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1. ABSTRACT

1 Abstract

Just as humans are imperfect, even the best of robots will eventually fail at performing a

task. The likelihood of failure increases as robots expand their roles in our lives. Although

failure is a common problem in robotics and human-robot interaction (HRI), there has been

little research investigating people’s tolerance to said failures, especially when there is a

risk of property damage and bodily harm. Safety is an important concern for human-robot

interaction, and robot designers need to understand how people calibrate their levels of trust

and adapt their behavior around robots that could expose them, and property, to physical

harm.

To explore this issue, we performed an experiment where people were exposed to failure in

a study with actual personal and property risk. Participants observed a Baxter robot while

it performed a grocery packing task, and were given opportunities to react to and assist the

robot in multiple failure cases. The study revealed important factors that influence trust,

perception of safety, and whether participants would assist the robot after witnessing failure.

Some of these findings were that the severity and recency of failures are among the most

influential factors that influence human reports of trust in a robot. We also observed lower

ratings of trust in the robot from female participants relative to male participants. While

the majority of the participants assisted the robot when it failed, they were more likely to

assist when the participants had not observed other failures prior to assisting the robot.

By understanding how people respond to robot failure and aspects of robot behavior that

influence their trust, better understanding and design can be incorporated into robots. This

should increase human comfort levels and willingness to interact and work with robots.
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3. INTRODUCTION

3 Introduction

Human-Robot Interaction (HRI) has recently become more popular as a research field due

to the increase in the availability of complex robots and people’s exposure to them. Robots

can be used in many different applications, including the automotive industry, assembly,

medical applications, agriculture, space exploration, search and rescue, education, customer

service, entertainment, and home appliances. While 77 percent of people think it will be

normal to have a robot in their home in the next 20 years, fewer fully trust robots [16].

A Simple Queue Survey (SQS) showed that although 60 percent of respondents thought a

robot would be useful and would save them time in their household, 76 percent of British

people said they didn’t believe home robots to be safe. When presented with a scale from

zero to 10, with zero meaning “not excited at all” and 10 meaning “extremely excited,” 59

percent of Americans chose a number of five or lower. In the same survey, only 15 percent of

Americans said they were “extremely excited” about self-driving cars. Thus, it is apparent

that many consumers are skeptical about the role of intelligent robots and technologies in

our daily lives.

If these trust issues are not addressed, progress in robotics might stall because people

will not be willing to buy robot products for their household. Emerging technology can

evoke feelings of risk and loss of control, so safety is one of the primary concerns. People’s

perception regarding the overall safety of robots needs to change before they can become

part of our daily lives [16]. To address this issue, researchers have become more interested

in exploring the understanding and evaluation of different interactions between people and

robots, along with people’s perception of different types and behaviors of robots, and how

they perceive social cues or different robot embodiments.

3.1 Motivation and Problem Statement

Some of the roles that robots currently have in society include being a machine operat-

ing without human contact, a tool in the hands of a human operator, a peer, or a part of

a body, among others. To be able to perform these useful tasks alongside humans, safety

is a primary concern. In some circumstances, such as in a home or an office, some of the
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3. INTRODUCTION

traditional safety solution features of a robot in industry are not acceptable, such as using

warning alarms or flashing lights. Safety in HRI usually includes the avoidance of physical

harm to a human due to any sort of collision; in the cases where physical interactions are

required, other strategies can be adopted and metrics developed.

While our ability to develop reliable autonomous systems and robots is constantly im-

proving, systems are not immune to failure [15]. The way in which a robot fails can affect

a user’s perspective about the system. Even non-harmful interactions could be perceived

as uncomfortable by a human, such as when a robot invades the user’s personal space by

coming in close proximity. Therefore, the perception of safety can be a subjective parameter

determined by an individual. This is subject to change over time as people become more

aware of the functionalities and limitations of different robots, allowing their behaviors to

become more predictable. Until recently, much of the research on safety in HRI related only

to the technical requirements of the robot rather than the behavioral and social mechanisms

that impacted people’s feelings and opinions [24].

While it is known that people’s trust in and willingness to work with a robot is lowered

by failure, less is known about how people respond or behave after different types of failure,

especially when their safety and personal risk is compromised. Moreover, research must

address what can be done to mitigate the feelings of frustration, anxiety, anger, fear, resent-

ment, or distrust that could arise as a result of such failure. By understanding how people

respond to robotic failure and aspects of robot behavior that influence their trust, better

understanding and design can be incorporated into robots for HRI and increase people’s

comfort levels and willingness to interact and work with them.

3.2 Research Contributions

This thesis attempts to advance the state of the science regarding HRI and robot failure.

The contributions of this work include:

• New knowledge on how people react to failure in a real-life study with actual personal

risk.

• New knowledge on how such failures impact future human interactions with the robot.

14



3. INTRODUCTION

• New experiment methodology to investigate risk and trust for other researchers.

• Insight on how primacy and recency effects are impacted by personal risk.

• Insight on how a robot’s face design influences people’s interpretation of failure.

3.3 Thesis Organization

These contributions came about by designing a study that would investigate robot errors

and their effect in trust and interactions with people. This thesis describes our efforts in

how we went about to accomplish this task.

The next section gives an overview of the background and some related research in the

domain of human-robot failures and trust. We start by describing some of the existing lit-

erature regarding risk in different automation systems and experimental scenarios. Then we

explore trust and different factors about how it is different between humans and robots and

why it is so important to understand it for the success of future technology. Lastly we talk

about failure, how it is perceived by participants and what factors could have an effect on

people. We decided to create a grocery store experiment since it is an everyday task that

participants would believe we as researchers were trying to automate. Since participants are

very familiar with the task, they would have some expectations, thus failures would be more

conspicuous.

In order to be able to create this experiment, we had to choose a reliable system that

could successfully pack some grocery items and also have some failures but would still not be

a threat to participants’ actual safety. Thus, we explain why we chose a Baxter robot. We

then present details about how the technical aspects of the system were achieved. In order to

be able to control a robot, we need to understand the relationship among the actuators that

can be controlled by the robot and the resulting position in the environment, thus we talk

about forward and inverse kinematics. Then we present details about the factors we wanted

to explore in our study: failure severity (personal risk and property harm), order in which

the most severe failure occurred (whether at the beginning or at the end of the experiment),

and finally social signals of the robot, to observe whether putting a face on the robot had

an impact in people’s perception and willingness to assist the robot. We then describe the
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3. INTRODUCTION

experiment scenario and test conditions.

The latter portion of this thesis describes the results gathered from the participants’ re-

sponses to surveys and observations during the experiment. In the closing portion section of

this thesis, we discuss the results, limitations, and areas that we think are worth exploring

in the future.
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4. BACKGROUND AND RELATED WORK

4 Background and Related Work

Just as humans are imperfect, even the best of robots will eventually fail at performing

a task. As robots expand their roles in our lives, the likelihood for failure also increases.

Merriam-Webster’s dictionary defines failure as “a state of inability to perform a normal

function” or a “lack of success” [28]. For a problem that is so common in robotics, failure

is not widely explored in the literature. In HRI, people have been investigating safety and

trust around social robots. However, to our knowledge, there has been little research inves-

tigating people’s tolerance to said failures, especially when these failures may cause some

physical harm. Consider the following scenarios: an industrial robot goes out of control

near other workers; a domestic robot assistant accidentally breaks a valued possession; an

autonomous robotic car malfunctions and causes an accident; or a military robot mistakenly

kills civilians. All aforementioned scenarios are plausible situations that could unintention-

ally occur. Therefore, it is important for people to have a properly calibrated level of trust

around robots that could expose them to physical harm.

4.1 Risk

Prior work by Robinette and colleagues [56] examined human-robot trust in high-risk

situations that may engage fight-or-flight responses and other cognitive faculties that could

impact a person’s trust in unpredictable ways. The robot was available to help guide the

person in a simulated emergency situation and periodically made errors. Their study gave

preliminary evidence that robots interacting with humans in dangerous situations must ei-

ther work perfectly at all times or clearly indicate when they are malfunctioning. It was

alarming that all of their participants followed instructions by the robot, and were willing

to forgive or ignore robot malfunctions, even minutes after these malfunctions had occurred

[56]. Comparatively, in our work the robot is also a potential source of harm in the experi-

mental scenario.

Adubor et al. [7] developed an experiment that found severity of failure seems to be

tightly coupled with perceived risk to self rather than risk to the robot’s task and object.

Participants were shown a video clip of Baxter failing to place an object into a receptacle
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4. BACKGROUND AND RELATED WORK

and items falling towards the floor. Participants placed falling drinking glasses above laptop

when rating the severity of the failure. The humans proximity to breaking glass was identi-

fied as an important factor.

Financial risk has also been explored in literature [39, 46, 55]. This is done by having

the compensation be based in part on the overall performance. Desai et al. [49] created

a sense of risk by tying robot performance to the ability to achieve a milestone payment.

These types of financial risk are used as an incentive during experiments; however, they do

not compromise the feelings of safety in a participant.

Because it is difficult to simulate risk scenarios convincingly, little is known about the

relationship between robot-inflicted personal physical risk, property harm, and robotic fail-

ure. Risk is a very widely used and debated term because its definition tends to vary across

circumstances. Sheridan (2008) defined risk as the product of the probability of an event

and the consequences that accompany that event [58]. Weber et al. [27] further described

that the events are domain-specific, and that the level of risk that is attributed with each

event is dependent on the type of situation that is involved. For the purposes of this study,

high risk was operationally defined as a situation in which there is an invasion of personal

space and thus menace imposed by the robot’s actions while low risk does not involve items

leaving the task space.

Automation is the execution of a function by a machine agent that was previously done

by a human. Relying on automation for services requires trust and taking risks. Risk can be

perceived analytically or experientially; in other words, using logic and reasoning or feelings,

instincts, and intuition, respectively [60]. The latter is accredited for being the primary influ-

ence for motivating people’s behaviors due to its faster and easier decision-making methods

for assessing danger [15]. As noted by Brooks, this has important implications with respect

to robots experiencing failures. “If the experience of a failure results in a perceived increase

of risk either from using the robot or being in its presence, people will also infer a lower

benefit of using the system. On the other hand, if the perception of risk can be suppressed

or mitigated in the event of failures, the inferred benefits of using the system should remain

high”[15].
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4. BACKGROUND AND RELATED WORK

4.2 Trust

Design errors, maintenance problems and unanticipated variability make completely reli-

able and trustworthy automation unachievable; therefore, creating highly trustable automa-

tion is essential [40]. Trust can be characterized in several different ways, especially with

regard to automation. By examining the differences and common themes of these defini-

tions, we can have a better understanding of trust in human-robot interactions. An in-depth

analysis is provided by Lee and See [40], some of which we will explain in some detail in

this section. A common theme in trust is the user’s attitudes or expectations. When a

user exhibits trust, they have an expectation for a high likelihood of favorable behaviors or

outcomes [11, 54]. Another common approach to define trust is as an intention to behave in

a certain manner or willingness to rely on something or someone and be in a vulnerable state

[19, 29, 34]. One of the most cited and widely used definitions is by Mayer and colleagues

[29], “Trust is the willingness of a party to be vulnerable to the actions of another party

based on the expectation that the other will perform a particular action important to the

trustor, irrespective of the ability to monitor or control that other party.” Others define trust

as a behavioral result or state of vulnerability or risk, arising from uncertainty regarding the

motives, intentions, or actions from the individual or system upon whom they depend [37].

