
Decentralized Method for Sub-swarm Deployment and Rejoining*

Meghan Chandarana1, Wenhao Luo2, Michael Lewis3, Katia Sycara2, and Sebastian Scherer2

Abstract—As part of swarm search and service (SSS) missions,
robots are tasked with servicing jobs as they are sensed. This
requires small sub-swarm teams to leave the swarm for a specified
amount of time to service the jobs. In doing so, fewer robots are
required to change motion than if the whole swarm were diverted,
thereby minimizing the job’s overall effect on the swarm’s
main goal. We explore the problem of removing the required
number of robots from the swarm, while maintaining overall
swarm connectivity. By preserving connectivity, robots are able to
successfully rejoin the swarm upon completion of their assigned
job. These robots are then made available for reallocation. We
propose a decentralized and asynchronous method for breaking
off sub-swarm groups and rejoining them with the main swarm
using the swarm’s communication graph topology. Both single
and multiple job site cases are explored. The results are compared
against a full swarm movement method. Simulation results show
that the proposed method outperforms a full swarm method in
the average number of messages sent per robot in each step, as
well as, the distance traveled by the swarm.

I. INTRODUCTION

In swarm search and service missions (SSS) robot swarms
are tasked with searching a predefined area while immediately
servicing jobs as they are sensed. Swarms use decentralized
control laws to maintain robustness to individual robot failures,
as well as, the addition of new robots. Applications range from
surveillance of suspicious sites/targets to wildfire applications
where swarms are tasked with putting out brush fires that have
sparked from embers. New jobs “arrive” as they come within
sensing range of a swarm robot. Each job requires a robot
or subset of robots from the swarm to break off, travel to
the job site and remain there until the job is successfully
serviced. The robots that break off from the swarm must
also maintain connectivity in order to rejoin the swarm upon
completion of their job. Once robots rejoin the swarm, they are
made available for reallocation elsewhere. Several jobs may
be sensed simultaneously or while robots are already in the
process of being deployed to another job site (Figure 1).

The work presented in this paper explores the problem of
breaking off and deploying a required number of robots from
the swarm to the job site(s) for servicing, as well as, rejoining
those robots with the swarm after the job is serviced. We
consider the additional constraint of maintaining connectivity.
This requires that 1) robots are broken off from the swarm
without graph disconnection and 2) connectivity is maintained

1The author is with Mechanical Engineering at Carnegie Mellon University,
Pittsburgh, PA, USA {mchandar@cmu.edu}

2The authors are with the Robotics Institute at Carnegie Mellon Univer-
sity, Pittsburgh, PA, USA {luo@cmu.edu, katia@cs.cmu.edu,
basti@andrew.cmu.edu}

3The author is with Information Sciences and Intelligent Systems at the
University of Pittsburgh, Pittsburgh, PA, USA {ml@sis.pitt.edu}

*Sponsored by NASA LaRC (NIA Activity 201020) and AFOSR grant
FA9550-15-1-0442.

Fig. 1: Example scenario where multiple jobs need servicing.

between sub-swarm robots and the original swarm as they
move towards the job site. Conventional swarm connectivity
control laws consider the effect of connectivity constraints on
the motion of the full swarm [1]. This can lead to unnecessary
motion changes for some robots. To reduce each job site’s
effect on the whole swarm, a framework requiring only a
subset of robots to switch their motions is needed for sub-
swarm assignment and navigation. The framework must be
flexible enough to manage multiple job sites with overlapping
service times.

Past research has focused on moving an entire swarm
from one location to another. Methods include both multi-
robot path planning approaches where each robot’s path is
explicitly defined [2] [3] and swarm control approaches where
local control laws such as flocking [4] [5] and formation
control [6] lead the group towards a goal location. In [7],
Chen et al. present a control law for splitting a swarm into
multiple sub-swarm teams. Although the number of sub-swarm
teams can be controlled by parameter selection, the explicit
number of vehicles that end up in each sub-swarm team is
not defined. In addition, the overall connectivity of the swarm
is not maintained, thereby eliminating the swarm’s ability to
reallocate robots to future jobs that arrive.

