
Improving Imitation Learning through
Efficient Expert Querying

Matthew Hanczor
August 2018

CMU-RI-TR-18-56

The Robotics Institute
School of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania

Thesis Committee:
William Whittaker, Advisor

David Held
Wen Sun

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.





Abstract

Learning from demonstration is an intuitive approach to encoding complex behav-

iors in autonomous agents. Learners have shown success in challenging tasks like

autonomous driving, aerial obstacle avoidance, and information gathering, through

observation and mimicry alone. State of the art algorithms like Dataset Aggregation

(DAgger) have made significant advances over traditional behavior cloning, demon-

strating strong theoretical and empirical results. However, these methods typically

impose large sampling burdens on experts which may restrict the type of demonstra-

tors or problems that can be addressed.

In this work we propose a modified version of the DAgger algorithm aimed at

reducing expert queries while maintaining learner performance. Randomly initialized

policies typically have state distributions unlike those of the final policies, leading to

wasted expert labeling especially early in training. By increasing the rate of policy

updates we aim to collect more relevant labeled data with respect to the total number

of queries. In addition, we implement several supervised active learning approaches

as part of our query selection, allowing policy uncertainty to inform expert label

queries. We demonstrate our algorithm on a variety of simulated robot manipulator

and control tasks.





Acknowledgements

First, I want to thank my advisor Red Whittaker, whose drive and anything-is-

possible mentality has been both infectious and empowering. It has been a great

honor to work with Red as part of his unyielding quest to change the world.

Thanks also to the members of my thesis committee, David Held and Wen Sun,

for their time and feedback. Many thanks to Wen Sun for the insightful discussions

that helped me pave a path towards this work, and for being an extremely valuable

source of knowledge.

I’d like to thank my friends and colleagues at Carnegie Mellon for making the past

two years the most academically enriching experience of my life. Particularly those

I’ve worked (and not worked) closest with: Mike Lee, Daniel Ron, Brian Pugh, and

Larry Papincak.

To my siblings, Evan, Kristin, and Sean, thank you for being a constant source of

amusement, joy, support, and pride.

And finally to my parents, whose levels of character, intelligence, selflessness, and

integrity I can only aspire to, thank you for everything.

i



Contents

1 Introduction 1

1.1 Sequential Decision Making Problems . . . . . . . . . . . . . . . . . . 2

1.2 Imitation Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Expert Sample Reduction 7

2.1 Incremental Policy Updating . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Active Imitation Learning . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Implementation 14

3.1 Query Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Uniform Sampling . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.2 Query-By-Committee . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.3 Uncertainty Sampling . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.4 Density Weighting . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Robot Manipulation . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 Game Playing . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Conclusion 26

4.1 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

ii



List of Figures

3.1 (a) A gaussian process with initial labeled data (black +) mean pre-

dicted function (blue line) and two standard deviations of prediction

variance (gray shaded region). The true function is represented by

a dashed light gray line. (b) An unlabeled batch of data points are

collected (orange +) and parameters are sampled to estimate uncer-

tainty at each point. (c) Labeling data with high uncertainty (green

+) reduces prediction error and variance efficiently . . . . . . . . . . 16

3.2 Using uncertainty selection in the case of a binary linear classifier,

the active learner would select unlabeled point A as it is closer to the

decision boundary (dashed line) than all other unlabeled points. Point

A is an outlier though, unlikely to occur and gives little information

about other states. Using density weighting, point B would instead be

labeled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Fetch Robot Environments . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 OpenAI Gym Environments . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Episode reward (a) and task success rate (b) for the Fetch Reach en-

vironment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6 Episode reward (a) and task success rate (b) for the Fetch Pick-and-

Place environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.7 Episode reward (a) and task success rate (b) for the Fetch Push envi-

ronment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.8 Episodic reward for Lunar Lander, plot (b) is a zoomed in version of

(a) to show detail. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.9 3.9a Space Invaders (a) smoothed reward per episode and (b) average

selected sample utility per episode. . . . . . . . . . . . . . . . . . . . 24

iii



Chapter 1

Introduction

As the field of robotics matures, autonomous agents are called on to perform increas-

ingly complex and challenging tasks. Robots provide benefits like increased safety

and speed, reduced costs, and higher precision, if properly directed. Today these

systems are expected to move beyond highly controlled industrial manufacturing fa-

cilities and research labs, and into noisy and dynamic real-world environments. As

our demand for more generalized, mult-purpose systems increases, so does the com-

plexity of encoding in these agents the ability to perform complicated tasks in variable

environmental conditions.

While programming increasingly intricate behaviors can be at best time consum-

ing or at worst intractable, it is often the case that the desired skills can be easily

demonstrated. In most cases a demonstrator is available that can perform a task

objective sufficiently well, but would be unsuited for long term use. As an example,

humans are often used as experts for many autonomous tasks since a great deal of

automation is aimed at collaborating with or replacing human operators. Optimal

controllers or task specific heuristics can also act as experts, however at scale they

may be too computationally expensive or slow to perform continuously, and an agent

that can mimic their behavior with reduced computational complexity is required.

To address these issues, researchers have begun to rely on machine learning to

approximate expert demonstrators. By observing examples of the task performed

by a demonstrator, or receiving feedback on their own performance, learning agents

aim to construct an approximate representation of the demonstrators decision mak-

ing process. It has been shown repeatedly that it is possible to learn sophisticated

behaviors through these expert examples.

One of the major challenges in learning from demonstration is the number of sam-

1



ples required by the learner in order to sufficiently imitate the desired behavior. As

task and environmental complexity rises, the required samples can grow exponentially

which may limit the types of experts that are practical to use, and the tasks an agent

can learn to perform. In real-world robotics, where setting up and performing a task

can be time consuming, such a large number of demonstrations may not be feasible

to collect.

These challenges beg the question: is it possible to reduce the number of ex-

pert samples required for an agent to learn a behavior, while maintaining the level

of performance achieved through traditional methods? This paper will aim to show

that incrementally updating policies and actively requesting demonstration are signif-

icantly more efficient than bulk collection of expert samples. This leads to the main

statement of this thesis:

Selectively sampling data for expert labeling, along with incrementally

updating the learner policy, can significantly reduce the number of queries

required to achieve competency with respect to state-of-the-art imitation

learning algorithms.

In the rest of this chapter we provide a brief background on sequential decision

making problems and imitation learning. In Chapter 2 we introduce our proposal for

improving imitation learning through incremental updates and active learning, along

with relevant prior work regarding active learning in non-stationary distributions.

In Chapter 3 we cover the implementation of our proposed algorithm, and present

results in a number of simulated experiments. Lastly, in Chapter 5 we discuss our

conclusions.

1.1 Sequential Decision Making Problems

Autonomous robots require an understanding how a their interaction with the world

will affect the state of itself and the environment for some time into the future. Based

on its understanding of the environment, the agent (robot/decision maker/learner)

should select actions that are likely to be beneficial in accomplishing the task or goal

at hand.