In this sense, trust can be considered as a belief, attitude, intention, or behavior. Consistent

with these previous descriptions, Ajzen and Fishbein [8] provided a framework that con-

cluded trust is an attitude and reliance a behavior, belief, or intention. Thus, “trust can be

defined as the attitude that an agent will help achieve an individual’s goals in a situation

characterized by uncertainty and vulnerability” [40]. Based on these trust definitions, we

investigate how trust is affected when an autonomous robot is assigned a task that will help

achieve an individual’s goal and creates an expectation by succeeding several times before a

failure occurs, we also expose the participant to vulnerability imposed by the robot’s unpre-

dictable actions.

Because robots are becoming more present in our everyday lives, it is important to un-

derstand trust between them and humans. Many studies have highlighted the importance

of trust in actual work environments as opposed to controlled laboratory settings, including
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4. BACKGROUND AND RELATED WORK

for autonomous cars, maritime navigation systems, and autopilots [12, 31, 42, 43]. Individ-

uals often report having trust in robots, but existing research leads us to believe that this

statement-action is not always perfect. Therefore, our study investigates both an evaluation

of trust with surveys and through participants’ actions when trust is lost in an in-person

study. Brooks [15] mentioned that one of the limitations of his work is the use of a third-

person perspective of both a hypothetical scenario and questions to reduce the effects of

subconsciously biased responses such as from people trying to portray themselves in a par-

ticular manner. However, reading about a hypothetical situation someone else is experiencing

is not the same as experiencing the same situation for oneself in real life [15]. Ergo, a study

in which participants experience failures in person is needed to verify their results.

Human-robot trust is different than interpersonal trust, in part because robots do not

have human mental states like intentions. Researchers have found that even though robots

lack intentionality, people may attribute intentionality to the designers or likewise attribute

intentionality to the systems as the robots become increasingly sophisticated and take on

human-characteristics such as gaze cues, speech communication, facial expressions, and nat-

uralistic motions [53, 13, 20, 10]. Some studies have found that trust between people rapidly

builds with face-to-face communication but not text-only communication [35, 50]; thus, Cas-

sell and Bickmore [62] suggested that interacting with a computer that is a conversational

partner will be perceived as more trustworthy since it would provide similar cues that people

use in face-to-face conversations. Another difference between human-human trust and trust

in robots is the social exchange relationship between interactions where a person is aware of

their counterpart’s behaviors and intents. Nevertheless, the inadequacy of the robot’s social

awareness leads to differences in trust relationships, such as a lack of collaboration, because

task allocation benefits from people’s assessments of how others perceive them [61].

How trust is attributed also differs between person-person and human-robot relationships.

Muir argues the latter is developed based on faith, dependability, and predictability, in that

order, whereas person-person trust follows the reverse order [47]. As the aforementioned rea-

sons suggest, there are many differences between interpersonal trust and human-robot trust.

Therefore, it is necessary for research to explore the unique elements in trust that differ

between these relationships to gather a better understanding of reliance on automation. Our
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study extends this prior work by evaluating the impact of a face on people’s perception of

intentionality and trust in the interaction. In addition, our robot does not respond to user’s

behaviors or communication attempts, so this study furthers the knowledge of how the lack

of social awareness impacts the trust relationship. Finally we use Muir’s trust questions [47]

to evaluate participants’ feelings about the dependability and predictability of the robot.

Of importance in the reliance on automation is the idea that if systems are not trusted,

they will not be used; if they are not used, there is limited information regarding its capa-

bilities; then, trust will not ever grow. Because trust is based on observation of the behavior

of the automated system, automation must be relied upon for trust to grow in most cases

[48]. It was posited that “As computer technology grows more pervasive, trust is also likely

to become a critical factor in consumer products, such as home automation, personal robots,

and automotive automation. Designing trustable technology may be a critical factor in the

success of the next generation of automation and computer technology” [40].

4.3 Failure

Robot performance is most strongly associated with trust [38]. Brooks, explores human-

robot interactions involving autonomous robotic service failures, and the way people react

to varying conditions surrounding these failures. He takes a human-centric approach and

focuses on people’s reactions to failures, expectations of the robot, and goals. His work

focuses on understanding people’s reactions, increasing their situational awareness around

autonomous robots, and creating communication platforms between robots and people. In

order to understand people’s reactions to failure, Brooks, developed a study that gathered

data through Amazon’s Mechanical Turk that manipulated context risk, failure severity, task

support and human support through a short two part story about a fictional character Chris

and his previous positive interaction between either a vacuum cleaner robot or self-driving

taxi, and then a recent encounter with the robot and the results of the interaction. As a

result to the study it was found that participants’ REACTION, which is the factor obtained

through exploratory factor analysis to find the weights that combine all the variables (ie.

satisfied, trust, reliable, dependable, competent, disappointed, risky) was influenced by the

task, context risk, and severity or type of failure. One of the limitations of the study was
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lack of mimicry of a real situation in the hypothetical scenario; thus, a laboratory experi-

ment in which participants experience failures in-person was needed to verify the results [15].

Provided this insight, our study similarly aims to explore people’s perceived feelings of trust,

reliability, dependability, competence, and safety, to different failure types in an in-person

scenario, where a robot’s failures are observed first-hand.

The effect of faults on trust do not occur instantaneously; faults cause trust to decline

over time. Likewise, the recovery after faults occurs over time [39]. Muir and Moray [48] ar-

gue that trust is based mostly on the extent to which the machine is perceived to perform its

function properly, suggesting a machine’s performance strongly affects trust. Although the

magnitude of an error is an important factor regarding the loss of trust, several small errors

seem to have a more severe and long-lasting impact on trust than a single large error [22].

In contrast, however, previous work in HRI has found that errors occasionally performed by

a humanoid robot can actually increase its perceived human-likeness and likability [23].

Not only do robot’s levels of anthropomorphism may lead to different degrees of ”forgive-

ness” in human-interaction partners when errors are displayed, but also the types of errors

made by the robot (ie. “expected”, “acceptable”, or “intentional”)[57]. Similarly, Bisantz

and Seong [14] showed that failures attributable to different causes, such as intentional sab-

otage versus hardware or software failures, have different effects on trust. Thus, for some

systems, it may be useful to discriminate between perturbations driven by wrong intentions

or accidents. In some cases, having less faith in a robot can allow people to adjust their

trust towards the system [63]. These results suggest that trust is more than a simple re-

flection of the performance of the automation; appropriate trust depends on the operators’

understanding of how the context affects the capability of the automation. Since intention

can have an effect in the way the user sees trust, the way the robot communicates a failure

is also important.

Some research explored the effects of presenting human-like behavior patterns and human-

specific features (ie. speech, gaze, gestures) into robot design. These aspects are important

to achieve natural, effective communication and cooperation, and make robots appear more

expressive and intelligible in order to improve social interactions between them and hu-

mans. Salem et al. found that when a robot uses co-verbal gestures during interaction, it
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was anthropomorphized more and as a result participants perceived it as more likeable [44].

However, to their surprise, they also found that the robot exhibiting random gaze and gesture

behavior, incongruent with its speech, was perceived almost as likeable as the robot with

congruent behavior. Likewise, Ragni and his colleagues, found that a robot with human-like

reasoning behavior and occasional errors may be perceived positively, ie. as more emphatic,

as opposed to a robot with flawless, machine-like condition [45].

Some research has focused on how the perception of erroneous robot behaviors may in-

fluence human interaction choices and willingness to cooperate with the robot. Salem et

al. [57], hypothesized that participant’s assessment of the robot could be determined by the

robot’s behavior of its performance. Their study found that even though flaws and erro-

neous behavior’s of a robot influenced participant’s ratings regarding reliability, technical

competence, understandibility and trustworthiness; participant’s willingness to comply with

instructions was not affected. Since the study found that the choice of experimental tasks

can indeed lead to different results, our study aims to explore participant’s willingness to

assist even after they have been exposed to conditions where they experience personal risk

and property destruction.

Another factor that could influence human-robotic trust with respect to failure is the

timing at which the error occurs. Desai et al. [49] found that the timing of the reliability

decreases would influence trust in the robot. They found that if an error occurred at the

end of a run, participants’ rating of trust decreased compared to when the error happened

at the beginning of the run. Further investigation observed the real-time changes of trust

that would not be affected by a participant’s bias to primacy-recency effects. They found

that low reliability earlier in the interaction had more detrimental impact overall trust than

periods of low reliability later in the interaction [25]. Inspired by these works, we decided to

investigate the effects on trust when the magnitude of the failure was greater at the begin-

ning of the run compared to the end of the run.

Since it is evident that robots that operate in the real world will eventually fail, work has

also been done to investigate how to gracefully mitigate failure. A study performed by Lee et

al. [41] tested the effect of recovery strategies such as apologies, compensation, and options

for the user in reducing the negative consequences of breakdowns. They used two service
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robots, a human-like robot and a machine-like robot, which can be observed in Figure 4.1.

Figure 4.1: A. Human-like B. Machine-like Snackbot [41]

Overall it was found that the expectancy-setting strategy and recovery strategies were

effective in mitigating the negative impact of a robot’s service error on participant’s impres-

sions of a robotic service regardless of the human-likeness of the robot. It was found that

the expectancy-setting strategy was particularly effective in extenuating the negative ratings

on evaluation of the robot, and somewhat effective on improving participant’s judgment of

the quality of the service of the system. The result implied that apologies and options for

the user were more effective in increasing the willingness to use the service again but the

compensation strategy was more effective for one-time interactions since it increased partic-

ipants’ satisfaction with the robot. One possible design direction that was suggested was

that in building robotic helpers, if they exhibit speech disfluencies they could be perceived

less controlling without distracting from its perceived expertise.

Nevertheless their study had some limitations such as the use of a hypothetical scenario,

so the robot was not actually affecting the participants in real-life. People’s responses to

robotic services in real environments might not be the same. Their study did not test the

effect of higher risk failure and the implications on participant’s trust in the robot. Lastly

their study only tested people’s reactions to one type of failure only and one type of task,
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thus having different types of failure could have an effect in people’s perception of the robot.

While we acknowledge the importance of the effect that mitigation of errors could bring

in failures, our study aims to explore how do the failures impact participant’s trust and

willingness to assist the robot, since most robots nowadays do not include these mitigation

strategies.

An in-depth literature review by Honig [32] was done to explore when people perceive

and resolve robot failures, how robots communicate failure, how failures influence people’s

perceptions and feelings toward robots, and how these effects can be mitigated. The different

types of failure that were identified can be observed in Figure 4.2. Fifty-two identified studies

relating communication of failures and their causes, the influence of failures on human-robot

interaction and mitigation failures were explored and can be observed in Figure 4.3. Several

gaps in the literature were evident as a result of the evaluation, such as studies focusing

on human errors, robots communicating failures, or the cognitive, psychological, and social

determinants that impact the design of mitigation strategies. Thus, our study fills in some

of the gaps, such as understanding how people calibrate their trust around robots that could

expose them or property to physical harm and human’s tolerance to these types of failures.