In [8] and [9] a simplical complex from algebraic topology
[10] is utilized to incrementally move robots through space,
while maintaining swarm connectivity. Ramaithitima et al.
use the fence simplex to “push” robots into positions, which
results in triangular lattice packing positions so that complete
sensor coverage of an area is achieved [8]. The decentralized
method presented by Li et al. in [9] preserves connectivity by
incrementally “pushing” robots forward by defining frontier
nodes based on the expansion of fence simplices in the
direction of a goal to navigate an entire swarm through a
cluttered environment.

The contributions of this work are as follows. First, we
present a decentralized method for selecting and breaking off
robots to form a sub-swarm team at a given job site without
breaking the swarm’s connectivity. Second, we leverage the
topology of the communication graph to incrementally move
the broken off robots towards the job site while maintaining
connectivity with the original swarm. Lastly, we present a way
to rejoin the sub-swarm with the swarm. The method is applied
to both single job site and multiple job site cases.



II. PRELIMINARIES

Consider a robot swarm of N vehicles whose positions,
pi ∈ Rm with m ∈ {2, 3}, form a triangular lattice with
interagent distance defined as ‖pi−pj‖ = Rc,∀j ∈ Ni, where
Rc is the communication range of every robot and Ni is the set
of all neighbors of robot i (Figure 2). Triangular lattices are
used to conveniently move swarms through an environment
[4] [11]. Due to the limited number of neighboring robots,
the triangular lattice formation results in reduced computation
and high scalability [12]. Each robot has 6 neighbors unless
they are located on the boundary of the swarm, which results
in fewer neighbors. All robots maintain an equilateral triangle
with their neighbors. A controller similar to the one described
in [11] can be used to form the swarm’s initial triangular
lattice.

Assume that every robot knows their position pi within
a common reference frame. Each robot in the swarm is
assigned a unique identifier (UID). We assume the UIDs are
i ∈ {1, 2, ..., N}. The swarm’s communication graph is given
by G = (V, E). Every node v ∈ V represents a robot. Each
robot i communicates only with its direct neighbors (i.e.,
{j : ‖pi − pj‖ ≤ Rc}). If robot j is a neighbor of robot
i, then edge (vi, vj) ∈ E . We assume the connectivity graph is
undirected (i.e., (vi, vj) ∈ E ⇒ (vj , vi) ∈ E) and connected.

III. METHOD OVERVIEW

Each job site, k, is defined by a tuple: < pk, nk, tk >,
where pk is the position of the site, nk is the number of robots
required to service it (i.e., size of the sub-swarm team) and
tk is the amount of time necessary to complete the service.
The robot that sensed the job site, referred to as the sensing
robot, is assumed to be closest to the site. For each job site k,
the task is to break off robots and form a sub-swarm team of
nk robots at the job site’s location pk. After the job has been
serviced, all robots must be rejoined with the original swarm.
Although intended as an element of SSS missions, for clarity,
the methods below are illustrated using a stationary swarm.

In each time step for each job site, k, the swarm uses
decentralized algorithms to break off a new robot and push
it towards the job site location, pk. Each robot broken off
moves to fill the previous position of its predecessor, with the
first removed robot – or frontier robot – moving to fill a new
unoccupied position (frontier node), which lies between it and
the job site (Section III-A1). Thus, a chain is formed between
the frontier robot and the swarm. As a robot is pulled out
of the swarm, a chain of robots behind it move forward to
maintain connectivity. The number of robots in the chain is
given by the predefined hop radius, H . The last robot to move
forward, known as the tail robot, is the furthest robot from the
frontier node (Section III-A2). A path from the tail robot to
the frontier node is then planned (Section III-A3).