This work takes advantage of the Markov Decision Process (MDP) framework [27],

which is extensively used in sequential decision making problems, and especially in

2



reinforcement and imitation learning [40]. In short, an MDP is a framework that

allows an optimal policy to be computed which maximizes long-term reward over a

sequence of decisions. MDPs are defined by the four-tuple (S,A,R,P) 1 where:

• S is the set of all possible states in the system, where a state provides complete

information required to select an action.

• A is the set of actions that the agent can perform, which can be either continuous

or discrete.

• R is the reward function. R(s, a) is the immediate one step reward provided by

the environment by performing action a in state s

• P is the state-transition function of the environment, specifying the probability

of a next state dependent on past states and actions.

The defining trait of an MDP is the Markov assumption that any state st+1 is

dependent on only st and at where:

p(st+1|st, at, . . . , s0, a0) = p(st+1|st, at)

The goal in any MDP is to construct a policy that maps states to actions, or a

distribution of actions, π : S → A in order to maximize the total expected return,

or to minimize the total expected cost. An objective function for selecting a policy π̂

from a policy class Π is defined such that:

π̂ = argmax
π∈Π

T∑
t=1

Es∼dtπ [Rπ(s)] (1.1)

where Rπ(s) = Ea∼π(s)[R(s, a)] and dtπ is the distribution of states under π at time t

such that dπ = 1
T

∑T
t=1 d

t
π [30].

1.2 Imitation Learning

Imitation learning, or learning from demonstration, is an approach to solving a se-

quential decision making problem by predicting the actions the demonstrator would

1We will also make reference to the cost C in place of R, where the cost is simply as the negative

of the reward C(s, a) = −R(s, a)

3



take at any particular state. Typically optimal or near-optimal experts π∗, who are

able to perform the desired task sufficiently well, are used.

As stated in the previous section, the goal of an MDP is to learn π̂ to maximize the

expected reward. However, the learner often does not have access to the true reward

and instead only observes the expert’s demonstrations. In this case, a surrogate loss

function `(s, π) may be defined to minimize instead. In regression this could be a

squared loss, or 0-1 loss for classification, with respect to π∗. Therefore, the new

objective becomes:

π̂ = argmin
π∈Π

T∑
t=1

Es∼dtπ [`(s, π)] (1.2)

Behavior Cloning Early work in imitation learning used a strategy known as

Behavior Cloning, where an expert performs a number of demonstrations, providing

the learner with a dataset of state-action pairs D = {(si ∼ dπ∗ , ai ∼ π∗(si))}Mi=1
2 from

which to learn a policy [5]. This is a direct supervised learning approach to imitation

learning, where state inputs and labeled action outputs are provided by the expert

and used to train the learner. While this approach has been moderately successful,

including early self driving vehicles [26], there are significant problems that limit its

application in modern practice.

Ross and Bagnell [31] show that the primary issue lies in the fact that during

training, states are drawn from a fixed distribution dπ∗ induced by the expert’s policy

π∗, however at test time the learner must label states that arise through execution

of its own policy π̂, and therefore its own distribution of states dπ̂. The difference

between dπ∗ and dπ̂ can be significant, since small differences in actions may cause

large divergences in the distribution of states over time. They found that if a learner

makes a mistake (selects a different action than the expert) with probability ε, the

total cost grows quadratically on order of O(εT 2) in a task horizon T compared

to traditional supervised learning with cost O(εT ). Intuitively, if the agent makes

a mistake it is possible to transition to a state unlike one that the expert would

normally encounter. Since there is no demonstration for this new state, the agent is

more likely to make another mistake. This can compound over time leading the agent

to continually select incorrect actions.

2The work in this paper applies to both stochastic and deterministic policies

4



Forward Training Ross and Bagnell [31] proposed the Forward Training algorithm

as a solution to this problem. Instead of having an expert collect states under dπ∗ ,

a series of a non-stationary policies are learned where, during training, the expert is

queried interactively to label states collected by rolling out, or executing, the learner

policy. Using this approach, the authors were able prove that the expected cost under

the distribution of states encountered by the learned policy at test time matched the

average cost during training. However, the Forward Training algorithm depends on

learning a policy for every time step t within the time horizon T which makes it

difficult or impossible to implement in long time horizon tasks. In [33], Ross et al.

introduce the Dataset Aggregation (DAgger) algorithm as an approach to iteratively

train a stationary, no-regret, learner policy.

Algorithm 1: DAgger

Initialize D ← ∅
Initialize π̂1 to any policy in Π

for i = 1 to N do
Let πi = βiπ

∗ + (1− βi)π̂i
Sample T -step trajectories using πi

Get dataset Di = {(s, π∗(s))} of visited states by πi and actions given by

expert

Aggregate datasets: D ← D ∪Di
Train classifier π̂i+1 on D

end

Return best π̂i on validation

DAgger Algorithm 1 shows the complete DAgger algorithm. Initially, the policy

that is executed can be a mix of the learner’s and expert’s policies controlled by a

weighting factor β. This parameter allows the expert to control the action selection

in some of the early training episodes, shifting over control to the learner agent as β

decays to zero. At each iteration the current policy πi rolls out a series of trajectories,

collecting a set of labeled states Di = {(s, π∗(s))}. Once the policy has finished

collecting data, the current dataset is aggregated with the data from all previous

policies D ← D ∪ Di. The next policy πi+1 is then trained on the increasingly large

dataset.

5



The authors showed that by using this method the final policy was guaranteed to

limit the number of mistakes made by the learner to linear growth in ε and T , on par

with traditional supervised learning with a stationary data distribution. This finding

has led DAgger and its extensions to be applied to solving a variety of challenges

like autonomous driving [33] [45] [23], adaptive information gathering [9] [8], UAV

control [34], and dependency parsing [39].

As effective and proven as DAgger has become, one of its major limitations is

the large sampling burden it imposes onto the task expert. DAgger assumes that

at every state, in every sampled trajectory, for every learned policy, the expert is

asked to provide an action. While this may be feasible with certain experts that

are inexpensive to query, such a large sampling load can limit the practicality of

applying DAgger with complex or costly experts. In the next chapter we propose

several improvements to expert sampling, in order to achieve performance equivalent

to traditional DAgger, with fewer labeled states.

6



Chapter 2

Expert Sample Reduction

As shown in the previous chapter, imitation learning is a special case of supervised

learning where the objective is to accurately predict the action taken by an expert in

a state drawn from a distribution induced by the learner’s policy. The assumption is

that minimizing the difference between the expert and learner policies will improve

the learner’s performance on the underlying task. In the supervised and imitation

learning settings there are two types of data: unlabeled, which in an MDP would be

the set of observed states U = {sj}Kj=1, and labeled L = {si, aπ
∗
i }Mi=1, the state-action

pairs labeled by the expert at state si. There is often a real-world cost for collecting

each type of data, and typically the collection cost of unlabeled data is significantly

less than the cost of labeled data. For example, tens of thousands of photos can be

easily scraped off the internet, but annotating each image requires significant time and

human intervention. The goal of expert sample reduction is to leverage the cheaply

available unlabeled states to reduce the number of labeled state-action pairs required

to achieve sufficient performance on the target task. In this chapter we propose two

methods for reducing expert sample complexity. First, increasing the rate of policy

adjustment per expert samples in order to speed up the transition from irrelevant to

relevant state distributions. Second, improve the ”quality” of samples selected for

labeling by adopting i.i.d. supervised active learning techniques for active imitation

learning.