Figure 4.2: Types of Failure [32]
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Figure 4.3: Literature Review on User-Centered Failure Handling [32]26
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5 System

5.1 About Baxter

The Baxter Research Robot created by Rethink Robotics 1 is a 16 degree-of-freedom

anthropomorphic humanoid. It is 185cm in height and weighs 139kg, and it includes a

stationary pedestal, torso, a 2 DOF head, a vision system, accelerometers, range-finding

sensors, a robot control system, a safety system, an optional gravity-offload controller, and

a collision detection routine [33]. Baxter features two 7 DOF arms that provide kinematic

redundancy, each with a maximum reach of 121cm and Series Elastic Actuators (SEA)

at each joint that are key to making the robot safe, incorporating full position and force

sensing. SEA consists of having springs that are deformable by human level inputs between

the motor/gearing elements and the output of the actuator, resulting in stable and low noise

force control. Baxter allows direct programming access to the system via a standard open-

source robotics operating system application programming interface, ROS API. When there

are sudden changes in torque in the Baxter robot’s joints, as would occur in the case of a

collision with a human or an external object, the robot comes to a stop for two seconds

before attempting to move again [3], making it completely safe around humans.

Figure 5.1: Baxter Research Robot [3]

1https://www.rethinkrobotics.com/
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5.2 Study System Design

The Microsoft Kinect located above Baxter’s head is used to detect April Tags [2] that are

placed on the top surfaces of the objects. Then, the poses that are found through the Kinect

are transformed to the robot’s frame of reference. The detection of the tags is dynamic and

refreshed every five seconds such that the location of the items is updated in the case of

movement. The tags of the objects not only can be used to extract the exact location of

the object, but also as a way to detect which objects are on the table. Each tag-object pair

was assigned to either a successful task completion or a specific failure behavior. The code

is designed such that the robot always picks up the successful cases and leave the failures

until the end.

Once the pose of an item is found in the robot’s frame, Baxter uses the voice of Joanna

from Amazon’s Polly Text-to-Speech service [1] to announce the name and price of the

object. At the beginning of each experiment, the gripper was calibrated to ensure a reliable

open-and-close motion. Then, Baxter’s inverse kinematic (IK) service was used to compute

some valid joint angle values of the robot’s right arm after receiving an item’s pose in order

to send a command to the robot to execute the action. The implementation of these actions

is described later in 5.2.2 Implementation.

In order to determine the end-effector’s pose at each waypoint or at the end of the

trajectory it would execute, forward kinematics was used. Then Baxter used the IK service

provided by Rethink Robotics to compute the joint angles of the right arm to reach the

items located at the table. For the sake of simplicity, only Baxter’s right arm was used.

This enabled participants to focus more on the task at hand and reduced the chance for

non-intended failure. Baxter’s home position was the default untucked arm position; which

it returned to after each executed trajectory, it returned to this home position before starting

another trajectory. Baxter had to return to a home position because having its IK service

start from a random end-effector’s pose could cause a different result in the IK trajectory,

so it always started from the same point to ensure repeatability of the experiment.

For the gripper with the grasped item to avoid object collisions with other items or the

bag, some of the waypoints in the trajectory were adjusted such that 15cm were added to
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the pose of the object and the bag in the z-direction, such that the arm could go directly

downward using the IR sensor. We used Baxter’s IR sensor to determine the distance between

the gripper and the object to ensure a tight and safe grip. Then, the gripper would close

and go 15cm upward before continuing the course of its action. The 15cm distance was

chosen because the tallest object was about 12cm, so any motion would occur above the

surrounding objects. We could detect the gripper’s position after it attempted to grab an

item; if at this point the position of the gripper was less than a specified threshold (in other

words, it has fully closed), it meant that the Baxter failed to retrieve the object and should

attempt again. In the cases with Baxter’s Head Display condition, this triggered the Baxter

to change its happy expression to look surprised and then sad, and it would attempt to

retrieve the object again instead of executing the full trajectory. The face also changed to

an angry red face when the Baxter detected the tag of the extreme failure cases, Throwing

and Erratic Movements (described later).

5.2.1 Camera Transformations

The April Tag visual fiducial system calculates the exact 3D pose for each tag in the 2D

RGB image from the Kinect camera. However, the pose obtained is in the frame relative

to the camera ([0,0,0] is at the camera). Because Baxter needs to receive the pose of the

object in the base frame ([0,0,0] is at Baxter’s torso), it was imperative to perform some

transformations. We used the tf package 2 to perform the calculations of the transformations.

We published a static coordinate transform to tf using an (x, y, z) offset in meters and (yaw,

pitch, roll) in radians. The static coordinate transform from the base of our robot to the

camera link was found through manual calibrations to be (0.25, -0.04, 0.79, 0, 0.89, -0.05)

in the previously mentioned order.

Figure 5.2: Transformations

2http://wiki.ros.org/tf
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Using this information, the tf package could transform the pose received from the Kinect

camera frame, camera rgb optical frame, to the actual pose in the world where the April

Tags were located. Equation 1 shows the transformation matrix for a given (x,y,z) April

Tag pose [6]. The transformations required go in the following order: camera’s color optical

frame to the camera’s color frame; the camera’s color frame to the camera’s base frame; the

camera’s base frame to the base frame of the robot; the base frame of the robot to the April

Tags pose in the world. It is important to note that the orientation quaternions for the tags

were modified such that they were (0,1,0,0) for x, y, z, and w, respectively, or represented as

(0,−π, π) in Euler angles.

Figure 5.3: Camera to April Tags Transformation Diagram

[CROFTAT ] = [ATTbase]
−1[baseTCL]−1[CLTCRF ]−1[CRFTCROF ]−1 (1)

[ATTbase]
−1 =


0 0 −1 z

−1 0 0 x

0 1 0 −y

0 0 0 1

 [baseTCL]−1 =


−0.05 0.776 −0.629 0.540

1 0.039 −0.031 −0.223

0 −0.629 −0.777 0.589

0 0 0 1


30



5. SYSTEM

[CLTCRF ]−1 =


0 0 −1 0

1 0 0 0

0 −1 0 −0.045

0 0 0 1

 [CRFTCROF ]−1 =


0 1 0 0

0 0 −1 0

−1 0 0 0

0 0 0 1



[CROFTAT ] =


0 0.629 0.777 z − 0.624

0.05 −0.776 0.629 x− 0.568

1 0.039 −0.031 y − 0.222

0 0 0 1


5.2.2 Implementation

As previously mentioned, the April Tags served to identify the objects and were dynam-

ically processed every five seconds. The tags were also related to the hard-coded names and

prices of the items that the Text-to-Speech service would read, as can be observed in the

diagram in Figure 5.4. The simplified RQT graphs of the camera and the Text-to-Speech

can be found in 10 Appendix A. Four objects triggered the different failures while the other

seven items would be success cases, as mentioned below in the descriptions of the different

conditionals in the code:

• Success - In these cases, the robot would successfully deposit the grocery item in the

bag. To avoid item and bag collisions, one of the waypoints in the trajectory added

several centimeters to the the end-effector’s target pose in the z-direction such that the

robot’s gripper could approach the target in a straight motion in the next waypoint.

While the robot would approach the inside of the bag, it would not release the items

gently, to evoke a sense of carelessness.

• Test Trial - Assistance - For this condition, the Baxter attempted to pick up the

item a total of three times before successfully completing its trajectory. This was done

by adding some centimeters to the tag’s z-direction such that the Baxter’s hand first

would go just above the item and then release the item just after lifting it a couple of

centimeters.
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• Low Property Harm - Crunch - This condition was similar to Success, but due to

the nature of the material of the bag of chips, when the robot would attempt to grasp

it, it would make loud noises as if crunching the chips.

• High Property Harm - Floor - To throw all the grocery items to the floor, a

waypoint trajectory was created in which the Baxter’s end effector’s pose would be

just in front of the bag. The next waypoint was to go forward, which looked like a

pushing motion and caused the grocery bag to be knocked to the floor.

• Low Personal Risk - Erratic Movements - In this condition we created a series

of smooth movements to wave a cereal box close to the participant. Because Baxter’s

IK service is slow to ensure precision to get to the end-effector’s specified location, a

timer was used such that every 3 seconds the end-effector’s end pose would change in

order to make a series of smooth motions that would get very close to the participant.

• High Personal Risk - Throwing - Baxter would throw a potato to the participant.

This condition was created by the use of multithreading. One thread was used to

perform a swinging trajectory and the other thread would signal to open the gripper

after a triggered timer started at the beginning of the swinging motion.

Figure 5.4: Baxter’s Text-to-Speech Dialog
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5.3 Baxter Kinematics

The first step in controlling a robot is to understand the mathematical model of the sys-

tem. Motion planning requires an understanding of the relationships among the actuators

that can be controlled by a robot and the resulting position in the environment. Kinemat-

ics involves two processes: forward and inverse kinematics. Forward kinematics of a serial

manipulator is a very well-established concept in robotics. Inverse Kinematics is more intri-

cate because there are different mechanisms to derive the inverse kinematics equations of a

manipulator. Baxter’s IK service was used for programming the robot; however, in order to

understand the motions, we explored the Jacobian pseudoinverse iterative IK technique. To

explain the forward kinematics, we referred to Williams’ Baxter Humanoid Kinematics [33].

5.3.1 Forward Kinematics

In this study, we used forward kinematics to determine some of the motions for the Baxter

robot’s right arm. Forward kinematics refers to computing the pose and orientation of the

robot’s manipulator end-effector given the joint values. This can be computed through

a series of homogeneous transformation equations that are used to find the pose of the

end-effector with respect to the base reference frame. The modified convention of Denavit-

Hartenberg (DH) are used to select frames of reference because it is a widely known notation

to describe the kinematic model of a robot. According to this convention, each link is

represented by two parameters: the link length, ai, and link twist, αi, which define the

relative location of the two attached joint axes in space. Joints are also described by two

parameters: the link offset, di, which represents the distance from one link to another along

the axis of the joint, and the joint angle, θi, which is the rotation of one link with respect to

the next about the joint axis [21, 64].

The modified DH representation results in a link transform matrix that transforms the

link coordinate frame i-1 to frame i of the form:

i−1Ai(θi, di, ai, αi) =)Rx(αi)Tx(ai)Rz(θi)Tz(di) (2)
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where Rk and Tk denote the rotation and translation about axis k, respectively. The overall

transform can be expressed in terms of the individual link transforms:

0Tn =0 A1
1A2.....

n−1An (3)

The Cartesian reference frame definitions for Baxter’s 7-DOF right arm are shown in Figure

5.5 and its DH parameters can be found in Table 2. These can be used to get the pose of

each frame {i} with respect to its nearest neighbor frame {i-1} [33].

Figure 5.5: Seven DOF Right Arm Kinematic Diagram with Coordinate Frames [33]

Length Value (mm)

L 278

h 64

H 1104

Table 1: Baxter’s base to world lengths
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Figure 5.6: Top View Zero Joint Angles, Baxter Right-Arm Kinematic Diagram (Modified

diagram from [33])

Figure 5.7: Baxter’s Joint Lengths (Modified diagram from [5])
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i αi ai (m) di (m) θi

1 0 0 0 θ1

2 -90◦ L1 0 θ2+ 90◦

3 90◦ 0 L2 θ3

4 -90◦ L3 0 θ4

5 90◦ 0 L4 θ5

6 -90◦ L5 0 θ6

7 90 0 0 θ7

Table 2: Seven DOF Right Arm DH Parameters

n−1Tn =


[R] [T ]

0 0 0 1

 (4)

n−1Tn =


cosθn −sinθn 0 an−1

sinθncosαn−1 cosθncosαn−1 −sinαn−1 −dnsinαn−1

sinθnsinαn−1 cosθnsinαn−1 cosαn−1 dncosαn−1

0 0 0 1

 (5)

The overall forward pose kinematics can be computed by multiplying together all seven

neighboring homogeneous transformation matrices as a function of the joint angle. By doing

so, the 3x3 upper left rotation matrix and 3x1 position vector can be obtained for the

robot’s orientation and pose at any given joint values. The range values for each of the

robot’s joints can be found in Table 3. The resulting orthonormal rotation matrix elements

and translational terms can be found symbolically evaluated in 11 Appendix B.

