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Abstract

We explore the problem of learning to decompose spatial tasks into segments, as

exemplified by the problem of a painting robot covering a large object. Inspired by

the ability of classical decision tree algorithms to construct structured partitions of

their input spaces, we formulate the problem of decomposing objects into segments

as a parsing approach. We make the insight that the derivation of a parse-tree that

decomposes the object into segments closely resembles a decision tree constructed

by ID3, which can be done when the ground-truth available. We learn to imitate an

expert parsing oracle, such that our neural parser can generalize to parse natural

images without ground truth. We introduce a novel deterministic policy gradient

update, DRAG, in the form of a deterministic actor-critic variant of AggreVaTeD

[28], to train our neural parser. Alternatively, our approach may be seen as a vari-

ant of the Deterministic Policy Gradient [18, 27] suitable for the imitation learning

setting. Training our neural parser via DRAG allows it to outperform several exist-

ing imitation and reinforcement learning approaches.
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Chapter 1

Introduction

1.1 Motivation

Consider the task of a robot painting an object or an aerial robot surveying a large

field. These spatial tasks represent a coverage problem that the robot may not be

able to address in a single shot. For instance, a robot may not be able to paint the

entirety of a large object with a single stroke, being limited by the footprint of its

paint brush. Instead, the robot must decompose the spatial task of painting objects

into smaller segments that it can cover in single stroke. However, discovering or

learning an appropriate decomposition of such tasks into segments is challenging.

In the object-painting problem, there may be several constraints upon the resultant

segments, such as the overall paint coverage. Further, there exist multiple ways

to decompose an object into constituent segments - for example, an object may be

decomposed into length or breadth-wise segments.

A few well studied algorithms are able to somewhat circumvent these chal-

lenges. In particular, when applied to the task of classifying a set of points, ID3

[21] and C4.5 [25] recursively partition the input space in order to achieve an accu-

rate classification of the points. As we demonstrate in ??, an ID3-like Information

Gain maximizing algorithm, IGM, builds a similar partitioning of an object as in
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Fig. 3.1. However, this IGM algorithm (like the ID3 and C4.5 algorithms it is de-

rived from) requires ground truth classification labels, and cannot be applied to

decompose novel objects for which the ground truth labels are unavailable, or are

expensive to obtain.

To bypass this issue, we approach the problem of decomposing objects into seg-

ments as a parsing problem, based on the insight that the derivation of a parse-tree

(Fig. 3.1) that decomposes a given object into segments closely resembles a deci-

sion tree constructed by IGM (Fig. 3.1). Rather than learn to parse objects by rein-

forcement learning as in [32], we propose to learn how to parse objects into such

structured decompositions via imitation learning, treating the IGM algorithm as a

parsing oracle. Our neural parser is trained to parse objects by imitating the IGM

oracle observing only raw object images as input, while the IGM oracle exploits access

to ground truth information to demonstrates how to parse a particular object. This

strategy allows our neural parser to construct structured decompositions of novel

unseen objects despite lacking ground truth information. As expected, our imita-

tion learning approach significantly outperforms reinforcement learning baselines

in practice.

We further introduce a novel deterministic policy gradient update, DRAG, suit-

able for training deterministic policies in the hybrid imitation-reinforcement learn-

ing setting. The DRAG policy gradient update serves to train the deterministic

policy component of our neural parser, eliminating the complexity of maintaining

probability distributions specific to the parsing setting. By rephrasing the Aggre-

VaTeD [28] objective in the deterministic policy case, we retrieve a gradient update

to a deterministic policy that relies on a differentiable approximation to the oracle’s

cost-to-go. This policy gradient update may be viewed as a deterministic actor-critic

variant of AggreVaTeD, which we refer to as DRAG (i.e. DeteRministically AGgre-

vate). DRAG may also be viewed as a variant of the Deterministic Policy Gradient

[18] suitable for imitation learning, and replaces an approximation to the true gradi-
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ent in the original Deterministic Policy Gradient [18], with the true policy gradient.

Training our parser via DRAG allows our parser to outperform several baselines

on the task of parsing novel objects, showcasing its potential to achieve performance

closer to that of the oracle than several other existing imitation and reinforcement

learning approaches.