7



2.1 Incremental Policy Updating

During training of the learner policy π̂ under DAgger, the algorithm iteratively trains

new policies πi for i ∈ 1, . . . , N . The initial distribution of states of the randomly

initialized π1, dπ1 , is usually very different than dπ∗ . Because of this, many of the

states labeled by the expert in early trajectories may not be relevant or likely to be

encountered as training progresses and dπi → dπ∗ .

To reduce expert sampling the agent should ideally move as quickly as possible

from its initial distribution of states, to the distribution it will encounter at test

time dπ̂, while minimizing the cost of labeling states in early training iterations. We

propose that by incrementally updating the policy more frequently with fewer labeled

examples, the rate of convergence towards dπ∗ is faster than with less frequent updates

with larger batches of newly collected states, with respect to the total number of

labeled states. While a formal theoretical treatment to why this is possible is not

provided, there is a compelling empirical basis.

It is often the case that similar states have similar expert actions, where learning

the label for one state allows the learner to infer labels for other nearby states. Under

a fixed policy, it is likely that the agent will encounter similar states over multiple

trajectories, or even within a single trajectory. As the data set grows for a fixed

distribution, the utility of adding additional samples decreases. Therefore, moving to

new state distributions more frequently, instead of continuing to label in the current

distribution, may lead to greater information utility per expert sample.

As states are added to the labeled set L and the policy is updated, the distribution

of states is on average shifted towards dπ∗ . After each shift in the distribution, the

probability of encountering states from dπ∗ improves, increasing the likelihood of

labeling states relevant to the final policy π̂. This change may have a compounding

effect, where labeled states shift the distribution towards π̂, making future labeled

state more relevant, further shifting the distribution. 1

While a random sampling of states could be used for incremental policy updating,

it would be ideal to select states that provided the most utility in terms of improving

the current learner’s policy. In supervised learning, selecting future examples to be

labeled based on the current labeled dataset is known as active learning.

1Judah et al. [16] provided a proof of how this similarity of state distributions between the learner

and expert changed over iterations using their RAIL algorithm, an approach similar to Forward

Training

8



2.2 Active Learning

Active learning is a strategy used in supervised learning to reduce the number of

labeled examples during training while still maintaining the generalization error rate

of a passive learner [36]. A canonical example is in the case of a binary linear separa-

tor. Imagine a bounded uniform distribution of unlabeled points with possible labels

{0, 1}. Using passive random selection, finding a classifier that correctly labels all

points with error ε or less would require O(1/ε) samples, assuming realizability (that

a perfect linear classifier exists). However, by applying a binary search strategy where

the learner is able to reduce the hypothesis space of possible classifiers by roughly

half with each sample, only O(log2(1/ε)) samples are required to achieve the same

predictive error. While of course this is a very simple toy problem, the idea of using

knowledge gained from past examples to inform future sampling is at the heart of

active learning.

Active learning aims to select “informative” examples for labeling, examples that

lead to a useful improvement in a learner’s understanding of the environment. Active

learning is typically grouped into one of three categories:

• Stream-Based Querying: In stream-based active learning, samples are se-

quentially drawn from the underlying distribution and presented to the learner.

At every time step the learner receives a single example and decides whether

to query the expert or request a new sample. As the learner does not have

access to a set of unlabeled examples, sample selection is usually dependent on

imposing some threshold of uncertainty such that if the current sample violates

the threshold the learner queries the expert, otherwise the sample is discarded.

• Pool-Based Sampling: In pool-based sampling, the learner is given a set of

unlabeled examples and can select any examples from the set that it would

like the expert to label. Typically this selection is done greedily, with samples

assigned the highest utility being selected first. This scenario is well studied

and due to the ability to select optimal data points has allowed researchers to

develop theoretic bounds on the sampling improvement over passively sample

selection. Under certain constraints researchers have demonstrated exponential

reduction in the number of expert samples required [36].

• Query Synthesis: While in the previous scenarios samples were presented to

the learner from an external source, an alternative approach is for the learner

9



to propose unlabeled examples based on its internal belief. In this case the

learner does not need to look for samples that it is highly uncertain about, but

instead can come up with and propose its own queries directly to the expert.

In practice however, these techniques generate samples that are either unlikely

to occur or are unable to be reliably labeled by an expert. For example, Baum

and Lang [2] used membership query synthesis in an optical numerical charac-

ter recognition task, where a network was trained on self-proposed data using

human oracles. They found that many of the images generated to be labeled

were either combinations of digits or completely unrecognizable as characters.

In this work we will focus on pool-based sampling for active imitation learning,

with the learner collecting a dataset of unlabeled states from which a subset can be

selected for expert labeling.

There are many objectives that can be used to guide active sample selection [10]

[36]. An active learner could chose samples that have high uncertainty, or ones that

the learner has low prediction confidence about [22]. Unlabeled examples could be

selected in order to reduce the hypothesis space that is consistent with the current

gathered data [37] [11]. Alternatively, the learner could use the structure of the unla-

beled data in combination with another metric to guide sample selection. Intuitively

it would make sense to select samples that directly reduce the learner’s future predic-

tive error in expectation as this is the overall objective [35]. However this approach in

practice normally requires retraining the current policy for each unlabeled data point

in order to estimate the utility of labeling. This is computationally intractable with

large and changing datasets.

We present several practical active learning strategies in Section 3.1 and compare

their relative effectiveness on imitation learning tasks in Section 3.2.

2.3 Active Imitation Learning

The aim of active imitation learning is to utilize the research and algorithms for

i.i.d. supervised active learning in imitation learning tasks. Due to differences in

imitation learning however, it may not always be possible to apply active learning.

An interactive expert is of course required, since the learner needs to propose a query

to the expert and receive at least a noisy label in return.

One of the significant challenges in using active learning in an MDP is that most

active learning strategies assume that unlabeled data is drawn from a stationary

10



distribution, where collecting unlabeled data is not affected by the data that has

already been labeled. As discussed in Section 2.1, during training there can be large

shifts in the distribution of states after updating the learner’s policy, changing the

expected future states. Additionally, unlabeled states are not independently collected

in an MDP as each are typically sampled by rolling out a trajectory with πi.

One option is to generate a set of states drawn independently from the distribution

dπi . To do so, a time step is randomly sampled t ∈ {1 . . . T} and the policy is rolled

out until t. The state is appended to a set of unlabeled states Uπi , and this is repeated

M times such that Uπi = {s1
πi
. . . sMπi }. Uπi is now a set of states independently sampled

from dπi , from which an active learner can select examples for labeling.