As the frontier robot moves closer to the job site, the
number of steps (and robots) that lay between it and the swarm
increases. Every robot keeps track of how many steps, s, have
been taken since the job site was sensed. A robot who is
exactly s hops away from the frontier node considers itself the

Fig. 2: Hole left in the swarm lattice (left) before the Algo-
rithm 2 is used (right). Lines depict connected robots.

anchor node. By limiting the number of hops between the tail
robot and the anchor node, the probability of overlap between
chains for different job sites is decreased. This limits the
possibility of robots being needed for multiple chains resulting
in them choosing one and finding a replacement for the others.
However, an empty position in the swarm known as a hole is
left in the tail robot’s original position (Figure 2). Continuing
to leave the hole behind the tail robot may disconnect the
graph in the future. Therefore, the hole is filled by moving a
robot behind the tail robot forward to fill the open position.
In doing so, the hole is pushed back one spot. Thus a robot
behind that one needs to move forward. This continues until
the hole is removed from the swarm’s graph (Section III-A4).

After a sub-swarm team (i.e., size equals nk) has formed
at job site, k, and the required tk service time has expired,
a rejoin action is initiated. To rejoin, boundary robots in the
swarm are used to determine the frontier node (Section III-B).
The furthest robot from the frontier node is deemed the tail
robot. Like before, chain robots then move forward.

A. Sub-swarm Break Off

The anchor node (Figure 2) is initialized as the sensing
robot. At the end of each time step, a robot who is s steps away
from the frontier node assigns itself as the new anchor node.
Each robot only maintains a belief of whether they themselves
are the anchor node, and not the status of the other robots in
the swarm.

Fig. 3: Sample sub-swarm robot distribution.

1) Frontier Node: When forming the sub-swarm team, the
frontier node is chosen as the point F ∈ Rm (m ∈ {2, 3})
that is Rc away from the frontier robot in the direction of the
job site, where Rc is the communication distance. Until the
sensing robot is within range (distance less than Rc) of the
job site, it is always chosen as the frontier robot.

As an example of a symmetric deployment, once a robot,
i, reaches the job site, it defines 4 directions equally spaced
around the job site (Figure 3 red). Direction 1 is defined as
being 90◦ counterclockwise from the line between robot i’s
neighbor and robot i. The angle between directions is defined
as θ = π/(m−1) where m is equal to the number of directions
(i.e., 4). To build a sub-swarm team, the frontier node is chosen



Algorithm 1 Tail Robot Selection
1: procedure TAILSELECTION(i, pi,Ni, Ai, Si, G,H)
2: if Ai = 0 ∧ Si = 0 then
3: h←∞, m← i,mp ← pi
4: end if
5: for all j ∈ Ni do
6: SENDMSG(i, h, pi)
7: end for
8: while {i′, h′, pi′} ← RECEIVEMSG() do
9: if h > h′ + 1 then

10: h← h′ + 1,m← i′,mp ← pi′
11: for all j ∈ Ni do
12: SENDMSG(i, h, pi)
13: end for
14: end if
15: end while
16: tr ← i, th ← h, td ← ‖pk − pi‖
17: for all j ∈ Ni do
18: SENDMSG(tr, th, td)
19: end for
20: while {t′r, t′h, t

′
d}RECEIVEMSG() do

21: if ((th < t′h) ∧ (t′h ≤ H)) ∨ ((th > H) ∧ (t′h ≤ H)) then
22: tr ← t′r, th ← t′h, td ← t′d
23: for all j ∈ Ni do
24: SENDMSG(tr, th, td)
25: end for
26: else if (th = t′h) ∧ (th ≤ H) ∧ (tr 6= t′r) then
27: if td < t′d then
28: tr ← t′r, td ← t′d
29: for all j ∈ Ni do
30: SENDMSG(tr, th, td)
31: end for
32: else if (td = t′d) ∧ (tr > t′r) then
33: tr ← t′r, td ← t′d
34: for all j ∈ Ni do
35: SENDMSG(tr, th, td)
36: end for
37: end if
38: end if
39: end while
40: end procedure

Algorithm 2 Fill Hole Left in Swarm
1: procedure FILLHOLE(i,m,Ni)
2: rmove ← 0
3: while RECEIVETOKEN() do
4: if m = m′ then
5: rmove ← i
6: for all j ∈ Ni do
7: SENDMSG(m, i)
8: end for
9: end if

10: end while
11: while {m′, i′}RECEIVEMSG() do
12: if (m = m′) ∧ (rmove > i′) then
13: rmove = i′

14: for all j ∈ Ni do
15: SENDMSG(m, i)
16: end for
17: end if
18: end while
19: end procedure

as an unoccupied position along 1 of the 4 directions. Figure
3 shows an example with nk = 5. Robots are distributed fully
along a given direction in clockwise order. This distribution
method is illustrative and can be replaced with a job-type
specific distribution.