[0T7] = [0T1(θ1)][
1T2(θ2)][

2T3(θ3)][
3T4(θ4)][

4T5(θ5)][
5T6(θ6)][

6T7(θ7)] (6)
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0T7 =


r11 r12 r13

0x7

r21 r22 r23
0y7

r31 r32 r33
0z7

0 0 0 1

 (7)

Figure 5.8: Baxter’s Arm Joints (A.Bend Joints and B.Twist Joints

Joint Joint Variable θi (min) θi (max) Radians (min) Radians (max)

S0 θ1 51◦ -141◦ 0.890 -2.461

S1 θ2 60◦ -123◦ 1.047 -2.147

E0 θ3 173.5◦ -173.5◦ 3.028 -3.028

E1 θ4 150◦ -3◦ 2.618 -0.052

W0 θ5 175.25◦ -175.25◦ 3.059 -3.059

W1 θ6 120◦ -90◦ 2.094 -1.571

W2 θ7 175.25◦ -175.25◦ 3.059 -3.059

Table 3: Seven DOF Arm Joint Limits

The overall 7-DOF Baxter right-arm forward kinematics solution also requires a trans-
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formation between the world and the right base coordinate frame, the right base coordinate

frame and the joints, and the joints and the grippers.

[WTGR] = [WTBR][BRT0][
0T7][

7TGR] (8)

5.3.2 Baxter Inverse Kinematics

The Baxter robot comes with a supported software development kit (SDK) provided by

Rethink Robotics. This SDK includes an Inverse Kinematics (IK) service used by the robot

and thus was used for the purposes of this study. However, Rethink Robotics does not

openly release the software used to compute this IK service. Because most work on inverse

kinematics of redundant robots focus on iterative numerical approaches, we explored the

Jacobian pseudoinverse technique to evaluate the joint angles required to attain a required

end-effector pose.

ẋ = J(θ)θ̇ (9)

θ̇ = J−1(θ)ẋ (10)

The inverse velocity kinematics of a robot can be computed by using the pseudoinverse

for non-square Jacobian matrices. After integrating the velocity kinematics obtained over

several time-steps, the position kinematics can be computed. The pseudoinverse approach

to iterative IK starts with taking the joint angle positions of the current configuration of

the robot as the seed angles for integration over time. Using the Jacobian pseudoinverse,

the joint angular velocity can be calculated by integrating over a constant time-step and

comparing the final Cartesian pose with the goal pose until convergence [9]. One issue with

the Jacobin pseudoinverse is that it does not work well when the arm manipulator has joint

limits, which is true for the Baxter robot. To account for this, random restarts can be used:

when the algorithm hits a joint limit, it randomly restarts the joint pose and attempts again.

An overview of the Jacobian pseudoinverse technique [17] is provided below:

Let p0 = p(θ0) be the initial position of the angles of the system and p1 = p(θ0 + ∆θ) be the

goal position. The Jacobian inverse technique iteratively computes an estimate of ∆θ such
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that the error given by ||p1 − p0|| is minimized. For small ∆θ vectors, the series expansion

of the position function actually depends on the Jacobian matrix of the position function at

θ0, such that p1 = p(θ0 + Jp(θ0)∆θ).

The entries of the Jacobian (3x3) matrix can be determined numerically:

∂pi
∂θj

=
pi(θ0,j + h)− pi(θ0)

h
(11)

Where the i and j represent the (i,j)-th entry of the Jacobian.

To solve for ∆θ, for the purpose of incrementing the joint angles by it, we can rearrange

the equation in the form of

∆θ = J∗p (θ0)(p(θ0 + ∆θ)− p(θ0)) (12)

Where the J∗p represents the Moore-Penrose pseudoinverse of the Jacobian, which is solved

using singular value decomposition (SVD) if Jp has full rank (and thus guaranteed to be

invertible), hence the pseudoinverse is given by:

J∗p = [Jp]
T [[Jp][Jp]

T ]−1 (13)

The first iteration for computing ∆θ results in an estimate of the desired ∆θ vector. We use

∆θ to adjust the joint angles until a sufficiently close solution is found.

θ = θ + ∆θ (14)

The pseudo code for the algorithm can be found in Algorithm 1. It is important to note

that because Baxter has joint limits, the joint angles should always be maintained inside of

those ranges in order to get a valid solution. If the solution is invalid, a random initial joint

pose can be chosen to compute the joint angles needed to achieve the goal position.
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Algorithm 1 Inverse Kinematics

1: procedure Solve IK with PseudoInverse(input arg = posedesire)

2: θ = CurrentJointAngles()

3: poseerror = CalculatePoseError(posecurr, posedesire)

4: while ||poseerror||2 > 1e−4 do

5: J∗p = CalculateJacobianPseudoInverse(θ)

6: 4θ = J∗p · poseerror
7: θ = θ +4θ · dt

8: posecurr = ForwardKinematics(θ)

9: poseerror = CalculatePoseError(posecurr, posedesire)

10: if not CheckJointLimits(θ) then

11: θ = GenerateRandomJointPose()

12: return θ
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6 Method

6.1 Conditions

We designed a 2x2x2x2 between-subjects experiment to test different types of failures and

their effects on participant willingness to assist the robot. The failures varied in their severity

in two ways, including the degree to which they caused personal risk (throwing an item at a

person vs. erratic robotic movements that come close to the participant’s personal space) or

destroyed the groceries (crunching an item vs. throwing the grocery bag to the floor). We

also varied the order of the magnitude of the failures (ascending vs. descending severity), and

whether Baxter’s screen showed a face (display vs. blank screen). The experiment consisted of

having people observe the Baxter robot bag groceries the participant had acquired at the store.

In doing so, the robot would bag eight items successfully and three items would undergo

different types of failures. Each participant was exposed to one of sixteen combinations of

conditions. The types of failures and orders for these sixteen combinations are shown in

Figure 6.1.

Figure 6.1: Experimental Conditions
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6.1.1 Movement Conditions

Each of the conditions for the robot’s movements are described below:

High Personal Risk - Throwing (T) - The Baxter robot would grab a foam potato of

dimensions 6cm x 10cm and would throw it using a swinging motion from the table in the

direction of the participant, finally releasing it in front of the participant. The action was

designed to throw the potato over the participant’s left shoulder.

Low Personal Risk - Erratic Movements (E) - The Baxter robot would pick up a small

box of Frosted Mini-Wheats cereal and move its right arm in a series of three fast movements:

going in the direction where the bag is located, changing directions towards the opposite side

of the table, and finally raising its arm above its head and swinging it down to drop it in the

middle of the table. During this path, the box would be waved very close to the participant.

High Property Harm - Floor (F) - The Baxter robot would pick up a plastic can of

tomato sauce and look as though it was performing a trajectory to place it in the bag but

instead pushed the bag off the table.

Low Property Harm - Crunch (C) - The Baxter robot would pick up a small bag of

potato chips and, in doing so, crunched the chips.

Test Trial - Assistance (A) - The Baxter robot would attempt to pick up a small Rice

Krispies cereal box. For the first attempt, the robot would close its gripper just above the

box; in the second attempt, the robot would grab the box and elevate it 10 cm above the ta-

ble and then drop it; and in the third attempt (assuming the participant had assisted putting

the cereal box under the gripper), the robot would complete the trajectory of putting the

item inside the bag.

The conditions were selected in order to investigate different types of failures. The

Personal Risk condition had a threatening component because there was an indication of

menace coming from the robot’s actions. The two failure cases observed in this category

had different severity levels, where high severity was throwing an object at a person (T) and

low severity was an item coming very close to the participant but never leaving the robot’s
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gripper (E). The Property Harm category was chosen to show participants the capacity of

the robot to damage the groceries. For these cases, different severity levels were also chosen,

where a high severity meant pushing the entire grocery bag of items to the floor in front of the

participant (F) and low severity meant just one object (the bag of chips) was crunched (C).

Every participant was given the opportunity to assist the robot in the Assistance condition

(A).

Figure 6.2: Objects Used in Failure Cases

6.1.2 Display Conditions

The Baxter robot’s head display expressions were taken from a study performed by

Fitter and Kuchenbecker [30]. The expressions that were used were happy, angry, surprised,

and sad, as can be seen in Figure 6.3, and were designed using Ekman’s Universal Facial

Expressions [26] as a reference. During the successful trials, the robot displayed a happy

expression; during the personal risk failures (T or E) the robot would display an angry

expression; and during the assistance condition or at any other point the robot detected its

gripper had fully closed when it was expected to retrieve an object but failed, its expression

changed from happy to surprised and ultimately sad.
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Figure 6.3: Baxter’s Head Display [30]

Fitter and Kuchenbecker’s study [30] assessed the emotional effects of expressive faces

for the Baxter robot in human observers. It was observed that certain facial expressions

and colors are associated with different valence and arousal levels. The study showed that

raters felt significantly less safe looking at red and angry faces compared to all other colors

and emotions; thus, red appears to be the main color that could be used to influence human

responses. In this study, we wanted to make people feel uncomfortable with the robot

performing failures, so we chose for it to have an angry red face during the cases where the

robot is failing and potentially causing personal risk (i.e., throwing the potato or moving

erratically). In order to create a compelling contrast between the robot’s emotional states,

a happy blue face was chosen for the successful trials. The color was chosen because blue

is often viewed as a non-threatening color that calls to mind feelings of calmness, stability,

reliability, and security [18, 36].

We chose to explore the presence of a display on the Baxter since, in many cases, a

non-humanlike machine will make people act instinctively cautious around it because they

are encountering an unknown and potentially dangerous situation for which they have few

prior expectations. Thus, for “first encounters”, or application areas where people will meet

a particular robot only briefly, non-humanoid machines may have advantages over humanoid

robots. Non-humanoid robots decrease the expectations in terms of the skills people attribute

to them, and they may elicit cautious behavior in people who will carefully assess the robot’s

abilities and how one can safely interact with it, rather than assuming that it “naturally”

has human-like abilities and is safe for interaction [24]. To investigate this issue, we used

the presence or absence of the human-like face to examine effects on people’s behavior and

willingness to assist the robot.
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6.1.3 Order of the Magnitude of the Failure

The failure cases observed could be shown in an ascending or descending order. The

ascending order meant the failure cases got more severe as the experiment progressed. In

other words, the first failure the participant observed was the Assistance, and the last failure

they observed was the Personal Risk case. The descending order meant the failure cases got

less severe as the experiment progressed. Since past work by Adubor et al. [7] has found

that personal risk is more important then property harm in people’s perception of risk, we

place Personal Risk to be the most severe failure followed by Property Harm. Thus the first

failure they observed was the Personal Risk failure case and the last was the Assistance. In

Figure 6.1, the first line of the Display and No Display conditions were the descending order

and the second lines were the ascending order.