While this may be applicable in the infinite sample case detailed in [33], it is

not feasible in practice. At every iteration of DAgger multiple trajectories would

have to be run to collect a single data point per trajectory, and then from that set

of independently selected points, a subset would be chosen by the active learner for

labeling. Once the policy is updated, the process would need to be repeated. In the

finite sample case, for M samples to be collected O(MT ) time steps are needed, and

only some subset of those M samples are actually labeled by the active learner.

We propose rolling out trajectories under the current policy, with all states ap-

pended to Uπi . The active learner can select states from this dataset, leading to a

substantial reduction in the number of trajectory roll-outs needed per each policy.

This approach is connected to the DAgger finite sample case, where instead of ob-

serving the true distribution of trajectories, the algorithm is trained on only a small

sample of trajectories at each iteration. Once Uπi has been collected, the utility of

each state can be determined in hindsight. B samples can then be selected for label-

ing, where B is the labeling budget, the number of queries that can be proposed per

policy update. This budget can change during the course of training, which allows for

more states to be collected per episode later on in training as the agent encounters

more relevant states.

The modified DAgger algorithm, Query-Efficient Dataset Aggregation (QE-DAgger),

is shown in Algorithm 2. Instead of interactively labeling all states in Ui, as per DAg-

ger, samples are added to Li using a selective labeling approach S(Ui, πi), dependent

on Ui and the current policy πi. In Chapter 3 we apply this algorithm to a number

of simulated environments and compare the results with traditional DAgger.

11



Algorithm 2: QE-DAgger

Initialize L ← ∅
Initialize π̂1 to any policy in Π

for i = 1 to N do
Let πi = βiπ

∗ + (1− βi)π̂i
Collect unlabeled dataset Ui by sampling T -step trajectories using πi

Label B data points Li = {(s, π∗(s))} with selective labeling method S(Ui, πi)
Aggregate datasets: L ← L ∪ Li
Train classifier π̂i+1 on L

end

Return best π̂i on validation

2.4 Related Work

The most relevant research to our work is by Judah et al. [16], who developed a

theoretical approach to using active learning in the context of the Forward Training

algorithm [31]. The authors showed that, due to the reduction [31] of imitation to i.i.d.

passive learning, active learning techniques could be immediately applied to learn a

non-stationary policy π̂t by sampling states from multiple executions of the previous

non-stationary policy π̂t−1 = (π̂1, . . . , π̂t−1) up to the current time step t. They

demonstrated a practical stationary policy modification to Forward Training, called

RAIL (Reduction-based Active Imitation Learning), and showed an improvement over

passive sample selection by using a density-weighted query-by-committee [21] active

learner. As a contrast, in our work we aim to improve the stationary policies learned

by the DAgger algorithm, which provides more robust no-regret guarantees, and

employ more sophisticated classes of policy and uncertainty representation compared

to the linear policies learned in the authors’ experiments.

In [19], the authors address the challenge of imitation learning with high-dimensional

image data as a representation of the state. They use a stream-based active learning

approach where states are queried if they are deemed ”risky”. This evaluation is

performed by using a one-class Support Vector Machine to determine states that are

close to the decision boundary and therefore likely to be misclassified. In addition,

they employ a notion of novelty to define regions of the state space where past learned

classifiers have performed poorly in order to encourage sampling in those regions.

While the primary goal of our work is querying states with the intent of reducing

12



overall expert sampling, other work has focused on querying experts to promote

safe exploration and learning. Zhang et al. [45] applied the DAgger framework to

autonomous driving, where they considered the importance of ensuring the safety

of the agent during training. In order to maintain safe exploration they used a

secondary safety classifier in addition to the learner policy network to predict if,

given the current learner policy and state, the learner is likely to deviate from the

reference expert policy. In the case the policy is unlikely to deviate from the expert

as predicted by the safety classifier, then the learner policy maintains control of the

vehicle, otherwise control is handed over to the expert. The authors demonstrated

that the safety classifier significantly reduced the number of collisions that occurred

during training, though they did not compare performance in relation to the number

of queries posed to the expert.

Similarly, Menda et al. [23] also used a stream-based active learning approach

to query an expert in order to maintain safe exploration of an agent. In this work

the authors used an approximation to a Bayesian network presented by [14] in order

to gauge uncertainty in the policy at each state. Again, a predefined threshold was

used to determine when the learner’s policy was sufficiently uncertain, and control

shifted to the expert reference policy if necessary. The results demonstrated that

while their approach improved safety, as defined by the authors, performance and

episodic reward for the task did not improve over traditional DAgger given the same

number of training epochs.

13



Chapter 3

Implementation

In the last chapter we proposed a modification to the DAgger algorithm whereby

policies are updated more frequently with respect to the number of samples collected,

and states can be selectively chosen based on the current policy’s confidence at that

state. In this chapter we lay out several practical implementations of the QE-DAgger

algorithm for discrete and continuous action space tasks using deep neural networks

to learn viable policies. Deep learning methods are state of the art, having shown the

ability to outperform human level performance on a number of challenging problems

in imitation and reinforcement learning [24] [41] [39] [38].

3.1 Query Selection

3.1.1 Uniform Sampling

To test the benefits of incremental policy updating without the effects of active learn-

ing, QE-DAgger is implemented with uniformly random state selection for labeling.

After Ui is collected under the current policy πi, B states are randomly sampled with-

out replacement to add to L. This selection method will demonstrate how incremental

updating improves on classic DAgger, as well as serve as a baseline comparison for

the active learning sampling methods.

3.1.2 Query-By-Committee

In machine learning, a hypothesis space H is the set of all possible hypotheses under

consideration, i.e. all possible weight parameter values in a neural network. One

14



popular active learning strategy is to propose multiple hypotheses from a version

space V ⊆ H, a subset of hypotheses that are consistent with the current dataset. By

comparing multiple consistent hypotheses on unlabeled data, it is likely that there

will be some disagreement between hypotheses, with greater disagreement implying

greater uncertainty. Query-by-committee (QBC), is an active learning strategy that

uses a collection of hypotheses in H to decide which unlabeled states would best

reduce V [36].

Of course in many real-world problems there may not exist a hypothesis that is

consistent with the complete labeled dataset L, and for complex, or infinite hypoth-

esis spaces in the case of deep neural networks, finding the extremes of V can be

intractable. Instead, a Bayesian approach of sampling from a posterior distribution

of hypotheses in the parameter space, P (θ|L), is used [36] [21].

One way to sample a hypothesis from a neural network is through the use of

dropout at test time [13] [14]. Dropout is a commonly used technique during training

of deep neural networks, whereby a random binary mask is applied to each weight layer

in a network, sampled from a Bernoulli distribution with a dropout rate parameter

0 ≤ d ≤ 1. By using dropout for inference, and sending multiple copies of the

state in question through the network, a group of randomly selected possible models

are generated to produce predictions. Other approaches use multiple classifiers with

different random initializations such that committee members learn different local

minima for predictions [20]. The members are updated independently on the labeled

dataset. Using a dropout-based approach has the advantage that a single trained

network can be used to construct a committee instead of needing to train multiple

networks in parallel.