2) Tail Robot Selection: After finding the frontier node,
Algorithm 1 is used to select the tail robot in a decentralized

manner. The swarm first constructs a spanning tree rooted at
the anchor node such that every robot in the tree is the fewest
number of hops away from the root (lines 2-15). This is known
as a hop-optimal tree [2]. Only the hop values for robots that
are not the anchor node (Ai = 0) and are still left in the
main swarm (Si = 0) are updated. This forms a tree rooted
at the frontier robot without needing to update the hop values
of robots in the chain or sub-swarm. Each robot is aware of
only its hop value (h), its master’s UID (m) and its master’s
position (mp) and not the full structure of the spanning tree.
“Master” refers to a robot’s parent node.

Once the spanning tree is created, the algorithm then finds
the furthest robot (tail robot) in the tree within the predefined
hop radius, H . Each robot initially believes the tail robot is
itself and sets tr = i, th = h and td = ‖pk−pi‖. It then sends
a message to all its neighbors (lines 16-19). When a robot
receives a message that indicates another robot is deeper in
the tree (i.e., has a higher hop number) than its current belief
of the tail robot and is less than the hop limit H , or if its
current belief about the tail robot’s hop value is greater than
H and the other robot’s hop value is less than or equal to H
(lines 20-25), the robot updates its belief and sends a message
to its neighbors (i.e., no longer considers itself the tail robot).
Additionally, if a robot receives a message where the other
robot’s hop value and its current belief of the tail robot’s hop
value is the same, but the other robot is further away or is
equally far away and has a lower UID, then the robot also
updates its belief values (lines 26-37). Messages are sent until
a consensus is reached and no new messages are created. Since
the spanning tree is constructed such that every robot is the
fewest number of hops away from the root node, the shortest
path from the tail robot to the frontier node is the exact path
in the tree from the tail robot to the frontier node.

3) Movement Action: Once the frontier node and tail robot
have been selected, if the tail robot is farther away from
the goal (job site) than the frontier node it initiates its new
position as the position of its master in the spanning tree.
Before moving, it sends a message to its master. When a
robot receives a message, it sets its new position as its own
master’s position and sends a message to its own master. This
continues until a robot is the frontier robot and its “master” is
the frontier node location. Through this chain of movements,
the full chain from tail robot to frontier robot moves forward.
The remaining robots in the swarm do not move, thereby
preserving a majority of the original communication graph.
When the tail robot is closer to the goal than the frontier node,
the robots cease to move.

4) Fill Hole Left in Swarm: Algorithm 2 mitigates this issue
and fills in the hole by moving the robots behind the tail robot
in the spanning tree forward one by one. The algorithm is
initiated when the tail robot sends a token to all of its neighbors
before moving forward, notifying them that its position will
be vacated. Its children must then come to a consensus on
who should take their master’s position. That chosen robot
then sends a token indicating its soon to be vacated position.
The process repeats until the robot sending the token has no



Algorithm 3 Fill Multiple Holes in Swarm
1: procedure FILLMULTIPLEHOLES(i,m,mp,Ni, Si)
2: rmove ← 0
3: while {Si′}RECEIVETOKEN() do
4: if Si = 0 then
5: if m = m′ then
6: rmove ← i, Si ← Si′

7: for all j ∈ Ni do
8: SENDMSG(m, i, Si)
9: end for

10: end if
11: else
12: FINDREPLACEMENT(m,Si,mp)
13: end if
14: end while
15: while {m′, i′, Si′}RECEIVEMSG() do
16: if (Si = 0) ∨ (Si = Si′ ) then
17: if (m = m′) ∧ (rmove < i′) then
18: rmove = i′

19: for all j ∈ Ni do
20: SENDMSG(m, i)
21: end for
22: end if
23: else
24: FINDREPLACEMENT(m,Si,mp)
25: end if
26: end while
27: end procedure

children (i.e., when it is on the opposite edge of the swarm
from the anchor node) and thus no messages are sent.

