter settings as in [29].

The accuracy and robustness of the proposed approach to sparsity in the observed data

is shown in Fig. 3.4. We see that for 10cm resolution, the grid size is well matched to

the density of the sensor and occupancy grid maps yield very strong performance, which

is matched by that of the two variants of the proposed approach. As the resolution is

increased to 1cm, the sparsity in the data and the independence assumption inherent in

1https://bitbucket.org/LionelOtt/hilbert_maps_rss2015
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occupancy grids results in reduced performance. Since the proposed analytic approach

is less efficient for large grid sizes, we evaluate only the Monte Carlo strategy. We see

comparable performance to the 10cm resolution grid for up to 70% data sparsity, after

which point the sparse data combined with the high resolution results in regions with little

evidence. However, we note that at both resolutions, the proposed approach out performs

Hilbert Maps, which has a fixed intrinsic resolution determined by the kernel parameters

used to learn the classifier.

The performance of the proposed approaches is compared qualitatively in Fig. 3.5. In

the top row, the dense occupancy grids demonstrate the ability for the proposed approaches

to reconstruct at high resolution. In the bottom left, the sparsity in standard occupancy grid

mapping can be clearly observed. In the bottom right, we see the continuous occupancy

distribution generated using Hilbert Maps. The magnified regions illustrate the sparsity in

occupancy mapping and the conservative nature of Hilbert Maps, resulting in designation

of the corridor as occupied. For the two proposed approaches, we see some free space evi-

dence outside of the corner, which occurs due to the infinite extent of the GMM. However,

we note that the occupied space is appropriately designated.

3.5 Results - 3D GMM Occupancy Modeling

The GMM occupancy model was tested with two datasets: a mine dataset (reconstruction

shown in Fig. 3.6b) and the Freiburg campus dataset (raw pointcloud shown in Fig. 3.7a).

For each pose and pointcloud, a free and occupied GMM were computed to represent the

environment. 106 points were sampled from the GMMs, rays were computed from the start

position, and the rays the probability of occupancy was updated in an occupancy grid map

with 25 cm voxels. To determine the accuracy of reconstruction, the Area under ROC (AU-

ROC) was computed for datasets with a varying percentage of observations removed. This
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Figure 3.6: (a) The effect of data sparsity on the fidelity of the map is measured by computing
the area under curve for several models constructed by increasingly reducing the percentage of
observations removed from the original data. (b) illustrates the GMM reconstruction of the map
when training on all of the data. Free space is shown in white and the trajectory is shown in red.
The occupied regions are shown with varying colors from yellow to blue according to height along
the z-axis.

was compared to the accuracy of an occupancy grid map in Fig. 3.6a. The approximately

continuous GMM occupancy model consistently outperforms the occupancy grid map and

AUC Memory Usage (Bytes)
GMM Number of Components

0.8179 40,000 1000
0.8072 20,000 500
0.8055 10,000 250
0.7849 4,000 100

BGK Number of Points
0.7603 204,132 17,011
0.7182 113,664 9,472
0.6338 60,120 5,010
0.5845 37,140 3,095
0.5428 18,660 1,555

Table 3.1: AUC for given memory usage of GMM occupancy model compared to the performance
of BGK inference occupancy maps. The GMM is better able to reconstruct the occupancy informa-
tion in the environment with 50× less data than the Bayesian Generalized Kernel inference approach
for occupancy mapping.
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(a) (b) (c)

Figure 3.7: (a) Raw pointcloud from Freiburg campus dataset with coloring according to localiza-
tion along the z-axis (total is 447,528 points and approximately 5.12MB of data assuming 32-bit
floats). (b) Reconstruction of occupied regions with BGK inference for occupancy maps using 9472
points (111 KB data storage requirement). The voxels displayed are those with a probability of
occupancy greater than or equal to 0.65. The AUC is 0.72. (c) Reconstruction of GMM map using
1000 components (40 KB data storage requirement). The AUC is 0.82.