To quantify the level of disagreement per state, Jensen-Shannon divergence [22],

an information theoretic measure based on Kullback-Leibler (KL) divergence [18], is

used.

JS(p1, . . . , pn) = H(
n∑
i=1

wipi)−
n∑
i=1

wiH(pi) (3.1)

Where wi = 1/n so as to equally weight each committee member, and H(p) is the

Shannon entropy for a distribution p:

H(p) = −
m∑
j=1

p(xi) log2(p(xi)) (3.2)

for a hypothesis with m discrete actions.

15



(a) (b) (c)

Figure 3.1: (a) A gaussian process with initial labeled data (black +) mean predicted

function (blue line) and two standard deviations of prediction variance (gray shaded

region). The true function is represented by a dashed light gray line. (b) An unlabeled

batch of data points are collected (orange +) and parameters are sampled to estimate

uncertainty at each point. (c) Labeling data with high uncertainty (green +) reduces

prediction error and variance efficiently

JS-divergence allows for comparison of class membership probabilities of the entire

committee. In contrast, vote entropy is another commonly used QBC metric [16] [11]

[36], but it does not directly compare prediction probabilities of the members, and is

less useful when the expert’s policy is stochastic.

3.1.3 Uncertainty Sampling

Another active learning approach is to choose samples based on how uncertain the

current learner is. Ideally, as samples with higher uncertainty are labeled, the average

uncertainty over all states decreases.

Gaussian processes are a powerful Bayesian tool used to model uncertainties over

functions [29]. Figure 3.1 shows how a Gaussian process is able to model uncertainty

by sampling functions from the posterior distribution of parameters. In sections of the

function where there are few labeled states, the uncertainty over the true underlying

function from which the data is drawn is uncertain. In Figure 3.1b, samples of possible

functions vary dramatically in sparsely sampled regions of the input space, while still

representing labeled data with high accuracy and certainty.

However, Gaussian processes become computationally intractable as dataset size

increases, since they require a matrix inversion the size of the dataset, with time com-

plexity O(N3), and they may not have the expressiveness of a modern deep neural

16



network. Unfortunately, accurately estimating uncertainty in deep networks is diffi-

cult and not well understood. Recently though, work by Gal and Ghahramani [14]

demonstrated how dropout applied in a neural network with arbitrary length and

non-linearities is mathematically equivalent to an approximation of a deep Gaussian

process model. Essentially what they were able to show was that forward passes

through the network are samples from the approximate predictive posterior, and

by averaging multiple forward passes (Monte-Carlo integration) an estimate of the

model’s uncertainty could be approximated.

As an extension to this work, Gal et al. proposed a method for adjusting the

dropout rate hyper-parameter as a function of the dataset size |L|, called Concrete

Dropout [15]. As |L| increases, model uncertainty along with the appropriate dropout

parameter should decrease. Automatic tuning of dropout probability makes dropout

sampling feasible for tasks with changing dataset sizes, instead of hand tuning the

dropout parameter as more data is collected. For this reason, Concrete Dropout

is used for estimating the uncertainty of the learner’s policies at specific states in

continuous action space tasks.

The learner’s concrete dropout network has two output layers, the policy and the

predicted log variance of the policy. A loss function is implemented that balances

improving the learner’s prediction to match the expert, while reducing the predicted

log variance.

L(θ) =
1

N

N∑
i=1

1

V (xi, θ)
(yi − f(xi, θ)2 + log(V (xi, θ)) + λ ‖θ‖2 (3.3)

This loss also includes a regularization term. The learner can achieve a small

loss so long as the predictive mean error and variance V (xi, θ) is low, however if the

network outputs a small variance for an action prediction that is far from the expert’s

action the loss will be substantial.

3.1.4 Density Weighting

The two active learning approaches detailed above can potentially be fairly myopic

as neither considers the structure of the data distribution from which they are se-

lecting samples, only considering the information content of the individual states. It

is possible to hedge selection of samples based on the distribution of collected data

using density weighting [36]. Typically, an active learner should avoid spending time

17



Figure 3.2: Using uncertainty selection in the case of a binary linear classifier, the

active learner would select unlabeled point A as it is closer to the decision boundary

(dashed line) than all other unlabeled points. Point A is an outlier though, unlikely

to occur and gives little information about other states. Using density weighting,

point B would instead be labeled.

labeling states in outlying regions of the state distribution and focus more on states

that are likely to occur (Figure 3.2). Combining a metric for similarity, with an active

learning selection metric, changes the selection preference to states that the learner

is both uncertain about but likely to encounter based on past trajectories. Formally:

û = argmax
u∈U

φ(u)
( 1

|U|
∑
u′∈U

sim(u, u′)
)γ

(3.4)

where φ(u) is the utility assigned to unlabeled state u by active learner φ. In

the experiments below Euclidean distance is used as the density weighting metric

sim(u, u′), and the weighting parameter is fixed at γ = 1 .

3.2 Experiment Setup

To evaluate whether Query-Efficient DAgger is able to reduce imitation learning ex-

pert querying in practice, experiments were performed in five simulated environments,

comprising both discrete and continuous action spaces. These environments are part

of the OpenAI Gym collection [6].

3.2.1 Robot Manipulation

The benefits of QE-DAgger are first demonstrated on three continuous action space

robotic manipulator tasks. The manipulator is a simulated Fetch robot, a 7-DoF

robot arm with a two fingered paddle gripper as the end effector (Figure 3.3). In each

18



(a) FetchReach-v0 (b) FetchPush-v0 (c) FetchPickAndPlace-v0

Figure 3.3: Fetch Robot Environments

task the aim is to move either the end effector or an object to a desired goal location

in R3. At every time step the agent receives a reward of -1 if the object is not at the

goal location, and 0 otherwise. Three scenarios are tested:

• In FetchReach-v0, the goal is to move the Fetch gripper to a target position,

with an observation space size R10.

• The FetchPush-v0 task requires a randomly initialized box to be moved to

a target location on the table. The end effector is locked closed in this task

to ensure the learned behavior involves pushing the block to the goal. The

observation space is size R25.

• FetchPickAndPlace-v0 also involves a box, but in this task the goal is to

grasp the box with the end effector and move it to the target location, which

can be either on the table or in the air above the table. The observation space

is size R25.

The expert policies for each task are trained Actor-Critic networks using DDPG

and Hindsight Experience Replay [1], with implementations available from the Ope-

nAI Baselines repository [12]. Expert baselines for each environment are included in

the performance plots below. A slight modification was made to these environments

during training of the learner policies. These tasks normally have a fixed 50 time

step horizon regardless of whether or not the task is achieved, which is beneficial for

certain parallel computing training methods. Instead, the episode ends if the object

is within the goal location for five consecutive time steps, or if 50 total time steps

have passed, which helps to speed up training.

