A Computational Framework for Integrating Task Planning and Norm
Aware Reasoning for Social Robots

Vigneshram Krishnamoorthy*, Wenhao Luo*, Michael Lewis!, Katia Sycara*

Abstract— Autonomous robots are envisioned to increasingly
become part of our lives in the house, restaurants, hospitals and
offices. Additionally, self-driving cars will be soon appearing in
city streets and highways and they will have to interact with
cars driven by humans as well as other self-driving cars. In
these settings the robots not only need to efficiently perform
their tasks but also be able to interact with humans in socially
appropriate ways. To accomplish this, robots must be able
to reason not only on how to perform their tasks, but also
incorporate societal values, social norms and legal rules so
they can gain human acceptability and trust. Moreover, inter-
actions with these robots will be long term. Long-term human
interaction with robots as well as robot combined reasoning
about both tasks and social norms generate multiple modeling
and computational challenges. In this paper, we address one
of the most important of these challenges, namely what is an
appropriate and scalable computational framework that enables
simultaneous task and normative reasoning. In particular, we
report on our work on a novel computational framework,
Modular Normative Markov Decision Processes (MNMDP)
that integrates reasoning for domain tasks and normative
reasoning for long-term autonomy. The MNMDP framework
applies normative reasoning considering only the norms that
are activated in appropriate contexts, rather than considering
the full set of norms, thus significantly reducing computational
complexity. The model modularity is also advantageous for
long-term human-robot interaction. We present computational
experiments that show significant computational improvements
as compared with a base Normative Markov Decision Process
(MDP) framework that includes the full set of norms.

I. INTRODUCTION

Autonomous robots will soon leave university labs and
enter everyday life, interacting with humans as assistants
and co-workers. For this interaction to be effective, robots
need to not only plan and perform domain tasks but also to
incorporate societal norms and legal rules into their decision
making. The requirements for these long term interactions
and reasoning on domain tasks and social norms present
multiple challenges such as integrating social norms into a
robot so as to evaluate and reason on both task and norm
related consequences, norm reasoning and norm violation
handling in dynamic environments and triggering them based
on context. In order to handle these challenges there is a need
to create integrated and scalable computational frameworks.
In this paper, we focus on developing a scalable framework
that integrates task level and normative reasoning.

*The authors are with the Robotics Institute, School of Computer
Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA. Email:
{vigneshk, wenhao, katia}@cs.cmu.edu. TThe authors
are with the School of Information Sciences, University of Pittsburgh,
Pittsburgh, Pennsylvania, USA. Email: m1@sis.pitt.edu.

There are very few works in the literature that can shed
light on these questions. There is a large literature on norma-
tive reasoning e.g., [?], [?], [?], [?], [?] focusing solely on
normative agent reasoning and does not perform or integrate
any task-based reasoning. Recently, there has been work [?],
[?] where robot navigation and motion planning trajectories
consider human presence and social conventions, such as
maintaining certain distance from humans etc. Additionally,
there has been sparse work considering integrated task and
normative reasoning [?], [?], [?]. However, these works are
not computationally scalable and therefore are extremely
limited in application to realistic problems.

In contrast, we report on a scalable, computationally
tractable framework, Modular Normative Markov Decision
Process (MNMDP) that integrates task reasoning and nor-
mative reasoning in a scalable way. In particular, we assume
that norm activation is context dependent which modu-
larizes the problem. This assumption has been supported
by recent human experiments [?] where it is shown via
human experiments that norm activations show remarkable
differentiation depending on context. Our MNMDP model
has the following advantages. First, it allows for efficient
computation of integrated task and normative reasoning
at deliberation and run time execution. Second, MNMDP
allows for efficient addition of norms and tasks as the
robot engages in long term autonomy operation and human
interaction. Third, our scheme allows reasoning about and
evaluation of tradeoffs between performance requirements of
executing domain level tasks while complying (or not) with
normative decisions, taking into consideration the agent’s
preferences and the environmental context.