(a) (b) (c) (d)

Figure 3.8: (a) A pointcloud of a courtyard and bike rack from the Freiburg campus dataset. (b) A
railing is outlined in red. (c) The occupied points from the occupancy grid map derived from Monte
Carlo resampling of a GMM consisting of 200 components and thresholded using a variance of
0.06. (d) The occupied points from the occupancy grid map derived from Monte Carlo resampling
of a GMM consisting of 850 components and thresholded using a variance of 0.06. The AUC for
(c) is 0.79 and the AUC for (d) is 0.82. For both GMMs the railing is properly reconstructed and
identified as an obstacle.

as the number of points in the training dataset decreases, the GMM occupancy model is

better able to infer the free and occupied spaces.

The key advantages of the GMM occupancy model over state-of-art occupancy map-

ping approaches like the occupancy grid map, Octomap, or Bayesian Generalized Kernel

(BGK) Inference for occupancy map prediction [13] is the ability to correct for small or

large changes in pose without the need to regenerate the entire map. BGK occupancy
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mapping requires significantly more data storage to regenerate the map as can be seen in

the results from the Freiburg Campus Dataset in Table 3.1. BGK maps must store approxi-

mately 50x more data than the GMM occupancy model to obtain the same level of accuracy.

Furthermore, the timing needs for regenerating the entire map are prohibitive for real-time

applications. Individual voxels cannot be meaningfully rotated and translated; however,

individual components of a GMM are easily translated and rotated to correct for errors in

pose [31].

The GMM infers the presence of occupied space in the neighborhood of observed

points. However, the inferred occupied space may be unobservable from the sensor lo-

cation due to occlusions from other surfaces. As a result, the inferred density may con-

tribute erroneous free space evidence. For example, Fig. 3.8a depicts a laser scan from the

Freiburg campus dataset that exhibits clutter and challenging surfaces to model in the form

of a railing outlined in Fig. 3.8b. The inferred, but unobserved, portion of the wall con-

tributes free space evidence to the voxels containing the railing, resulting in the probability

of occupancy dropping for the railing voxels. To account for such situations, we leverage

the variance of the voxels to determine the occupancy classification levels. The variance of

a voxel is simply the variance of a Bernoulli random variable

σ2 = p(xi)(1− p(xi)) (3.10)

The variance quantifies the uncertainty in the occupancy value of the cell and introduces

a dead-band region in which voxels remain unclassified. The occupied/free thresholds are

given by 1
2
(1 ±

√
1− 4σ2). Appropriate selection of σ2 ∈ [0, 0.25] enables a threshold to

be applied depending on how conservative we wish to be for a given application. Fig. 3.8c

illustrates the occupied cells when a variance thresholding is applied when reconstructing

a GMM with 200 components. The railing is well represented in the reconstruction and the
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AUC is 0.79. Fig. 3.8d illustrates the same result with 850 GMM components and an AUC

of 0.82.
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Chapter 4

Distributed Mapping with Limited

Communication for Multi-Robot

Exploration

When performing multi-robot exploration with high density sensors such as RGB-D cam-

eras, network utilization can quickly saturate due to the high volume of measurement data

transfer. In this work, Gaussian Mixture Models (GMMs) are employed to achieve a high

fidelity generative model of sensor measurements. In coming sensor measurements are

modeled as GMMs and the compressed model is shared across the multi-robot team (Sec-

tion 4.2). The reduced memory complexity of GMMs are further leveraged to enable ex-

ploration in large environments where the maintenance of a high fidelity occupancy is in-

feasible. A sliding voxel map representation (Section 4.1) is employed to overcome this

challenge and is efficiently regenerated through Monte Carlo ray tracing of points resam-

pled from the GMM. Finally, the local occupancy representation is leveraged to discard

low utility points (Section 4.1.2).
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Figure 4.1: Multi-robot exploration system diagram. Solid lines represent local data flow at each
member of the team. Dash lines represent information transmitted between team members over the
network. The blue region depicts the GMM based mapping framework, which utilizes a local sliding
occupancy grid map to identify the novel subset of each depth measurement. The novel subset is
used to update and create components in the local GMM. Changes to the local GMM are transmitted
across the network to other members of the team. The consistent global map is used to update the
sliding occupancy representation, which tracks the agent as it moves through the environment. The
local occupancy model is passed into the planner (red region), which performs information theoretic
trajectory optimization using Monte Carlo Tree Search.
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4.1 Sliding Voxel Map

The cost of maintaining a voxel map scales with the volume of the environment of interest.