By studying the order in which failure cases are shown, we can observe whether recency

or primacy effects on memory affected participants’ ratings of trust, safety, or willingness to

work together or assist the robot. When remembering a number of items, people are more

likely to remember those that occurred at the end, followed by those in the beginning [4], so

the temporal position of extreme failures could affect participant’s remembered experiences

with the robot. We opted for these two orderings to observe if people would still be willing

to assist the robot in the descending order after being exposed to the Personal Risk and

Property Harm failure cases.

Figure 6.4: Descending and Ascending order conditions
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6.2 Setup

6.2.1 Sensors and Other Added Equipment

Five sensors were used for the study, as shown in Figure 6.5: a Microsoft Kinect Sensor, a

ZED camera, a Creative Inspire T12 Speaker System, a GoPro HERO3+ Silver Edition, and

Baxter’s right hand infra-red (IR) sensor. The Microsoft Kinect was used as a downward

camera that could detect the objects because they were in the close vicinity of Baxter

and could otherwise not be detected with the robot’s head camera. The ZED camera was

used to detect each participant’s torso position and distance away from the robot. The

Creative Inspire T12 Speaker System was used to play recordings of Baxter’s voice greeting

the participants and telling them each item’s name and price. The GoPro HERO3+ was

used to record the interaction. Finally, Baxter’s right-hand IR sensor was used to detect the

distance from the gripper to the object.

Figure 6.5: Additional sensors used in the study
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6.2.2 Experimental Setup

The study was conducted in a room with a free space of 3.7 x 2.7 meters (12 x 9 feet).

The free space was isolated from the rest of the room with the use of black curtains and large

black poster boards. The robot was located on one side of a table, and the participant stood

on the opposite side facing the robot, represented by an ‘x’ in the Figure 6.6. The Creative

Inspire T12 Speakers were placed on both sides of the table to simulate the voice coming

from the robot. Before the experiment began, six grocery items were placed on the table.

The grocery bag was located in the closest left corner of the table (from the participant’s

perspective). During the study, the experimenter would start the program and then go to

the other side the curtain to leave the participant alone with the robot.

Figure 6.6: Experimental Setup
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6.3 Participants

We recruited 64 participants (4 per 16 combinations of conditions) using a participant

pool and word of mouth. The participants had to be at least 18 years of age, fluent in

English, with normal or corrected-to-normal hearing and vision. Lastly, participants needed

to be able to stand for at least 30 minutes and move their arms and hands freely.

Condition #P #F #M #O Age (Std Dev)

D+TFA 4 3 1 0 36.8 (18.1)

D+EFA 4 1 3 0 29.3 (9.9)

D+TCA 4 2 2 0 27.0 (2.6)

D+ECA 4 1 3 0 38.0 (19.8)

D+AFT 4 3 1 0 21.0 (0.8)

D+AFE 4 2 2 0 23.8 (3.2)

D+ACT 4 2 2 0 26.0 (11.4)

D+ACE 4 2 2 0 25.3 (3.6)

B+TFA 4 3 1 0 20.3 (1.3)

B+EFA 4 1 3 0 33.5 (11.1)

B+TCA 4 1 3 0 21.5 (1.9)

B+ECA 4 2 2 0 21.8 (2.2)

B+AFT 4 3 1 0 30.3 (13.5)

B+AFE 4 2 1 1 31.5 (11.7)

B+ACT 4 3 0 1 22.0 (4.3)

B+ACE 4 4 0 0 24.3 (3.0)

Table 4: Participants per Condition. “P”,“F”,“M”,“O” are used to abbreviate

participants, female, male, and other respectively.

Table 4 shows the details of the 64 participants that interacted with the robot. All par-

ticipants were naive to the true nature of the study and were told that they would interact
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with a robot in a grocery store setting. Participants were also randomly assigned to one

of the 16 condition combinations. The average age of participants was 27 years old (SD =

10.0). Before the interaction, the participants indicated their familiarity with computers and

robots on a 7-point Likert Scale (7 being the highest). They also indicated their willingness

to work with the robot on a scale from 1 to 5, (5 being Strongly Agree). Most participants

indicated familiarity with computers (M = 5.75, SD = 1.07) and familiarity with robots (M

= 3.38, SD =1.50). Despite their unfamiliarity with robots, people indicated to be strongly

willing to work with robots (M= 4.27, SD= 0.65). This research was approved by our Insti-

tutional Review Board, and participants received ten dollars as compensation for their time.

6.4 Procedure

Figure 6.7: Procedure

First, the experimenter obtained informed consent and administered a preliminary sur-

vey for the participant. Then, the participant was escorted to stand in front of the robot

while instructions were given. The experimenter introduced the study as investigating how

robots would perform in a grocery store setting and the interactions they would have with

humans there. Participants were asked to be patient with the robot because the study was

a simulation and the robot was slower than normal. Participants were told that the grocery

bag should remain along the left side of the table because the robot recognized the location

of the bag to be in that general area. This explanation was provided to deter participants

from moving the bag around when the robot was placing the groceries. They were also told

that the robot would say the grocery item’s name and price and go to where the item was
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located and they could feel free to help the robot if the robot needed assistance with an

item in any particular instance. As the experiment began, the experimenter would inform

the participant that the experimenter would leave the task area and would not talk until the

study was resumed in order to make the experience more realistic.

Once the robot and the participant were alone in the task area, the robot welcomed the

participant and asked if he or she had found everything they were looking for. Then, the

robot began by saying an item’s name and price and began its trajectory to pick up the

first item. The robot would perform five success cases and the sixth item was an allocated

failure. Depending on the Ascending or Descending conditions, the participant would expe-

rience the Struggle to Pick Up or Personal Risk categories first, respectively. Once the failure

occurred, the experimenter would return with three more items, the first two were successes

and the last was a failure case. Depending on the condition, the second failure would either

crunch a bag of chips (Crunch) or throw the grocery bag to the floor (Floor). Lastly, the

experimenter would return and place two more objects on the table, where the first was a

success case and the second was a failure case. Once again, depending on the Ascending or

Descending conditions, the participant would experience the Personal Risk or Struggle to

Pick Up category last, respectively. By the end of the experiment, the participants always

experienced the robot bagging a total of 11 items, where three were failures and eight were

successes. After the Personal Risk case, the experimenter would look at the computer with

a perplexed expression to simulate not knowing the problem.

Finally, the experimenter administered a post-test survey, paid the participant, and de-

briefed them about the real intent of the study. During the debriefing, the experimenter

explained that the study was not for the purpose of seeing the performance of a robot in a

grocery store setting, but rather about trying to understand people’s responses to robotic

failure. The experimenter discussed the three main types of failures that were presented to

them: personal risk, harm of groceries, and struggling to pick up the item to give an oppor-

tunity for participants to cooperate. The experimenter explained the order of the failures,

whether they experienced personal risk (Descending) or the struggle to pick up the item

(Ascending) first to see if the failure had an impact in human collaboration with the robot

or if the last interaction they had with the robot had an impact in how they perceived it.
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Participants were also told about the screen on the Baxter and discussed whether it displayed

a face or a blank screen to see if this variable also had an impact on people’s perception of

the robot.

6.5 Hypotheses

Before we reveal what was found as a result of this study, we will talk about what what was

hypothesized and the methods we went through to test the hypotheses:

H1: More extreme failures by the robot will result in decreases in the amount that partici-

pants trust the robot.

H2: Exposure to prior failures will result in decreases in participants’ willingness to assist

the robot.

H3: Failures that are more severe will result in decreases in participants’ feelings of safety.

H4: The presence of an expressive face will improve participants’ willingness to assist the

robot.

H5: Experiencing extreme cases of failure towards the end of the session will result in lower

participant ratings of performance, safety, and trust due to recency effects.

6.6 Measurements

Two surveys were used in this study and can be found in 12 Appendix C. The preliminary

survey asked about demographics, familiarity with robots and computers, and contained 7

five-level Likert scale questions assessing people’s impressions of robots and willingness to

work with them. The post-experiment questionnaire was administered immediately after the

third failure had occurred and the experiment ended. The first four questions were modified

from Muir’s Trust questionnaire [47], to assess people’s feelings of the robot’s predictability,

dependability, trust, and faith in the system. The post-experiment questionnaire also in-

cluded 22 five-point Likert scale questions assessing people’s feelings and impressions of the

robot and the interaction. In addition to the surveys, we used a ZED camera to measure

the depth position of the participants’ torso to test if it was possible to detect changes in

participants’ body language or proximity to the robot after the failures had occurred.
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Variable Statement/Question

Muir Trust Questions

Predictability - To what extent can the system’s behavior be predicted from moment to moment?

Dependability - To what extent can you count on the system to do its job?

Faith - What degree of faith do you have the system will be able to cope with all systems states in the future?

In other words, how much faith do you have in the system being able to do its intended job with a variety

of items and environments?
Overall Trust

Overall how much do you trust the system?

I think robots are trustworthy.

I do not trust robots like I did before.

I think this robot (Baxter) is trustworthy.

Performance Rate the robot’s performance.

Reliability
I think the robot is reliable.

The robot is dependable.

Predictability
I think a robot is likely to fail.

I expected the robot to fail.

Robot Interactions

I would like to interact with the robot again.

I would be willing to work together with a robot.

I was willing to help the robot during the experiment.

Failure

Despite the failure, the robot was helpful in bagging the groceries.

The failure the robot had seemed preventable.

The failure of the robot was severe.

Your level of confidence in the robot before the failure happened?

Your level of confidence in the robot after the failure occurred?

Safety

I think it is safe for a robot to bag my groceries.

During the experiment I felt unsafe near the robot.

I think robots are dangerous

The robot’s behavior has harmful or injurious actions.

I am suspicious of the robot’s intents, actions or outputs

I felt physically threatened by the robot.

Open-Ended Questions

Did you intervene in the experiment by helping the robot? If so, how? If not, why not?

Did the failure of the robot discourage you from helping it? Please explain.

Would you be willing to have a robot helping you in your everyday life? Please explain.

Do you think the failure the robot had was an accident?

Do you think a robot can develop an intent to cause potential harm?

How can a robot let you know that something is wrong with it?

What were you thinking about when you were deciding to help the robot?

Table 5: Questions and Statements in the Post-Study Survey
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7 Results

Unless otherwise mentioned, we ran four-way ANOVAs to evaluate our data. All post

hoc analysis was done with honestly significant difference (HSD) Tukey tests. The first five

questions were evaluated using a 10-point scale format (1 = Not at all and 10 = Completely).

The remaining questions were assessed in a 5 point Likert scale (1 = Strongly Disagree and

5 = Strongly Agree).

7.1 Hypothesis Testing

7.1.1 Trust in our robot

Our first hypothesis was that more extreme failures by the robot would result in greater

decreases in the amount that participants trust the robot. The first four questions and

the tenth statement of the survey addressed participants’ trust in our robot. The first four

questions are modified from Muir’s Trust questionnaire that investigates competence, pre-

dictability, dependability, responsibility, and reliability over time in an autonomous system

[47]. A Cronbach’s alpha inter-item reliability test found the Muir questions to be reliable (α

= 0.866). We found the Property Harm category to have a significant effect on participant’s

trust according to the Muir trust measure, F(15,48) = 5.171, p = 0.0275. Participant in

the Floor condition (M=4.87, SE=0.324) rated the trust lower than the Crunch condition

(M=5.918, SE=0.324). We also found a three way interaction effect between Personal Risk,

Display, and Order of the Magnitude of the Failure, F(15, 48) = 6.3118, p = 0.0154. No

significant pairwise differences were found.