II. RELATED WORK

In machine ethics, the majority of works have considered
agents whose primary and only task/goal is to reason ethi-
cally (e.g., [?], [?]). There have been several proposals for
enabling cognitive agents to reason about norms. Due to
lack of space, we present the most relevant (see [?] for a
review and references therein). [?], [?] reports on normative
agents that help humans reduce unintended norm violations
by detecting and predicting violations, and suggesting al-
ternative plans that conform to the norms. Recently, [?], [?]
proposed a similar framework as [?], where Markov Decision
Process(MDP) states of the agent’s domain planning are
associated with suitable norms and where norm conflicts and
resolution, as well as decisions of whether to follow the
norm or not were presented. The work in [?] has similar
aims as ours but considers the full set of norms in the

state space, which has various limitations: (a) considering
the full set of norms leads to combinatorial explosion of
the state space. (b) adding or subtracting norms requires
very costly re-calculation of the full model, (c) if any norm
is violated, the agent goes to a predefined fixed output
state, thus could create a loop in the policy calculation
and never reach the goal; their work does not present any
scheme for recovering from loops. To address these issues,
we propose a novel modular MDP computational framework
for normative reasoning and via experimentation we show
significant computational savings.

III. NORM CHARACTERIZATION

A norm has modalities, namely obligations, O, permis-
sions JF and prohibitions P for the normative agent who
is the addressee of the norm. Sanctions that are imposed on
the addressee, if the norm is violated are also associated with
a norm. Another norm component is the issuing authority.
A beneficiary of a norm is the set of agents (including
the addressee and including humans) that may receive the
consequences of compliance or violation of a norm. Norms
also have a spatial and temporal extent, and apply to different
groups of agents. For example, a curfew can be imposed
to the whole population, or some selected sub population,
within a city or a country which could also be revoked
at some future time. A norm has a life-cycle while it is
kept in the knowledge base. The status of a norm can
be activated, violated, contradicted, deactivated/expired, and
obsolete/revoked. A norm gets activated if its activation
conditions fit the current state. Additionally a norm has
a utility and a priority. Let E be the set of all possible
well-formed formulae comprising first-order predicates over
terms (constants, variables and the operators A, V, and —).
Following conventional notation from the normative and
MDP literature, we define a norm as follows:

Definition 1 (Norm Representation) A norm N is rep-
resented by a tuple (v,%, én, dq, da,0,d,T) Where v €
{O, P, F} denotes the deontic modality and ¥ is the set
of states where the norm applies. The normative context ¢,,
is the set of states in > where v applies, depending on the
norm modality. Conditions ¢,, ¢4 denote the activation and
deactivation condition respectively, and the sanction o for
violating it, where o is a tuple (53, ¢s) with f: Ex Ax ¥ —
R~ as the (monetary) penalties, A is the set of actions, and
¢s € E is the constraint on actions imposed as a sanction.
For example, a moving violation in the traffic domain may
incur a monetary penalty and loss of driver licence that
restricts future actions of the agent. Lastly, § represents the
authority that issued the norm and 7 € Z* represents norm
priority describing the relative importance among norms
where the smallest value 1 has the highest priority

The normative context ¢, € FE describes the state
that, depending on the deontic modality v, some activ-
ity for « should be obligated, prohibited, or permitted.

TAll norm elements may not need to be explicitly modeled for each
domain.

The context could be represented by a single predicate
or conjunction/disjunction of multiple predicates. For ex-
ample, suppose we have an instantiated normative context
¢n = location(a, bedroom)Alocation(a, bathroom). If the
modality is ¥ = P, the robot « is prohibited to be either in
the bedroom or the bathroom. In a self-driving car example,
¢n = driving_direction(a, Highwayl, one_way_north).
If the modality is ¥ = O, the robot is obliged to drive only
in the north direction on Highway]l.