The learner policy neural networks comprises of 3 hidden layers with 256 units each

and rectified linear unit (ReLU) non-linearities. The output layer uses a hyperbolic

19



(a) LunarLander-v2 (b) SpaceInvaders-v0

Figure 3.4: OpenAI Gym Environments

tangent (TanH) nonlinearity to bound the action space within [−1, 1]4, where the

actions specify the desired movement of the end effector. This policy network closely

matches the expert’s policy network from [12], so that the learner has the ability

to approximate the expert as closely as possible without increasing the number of

trainable parameters.

For all of the Fetch tasks a single expert-led demonstration is performed, βi =

I(i = 1), to initialize the learner policy. The states labeled in the initial episode are

included towards the count of total queried states. The querying budget B = 1 for

all Fetch tasks.

In these environments, traditional DAgger is compared to QE-DAgger using uni-

form sampling, uncertainty selection, and density weighted uncertainty selection.

3.2.2 Game Playing

We also test our approach on two discrete action space environments, shown in Figure

3.4

LunarLander-v2 - The goal of Lunar Lander is to pilot a two legged space craft

from a randomly selected initial starting pose and velocity to a resting position within

a fixed target area. The agent’s observation space is in R4. The location of the target

landing pad is constant at (0, 0), and the agent receives higher reward for becoming

stationary close to the target without descending too rapidly and crashing into the

terrain below. The agent can perform one of four discrete actions at each time step:

do nothing, fire the left orientation engine, fire the right orientation engine, and fire

the main body engine.

20



The expert for this task is a heuristic provided by OpenAI [6]. The learner policy

network has 3 hidden layers with 16 units each and ReLU non-linearities. The output

is a softmax of probabilities the size of the action space, and actions are chosen greedily

with respect to the output distribution. Again, the expert query budget B = 1.

SpaceInvadersNoFrameskip-v0 - This is a port of the classic Atari game Space

Invaders where the point of the game is avoid attacks from enemy spacecraft while

returning fire and knocking out all enemy ships before they are able to descend to

the bottom of the screen. The agent is given three lives and the goal is to accrue as

many points as possible before the lives are spent.

The observation space of this environment is a sequence of four, 84x84-pixel pre-

processed images, with the action space being one of six discrete actions. The details

of the observation space preprocessing can be found in the original work of learning

to play Atari environments with Deep Q-Networks by [24].

The expert policy is a convolutional neural network trained using a Proximal

Policy Optimization baseline available through [12]. The expert was trained for 100

million time steps and achieves an average score of 2486 points. The learner policy

network uses the same form of the convolutional layers as the expert’s network, but

with the inclusion of three additional hidden layers with 256 units before the softmax

output layer from which actions are selected greedliy. Due to the long episode length

the querying budget is fixed at B = 30.

3.3 Results

The results from the experiments in each environment are presented below. In order

to ensure proper comparison between classic DAgger and our proposed approaches

we maintained consistent hyper-parameters (learning rates, dropout, weight regular-

ization, training epochs, etc.) within a task and where applicable.

Fetch Reach

Figure 3.5 shows the episode reward and task success rate for the FetchReach envi-

ronment. The three QE-DAgger implementations, uniform random selection, dropout

uncertainty, and density weighted dropout uncertanty, achieved 90% task success af-

ter only 200 expert labels compared to DAgger which did not reach 90% success until

650 labeled examples were collected. Additionally, QE-DAgger learners matched the

21



(a) Episode Reward (b) Task Success

Figure 3.5: Episode reward (a) and task success rate (b) for the Fetch Reach envi-

ronment.

expert performance of 100% success with only one third of the number of labeled ex-

amples compared to DAgger. With respect to one another, the QE-DAgger variations

showed almost no differences in performance during training.

Fetch Pick-and-Place

(a) Episode Reward (b) Task Success

Figure 3.6: Episode reward (a) and task success rate (b) for the Fetch Pick-and-Place

environment.

In the Fetch Pick-and-Place task, a similar result to the Fetch Reach environment

can be seen, where there is a significant reduction in the number of expert queries

22



required to reach expert level performance (Figure 3.6). In addition, the three QE-

DAgger variations once again are nearly identical in the number of expert samples

required for competency. Here QE-DAgger matches the expert success rate after

around 1000 labeled examples, while DAgger requires three times as many queries.

Fetch Push

(a) Episode Reward (b) Task Success

Figure 3.7: Episode reward (a) and task success rate (b) for the Fetch Push environ-

ment.

In the final Fetch environment, Fetch Push, all three QE-Dagger variations again

showed a significant learning advantage over DAgger, with each averaging over 80%

success after 4000 expert samples, compared to DAgger which after 15000 samples

was unable to achieve an average success rate of 80% (Figure 3.7). In this experiment,

uniformly random expert querying seemed to outperform uncertainty selection, both

density weighted and unweighted. Random selection leveled out at a higher episode

reward than both uncertainty methods, but none of the tested methods were able to

match expert performance. This could be due to the difficulty of the environment of

the task in comparison to the other Fetch tasks, or perhaps given more training time

the learners would be able to approach expert level performance.

Lunar Lander

The Lunar Lander heuristic averages a total reward of 224 which exceeds the ”solved”

episodic reward threshold of 200 points. It is clear from the plots in Figure 3.8 that the

23



(a) (b)

Figure 3.8: Episodic reward for Lunar Lander, plot (b) is a zoomed in version of (a)

to show detail.

QE-DAgger approaches required far fewer samples to cross the 200 point threshold.

Random sample selection, with policy updates after each sample, reached expert-

level performance after only 200 queries. Jensen-Shannon divergence had an average

return of 195 points after 800 expert samples, while adding density weighting led

to expert-level performance after 320 samples. This is in comparison to traditional

DAgger which required 2800 expert samples to match the expert’s average reward.

Space Invaders

(a) Episode Reward (b) Average Sample Utility

Figure 3.9: 3.9a Space Invaders (a) smoothed reward per episode and (b) average

selected sample utility per episode.

24



The Space Invaders expert has an average episodic reward of 2486 points compared

to human level performance of 1652 as measured by [24]. A single experiment each

of random sample selection, QBC with JS-divergence, and DAgger were ran due to

the long episode length and training time for this task. Figure 3.9 shows the episode

reward and query utility as measured by JS-divergence during training. While all

three methods perform similarly well early, as training progresses random querying

and QBC selection trend noticeably upward in comparison to DAgger selection which

seems to level out. After ninety thousand expert queries the DAgger learner has an

average reward of around 500, compared to 650 for the random learner and 750 for the

QBC learner. The query utility was also measured for the QBC and random agents,

and there is a clear separation between the JS-divergence of selected examples, as

would be expected since the QBC agent is explicitly selecting unlabeled states with

high utility. Random selection levels out early on with an average selected utility of

0.1, while QBC converges to a utility of 0.6 much later on. It is possible that this

leveling off of utility could lead to better performance for the QBC learner, and Figure

3.9a does show QBC outperforming uniform random selection as the expert samples

increase, but this requires additional training and experimentation to answer.