Lines 3-10 show that when a robot in the swarm receives a
token, it checks if the sender is its master in the spanning tree.
If so, the robot sets its belief of who should fill its master’s
place as itself and sends a message to its neighbors. When a
robot receives a message from its neighbor it checks if it has
the same master node (line 12). If so, and its current belief has
a higher UID, the robot updates its belief and sends a message
to its neighbors (lines 13-17). When no new messages have
been sent, the robot whose UID matches its own belief sends
a token to its neighbors.

B. Subswarm Rejoin
To pull robots from the sub-swarm back in to the main

swarm, each boundary robot nominates a candidate frontier
node. Boundary robots have fewer than 6 neighbors, resulting
in only a partial triangular lattice surrounding themselves. If a
robot has less than 6 neighbors it considers itself a boundary
robot and relays that information to its neighbors. Messages
are passed between robots until a consensus is reached on the
set of all boundary robots. A candidate frontier node is one
that lays on a lattice point equidistant from a given boundary
robot and its neighboring boundary robot, but is not located in
the same place as a current robot (Figure 4). Since every robot
knows the boundary robot set and its neighbor’s positions, this
is found without passing messages. Boundary robots begin the
final frontier node selection process by sending their neighbors
a message containing their candidate frontier node. Messages
are sent until the candidate node closest to the goal (swarm’s
original centroid location) and furthest away from the anchor
node is chosen as the frontier node.

A virtual communication graph, Gv = (Vv, Ev) is then
defined, where Vv is the set of all nodes in the initial

Fig. 4: Acceptable and unacceptable frontier node examples.

communication graph plus the frontier node and Ev is the set
of all edges in the initial communication graph plus those
between any robots within Rc distance of the frontier node.
The virtual communication graph is used to construct a hop-
optimal spanning tree rooted at the frontier node. Robots
connected to the frontier node initialize h = 1, m = FUID,
mp = F . Every other robot initializes its hop value to infinity
and its master node to be itself. A hop-optimal spanning
tree rooted at the frontier node is constructed using the same
method shown in Algorithm 1 lines 8-15.

As opposed to limiting the depth of the tree search for
selecting the tail robot when moving robots in to the sub-
swarm (Algorithm 1, lines 16-39), the full tree is used to
determine the tail robot. This results in the tail robot being
the deepest leaf node. A movement action is then used to push
robots forward in a chain from the tail robot position to the
frontier node (Section III-A3). This process is repeated until
the tail robot is closer to the goal location than the frontier
node. This results in a similar rendezvous behavior to that seen
at a goal location in [9]. This same procedure is used to move
the entire swarm to the final goal location once the sub-swarm
robots have rejoined the swarm.

C. Multiple Job Sites
In the multiple site case, one hole remains for each tail robot

that moves. Algorithm 3 is used to determine which robots will
move forward behind a given tail robot when multiple holes
exist in the swarm. Similar to the single hole case, a tail robot
sends a token to its neighbors. When a robot receives a token,
it has not already been chosen (Si = 0) and its master node
is the same as the one in the message, then it sets its belief of
who should fill the vacant spot as itself and sends a message
to its neighbors (lines 4-10). If it has already been assigned to
fill another hole in the swarm, it finds an available replacement
neighbor that is also connected to the robot who sent the token
(lines 11-13).

When an available robot receives a message, its master node
is the vacant node in the message and its UID is lower than
the UID specified in the message, it updates its belief to be
itself and sends a message to its neighbors (lines 15-22). If
it is not available, it finds a replacement robot (lines 23-25).
As in Algorithm 2, when no more messages have been sent,
the algorithm terminates implicitly. The robot whose belief is
itself then sends a token to its neighbors to notify them that
its current position will be vacated. The process repeats until
the robot who sends a token has no neighbor that is its child.

IV. SIMULATION

A 2D MATLAB simulation was used to compare the
performance of our method to that of a full swarm method



(a) 1 step (b) 10 steps (c) 14 steps (d) 49 steps (e) 92 steps

Fig. 5: Simulation screenshots of 50 robots servicing one job site. The job site is shown in blue and the final goal in red.