Definition 2 (Action-Norm Conflict) An action-norm conflict
occurs if an action a € A of the addressee o contradicts one
or more activated norms.

For example, if an action of the robot is go_to_bedroom and
bedroom prohibition is activated, the resulting state satisfies
location(a, bedroom) which violates the prohibition.

Definition 3 (Normative Conflict) A normative conflict oc-
curs if two or more activated norms contradict one another. In
other words, a conflict arises when a state is simultaneously
prohibited and permitted/obliged, and its variables have
overlapping values.

For example a norm conflict arises when an activated norm
obliges the robot to be in the bathroom while another acti-
vated norm prohibits the robot from being in the bathroom.

IV. RESOLVING NORM CONFLICTS

There are a variety of ways of resolving action-norm
conflicts. Given that the agent is in state sy, it examines the
next possible states in the MDP to determine whether a norm
activation conflicts with the agent’s next set of actions and
possibly move to a conflict-free state. If no such conflict-free
state can be found, the agent has a number of options: (1)
the agent may be able to curtail the conflicting norm [?].
(2) The robot, based on utility calculations, may choose to
violate the norm, and incur sanctions.

To resolve normative conflicts, the most common way,
which we also adopt, is to define priorities E] over norms
so, in case of norm conflict, the highest priority norm is
considered for compliance whereas conflicting lower priority
norms get violated as done in [?]. For a given set of activated
norms A, then after the norm deconfliction, we assume the
overall penalties over the states (S) and actions (A) become
B:NxSxAxS—R™.

V. TASK PLANNING WITH NORMATIVE REASONING FOR
LONG TERM AUTONOMY

Autonomous agents performing domain tasks in dynamic
environments not only must decide the relative utility of
one plan over another, but also be aware of norms and
decide whether to comply with those norms, given the current
context. One way to combine MDP and normative reasoning

2We realize that it is potentially problematic to determine norm priorities
since they may depend on context, culture etc. We plan to design human ex-
periments to determine norm priorities in robot service and traffic domains.
We will also relax the assumption of fixed priorities in the future.

could be via embedding the whole norm set]| into the states
of the task/domain MDP, as in [?], [?].

Definition 4 (Markov Decision Process with Norms) An
MDP is represented as a tuple M = (S, A, R,T,~, M)
where S denotes the finite set of states, A denotes the finite
set of actions, R : S x A x S — R is a reward function,
T:5%xAxS — [0,1] is a state-transition function, and
v € [0,1] is the discount factor. The normative knowledge
base M is a set of norms with representations defined in
Definition 1.

Computation of Modular Normative MDP M
Deconfliction

Domain MDP M’ with Identification of Active Norms
Norm States Set \

Compute Optimal Policy 7 viith Reward Function Update with ‘
state-action Q tale ¢ (.,) Sanctions on /" , yielding M

(a) Computation of modular normative MDPs (MNMDPs)

Action-Norm / Normative ‘

Computation of Action @, for the state S

(8080) o

——(Stateofthe . ~
World

Output (Sl ,84) ‘

No

Invoke higher-order | Yes
MNMDP

ame as
previous
s,a)2

Identification of IndeXing " ot Corresponding Get_O;’Tti(r;a; P_°I{ig ox 060
\ActiveNormsSetN, MNMDP M, 4 = m\S) = argmax,, &\s,

(b) Computation of action a; for the state s¢ during execution

Fig. 1: Computation of modular normative MDPs and online action execu-
tion.

The solution for an MDP is the optimal policy 7* : S — A
that selects the best action for each state so that the expected
cumulative discounted reward for all states is maximized. As
the robot accumulates experiences about norms, and as norms
and the context of different norm activation changes over
time, the normative MDP leads to a vast number of states
as well as different reward functions incorporating sanctions
due to activated norms and possible norm violations on the
states.