One of the major challenges in this environment is the possibility that mistakes

can be fatal. By selecting the wrong action with an enemy laser approaching, the

episode can end without the opportunity for the learner to make a corrective action.

This makes it difficult to learn since the agent needs to perform perfectly in the

presence of dangerous states, which can require a large number of labeled examples.

25



Chapter 4

Conclusion

As we develop more intelligent and human-like robots, the challenge of encoding

complex functionality that generalizes to real-world environments increases. Humans

excel at learning new skills rapidly by watching and interacting with an instructor,

an ability researchers are trying to instill in autonomous agents. By reducing the

number of demonstrations required to perform a task, more intricate and productive

behaviors to be learned. The primary conclusion of this work is:

Incrementally updating a learner’s policy, with respect to the number

of expert queries, significantly reduces the total number of labeled states

required to learn a competent policy.

The algorithm proposed in this work, Query Efficient Dataset Aggregation, re-

quired fewer labeled states to achieve the same performance compared to the state-

of-the-art DAgger algorithm in all experiments. This held true in both continuous

and discrete action space environments, in long and short episodic tasks. Addition-

ally, active learning methods applied to non-i.i.d. imitation learning problems are not

guaranteed to outperform passive sample selection using QE-DAgger.

4.1 Perspectives

Incrementally updating the learner’s policy with passive or active sample selection

significantly reduced the total number of expert queries. Early policies often do not

collect states relevant to the final policy, so by sparsely labeling states each episode,

greater labeling utility is achieved in the form of increased episodic reward per query

for each task. Randomly selecting states, even just a single state in an episode,

26



resulted in an order of magnitude reduction in labeled states required to achieve

expert level performance in one environment, and in other tasks led to successful

policies using thousands of fewer expert queries.

While active sample selection also reduced overall expert queries and in some

cases outperformed passive selection, in the experiments presented here there was

not a clear benefit to the additional complexity of implementing these approaches.

Part of the reason for this is that understanding and measuring uncertainty in deep

networks is a challenging task, though very much an area of active research [4] [3].

While dropout techniques have demonstrated quality results for some tasks [14] [15],

there are legitimate criticisms regarding their efficacy and accuracy [25]. However, as

researchers gain more understanding about the fairly opaque box that is deep learning,

improved methods for estimating model uncertainty are likely to be developed. With

better uncertainty estimates, learners will be able to select more truly informative

unlabeled data points, and active imitation learning may become unequivocally more

efficient than random sample selection.

In this work the assumption was made that unlabeled state collection is much

less expensive than expert labeling, and while this is often the case, the trade-off

between unlabeled data collection and expert querying cost should be balanced in

practice. Adjusting the query budget should be problem specific; in scenarios where

setup and run time of a task is negligible, a small query budget can be used. The

small query budget compared to the task horizon was demonstrated here to highlight

the benefits of rapid policy updates per expert sample. Alternatively, in environments

where setup and policy roll-out is expensive with respect to expert labeling, using a

larger query budget or full-fledged DAgger may be more appropriate. Scaling the

budget could be another technique for striking unlabeled state collection vs labeling

cost balance. Early on, a smaller budget may be used to push the agent towards

relevant state distributions, but as training progresses a larger budget might allow

for more relevant states to be collected per episode.

As shown in the Space Invaders task, QE-DAgger may take a long time to learn

to perform tasks in environments where states can have very large costs for making

an incorrect action. This insensitivity to the cost of performing one action versus

another is inherited from the original DAgger algorithm, the effects of which were

noted by Ross and Bagnell in [32]. In the next section, we propose future work to

address this shortcoming.

27



4.2 Future Work

We believe that our work is a small step forward for the field of imitation learning,

with many open areas of research regarding improving expert querying still remaining.

While learning directly from demonstration is a laudable goal on its own, imitation

learning is also gaining increasing recognition from other areas of machine learning.

Recent work has taken advantage of imitation learning to augment reinforcement

learning, sometimes referred to as apprenticeship learning [17]. New research has

shown that initially learning from demonstrations substantially improves learning

speed and performance [44] [46] [28] compared to randomly initialized reinforcement

learning. By addressing the current drawbacks in learning from demonstration, it

may continue to augment other areas of machine learning research.

Imitation learning typically learns a policy directly from expert actions, however it

is possible that a cost-to-go-oracle may be available in addition to expert demonstra-

tions [39] [32]. Wen et al. [39] demonstrated that when using a sub-optimal cost-to-go

oracle, the learner was guaranteed to outperform the oracle. This is opposed to the

direct action imitation case shown here, where the learned policy is limited by the

expert’s performance. Applying active learning and uncertainty to the learner’s cost-

to-go belief could potentially improve queries to the oracle and lead to better policy

performance over direct action imitation.

In pool based active learning approaches, only states encountered under the cur-

rent policy were considered for query selection. As QE-DAgger makes many incre-

mental policy updates instead of large batch updates, recent policies are more likely to

have similar state distributions. Pooling states from recent past trajectories might al-

low for better query selection without requiring additional roll-outs under the current

policy.

Stream-based querying, as mentioned in Section 2.2, is a natural active learning

paradigm for sequential decision makers. At each time step the agent is presented

a state, and in the stream-based paradigm the agent would immediately decided

whether or not to query an expert instead of collecting a set of states and asking for

labels in hindsight. This has application in task where the states may be too complex

to store or convey to the expert, while also allow for real-time querying and feedback,

an idea explored by Chernova et al. [7].

While research in deep network uncertainty is still in its nascent stages, there are a

number of probabilistic programming frameworks that allow for accurately modeling

28



deep Bayesian networks which have been introduced to the public recently [42] [43].

Past criticisms of probabilistic programming notes that these methods are typically

slower and do not scale as well as deep networks, but at least for smaller problems

it would be worthwhile to see how these approaches compare to Bayesian network

approximations like concrete dropout.

29



Bibliography

[1] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Pe-

ter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba.

Hindsight experience replay. CoRR, abs/1707.01495, 2017.

[2] Eric B Baum and Kenneth Lang. Query learning can work poorly when a human

oracle is used. In International joint conference on neural networks, volume 8,

page 8, 1992.

[3] Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective

on reinforcement learning. arXiv preprint arXiv:1707.06887, 2017.

[4] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra.

Weight uncertainty in neural networks. arXiv preprint arXiv:1505.05424, 2015.

[5] Ivan Bratko, Tanja Urbančič, and Claude Sammut. Behavioural cloning: phe-

nomena, results and problems. IFAC Proceedings Volumes, 28(21):143–149, 1995.

[6] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-

man, Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

[7] Sonia Chernova and Manuela Veloso. Interactive policy learning through

confidence-based autonomy. Journal of Artificial Intelligence Research, 34:1–25,

2009.