1.2 Thesis Contributions

To enumerate the contributions made in this thesis, we introduce:

1. A framework for learning to parse (or decompose) objects into segments, while

observing only natural object images as input.

2. An imitation learning approach to learning neural parsers, based on the equiv-

alence between decision-tree algorithms and derivation of parse-trees.

3. A novel Deterministic Policy Gradient update for the hybrid Reinforcement-

Imitation Learning setting.

1.3 Thesis Outline

Having briefly introduced the contributions we make in this thesis, we describe

where our work stands in relation to existing research works that solve similar prob-

lems, or adopt similar approaches in 2. 3 describes our approach in the following

manner. We first describe how we formulate the problem, and how one may ad-

dress this problem via a classical decision tree like algorithm. We then explain the

a shape-parsing approach to our problem, and how one may combine the decision-

tree like algorithm with the shape-parsing approach in an imitation learning set-

ting. Finally, we introduce our novel deterministic policy-gradient update, DRAG,

that we employ to learn a parsing policy via imitation learning.
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Chapter 2

Related Work

Our approach draws ideas from a number of fields. We describe some representa-

tive work of these fields, and where our work stands in relation to these works that

solve similar problems, or adopt similar approaches.

2.1 Coverage Planning

Coverage Planning has traditionally referred to finding a constrained path that while

maximizing some notion of “coverage”. While the particular form of the cover-

age objective and the constraints placed on the path may differ with the applica-

tion at hand, various solutions to coverage problems bear similarities with one an-

other. Coverage planning has been well explored in traditional literature [6, 12].

The Boustrophedon decomposition [7], and its non-polygonal extension the Morse

decomposition [1], adopt cellular decomposition approaches to coverage problems.

Alternate approaches include graph or grid coverage approaches, as adopted by

[3, 11, 14]. Such problems may be solved exactly for small instances of the problem,

or approximately via dynamic programming solutions via the Bellman-Held-Karp

algorithm [3, 14]. We direct the reader to [6, 12] for a more thorough review of

approaches to coverage planning in robotics.
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2.2 Facade Parsing

Facade parsing attempts to identify the topology of a building facade, by parsing

an image of the facade into its various components [16, 20, 31, 32, 34]. [31, 32] learn

to applying production rules of a grammar to reduce a shape into its constituent

segments in a reinforcement learning setting. We build on the insights made in [32]

in our approach to the problem of decomposing objects. In contrast to other facade

parsing approaches that use labels of the resulting parse [16, 20, 34], our method

instead seeks to imitate the sequential decision making of an expert parser.

2.3 Semantic Segmentation

The problem of semantic segmentation addresses assigning semantic labels to pix-

els in a given image. [17] employed a graph partitioning approach for image seg-

mentation, to construct more coherent regions in the image, known as superpixels.

Several recent works [2, 17, 19, 26] have trained end-to-end models on large scale

datasets for semantic segmentation. We direct readers to [13] for a more complete

review of semantic segmentation literature. While the notion of a resultant set of

segments with label assignments is common to our parsing approach and semantic

segmentation, our approach builds a hierarchical decomposition of the object im-

age as the end result. Another difference is that in our problem, constraints may be

imposed that exclude arbitrary results such as the aforementioned stroke coverage

constraint of a painting robot.

2.4 Policy Gradient Reinforcement Learning

Stochastic policy gradient approaches [10, 15, 30, 33] have been used to learn control

policies in the reinforcement learning (RL) setting. Silver et al. [27] introduced the

Deterministic Policy Gradient (DPG), a deterministic counterpart to the stochastic
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policy gradient [30]. Lillicrap et al. [18] later extended DPG to the function approxi-

mator case. We introduce a variant to these deterministic policy gradient algorithms

[18, 27] suitable for imitation learning, that removes the approximation to the true

gradient of the policy used in DPG [18, 27].