We construct a knowledge base for normative models
indexed by each of the task domains of the robot. Each norm
has a priority. For each task domain, the approach is depicted
in Figure [I(a)] We construct an MDP only for the agent’s
domain tasks, i.e. not including norms in the states. Let us
call this MDP, the domain MDP M. Each time the agent
transitions to a new state in the domain MDP, we determine
whether the set of most promising next states contains a state
where one or more norms may be activated. If there is no
such state, the MDP process continues as usual. If one of the
most high reward states contains a norm, say N L then the
agent retrieves from memory a pre-computed modular MDP

3In the worst case, i.e if all norms are interacting with one another,
MNMDP will result in the full normative MDP.

that consists of the domain MDP but also contains norm N'!
in its state space. Let us call this the Modular Normative
MDP M1

This modular normative MDP is much smaller than one
that would contain the whole norm set. The reasoning
procedure now follows the reward structure that includes
rewards and sanctions for norm N! (see next section of
how the normative MDP is computed). If some other state
contains the possible activation of a (small set) of norms, say
N2 = N1 U N2 where N2 is another activated norm, then
the agent retrieves a precomputed MNMDP M2 ie. the
Modular Normative MDP consisting of the domain MDP
further modified by norms N' and N? in the state space
and follows the reward (and sanctions) dictated by this new
modular normative MDP M 12,

MNMDP for Active Norm set N/, MNMDP for Active Norm set V, |
o

M, = M M., = M
,,,E,,az n = s) = are max S ’7),;,,
O e
......... () (
At 4 p L

" a, = 7'(s,) = arg max PR CRE)
e

Fig. 2: Example of looping behavior

Once the knowledge base of the modular normative MDPs
and their policies has been computed, the robot will start
the execution process as shown in Figure For state
s¢ € S at time t, N; C M represents the set of activated
norms associated with s;. After transitioning to the current
state s; from the previous state s;_; with action a;_1, the
robot with active norms set N; will select the best action
a according to the optimal policy m; for the corresponding
MNMDP M,, so that the robot can achieve domain-specific
goals while satisfying the normative constraints. If the norm
states change because of the dynamic environment, the robot
will choose its new action based on optimal policy for
another modular normative MDP that reflects the changed
norm states. In this way, the robot will only consider the
normative constraints in the states where those constraints
apply, avoiding the unnecessary incorporation of all possible
norms in its policy.

However, due to unforeseen policy conflicts between dif-
ferent MNMDPs that apply to different states, the robot
could be trapped in a loop where the actions from dif-
ferent MNMDPs at the imposed states lead the robot to
periodically visit the same states, namely, fall into the
same (state, action) pair. For example, consider the two
consecutive states s; and s;; with different active norm
states INV; and N4 in Figure [2} If one state’s active norm
set does not apply to the other, then by Definition 2 and 3
there is no action-norm conflict nor normative conflict, and
hence the robot will simply execute the actions dictated by
the policies of the particular MNMDPs for the respective
states. As in the figure, at state s; the optimal action from
MNMDP M; = M’ for norm set N; leads to the state
S¢+1, and afterwards, assuming the active norm set changes

to Ny, 1, then at s, the action from M, ; = M7 will
navigate back to the state s,. With the norm set changing
to NV, the robot will execute the same sequence of the two
actions and get trapped between the two states. As shown
in Figure [I(b)] in order to identify a loop, the robot checks
whether the subsequent (state, action) pair is same as the
current one. If a loop is identified, instead of taking the
actions from the corresponding MNMDPs M?, M7 etc.,
we take the ’second-best action’ which is defined as the
optimal policy from the pre-computed higher-order MNMDP
M3 comprising of multiple norms that are involved in
the states in the loop, namely, M%J: is the MNMDP
encoding the norms N®J = (N*U NJ U ...). Since this
pre-computed MNMDP has an optimal policy over the whole
state sequence (S¢, S¢41, -, St+i) leading towards the goal, it
is guaranteed that the agent will not fall into this state-action
loop again. Likewise, in the future where loops may occur
on other states, the same process can be applied to eliminate
the loops.