To analyze the sub-components of trust, we observed the sub-questions individually. For

the first question (“To what extent can the system’s behavior be predicted from moment to

moment?”), there was a significant effect on predictability for the Property Harm category

where participants in the less extreme Crunch condition (M=6.438, STD = 1.883) rated the

robot higher and thus more predictable behavior than the Floor condition (M = 5.406, STD

= 2.123), Z = -2.552, p = 0.011. A non-parametric Wilcoxon rank sum test was used due

to a lack of normality.

For the second question, there was a significant effect on perceived dependability in the
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Property Harm category when measuring the extent to which one can count on the system

to do its job, Z = -2.552, p = 0.039. Participants in the Crunch condition (M = 6.516,

SE=0.380) rated the robot higher and thus more likely to be dependable than in the Floor

condition (M = 5.312, SE = 0.380). Again, a Wilcoxon test was used to account for a lack

of normality.

There was a significant effect on reliability in the Property Harm category for the third

question (“What degree of faith do you have the system will be able to cope with all systems

states in the future? In other words, how much faith do you have in the system being able

to do its intended job with a variety of items and environments?”), F(15, 48) = 4.580, p =

0.037. Participants in the Crunch condition (M = 5.406, SE=0.423) rated the system higher

than the Floor condition (M = 4.124, SE = 0.423).

For question four and statement ten, participants rated their overall trust in the system

and Baxter’s trustworthiness, respectively, but there was no significant effect across condi-

tions. Overall, our data largely confirm our first hypothesis that extreme failures can damage

participant trust in the robot.

7.1.2 Participants’ willingness to assist Baxter

Our second hypothesis was that exposure to prior failures will result in decreases in par-

ticipants’ willingness to assist the robot. We observed the order increased assistance to the

robot. A left-side Fisher’s Exact Test test found that participants in the Ascending condi-

tion (26/32), who saw the Assistance condition first, were significantly more likely to assist

the robot by feeding the item directly to the gripper compared to the Descending condition

(19/32), where the Assistance condition was last, p = 0.0497. It is important to note this is

a one-way directional test to the left. The percentage of participants that assisted Baxter in

the Ascending and Descending conditions can be observed in Figure 7.1. From the 32 par-

ticipants that experienced the Descending condition, 16 observed the Crunch condition and

16 observed the Floor condition. Although not significant, it was found that participants in

the Crunch condition (12/16) were more likely to assist the robot by placing an item directly

into the gripper in the Assistance condition compared to those in the Floor condition (7/16)

as it can be observed in Figure 7.2.

54



7. RESULTS

Figure 7.1: Participants that Assisted Baxter in the Ascending and Descending conditions

Figure 7.2: Participants that Assisted Baxter in the Crunch and Floor conditions
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Statement 13 in the survey, “I was willing to help the robot during the experiment,”

did not show any significant difference across conditions. An interesting observation that

was found was that 81 percent of participants assisted the robot when they had not seen

any other failures; however, although no significant effect was found for the Personal Risk

category, it was found that 75 percent of the participants that had seen other failures were

likely to assist in the Crunch condition, while only 44 percent were likely to assist in the

Floor condition. Although participants did not differ in their reported willingness to assist

the robot, their differences in behavior confirmed our second hypothesis.

Order also had a significant effect for statement 20, “I expected the robot to fail”,

F(15,48)=5.232, p = 0.027. Participants in the Ascending condition, when the most extreme

failure case was the last thing they saw, rated the robot as more likely to fail (M=2.78125,

SE=0.18355) than participants in the Descending condition (M=2.1875, SE=0.18355). Fig-

ure 7.3 illustrates this effect.

Figure 7.3: Order of the Magnitude of the Failure - I expected the robot to fail

7.1.3 Participant’s feelings of safety

For the third hypothesis, we predicted participants’ feelings of safety were strongly re-

lated to failure severity such that more severe failures would cause participants to feel more

danger. There were four statements in the survey that assessed participant’s feelings of safety
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around Baxter across different conditions: “During the experiment, I felt unsafe near the

robot”, “The robot’s behavior has harmful or injurious actions”, “I felt physically threat-

ened by the robot”, and “I think robots are dangerous”. While there was no significant

effect found across conditions for the first three statements, we found significant findings

for the fourth statement. Four significant interaction effects were found: between Personal

Risk and Baxter’s Head Display categories, F(15,48)= 4.083, p = 0.049; between Personal

Risk and Order of the Magnitude of the Failure categories, F(15,48)= 4.083, p = 0.049;

between Property Harm and Order of the Magnitude of the Failure categories F(15,48) =

4.083, p = 0.049; and between Order of the Magnitude of the Failure and Baxter’s Head

Display F(15,48) = 5.333, p = 0.025. None of the interaction effects had significant pairwise

differences. Even though our hypothesis was not confirmed, we found that feelings of safety

were strongly related to the recency of the failure. In the previously mentioned interaction

effects, the trend was usually that combinations where the Personal Risk case was observed

at the end received higher ratings than combinations where it was observed first.

7.1.4 Impact of Baxter’s head display on participants’ willingness to assist

Next, we explored the presence of an expressive face. We hypothesized that giving the

robot a face would improve participants’ willingness to assist. We ran a one-way Fisher’s

Exact Test based on the survey responses where we asked participants if they intervened

during the experiment to help the robot and we found there was a significant difference across

Baxter’s Head Display, p = 0.011, where more people in the Display condition intervened

(32/32) compared to the Blank display condition (25/32). The results can be visualized in

Figure 7.4. However, analyzing the videos, we realized that participants misinterpreted the

question and answered whether they had intervened at any point during the experiment,

while we were trying to explore if participants assisted during the Assistance condition.

Thus, analysis of the videos showed a different result, where (24/32) participants assisted

the robot in the Display condition and (21/32) assisted in the Blank condition. Therefore our

fourth hypothesis had mixed results. A visual display of the results observed by analyzing

the videos can be observed in Figure 7.5.
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Figure 7.4: Percentage of Participants that reported Assisting Baxter at Some Point

During the Experiment

Figure 7.5: Percentage of Participants that reported Assisting Baxter During the

Assistance Trial
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7.1.5 Effects of having the most extreme case of failure at the end

Finally, our last hypothesis examined whether having extreme cases of failure towards the

end of the experiment lowered overall participant ratings of performance, safety, and trust

due to recency effects in memory. Results on this hypothesis were mixed, and influenced by

severity and whether the face display was present.

There was no significant differences across conditions for statement 8, “I think robots are

trustworthy.” When we included gender as a single variable in our model, we found that it

had a significant effect on the ratings, F(15, 48) = 3.538, p = 0.022. A post-hoc pairwise

analysis found that female participants (M=3.189, SE=0.151) rate the statement lower than

male participants (M=3.867, SE=0.177). In other words, this result found that in general

women tend to trust robots less than men after observing failure in our study. This effect

can be observed in Figure 7.6.

Figure 7.6: Gender effect - I think robots are trustworthy

The analysis for statement 9, “I do not trust robots like I did before”, showed a trend

towards a main effect of the Personal Risk category, p= 0.061. Participants in the more

severe High Personal Risk - Throwing condition (M = 2.813, SE = 0.161) were less likely to
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trust the robot than the Low Personal Risk - Erratic Movements condition (M =2.375, SE

= 0.161). There was a significant interaction effect between Personal Risk, Property Harm,

and Order of the Magnitude of the Failure, F(15,48) = 9.075, p = 0.004. Post-hoc analyses

found significant difference between Throwing, Floor, and Ascending, (LSM = 3.25) and

Erratic Movements, Floor, and Ascending, (LSM =1.75), p = 0.004. A marginal difference

trend was also found between Erratic Movements, Floor, and Descending (LSM = 3.125)

and Erratic Movements, Floor, and Ascending (LSM = 1.75), p = 0.073. No other important

pairwise difference was found. The correlations can be observed in Figure 7.7.

Figure 7.7: Personal Risk, Property Harm, and Order of the Magnitude of the Failure - I

do not trust robots like I did before

Results for statement 19, “I am suspicious of the robot’s intents, actions, or outputs”,

show there was a significant interaction effect between Baxter Head Display and Order of

the Magnitude of the Failure, F(15,48) = 10.133, p = 0.003. Pairwise comparison found

Display+Ascending (LSM=3.25) was rated higher than Blank+Ascending (LSM=1.875),

p = 0.007 (Figure 7.8). There was also a trend towards significant effects between Dis-

play+Ascending (LSM=3.25) and Display+Descending (LSM=2.25), p=0.075. No other
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important pairwise difference was found.

Figure 7.8: Order of the Magnitude of the Failure and Display - I am suspicious of the

robot’s intents, actions, or outputs.

No significant difference across conditions was found for the two questions about “Your

level of confidence in the robot [before/after] the failure occurred?” Although it was noted

that 50 participants had their confidence level decrease, 13 reported their confidence levels

did not change and only one participant mentioned their confidence in the robot increased

after the failure occurred.

Data for the statements, “Rate the robot’s performance”, “Despite the failure, the robot

was helpful in bagging the groceries”, “The failure the robot had seemed preventable”, “The

failure of the robot was severe”, did not show any significant differences across conditions.

Nevertheless, a significant interaction effect between Personal Risk, Property Harm, and

Order of the Magnitude of the Failures was found for statement 11, “I think it is safe for a

robot to bag my groceries”, F(15,48) = 5.4, p = 0.020. Post-hoc analysis found no significant

pairwise difference.
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7.2 Other Findings

7.2.1 Interactions with the robot

We also examined other survey data not included in the hypotheses. A significant in-

teraction effect was found between Personal Risk, Baxter’s Head Display, and Order of the

Magnitude of the Failures for statement 6, “I would like to interact with the robot again”,

F(15, 48) = 6.667, p = 0.013. A post hoc pairwise comparison, found no significant effects.

To measure people’s willingness to work with a robot again, statements 7 and 25 were

included. While both statements were “I would be willing to work with a robot again”, they

were placed at the beginning and end of the survey just in case of bias related to answering

the other questions. Significant interaction effects between Personal Risk, Baxter’s Head

Display, and Order of the Magnitude of the Failures were found. For statement 7, F(15, 48)

= 7.6809, p = 0.008. A post hoc pairwise comparison, found no significant effects. Similarly

for statement 25, the same interaction effect was found but now F(15,48)=4.299, p = 0.044.

No pairwise significant difference was found.

7.2.2 Robot’s Reliability

To apply the four way ANOVA, a square root transformation was applied in statement

12, “I think the robot is reliable”, F(15,48) = 5.169 and p = 0.0275. A significant interaction

effect between Personal Risk, Baxter’s Head Display, and Order of the Magnitude of the Fail-

ure was found. Post hoc analysis found no significant pairwise differences. A trend towards

a significant effect was also found on the Property Harm category, p = 0.0573. Participants

rated the robot in the Floor condition (M = 1.544, SE = 0.0498) lower than in the Crunch

condition (M = 1.683, SE = 0.0489), in other words, participants thought a robot was more

reliable in the less severe of the Property Harm category, Crunch condition. Statement 18,

“The robot is dependable”, had a significant interaction effect between Personal Risk, Bax-

ter’s Head Display and Order of the Magnitude of the Failures, F(15,48) = 7.714, p = 0.008.