2.5 Imitation Learning

Recent imitation learning algorithms [9, 23, 24] have addressed the setting when

one has access to an expert policy that may be queried. Ross et al. [24] demon-

strated an interactive imitation learning paradigm, DAgger, is preferable over a naive

behavioural cloning approach in this setting. Ross and Bagnell [22] further intro-

duced AggreVaTe, a cost senstitive algorithm that uses estimates of the cost-to-go of

the expert to better learn control policies. The AggreVaTeD framework [28] subse-

quently derived a stochastic policy gradient update of the AggreVaTe [22] objective,

enabling its use on complex neural network policies. [5, 29] further explore the

realm between imitation and reinforcement learning, by reward shaping using an

oracle and switching to policy gradient RL after initial imitation respectively. We

follow [22, 28], a paradigm of training agents with partial information to imitate

oracles with full information at train time, as in [4, 8].
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Chapter 3

Approach

3.1 Problem Setting

We seek to learn how to parse objects directly using object images as input, by learn-

ing to imitate an expert parsing oracle. The connection between object parsing and

the decision trees constructed by IGM Fig. 3.1 afford us such a parsing oracle, that

makes the imitation setting preferable over the reinforcement learning setting fol-

lowed in [32]. To successfully learn a policy capable of imitating a parsing oracle,

we introduce DRAG, a deterministic actor-critic variant of AggreVaTeD [28]. We

explain our approach to learning this parsing policy by first describing the prob-

lem setting of parsing objects, then describing the IGM algorithm that serves as a

ground truth parsing oracle. We then demonstrate how the object parsing problem

may be framed as an MDP, finally highlighting how we use DRAG to train a neural

parser to decompose objects.

Consider the following problem setting. Given an image of an object to be

painted, our objective is to decompose the object image into a set of segments, while

maximizing the paint coverage of the object, and ideally minimizing the “paint

wasted”. We may view this as assigning labels of whether or not to paint each pixel

of the object image, where painting object pixels increases coverage, while not paint-

7



Figure 3.1: Constructing an equivalent hierarchical decomposition of an object im-
age by two methods. The Information Gain Maximization algorithm creates a de-
cision tree (legend on the left), while the Shape Parsing approach to the right con-
structs a parse tree (legend to the right). The equivalent hierarchical decomposition
(depicted in the center), shows correspondence of each node in the decision tree
and parse tree to a segment in the image.

ing the surroundings corresponds to decreasing “wasted paint”. Under this label

assignment problem, our objective translates to constructing an object decomposi-

tion or a set of segments constrained to mutually compose the object image, while

accurately assigning labels of whether or not to paint each of the resultant segments.

3.2 Parsing Objects by Imitating Maximal Information Gain

Representing the painting process as a labeling problem affords us the ability to em-

ploy decision tree algorithms such as ID3 [21] and C4.5 [25], that naturally address

labeling tasks by partitioning the space (i.e. the object image) into regions that each

contain pixels of a single class. ID3 achieves this by using ground truth informa-

tion to select the partitioning with the maximum information gain over the resultant

segments of the object image. By modifying ID3 to allow multiple splits (i.e. par-

titions) along a particular axis (or attributes in ID3), we construct a ground-truth
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oracle that is able to perfectly label any object image allowed sufficient partitions.

We refer to this oracle as the Information Gain Maximization algorithm (IGM), or

πIGM. Fig. 3.1 depicts such a “decision tree” constructed from IGM on a toy image.

The IGM oracle uses ground truth labeling of object images, which are unavail-

able for novel objects. To address this issue, we draw inspiration from facade pars-

ing literature [31, 32], where images of facades were decomposed into various com-

ponents via shape-parsing. We observe that parse-trees that decompose an image

into segments in [32] resemble the decision trees constructed by IGM (Fig. 3.1).

Motivated by this insight, we decompose objects into segments via a parsing ap-

proach.

3.3 Shape Parsing Objects

To learn how to decompose object images into their constituent segments, we re-

quire an appropriate representation of the recursive object decompositions that

arise in the divide-and-conquer paradigm. Shape parsing [32] provides us a com-

pact representation of such potentially complex decompositions of an object. We

adopt a shape parsing approach similar to [32], using a binary split grammar to

represent the hierarchical object decomposition. Formally, we use a probabilistic

context-free grammar G, defined as a tuple G = (V, T ,R, V0,P), where V is a set

of non-terminal symbols, T is a set of terminal symbols, V0 is a starting symbol,

R is a set of production rules, and P defines a set of probabilities of applying the

production rules on a given non-terminal V .