The MNMDP framework has multiple advantages: First, it
avoids computing a huge MDP that would include the whole
norm set. Second, each time a new norm is added/changed or
deleted, as would often be the case in a lifelong autonomous
agent, only a much smaller MDP needs to be re-computed,
namely the domain MDP plus the new/changed norm or
minus the obsolete norm and any other norms that the
new/changed norm may be mutually active with. Third, the
appropriate MNMDP policy gets retrieved at run time when
the agent has determined which state it finds itself in and
which norms are likely to be active in the next set of states.

VI. MODULAR NORMATIVE MDP COMPUTATION

In this section we describe the calculation for a Modular
Normative MDP M for i € Z* whose active norm set is
N* C M with M as the full norm set. We refer to the domain
MDP without normative constraint as M?©. For state s, € S
at time ¢, Ny C M represents the set of activated norms
associated with s;. If N; ~ N? (the activated norms are
equivalent after action-norm/normative deconfliction) then as
shown in Figure [T] the action to take for s, is selected based
on the MNMDP M, = M?. We assume that state transition
is stochastic where the probability distribution over next
states T%(s¢,a,s:41) = P'(st41]8¢,a) is known. In each
state, state variables are directly accessible to the agent so
the satisfiability of the activation and deactivation condition
of a norm (¢?, and ¢}) can be decided in constant time.

Algorithm [I] captures the computation of the different
MNMDPs depending on the activation and deactivation con-
ditions. Note that (1) the function Active() used in Algorithm
outputs the intersection of the domain of the norms given to
its input i.e. Domain(N*NN7NN*N...). and (2) the function
Combine() first deconflicts the input norm set as discussed
in Section based on norm priorities and outputs the
encoded sanctions of the combination for the reduced subset
of norms which are not in conflict. In the MDP, we need
to determine the status variables of N;y; for every action
in A and its resulting states. Each modular normative MDP

is much smaller compared to the full normative MDP that
contains the full set of norms since each norm has its limited
domain of states where it applies. Once a state transition
is done and the agent is in s;, Nyy1 is considered for the
next set of states based on s;, actions, and the transition
probabilities of the actions. The norm reasoning process
checks whether N, has action-norm conflicts or normative
conflicts and then invokes the corresponding MNMDPs. The
MDP framework can then compute the optimal policy using
any policy optimization algorithms such as value/policy
iteration, trust region policy optimization (TRPO) [?], etc.
. Take value iteration algorithm for example, for MNMDP
M it calculates

Vki+1(3t) =
max Z Pi(st+1‘8t,a)(Ri(st,a, St+1) -l—’kai(StJrl)) (1
acA? sir1€S

Q};_H(st,a)

until convergence where k is the iteration number. The
reward function R’(s;, a, s;+1) implies the immediate reward
from s; to s;41 by taking action a € A?, which considers
the original predefined domain-related reward R° (s, a, s;41)
as well as the penalty due to sanction in MNMDP M’ as
follows.

Ri(st,a,s041) = R(st,a,8041) + B'(st, a, s¢41, N*) 2)

Equation (Z) assumes that the domain reward and the
norm penalty applies to each state equally, but a different
calculation could be used, with weights determined by do-
main knowledge and other criteria, e.g. agent preferences.
Imposing a sanction does not alter only the utility in each
of the set of subsequent states but also the set of subsequent
states themselves. We do consider these in the modular MDP
formulation.