Pairwise comparison show no significant differences.
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7.2.3 Robot’s Predictability

To analyze the main effects for statement 16, “I think a robot is likely to fail”, a log

function was used to correct the data for normality. Personal risk had a significant main

effect F(14,48)=4.307, p = 0.0433, where Throwing (M=0.97148, SE=0.0529) was lower than

Erratic Movements (M=1.12679, SE=0.0529), as shown in Figure 7.9.

Figure 7.9: Personal Risk - I think a robot is likely to fail

Many significant interaction effects were found. One of them was found between the

Personal Risk and the Property Harm categories, F(15,48)=7.410, p=0.009. Pairwise com-

parisons found a significant difference between Erratic Movements + Floor (LSM=3.375)

and Throwing + Floor (LSM=2.5), p = 0.014, Figure 7.10.A. No other pairwise comparison

was significant. There was a significant interaction effect between Personal Risk and Order

of the Magnitude of the Failure F(15,48)=7.410, p=0.009. Pairwise comparisons found that

Erratic Movements + Descending (LSM=3.313) was significantly different from Throwing +

Descending (LSM=2.438), p =0.014. Throwing + Ascending (LSM=3.25) was significantly

higher than Throwing + Descending (LSM=2.438), p = 0.025. This effect can be observed

in Figure 7.10.B. Next, Figure 7.10.C shows a significant interaction effect that was found

between Personal Risk and Property Harm F(15,48)=8.378, p=0.006. A pairwise comparison

found a significant difference between Erratic Movements + Floor (LSM=1.184) and Throw-

ing + Floor (LSM=0.812), p = 0.0052. There was a significant difference between Throwing
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+ Crunch (LSM=1.130) and Throwing + Floor (LSM=1.184), p =0.021. No other pairwise

comparison was significant. Personal Risk and Order of the Magnitude of the Failure also

showed a significant interaction F(15,48)=8.957, p=0.004, shown 7.10.D. A pairwise compar-

ison found a significant difference between Throwing + Descending (LSM=0.795) and Erratic

Movements + Descending (LSM=1.173) p =0.004, Throwing + Descending (LSM=0.7945)

and Throwing + Ascending (LSM=1.148),p=0.009, Throwing + Descending (LSM=0.795)

and Erratic Movements + Ascending (LSM=1.080) p=0.046.

Figure 7.10: Personal Risk and Property Harm Categories - I think a robot is likely to fail

Another significant interaction effect was found between Personal Risk, Property Harm,

and Baxter’s Head Display F(15,48)=4.333, p = 0.043. A pairwise comparison showed that

Erratic Movements + Floor + Display (LSM=2.375) was significantly different from Erratic

Movements + Floor + Blank (LSM=3.75), p = 0.020, depicted in Figure 7.11.
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Figure 7.11: Baxter’s Head Display, Property Harm and Personal Risk - I think a robot is

likely to fail

Statement 20, “I expected the robot to fail”, had some significant interaction effects

between Personal Risk and Property Harm, F(15,48)=10.565, p = 0.002, as observed in

Figure 7.12. No significant pairwise differences were found. Erratic Movements + Floor

(LSM=3) had a trend towards a significant difference from Throwing + Floor (LSM=2.0625),

p=0.0643, and Erratic Movements + Floor (LSM=3) showed a trend towards a significant

effect with Erratic Movements + Crunch (LSM=2.0625), p=0.0643.

Figure 7.12: Property Harm - I expected the robot to fail
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Another significant interaction effect was found between Personal Risk, Property Harm,

and Baxter’s Head Display, F(15,48)=5.232, p = 0.027. Figure 7.13 shows results for

a pairwise comparison that found Erratic Movements + Floor + Baxter’s Head Display

(LSM=3.375) was higher than Erratic Movements + Crunch + Baxter’s Head Display

(LSM=1.625), p =0.0297. No other significant difference was found. A trend towards a

significant effect was found, p =0.0975, between Erratic Movements + Floor + Baxter’s

Head Display and Throwing + Floor + Baxter’s Head Display.

Figure 7.13: Personal Risk - I expected the robot to fail

7.2.4 Other Observations

Further analyzing some of the data, additional observations were made, some are men-

tioned below:

• When analyzing the videos recorded for all the participants, it was observed that

(53/64) participants moved away from the robot during the Personal Risk failure.

• The statement “I would be willing to work together with a robot” was posed in a ques-

tionnaire before the participants began the interaction with the robot and again after

the study. It was found that 30 participants lowered their ratings in their willingness

to work with a robot, while 32 people had ratings that remained the same, and only 2

participants’ ratings increased.
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• In the open-ended questions in the post-study questionnaire, 57 participants reported

having intervened in the experiment by helping the robot. However, after analyzing

the videos recorded for the experiments, it was found that only 45 of them assisted the

robot by trying to put an item directly under its gripper.

• When asked about their thoughts in the robot’s face, (11/32) participants explicitly

reported that giving the robot an emotional expression to forecast failure made them

change their view of the robot and interpret it as getting angry at them or the task

and thus having intention.

• Seventeen participants explicitly reported that the failures the robot had discouraged

them from helping.

• Out of the 64 participants, only 40 participants were willing to have a robot help them

in their everyday life; 15 reported that they would not be interested, and 9 of them

were unsure.

• Seventeen participants thought that the robot failures were an accident, 31 said they

were not accidents, and 16 were ambivalent or did not know.

• When asked how they would have liked the robot to let them know that something

was wrong with it, 29 participants suggested an audio message, 14 mentioned that

a robot’s face would be a good indication, 10 said to display an error on the screen,

another 10 suggested flashing lights, 6 wanted it to have an alarm, and 4 suggested

having the robot shut down. It is important to note that some participants fall into

two different categories.
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8 Discussion

Our results supported Hypothesis 1, which predicted failures that are more severe can

have an impact on participants’ feelings of trust in a robot. In our study, participants re-

ported having less trust in the robot in the more severe property harm failure cases. In

this situation, trust is defined by Muir [47] as the sum of predictability, dependability and

faith. It was found that each of these individual factors were rated higher for the low-risk

property harm condition than in the high-risk property harm condition. As a result, partic-

ipants exhibited more trust in the robot in the low-risk property harm conditions. This was

in accordance with other studies, such as Brooks [15], where a factor analysis on variables

such as trust, satisfaction, dependability, competency, and risk (among others) found them

to be significantly influenced by the severity of a failure. Brooks found that severe failures

classified the aforementioned factors negatively, and individuals who gave negative ratings

were less likely to want to use the system again. While we did not find a significant effect

for the Personal Risk category for our results, we presume it is because both failures highly

affected participants’ ratings of trust in the system. Adubor and colleagues [7] found that

personal risk is more important than property harm in people’s perception of risk; thus,

we suspect that both personal risk categories severely impacted participants regardless of

whether the object invaded the participants’ space. This was also observed in participants’

reactions to the failures, where both the high personal risk and low personal risk conditions

elicited significant behavioral reactions that confirmed participants actually perceived risk

and distrusted the robot.

Hypothesis 2 predicted that exposure to prior failures will result in decreases in par-

ticipants’ willingness to assist the robot. Our data supported that hypothesis: there was

a significant difference between participants that assisted the robot in the Ascending con-

dition, where the first failure was the Assistance opportunity, compared to the Descending

condition, where they had already observed the personal risk and property harm failures at

the time they had to assist the robot. It is also worth noting that further analysis of the

results for the Descending condition showed that participants were more likely to assist the

robot after the lower property harm condition than after the higher property harm condition.
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However, there was no significant difference between the personal risk conditions. We again

believe this could be due to the fact that both personal risk conditions were similar in the

perceived risk by the participants, while there was a clear difference between harming many

items versus one item. These results showed that failure severity could also affect participant

willingness to help the robot. These results were not in alignment with some previous results

[57] where a robot’s erratic behavior had no impact on participants’ willingness to cooperate

with the robot. Interestingly, those researchers found that regardless of the nature of the

robot’s request – whether the consequences were harmful, harmless, or a breach of privacy

– participants’ compliance differed significantly between the requests [57]. This difference in

results highlights the importance of incorporating different tasks in HRI research.

Our data did not support Hypothesis 3, which predicted that participants’ feelings of

safety were strongly related to failure severity such that more severe failures would cause

participants to feel more danger. Even though our hypothesis was not confirmed, we found

that feelings of safety were strongly related to the recency of the failure: combinations of

conditions where personal risk was observed at the end of the study received higher ratings

of danger than those that placed it at the beginning. These results were not in alignment

with the study performed by Desai and colleagues [25] where they found that early drops in

reliability negatively impacted real-time trust differently than middle or late drops. Again,

we believe this could have been affected by the perceived risk of the fault rather than the

failure itself. We believe more research should investigate why people tend to overtrust a

robot even in a high-risk scenario, as seen in prior research by Robinette and colleagues [56]

and this study, where even an attack by the robot was not perceived as dangerous. We be-

lieve this could be due to participants’ previous experience with robots and their perceptions

of robot performance because some participants associated the robot with little kids that are

just making mistakes or even specifically as “having pure intentions like babies,” according

to one participant. Brooks suggested that if the perception of risk can be suppressed or

mitigated in the event of failures, the inferred benefits of using the system should remain

high. Thus, because participants did not feel that they were in a life-threatening situation

for either the prior studies [56] or this one, they might have more tolerance to failures by

the robot.
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Hypothesis 4 explored whether giving the robot a face would improve participants’

willingness to assist the robot. Results on this hypothesis were mixed because participants

had different definitions of their interventions to help the robot. When participants com-

pleted the survey, all 32 who saw the face reported having assisted the robot, while 25 of

32 reported having assisted in the No Display condition. It was observed that participants

defined intervention as moving the bag for the robot or assisting by modifying the task space

but not coming near the robot. Additional video analysis showed that for the specific As-

sistance condition 24 of 32 participants in the Display condition assisted the robot, while

21 of 32 assisted in the No Display condition, which is not significantly different. While the

face did not have a significant effect in participants’ willingness to assist the robot, it had an

effect by raising suspicions of the robot’s intention. Participants who saw the Personal Risk

case last and observed the robot’s angry face expression in the display condition were more

likely to indicate suspicion than other participants. The participants in all of the display

conditions also indicated suspicion of intentions during the study: “Hopefully next time the

robot doesn’t hold a grudge against me,” said participant 7; “What was that about? Why

did it get angry at me!” asked participant 28; and participant 29 commented, “Based on

expressions it wanted to get the job done, but then it got nervous, then it got frustrated.”

Even though half of the participants reported having empathy towards the robot in the Dis-

play condition, the presence of a sad face during the Assistance condition did not necessarily

prompt them to assist it. Consistently, Lee and colleagues [41] found that whether the robot

was human-like or machine-like did not have an effect on the impact of an error. Neverthe-

less, the face was worth exploring since previous research suggested that it might be easier

for people to interact with non-humanoids. Also, people were encountering an unknown and

potentially dangerous situation and the perception of human-like abilities could influence

perceptions about safe interaction.