A robot centric, fixed size, sliding voxel map is employed to overcome this scaling issue.

The voxel map is centered on the robot’s location in world coordinates. The robot’s ori-

entation is ignored to circumvent the non-linear effect of rotation. Each time a new depth

measurement is received, the sliding voxel map is updated. Based on the new map loca-

tion, a local GMM, GL, is generated by selected the relevant subset of components from

the global GMM. The local GMM is then used to update the voxel grid as detailed Sec

4.1.1. The updated map is used to identify the novel subset of the received measurement

as detailed in Sec 4.1.2. The high frame rate of the depth sensors employed on exploration

platforms results in small robot motion between sensor measurements. After updating the

robot location, the new voxel map typically contains a substantial portion of the previous

voxel map. The cost associated with memory copies is avoided by implementing the sliding

map as a circular buffer, see Fig 4.2.

4.1.1 Monte Carlo ray tracing

Conversion between the GMM and the voxel map is achieved via Monte Carlo ray tracing.

In principle, the GMM provides an analytic representation of both the occupied and free

space evidence in each measurement. However, in R3, it is not possible to extract this

evidence for a given volume (e.g. a voxel) in closed form. Accordingly, Monte Carlo

sampling and ray tracing is employed to extract the occupied and free space evidence from

the GMM. This amounts to drawing samples ZR from GL and performing ray tracing with

ZR in the standard occupancy mapping fashion [2]. The reduced mixture model GL consists

of the subset of G relevant to the current local voxel map. The relevant subset is defined

a set of components with mean or sensor location within a bounding box centered on the
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Figure 4.2: Sliding grid map and resampled ray trimming. After robot motion, the hatched region
is out of bounds, its memory is reset and mapped to the new region, shown in gray. The trimmed
portions of the resampled beams are shown in red and the portions used to update the map are shown
in green.

robot position. The bounding box is box is set to be slightly larger than the sliding map in

order to capture components that partially overlap with the map.

Due to the sliding voxel map representation, portions of resampled beams may already

be contained in the map. In order to prevent double counting, beams corresponding to

components already in the map are trimmed. The trimming process is detailed in Fig. 4.2.

4.1.2 Point novelty check

In typical robotic mapping applications, only a subset of each measurement will be novel.

In order to increase the time and memory efficiency of the model, points below a pre-
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defined novelty threshold are discarded. There exist many strategies for computing point-

wise novelty [9]. In this application, the novelty of a point is defined as the entropy reduc-

tion achieved by the ray r from the sensor location to the point. The entropy reduction is

computed by performing ray tracing on the local occupancy map and summing over over

the cell-wise entropy delta. Any beams that intersect with previously unobserved space are

considered sufficiently novel.

4.1.3 Component updating

The robustness of the occupancy map to measurement noise is increased by requiring sev-

eral agreeing measurements to drive a voxel to an occupied or free state. As a result,

beams that are considered novel may have been previously observed. In order to reduce the

complexity of the model, the GMM is queried to determine whether existing components

well model the novel beams. Points that contribute novel occupancy only can be checked

directly against the components alone. Specifically, for each novel point zn and each candi-

date component k, the Mahalanobis distance is computed, dn,k = (zn−µk)TΣ−1
k (zn−µk).