Algorithm 1 Modular Normative MDP Computation
Input : M = (S, A, R, T,~, M)
Output: MO, MBIk
MO =(S,A,R,T,~)
forall {N? N7 N* ..} in Powerset(M) do
if Active(N*, N7, N* ..) # () then
N#3F « Combine(N?, N7, N*, ..)
Rb3ks < RO 4 Bb3k: a5 in Equation (2)
Midb o (S, A, RN T,)

end
end
return MO, Mok

Hence, for a given state s; we can compute the best action
a; from (I) as described in Algorithm 2] and as shown in
Figure [I[(b)] where we find the set of activated norms, Ny
for the state s; and map it to the corresponding MNMDP
M3 Then, we can select the action a, for state s; from
the pre-computed policy of this MNMDP.

(a) Direction
norms

and Speed-limit (b) Direction, Speed-limit and

STOP sign norms

(c) Hospital Emergency, Direction,
Speed-limit and STOP sign norms

(d) Direction norms only

Fig. 3: Trajectories of the agent in different norm constrained environments in a traffic example

Algorithm 2 Selection of actions

Pre-compute policies 7%7% for each M7k
Input : s;, M, MO, MbHIF--
Output: a;
Find Niik: ~ N, where N3 € Powerset(M)
Mt — Mi,j,k,...
a; W*’i’j’k"”(St)
return a;

VII. RESULTS
A. Ilustrative Example

In this section, we present several examples E| using our
Modular Normative MDP framework along with experimen-
tal results comparing the performance of our MNMDPs
against the full normative MDP in terms of computation
time and cumulative reward. The traffic scenarios as shown
in Figure [3] have four vertical highways labelled as H1-
H4 with different norms sanctioned on them. The start and
goal states are denoted by S and G respectively. The state
representation (x,y,#) in the domain MDP captures agent
location and orientation. Also, the domain reward is sparse.
The norms in this environment consist of direction norms on
the vertical highways, speed-limit norm, STOP sign norm
and an emergency norm. The speed limit is indicated in the
color of the highway labels H1-H4 with red corresponding
to low-speed and green to high-speed.

Given the set of norms and the domain goal, the proposed
MNMDPs to compute consist of three classes of MDPs:
1) domain MDP M whose optimal policy only considers
the reward at the goal G, 2) normative MDP M0 that
considers both the reward at G and the sanction from any
single norm N ¢ referred as the one-order norm, and 3)
normative MDP M%7+ with higher-order of norms that
consider domain reward as well as sanctions due to activated
norms with overlapped applicable states. In Figure [3(a)| for
example, for direction norm N' and speed limit norm N2
we have 1 UY2 £ () as both of them apply to states on lane
H3, and hence we need to compute a second-order normative
MDP M2 with domain rewards as well as sanctions from
the two norms N' and N2,

“The corresponding videos can be found here: |http://bit.ly/2GA4HL;

In Figure [3(a)] the agent operates in high-speed mode till
it reaches H3 and then slows down to comply with the speed-
limit norm to reach the goal state. In Figure we explore
the trajectory when an additional STOP sign is added. In
Figure we impose an additional hospital emergency
context in all the states. However, in the emergency context,
the norm permitting the agent to use the high-speed mode
in all states and not stop at the STOP sign, is given a higher
priority. In Figure 3(d)] only the direction norms are present.
As can be seen, the agent goes towards H2 and loops back to
reach the goal via H3. This occurs since the modular MDP
of H3 doesn’t inform the agent of the direction norm in H2
and hence the agent proceeds towards H2 and then looping
back to H3.

B. Quantitative Results

To compare the performance of our proposed MNMDP
framework in more general cases, we provide average quan-
titative results shown in Figure] from 50 random trials. We
construct a domain MDP whose transition T is random and
the reward R is sparse. We model the number of norms as a
parameter that can be varied during evaluation. Each of these
norms can be characterized by a fixed number of norm state
and action variables, both chosen randomly. We evaluate such
an experimental setting in order to negate any bias in the
performance comparison possibly introduced by analyzing
only some specific normative structures. We use two different
methods to compute the policies: (1) a traditional value based
approach, Value Iteration and (2) a policy gradient based
approach, Trust Region Policy Optimization (TRPO) [?],
thus capturing the similarity in properties of the evaluation
parameters between two different policy optimization tech-
niques.