Fig. 6: Average number of messages sent in each step versus
the total swarm size in the trial for the one job site condition.

TABLE I: Avg. Number of Messages vs. Sub-swarm Size

% of Robots Sent to Sub-swarm Avg. Number of Messages Sent
10% 228.3424
20% 218.5217
30% 204.1177

where robots move sequentially to job sites using the rejoin
movement in Section III-B (comparable to [9]). For each trial
in the single job site condition, the swarm was tasked with
moving the required nk robots to the job site, rejoining with
the swarm and then moving to a final goal location. The job
site was one of 12 positions equally spaced on a circle centered
at the swarm’s starting centroid at (5,5) with a radius of 8 units.
Swarm sizes of 20, 35, and 50 were tested at each job site.
Results were averaged over all locations. The average number
of messages sent in each step and the total distance traveled
by the swarm are shown. An analysis of variance (ANOVA)
was conducted on the data using statistical analysis software
IBM SPSS v. 25. In the multiple job site conditions, both two
and three simultaneous sites were tested with 100 robots. A
single set of job site locations (for both the two and three site
conditions) was tested. All job sites were simulated excluding
service times. Therefore, as soon as the sub-swarm team is
formed the robots rejoin the swarm.

A. Single Job Site

An example single job site trial is shown in Figure 5. Robots
begin to form the chain between the job site and swarm in

Fig. 7: The total distance traveled by the swarm in the trial
versus the total swarm size for the one job site condition.

Figure 5a. When a sub-swarm team is formed (Figure 5b)
the rejoin behavior is triggered (Figure 5c). Once all robots
have rejoined the swarm it moves toward to final goal location
at (20,20) (Figure 5d) resulting in the swarm rendezvousing
around the final goal (Figure 5e). For all single job site trials,
the sub-swarm size, nk, was 5. The results are compared to a
full swarm where the swarm moves toward the job site until
nk robots are within range, moves back to the initial centroid,
and finally moves to the goal. All values are averaged over
the 12 job site locations. Error bars are shown for the standard
deviation in each graph.

Our method outperforms the full swarm method in both
average number of messages sent in each time step and total
distance traveled by the swarm. Figure 6 shows the average
number of messages sent versus the swarm size. The full
swarm method consistently sends ∼20 more messages. The
total distance traveled by the swarm versus the swarm size is
shown in Figure 7. Our method travels slightly less distance
(blue) than that of the full swarm method (magenta).

The difference between the methods and swarm size is sig-
nificant for the average number of messages sent (p < 0.0001,
η2 = 0.877 and p < 0.0001, η2 = 0.996 respectively). Method
and swarm size are also a significant factor in the differences
seen in the distance traveled (p < 0.0001, η2 = 0.923
and p = 0.05, η2 = 0.056 respectively). No interaction is
seen between the method and swarm size for the number of
messages and distance (η2 = 0.077, η2 = 0.001 respectively).
The linear relationship between swarm size and both the



(a) 1 step (b) 5 steps (c) 8 steps (d) 11 steps (e) 17 steps

Fig. 8: Simulation screenshots of 100 robots servicing 3 job sites. For clarity, the job sites are removed after they are serviced.

Fig. 9: Total distance traveled versus number of jobs sites.

average number of messages per robot and total distance
traveled by the swarm shows the scalability of our method. In
addition, the results in Table I show that for a swarm size of
50 as the percentage of robots sent to the sub-swarm increases,
the average number of messages sent per robot decreases,
reiterating the scalability of our method.

B. Multiple Job Sites

The main difference between the proposed sub-swarm break
off method and the full swarm method is their ability to handle
multiple job sites. Figure 8 shows an example where 3 job sites
must be serviced. Only the sub-swarm break off and rejoining
portions of the trial are shown. Figure 8a depicts the chains
between job sites and the main swarm. Once robots are within
range of the job sites sub-swarm teams are formed (Figure 8b).
As soon as the required number of robots is present in the sub-
swarm teams (Figure 8c) the rejoin behavior is triggered and
robots begin to move back in to the swarm (Figure 8d). As
in the single job case, robots rendezvous around the swarm’s
original centroid before moving towards the final goal.