Set of non-terminal symbolsV : A non-terminal symbol V ∈ V is defined as an axis-

aligned rectangle over the input image. Each non-terminal is specified with a set of

attributes (x, y, w, h), where (x, y) defines the origin of the rectangle and (w, h) de-

fine the spatial extents of the rectangle along the horizontal and vertical directions

respectively. The starting symbol V0 ∈ V is a rectangular region encompassing the

entire object image.
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Set of terminal symbols T : A terminal symbol T ∈ T is an axis-aligned rectangle

image segment, with an additional attribute b denoting whether a region is to be

painted or not.

Set of production rulesR: We consider binary split rules, which split a non-terminal

V along its axes into two constituent non-terminals. A split rule is specified by a hor-

izontal or vertical split axis (h or v), and split location l, as V h:l−→ V V , or V v:l−→ V V .

An instance of a horizontal split rule is visualized in the top row of Fig. 3.1, resulting

in two non-terminals (Vleft, Vright). Our grammar also includes terminal production

rules that assign a particular precedant non-terminal symbol to one of the two ter-

minal symbols, a region bp to be painted, or a region not to be painted, bnp. The full

set of production rules is as follows:

R = {V0 → V, V
x:l−→ (Vleft, Vright), V

y:l−→ (Vtop, Vbottom), V → bp, V → bnp}

Rule probabilities P : Production rules r have an associated probability pr of ap-

plying rule r on the current non-terminal (i.e. an image segment). In our problem,

we seek to learn these probabilities pr of applying the production rules, along with

the associated split location attribute l of the rules.

Recursively applying production rules R of the grammar G described above

on an object image I (and the resultant segments) decomposes the image into its

constituent segments, a process known as shape-parsing. Parsing an object image

results in a hierarchical decomposition of the object, or an object parse-tree, as de-

picted for a toy object image in Fig. 3.1.

Starting with the entire image (represented by starting symbol V0), the object

parse-tree is constructed by expanding each node in the tree in a top-down and

depth-first manner. While expanding a node N of the parse-tree, we sample a rule

r ∈ R with probability pr, from the set of rules applicable on N . We add the ante-

cedants of this rule to the parse tree as children nodes of the expanded node. We

then continue to derive the tree in a depth-first fashion, moving on to the next unex-
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panded node in the tree. The labels assigned to these leaf nodes of a fully expanded

image parse tree yield a segmentation of the image. We present a sample object im-

age, the corresponding image parse tree derived via shape parsing, and the final

segmented image in Fig. 3.1.

3.4 Shape Parsing as a Markov Decision Process

The process of shape parsing described above can be seen as a sequential decision

making process, where a parsing agent find a sequence of partitions and label as-

signments that maximizes the paint coverage of the object, while affording us a

decomposition of the object. More formally, we can describe the sequential process

of shape parsing as a Markov Decision Process (MDP)M.

Applied to our scenario, the current image segment ρt corresponds to nodeN in

the parse tree as the current state s ∈ S ofM. Actions a ∈ A correspond to applying

production rules r ∈ Rwith a particular split location l ∈ [0, 1]. Upon taking an ac-

tion a from state s, we “transition” to the next unexpanded node s′ in the parse tree.

Here, s′ is specified by the deterministic transition dynamics p(st+1|at, st) enforced

by the top-down, depth-first expansion of the tree τ .

The sequence of nodes expanded during the expansion of the image parse-tree

corresponds to the sequence of states observed by our agent. This may be incor-

porated elegantly in the definition of both the one-step reward and the cumulative

discounted reward (returns) G of the agent. The one-step reward function encodes

the coverage objective of our object parsing problem. For every terminal symbol T ,

we evaluate the image correlation between the predicted label assignments P over

each of the terminal segments, and the ground truth paint labels of the objects L.