From Figure fi(a)] and f(b)] we observe that the compute
time (in log scale) for upto N*" order interactions lie on
N log x curves, meaning that the compute time is of the order
2N . Hence, as we proceed to higher order interactions, we
encounter higher-order polynomial times. We also observe
a linear curve (in log scale) for the compute time of a full
normative MDP against number of norms |N|, leading to a
compute time of the order of !V which grows exponentially
with the number of norms. The computation of the fully-
normative MDP could not be performed with our computer

http://bit.ly/2GA4HLj

o

—— Fully-normative
61— First-order
—— Ssecond-order
—— Third-order
—— Fourth-order

—— Fully-normative
First-order
~—— Second-order
—— Third-order
Fourth-order

]

-

w

N

-

Log of Average Compute Time
Log of Average Compute Time

o

5 10 15 20 25 30 5 10 15 20 25 30
Number of norms Number of norms

(a) Log of computation time with (b) Log of computation time with
Value Iteration approach TRPO approach

Fully-normative policy
MNMDP policy
Domain MDP policy

Average Cumulative Discounted Reward
°
°

10 15 20
Number of norms

(c) Average Cumulative Discounted
reward with Value Iteration approach

0.6
0.4
0.2 ‘

0.0

|
°
N

Fully-normative policy
MNMDP policy
Domain MDP policy

I
°
=

Average Cumulative Discounted Reward

|
o
o

5 20

10 15
Number of norms

(d) Average Cumulative Discounted
reward with TRPO approach

Fig. 4: Comparison of computation time of our MNMDP against the full normative MDP and comparison of cumulative reward of our MNMDP policy,

full normative MDP policy and domain MDP policy.

resources (Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz
with 128 GB RAM) for number of norms greater than
20. Figure and [(d) illustrate the average cumulative
discounted rewards for the three different policies. We see
that the general trend is that the cumulative reward decreases
as the number of norms increases. For the two normative
MDPs, this can be attributed to the increase in the average
length of the trajectory from the start to the goal, due to
the increasing normative constraints. The cumulative rewards
of the MNMDP policy is somewhat lower than the full
normative MDP possibly due to some looping behavior.
The cumulative reward of the domain MDP policy drops
significantly due to the increasing penalties resulting from
norm violations.

VIII. CONCLUSIONS AND FUTURE WORK

We propose a unified decision-making framework, MN-
MDP that incorporates normative and goal-directed reason-
ing under uncertainty. The agent can evaluate the utility
and consequences of its actions in terms of domain goals
and norms. Based on the evaluation, the agent chooses
task actions with high task rewards while avoiding/reducing
norm violations to minimize penalties. Our architecture takes
advantage of the characteristics of norm combinatorics and
shows significant computational advantages compared to the
full normative MDP. This scalability makes the normative
reasoning problem more tractable in a real-system and makes
it especially attractive for long term autonomy, where the
norms will change over time, since the framework accommo-
dates such changes with little re-computation. In future work,
we will perform human studies and experiments to determine
what humans think are: 1) appropriate norms for various
contexts, for example, service robots such as household
robots and assistive hospital robots, and 2) norm priorities
that are appropriate for different contexts so as to allow more
sophisticated reasoning on the part of the robot than what
we presented in this paper, in order to make decisions for
resolution of norm conflicts. We also plan to extend our work
to account for partial observability.

IX. ACKNOWLEDGEMENTS

The work was supported by awards NSF IIS-1724222 and
AFOSR FA9550-15-1-0442.

	Introduction
	Related Work
	Norm Characterization
	Resolving Norm Conflicts
	Task Planning with Normative Reasoning for Long Term Autonomy
	Modular Normative MDP Computation
	Results
	Illustrative Example
	Quantitative Results

	Conclusions and Future Work
	Acknowledgements