Lastly, Hypothesis 5 predicted that experiencing extreme cases of failure towards the

end of the session would result in lower participant ratings of performance, safety, and trust

due to recency effects. Our results were influenced both by severity and whether the face was

present such that they were mixed and the hypothesis was inconclusive. Participants in the

more severe Throwing condition were less likely to trust the robot than in the Erratic Move-
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ments condition when the failure occurred at the end. Due to the many factors involved, our

study cannot provide an exhaustive causal explanation for the observed effects. Additional

exploratory studies and a higher participant count per condition might help support this

hypothesis.

Through further analyses of the data, we made other interesting observations. We found

that 53 of 64 participants, or 83 percent, physically moved away from the robot during fail-

ure, behaviorally demonstrating their distrust in it. Additional analysis of the video data in

the future may reveal more behavioral differences based on specific combinations of condi-

tions. Another interesting finding is that 30 participants reported lowering their willingness

to work together with the robot after the experiment, while 32 responses remained the same

and 2 responses increased. Additionally, we explored other possible covariants in our anal-

ysis. Independent of condition assignment, women rated the statement “I think robots are

trustworthy” lower than men. This suggest that women may trust the robot less than men.

While there is not enough collected data to make any conclusions, there are several possible

explanations. A study by Schermerhorn and colleagues [51] suggests that men will more

readily treat a robot as a social entity, as opposed to a woman seeing it as more machine-like

and show no evidence of social facilitation. Another study performed by Siegel and colleagues

[59] showed that men showed a higher preference for interacting with a robot with a female

voice while women showed little preference. It was found that participants tended to rate the

robot of the opposite sex as more credible, trustworthy and engaging. Because the Baxter

was given a female voice, it could have had a gendered effect on participants. However,

most participants associated Baxter with “he” or “him” pronouns, despite the robot having

a female voice. Finally, we believe height could have had an influence in participants’ trust

in the robot. Several participants commented on the size of the robot, especially female

participants. A study by Rae and colleagues [52] found that robot height was strongly asso-

ciated with participants’ dominance. Given the average height of women is less than men,

and Baxter was taller than most of our participants, it could have exhibited some dominance

causing them to feel more distrust when it failed. However, no measurements of height were

taken to make any conclusions.
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9 Conclusion

Even the best of robots will eventually fail at performing a task. Therefore, understanding

how people respond to robotic failure and the aspects of robot behavior that influence their

trust will lead to better planning and design. In our study, we explored the effects of factors

such as failure severity, the timing of the most severe failure, and the use of social signals by

the robot on participants’ interactions with and perceptions of the robot in different failure

modes. Our study revealed that the severity and recency of failures are among the most

important factors that influence trust, the perception of safety, and the willingness of the

participant to assist the robot after failure. The presence of the robot’s face did not seem to

cause a significant difference in whether participants assisted the robot. We also found that

even when participants distrusted the robot and felt at risk, they were still willing to assist

the robot during failures.

While humans placing a great deal of trust in robots could be positive because people

will continue to work with a robot after an unavoidable failure, this excessive trust could

also lead to negative consequences because people will not have properly calibrated levels

of trust and risk. This could expose them, or their property, to physical harm. Because

many research studies suggest that the choice of experimental task can lead to very different

results, our study focused on the loss of trust after participants perceived risk coming from

the robot. While our study induced some feelings of risk in participants and their feelings

of safety were compromised, other research studies lead us to believe that more serious

feelings of danger, where the participants’ safety is actually jeopardized, could have very

different results. Because a life-threatening scenario is hard to test, it is still unknown how

participants would react to an even more severe failure. Nevertheless, our study provides

some insights on people’s behaviors when their security is compromised.

9.1 Limitations of the Study

Although our robot’s behaviors successfully led to participant perception of risk and loss

of trust due to different types of failure, this study had some limitations. One was that some

participants acknowledged having been in earlier robotics research studies, which could have
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affected their behavior during the interaction with the robot due to different levels of alertness

and suspicion. Because the study was performed in a laboratory setting, the realism of the

situation was compromised. However, it is still worth noting that our participants generally

perceived their experiences as high risk. Another limitation was the low participant count;

adding more participants could resolve the question of whether significant trends were due

to mild but meaningful effects. The slowness of the robot arm could also be considered a

limitation; increasing the speed could have made some of the failures even more threatening.

However, tests with a slower system appeared to lead participants to become distracted

and get comfortable with the robot’s actions. Thus, when the robot failed, it was usually

when the participants were not expecting it, similar to how failures often occur in a real-

life scenario. Finally, we believe that using April Tags to detect objects compromised the

expected capabilities of the robot. However, participants were told that the study focused

on the manipulation aspect, as opposed to perception. April Tags were not only used as

an identification aspect for the items, but also as a way to extract the exact location of the

objects, and they decreased the chances for stimulus error that a more complex perception

algorithm could introduce.

9.2 Future Work

We think it would be interesting to investigate how mitigation of failure affects partic-

ipants after the robot has caused some risk, such as apologizing, compensation, or options

for the user. Previous work by Lee and colleagues [41] found that graceful mitigation strate-

gies for robotic service issues may affect the way that participants perceive robots. Another

future area worth exploring is how people respond to higher risk failures if the robot fore-

warns people that the task is difficult for them or that they are just learning. This could

allow researchers to explore the influence of expectations. Finally, we believe that impart-

ing robots with the ability for self-assessment in order to detect and respond to their own

failures, rather than being a fully scripted experience, is an interesting area that should be

explored.
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Figure 10.1: Simplified RQT Graph of the Camera System

Figure 10.2: Simplified RQT Graph of the Text-to-Speech System
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[0T1] =


cθ1 −sθ1 0 0

sθ1 cθ1 0 0

0 0 1 0

0 0 0 1
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r11 = c7(s6(s4(i)− c1c2c4)− c6(s5(j) + c5(c4(i) + c1c2s4)))

+s7(s5(c4(i) + c1c2s4)− c5(j))
(15)

r12 = c7(s5(c4(i) + c1c2s4)− c5(j))− s7(s6(s4(i)− c1c2c4)

−c6(s5(j) + c5(c4(i) + c1c2s4)))
(16)
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r13 = −c6(s4(i)− c1c2c4)− s6(s5(j) + c5(c4(i) + c1c2s4)) (17)

r21 = −s7(s5(c4(k)− c2s1s4)− c5(l))− c7(s6(s4(k) + c2c4s1)

−c6(s5(l) + c5(c4(k)− c2s1s4)))
(18)

r22 = s7(s6(s4(k) + c2c4s1)− c6(s5(l) + c5(c4(k)− c2s1s4)))

−c7(s5(c4(k)− c2s1s4)− c5(l))
(19)

r23 = s6(s5(l) + c5(c4(k)− c2s1s4)) + c6(s4(k) + c2c4s1) (20)

r31 = c7(c6(c5(m) + c2s3s5) + s6(n))− s7(s5(m)− c2c5s3) (21)

r32 = −c7(s5(m)− c2c5s3)− s7(c6(c5(m) + c2s3s5) + s6(n)) (22)

r33 = s6(c5(s2s4 − c2c3c4) + c2s3s5)− c6(c4s2 + c2c3s4) (23)

x07 = L1c1 − L4(s4(i)− c1c2c4)− L5(s5(j) + c5(c4(i) + c1c2s4))− L3(i) + L2c1c2 (24)

y07 = L1s1 + L4(s4(k) + c2c4s1) + L5(s5(l) + c5(c4(k)− c2s1s4)) + L3(k) + L2c2s1 (25)

z07 = L5(c5(m) + c2s3s5)− L2s2 − L4(n)− L3c2c3 (26)
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i = s1s3 + c1c3s2 (27)

j = c3s1 − c1s2s3 (28)

k = c1s3 − c3s1s2 (29)

l = c1c3 + s1 ∗ s2 ∗ s3 (30)

m = s2s4 − c2c3c4 (31)

n = c4s2 + c2c3s4 (32)
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12.1 Preliminary Survey

Session: Participant ID: Date:

Gender: � Male � Female Other:

How old are you?

What is your occupation/field of study?

What is the highest grade or level of education you completed?

Where are you from?

Do you speak English fluently? � Yes � No

How familiar are you with robots?

Not at all 1 2 3 4 5 6 7 Very familiar

How familiar are you with computers?

Not at all 1 2 3 4 5 6 7 Very familiar

Have you interacted with robots before? � Yes � No

Have you ever seen or worked with a Baxter robot before? � Yes � No

1. I have experience working with robots.

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

2. I believe robots are useful.

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

3. I would be willing to work with a robot.

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

4. I think a robot is capable of bagging groceries.

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

5. I think it is safe for a robot to bag my groceries.

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

6. I believe it would be useful to have a robot bag my groceries.

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree
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7. I would enjoy having a robot scan and bag my groceries.

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

12.2 Post Study Survey

Session: Participant ID: Date:

Please select a value from 1 to 10 as an answer to the following questions,

where 1 = Not at all and 10 = Completely.

1. To what extent can the system’s behavior be predicted from moment to

moment?

2. To what extent can you count on the system to do its job?

3. What degree of faith do you have the system will be able to cope with all

systems states in the future? In other words, how much faith do you have

in the system being able to do its intended job with a variety of items and

environments?

4. Overall how much do you trust the system?

5. Rate the robot’s performance:

6. I would like to interact with the robot again.

1 2 3 4 5

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

7. I would be willing to work together with a robot.

1 2 3 4 5

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

8. I think robots are trustworthy.

1 2 3 4 5

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree
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9. I do not trust robots like I did before.

1 2 3 4 5

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

10. I think the robot (Baxter) is trustworthy.

1 2 3 4 5

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

11. I think it is safe for a robot to bag my groceries.

1 2 3 4 5

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

12. i think the robot is reliable.

1 2 3 4 5

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

13. I was willing to help the robot during the experiment.

1 2 3 4 5

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

14. During the experiment I felt unsafe near the robot.

1 2 3 4 5

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

15. I think robots are dangerous.

1 2 3 4 5

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

16. I think a robot is likely to fail.

1 2 3 4 5

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

17. The robot’s behavior has harmful or injurious actions.

1 2 3 4 5

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree
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18. The robot is dependable.

1 2 3 4 5

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

19. I am suspicious of the robot’s intents, actions, or outputs.

1 2 3 4 5

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

20. I expected the robot to fail.

1 2 3 4 5

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

21. I felt physically threatened by the robot.

1 2 3 4 5

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

22. Despite the failure, the robot was helpful in bagging the groceries.

1 2 3 4 5

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

23. The failure the robot had seemed preventable.

1 2 3 4 5

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

24. The failure of the robot was severe.

1 2 3 4 5

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

25. I would be willing to work together with a robot.

1 2 3 4 5

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

26. Your level of confidence in the robot before the failure happened?

1 2 3 4 5

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree
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27. Your level of confidence in the robot after the failure occurred?

1 2 3 4 5

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

Open-ended questions, please try to elaborate as much as possible.

Did you intervene in the experiment by helping the robot? If so, how? If not, why not?

Did the failure of the robot discourage you from helping it? Please explain.

Would you be willing to have a robot helping you in your everyday life? Please explain.

Do you think the failure the robot had was an accident?

Do you think a robot can develop an intent to cause potential harm?

How can a robot let you know that something is wrong with it?

What were you thinking about when you were deciding to help the robot?

Additional comments:

Thank you for participating in the study!
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