The distance dn,k is compared against a threshold dll and each valid component is updated

with the fractional point d−1
n,k/

∑
dn,i<dll

d−1
n,i . In the case that the beam contributes free space

entropy reduction, the valid set is to further constrained to satisfy ‖sk − s‖2 < ds, i.e. the

current sensor location s is near the sensor location sk from which the given component

was observed.

4.2 Distributed Mapping

The principle motivation for the use of GMMs is their substantial reduction in complex-

ity compared to raw point clouds. Leveraging this property enables a simple distributed

mapping framework whereby each robot shares all novel components and all component
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updates computed after each new local depth measurement is received. The result of this

paradigm is that, barring communication failures, each robot maintains a complete global

representation of the environment. The issue of communication failure is relegated to future

work.

Novel data is shared in two forms. In the case of previously unseen components, the

message consists of six fields:

1. id: Unique ID derived from the source robot ID and a local storage ID

2. num points: Number of points supporting current component

3. sensor loc: Position of sensor at time of observation

4. mean: Component mean

5. covariance: Size upper triangular components of the covariance matrix

6. max range: Binary flag denoting support points are maximum range measurements

When signaling the update of a previously observed component, only the id and the new

number of support points are shared.

4.3 Information Theoretic Exploration

The information theoretic exploration strategy used as part of the multi-robot system is

not a contribution of this thesis. However, it is outlined here in brief for the sake of com-

pleteness. The exploration system optimizes a combined local and global information gain

objective through Monte Carlo Tree Search. Local information gain is evaluated using the

Cauchy-Schwarz Quadratic Mutual Information (CSQMI)[8] between an observation and

the underlying map. Global information gain is derived from a view library that records
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(a) Exploration visualization (b) Environment rendering

Figure 4.3: (a) Three robots (circled in white) perform an exploration task in (b) a complex unstruc-
tured 3D environment.

previously considered views that were predicted to be informative, but have not yet been

visited. The view library is shared across all robots in the team to reduce redundancy in

selected actions.

4.4 Results

The performance of the proposed exploration is evaluated quantitatively using map entropy

reduction versus time and model complexity versus time. A common exploration objective

is the minimization of map entropy and typically it is desirable to reduce entropy in the

shortest time possible. Accordingly, the rate of entropy reduction can be used to evaluate

performance. The rate of entropy reduction can be increased through inter-robot collabo-

ration in a multi-robot team. Collaboration necessitates inter-robot communication. The

complexity of the model is used to assess the amenability of the framework to information

sharing and, by proxy, inter-agent collaboration.
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Figure 4.4: Entropy reduction achieved by the three evaluated approaches vs time. GMM based
occupancy modeling achieves comparable performance to standard occupancy grid mapping.

Simulation experiments for the proposed approach were conducted in a high fidelity,

rich 3D warehouse environment as shown in Fig. 4.3. Three quadrotor vehicles are used in

all trials, each equipped with a forward facing depth sensor. Robots are placed at random

starting positions for each trial and explore the environment for a fixed duration of 1600.

Three alternative frameworks were compared and five trials were run for each framework.

The evaluated frameworks were:

• E0: GMM derived occupancy modeling with inter-robot information sharing (infor-

mative views and GMMs).

• E1: Standard occupancy mapping with inter-robot information sharing (informative

views and novel points).

• E2: Standard occupancy mapping with no inter-robot information sharing.

Entropy reduction over time shown in Fig. 4.4 demonstrates that the reduced complexity

of GMM occupancy has no significant impact on the rate of exploration in the environment.
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Figure 4.5: Reduction in information transferred between simulated agents communicating over
UDP on a local network as illustrated by a reduced bandwidth utilization. The GMM framework
demonstrates substantial reduction in memory complexity compared to the transmission of uncom-
pressed novel portion of the observed point cloud.