[8] Sanjiban Choudhury, Ashish Kapoor, Gireeja Ranade, and Debadeepta Dey.

Learning to gather information via imitation. In Robotics and Automation

(ICRA), 2017 IEEE International Conference on, pages 908–915. IEEE, 2017.

[9] Sanjiban Choudhury, Ashish Kapoor, Gireeja Ranade, Sebastian Scherer, and

Debadeepta Dey. Adaptive information gathering via imitation learning. arXiv

preprint arXiv:1705.07834, 2017.

30



[10] David A Cohn, Zoubin Ghahramani, and Michael I Jordan. Active learning with

statistical models. Journal of artificial intelligence research, 4:129–145, 1996.

[11] Ido Dagan and Sean P Engelson. Committee-based sampling for training prob-

abilistic classifiers. In Machine Learning Proceedings 1995, pages 150–157. Else-

vier, 1995.

[12] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plap-

pert, Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. Openai

baselines. https://github.com/openai/baselines, 2017.

[13] Melanie Ducoffe and Frederic Precioso. Qbdc: query by dropout committee for

training deep supervised architecture. arXiv preprint arXiv:1511.06412, 2015.

[14] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Rep-

resenting model uncertainty in deep learning. In international conference on

machine learning, pages 1050–1059, 2016.

[15] Yarin Gal, Jiri Hron, and Alex Kendall. Concrete dropout. In Advances in

Neural Information Processing Systems, pages 3581–3590, 2017.

[16] Kshitij Judah, Alan Fern, and Thomas G Dietterich. Active imitation learning

via reduction to iid active learning. In UAI, pages 428–437, 2012.

[17] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in

robotics: A survey. The International Journal of Robotics Research, 32(11):1238–

1274, 2013.

[18] Solomon Kullback and Richard A Leibler. On information and sufficiency. The

annals of mathematical statistics, 22(1):79–86, 1951.

[19] Michael Laskey, Sam Staszak, Wesley Yu-Shu Hsieh, Jeffrey Mahler, Florian T

Pokorny, Anca D Dragan, and Ken Goldberg. Shiv: Reducing supervisor burden

in dagger using support vectors for efficient learning from demonstrations in

high dimensional state spaces. In Robotics and Automation (ICRA), 2016 IEEE

International Conference on, pages 462–469. IEEE, 2016.

[20] Ofer Matan. On-site learning. Submitted for publication, 1995.

31



[21] Andrew Kachites McCallumzy and Kamal Nigamy. Employing em and pool-

based active learning for text classification. In Proc. International Conference

on Machine Learning (ICML), pages 359–367. Citeseer, 1998.

[22] Prem Melville, Stewart M Yang, Maytal Saar-Tsechansky, and Raymond

Mooney. Active learning for probability estimation using jensen-shannon di-

vergence. In European conference on machine learning, pages 268–279. Springer,

2005.

[23] Kunal Menda, Katherine Driggs-Campbell, and Mykel J Kochenderfer.

Dropoutdagger: A bayesian approach to safe imitation learning. arXiv preprint

arXiv:1709.06166, 2017.

[24] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-

ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland,

Georg Ostrovski, et al. Human-level control through deep reinforcement learning.

Nature, 518(7540):529, 2015.

[25] Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions

for deep reinforcement learning. arXiv preprint arXiv:1806.03335, 2018.

[26] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network.

In Advances in neural information processing systems, pages 305–313, 1989.

[27] Martin L Puterman. Markov decision processes: discrete stochastic dynamic

programming. John Wiley & Sons, 2014.

[28] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, John Schulman,

Emanuel Todorov, and Sergey Levine. Learning complex dexterous manipu-

lation with deep reinforcement learning and demonstrations. arXiv preprint

arXiv:1709.10087, 2017.

[29] Carl Edward Rasmussen. Gaussian processes in machine learning. In Advanced

lectures on machine learning, pages 63–71. Springer, 2004.

[30] Stephane Ross. Interactive learning for sequential decisions and predictions.

2013.

32



[31] Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning.

In Proceedings of the thirteenth international conference on artificial intelligence

and statistics, pages 661–668, 2010.

[32] Stephane Ross and J Andrew Bagnell. Reinforcement and imitation learning via

interactive no-regret learning. arXiv preprint arXiv:1406.5979, 2014.

[33] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation

learning and structured prediction to no-regret online learning. In Proceedings

of the fourteenth international conference on artificial intelligence and statistics,

pages 627–635, 2011.

[34] Stéphane Ross, Narek Melik-Barkhudarov, Kumar Shaurya Shankar, Andreas

Wendel, Debadeepta Dey, J Andrew Bagnell, and Martial Hebert. Learning

monocular reactive uav control in cluttered natural environments. arXiv preprint

arXiv:1211.1690, 2012.

[35] Nicholas Roy and Andrew McCallum. Toward optimal active learning through

monte carlo estimation of error reduction. ICML, Williamstown, pages 441–448,

2001.

[36] Burr Settles. Active learning. Synthesis Lectures on Artificial Intelligence and

Machine Learning, 6(1):1–114, 2012.

[37] H Sebastian Seung, Manfred Opper, and Haim Sompolinsky. Query by com-

mittee. In Proceedings of the fifth annual workshop on Computational learning

theory, pages 287–294. ACM, 1992.

[38] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks

and tree search. nature, 529(7587):484, 2016.

[39] Wen Sun, Arun Venkatraman, Geoffrey J Gordon, Byron Boots, and J Andrew

Bagnell. Deeply aggrevated: Differentiable imitation learning for sequential pre-

diction. arXiv preprint arXiv:1703.01030, 2017.

[40] Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduc-

tion. MIT press, 1998.

33



[41] Gerald Tesauro. Td-gammon: A self-teaching backgammon program. In Appli-

cations of Neural Networks, pages 267–285. Springer, 1995.

[42] Dustin Tran, Alp Kucukelbir, Adji B. Dieng, Maja Rudolph, Dawen Liang, and

David M. Blei. Edward: A library for probabilistic modeling, inference, and

criticism. arXiv preprint arXiv:1610.09787, 2016.

[43] AI Uber. Labs. 2017. pyro, a deep probabilistic programming language.(2017).

[44] Matej Veceŕık, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin,

Bilal Piot, Nicolas Heess, Thomas Rothörl, Thomas Lampe, and Martin A Ried-

miller. Leveraging demonstrations for deep reinforcement learning on robotics

problems with sparse rewards. CoRR, abs/1707.08817, 2017.

[45] Jiakai Zhang and Kyunghyun Cho. Query-efficient imitation learning for end-

to-end simulated driving. In AAAI, pages 2891–2897, 2017.

[46] Yuke Zhu, Ziyu Wang, Josh Merel, Andrei Rusu, Tom Erez, Serkan Cabi, Saran

Tunyasuvunakool, János Kramár, Raia Hadsell, Nando de Freitas, et al. Rein-

forcement and imitation learning for diverse visuomotor skills. arXiv preprint

arXiv:1802.09564, 2018.

34