For any non-terminal node V in the parse tree, the return G(V ) is defined recur-

sively in Eq. (3.1) as the discounted sum of the returns of all child nodes of V . This

recursion propagates rewards up the tree in a bottom-up manner, starting from the

11



terminal leaf-nodes T , where the return is the one-step reward.

G(N) =


∑

(x,y)∈N L(x, y)P(x, y) if N ∈ T∑
c∈Children(N)G(c) if N ∈ V

(3.1)

Here, x and y represent pixel locations in the image, Children(N) is the set of chil-

dren nodes of N in the tree, C indexes these child nodes.

We seek to learn a policy π : s → a mapping the current state s to one of the

possible actions a available in the current state. In our setting, the policy must select

(1) which production rule to apply, and (2) a corresponding split location. To predict

these facets of an action a directly from visual input of the current image segment,

we represent our policy as a deep convolutional network. Our policy network thus

takes in as input an image region ρt(x, y, w, h) defined by the current non-terminal

V that is being expanded.

The policy then predicts (1) a categorical probability distribution over the valid

production rules, π(r|st, θ), and (2) a split-location l = µ(st|θ) within the current

image segment in case of applying a split rule. Since the size of the image segment

varies at every step, the valid split locations vary with the current state. While main-

taining a valid probability distribution over such a varying range of values is possi-

ble, it is notably challenging, due to the normalizing a distribution across changing

scale and limits of the distribution at every step. Instead, we employ a deterministic

representation of the split location policy, thus µ(st|θ) is deterministically predicted

as a scaled logistic function of the deep network features. The two components of

our policy network represent the mixed deterministic and stochastic nature of the

our policy.
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3.5 Learning the Shape Parser via Imitation Learning

While Teboul et al. [32] learn a shape-parser via reinforcement learning, it is known

that the imitation learning paradigm is preferable to reinforcement learning if an

expert agent may be easily obtained [22]. In our case, the connection object pars-

ing and the decision trees constructed by IGM afford us such an expert. We hence

consider learning this mixed deterministic-stochastic policy in the imitation learn-

ing setting. The stochastic component of the policy π(r|s, θ) may be learned via

off-policy Monte-Carlo [33] or actor-critic [10] policy gradient algorithms (we point

the reader towards [27] for a review of these algorithms). However, existing algo-

rithms for learning the deterministic component of the policy l = µ(s|θ) (notably

the Deterministic Policy Gradient introduced in [27]), have only been developed in

the reinforcement learning setting, not the imitation learning setting.

To learn the deterministic component of the policy µ(s|θ), we introduce a de-

terministic policy gradient update suitable for training deterministic policies in the

cost sensitive imitation learning setting. DRAG (DeteRministically AGgrevate) may

be viewed as a deterministic actor-critic variant of AggreVaTeD [28], or alternatively,

a variant of the Deterministic Policy Gradient [18] suitable for imitation learning.

DRAG replaces an approximation to the true gradient in the original Deterministic

Policy Gradient [18], with the correct gradient.

We present DRAG by first describing the AggreVaTe / AggreVaTeD setting - an

ideal starting point given we have an oracle (IGM) that we may query for the opti-

mal action to execute from any state. AggreVaTe [22] and AggreVaTeD [28] approach

the problem of learning a policy πθ by training the policy πθn at training iteration n

to minimize the cost-to-go Q∗ of the oracle π∗, over the aggregated distribution of

states dtπn induced by the current learner’s policy, πθn . To do so, they roll-out a tra-

jectory with a mixture policy πn(s) = βπ∗(s)+(1−β)πθ(s) till time step t ∈ [1, ...,H],

and subsequently follow the expert π∗ then onwards. β simply represents the mix-

ing coefficient, and H is the horizon length of the MDP, and the aggregated distri-