As opposed to the full swarm method that requires the
swarm to move robots to the job site locations individually,
our method can send robots to the multiple job sites with
overlapping service windows. To demonstrate the advantage
of our method, a swarm of 100 robots was given 1, 2 and 3
job sites to service. Figure 9 shows that the overall distance
traveled by our method (blue) is significantly less than that
of the full swarm method (magenta) for each of the job site
cases. The distance increases linearly with the number of job
sites, with the full swarm method increasing more rapidly
(R2

sub = 0.9993 and R2
full = 1.000, p < 0.05). The difference

in distance traveled in the 3 job site case versus the 1 job site
case is 4.13x higher for the full swarm method.

V. CONCLUSION

This paper presents a decentralized method for breaking
off robots to reach multiple job sites and rejoining them with
the swarm once service is completed. The performance is
compared against a full swarm method. Result show that our
method: (1) requires less messages and travels less distance
in the single job case, (2) scales linearly with the size of the
swarm in terms of messages sent per robot and distance trav-
eled by the swarm, (3) results in less messages sent per robot
as the ratio of sub-swarm robots to swarm robots increases
and (4) allows robots to travel 4.13x less distance than the
full swarm method as the number of job sites increases.

REFERENCES

[1] L. Sabattini, N. Chopra, and C. Secchi, “Decentralized connectivity
maintenance for cooperative control of mobile robotic systems,” The
International Journal of Robotics Research, vol. 32, no. 12, pp. 1411–
1423, 2013.

[2] W. Luo, S. S. Khatib, S. Nagavalli, N. Chakraborty, and K. Sycara,
“Distributed knowledge leader selection for multi-robot environmental
sampling under bandwidth constraints,” in Intelligent Robots and Sys-
tems (IROS), 2016 IEEE/RSJ International Conference on. IEEE, 2016,
pp. 5751–5757.

[3] S. Swaminathan, M. Phillips, and M. Likhachev, “Planning for multi-
agent teams with leader switching,” in Robotics and Automation (ICRA),
2015 IEEE International Conference on. IEEE, 2015, pp. 5403–5410.

[4] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algorithms
and theory,” IEEE Transactions on automatic control, vol. 51, no. 3, pp.
401–420, 2006.

[5] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Flocking in fixed and
switching networks,” IEEE Transactions on Automatic control, vol. 52,
no. 5, pp. 863–868, 2007.

[6] X. Li, D. Sun, and J. Yang, “A bounded controller for multirobot
navigation while maintaining network connectivity in the presence of
obstacles,” Automatica, vol. 49, no. 1, pp. 285–292, 2013.

[7] Z. Chen, T. Chu, and J. Zhang, “Swarm splitting and multiple targets
seeking in multi-agent dynamic systems,” in Decision and Control
(CDC), 2010 49th IEEE Conference on. IEEE, 2010, pp. 4577–4582.

[8] R. Ramaithitima, M. Whitzer, S. Bhattacharya, and V. Kumar, “Sensor
coverage robot swarms using local sensing without metric information,”
in Robotics and Automation (ICRA), 2015 IEEE International Confer-
ence on. IEEE, 2015, pp. 3408–3415.

[9] A. Li, W. Luo, S. Nagavalli, and K. Sycara, “Decentralized coordinated
motion for a large team of robots preserving connectivity and avoiding
collisions,” in Robotics and Automation (ICRA), 2017 IEEE Interna-
tional Conference on. IEEE, 2017, pp. 1505–1511.

[10] H. Allen, “Algebraic topology,” 2001.
[11] G. Lee and N. Y. Chong, “A geometric approach to deploying robot

swarms,” Annals of Mathematics and Artificial Intelligence, vol. 52, no.
2-4, pp. 257–280, 2008.

[12] G. Lee, N. Y. Chong, and H. Christensen, “Adaptive triangular mesh
generation of self-configuring robot swarms,” in Robotics and Automa-
tion, 2009. ICRA’09. IEEE International Conference on. IEEE, 2009,
pp. 2737–2742.