Furthermore, Fig. 4.5 demonstrate the substantial reduction in network utilization when

observations are shared using GMMs versus the novel components of the observed point

clouds. The novel sub-cloud is computed as detailed in Section 4.1.2.
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Chapter 5

Conclusions and Future Work

5.1 Summary

This thesis presented a framework for leveraging compact generative models of point cloud

observations to achieve volumetric occupancy models, which can be utilized as a low-

bandwidth back end for multi-robot exploration. Chapter 3 presented the variable resolu-

tion occupancy mapping framework, which reconstructs occupancy grids from Gaussian

Mixture Models. Techniques were presented to compute occupancy for individual regions

based on approximations to analytic integrals over Gaussian cones. Additionally, Monte

Carlo based integration is presented to enable efficient reconstruction of large occupancy

regions using standard ray tracing techniques. The GMM based occupancy reconstruction

framework showed favorable performance compared to both 2D and 3D occupancy grid

mapping in terms of memory complexity and accuracy. Furthermore, results also demon-

strated increased performance over continuous mapping techniques - Hilbert Maps in 2D

and Bayesian generalized kernel inference occupancy mapping in 3D.

In Chapter 4, the GMM occupancy modeling framework was applied to multi-robot

exploration as a low-bandwidth back end. In order to enable operation in large scale
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environments, a sliding voxel map representation was presented. Efficient updates were

achieved through selection of the relevant Gaussian components and bounding box based

ray trimming to enable partial map updates. The mapping back end was evaluated on a sim-

ulated three robot team exploring a large 3D warehouse environment. Results demonstrate

that GMM occupancy mapping achieves a comparable entropy reduction rate to standard

occupancy grid mapping but with an order of magnitude reduction in cumulative shared

information.

5.2 Future Work

Future work will focus on increased incorporation of the sensor model into the GMM learn-

ing framework to achieve increased fidelity in the generated model. Through appropriate

reasoning about the observation model, it may be possible to explicitly optimize for near-

planar Gaussians. Through such a strategy, it would become possible to extend to 3D the

projection based integral approximation detailed in Section 3.2.2. Additionally, improved

approximation strategies for the 3D free space integral will be explored along with devel-

opment of highly parallel evaluation on a GPU. Through this line of work, it may become

possible to achieve efficiency beyond that of the Monte Carlo approach.
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Appendix 3D Voxel Grids - Angular

Integration

Following a similar approach to the 2D case, we arrive at an integral over the angular

coordinates θ and φ. Applying the standard transformation to spherical coordinates yields

p(r, θ, φ) =
1

(2π)3/2
e

− 1
2

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



r cosφ sin θ

r sinφ sin θ

r cos θ


−



0

0

pz



∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2 (5.1)

=
1

(2π)3/2
e−

1
2
p2z sin2 θe−

1
2

(r−pz cos θ)2 (5.2)

The volume integral can be specified in spherical coordinates as

Evidence(x) =

∫
V

p(r, θ, φ)r2 sin θdrdθdφ (5.3)

Integrating out the radial dimension (from r′, the distance to the closest point of interest)

allows the angular distribution to be specified in terms of the complementary error function
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Figure 5.1: Spherical polygon describing the angular region of integration projected onto a sphere.
(b) The corresponding angular region of interaction is significantly more complex.

erfc(x). For brevity, we denote s(θ) = sin θ and c(θ) = cos θ.

E(x) = 1

(2π)
3
2

∫
φ,θ

e−
1
2
p2zs

2(θ)s(θ)

∫ ∞
r′
r2e−

1
2

(r−pzc(θ))2drdθdφ

= 1

(2π)
3
2

∫
φ,θ

e
1
2
µ2zs

2(θ)s(θ)

[
e−

1
2

(r′−pzc(θ))2(r′ + pzc(θ))

+

√
π

2

(
1 + p2

zc
2(θ)

)
erfc

(
r′ − pzs(θ)√

2

)]
dθdφ

When considering a the evidence for free space in a voxel, the domain of integration for

φ, θ is a spherical (or geodesic) polygon defined by the shadow cast by V as viewed from

the sensor (see Fig. 5.1). However, it is difficult to integrate over this region in closed form,

which necessitates resorting to Monte Carlo estimation or the polygon projection technique

described in Section 3.2.2.
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