13



Algorithm 1 Train Parser via DRAG
Input: D, π∗, β,Niterations . Require a dataset, expert parser, mixing parameter,

iterations
Output: πθ . Output the learned policy

1: θ ← 0,M← {} . Initialize Policy Parameters, Initialize Memory
2: for i ∈ [1, 2, ..., Niterations] do
3: πi ← βπ∗ + (1− β)πθ
4: for j ∈ [1, 2, ..., Nimages = |D|] do
5: t ∼ U[1, H] . Sample a switching index
6: τj = Parse(Dj) . Parse the image, following πi till step t, and π∗

thereafter.
7: Gt = G(τ tj ) . Evaluate returns at node τ tj via expert’s cost to go in

Eq. (3.1).
8: M←M∪ {(st, rt, lt, t, Gt)} . Store the transition at index t in memory
9: B ∼ U[M], |B| = B . Sample a minibatch from memory

10: θ ← θ + α∇θ|B . Update θ via Eq. (3.7) approximated at B
11: ω ← ω − α∇ω|B . Update ω by gradient of objective in Eq. (3.6)

approximated at B

bution of states dtπn is defined as
∑
{si,ai}i≤t−1 ρ0(s1)Π

t−1
i=1πn(at|st−1)p(st|st−1, at−1),

and ρ0 is the initial state distribution. Sun et al. [28] demonstrate that the objective

that is optimized is represented as:

Jn(θ) = E t∼U(1,...,H),st∼dtπn ,at∼πn(a|s)

[
Q∗t (st, at)

]
(3.2)

Sun et al. [28] assume a stochastic policy π(a|s, θ) to derive a stochastic policy gra-

dient update to the parameters of the policy θ. However, as mentioned in section

3.4, maintaining a valid probability distribution over split locations in the stochas-

tic policy case is challenging. We hence employ a deterministic policy µ(s|θ) for split

locations - making the stochsatic policy gradient update derive in [28] unsuitable

for learning µ(s|θ). The AggreVaTe objective [22] of minimizing the cost-to-go of

the oracle in the deterministic policy setting may be expressed as:

Jn(θ) = E t∼U(1,...,H),st∼dtµn

[
Q∗t (st, µ(s|θ))

]
. (3.3)
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Rather than sampling a split location lt from a stochastic policy, we retrieve the split

location deterministically from the policy lt = µ(s|θ). As in [28], we may improve

the policy by updating its parameters θ in the direction of improvement of Jn(θ),

given by the gradient of equation 3.3:

∇θJn(θ) = E t∼U(1,...,H),st∼dtµn

[
∇θQ∗t (st, µ(s|θ))

]
(3.4)

The Deterministic Policy Gradient [27] allows us to evaluate this gradient, applying

the chain rule:

∇θJn(θ) = E t∼U(1,...,H),st∼dtµn

[
∇a Q∗t (st, a)|a=µ(s|θ)∇θµ(s|θ)

]
(3.5)

The AggreVaTeD framework [28] uses Monte Carlo samplesGt of the oracle’s cost to

go, directly estimating Q∗t (st, a) by sampling. While this provides an unbiased es-

timate of Q∗t , we cannot compute the gradient∇aQ∗t (st, a) using non-differentiable

samples of the oracle’s cost-to-go. Instead, we construct a differentiable approxima-

tion of the oracle’s cost to go, in the form of a critic networkQ(s, a|ω), parametrized

byω. While the notion of the critic network is similar to that present in DPG [27] and

DDPG [18], note that our critic network approximates the cost-of-go of the oracle,

rather than the learner’s policy µ, i.e. the critic is trained to optimize:

min
ω

Est∼dtµn ,a=µn(st|θ)
[(
Q(st, a|ω)−Gt

)2]
. (3.6)

Using a critic networkQt(st, a|ω) to approximate the oracle’s cost-to-go allows us to

perform an update to the policy µ(s|θ) by replacing Q∗t (st, a) in equations 3.4 and

3.5 with critic network’s estimate,Qt(st, a|ω), leading to the following deterministic

policy gradient update:

∇θJn(θ) = E t∼U(1,...,H),st∼dtµn

[
∇a Qt(st, a|ω)|a=µ(s|θ)∇θµ(s|θ)

]
(3.7)
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Employing a differentiable critic network to estimate the oracle’s cost-to-go thus

introduces an deterministic actor critic variant of AggreVaTeD, which we refer to as

DRAG. DRAG hence serves as a deterministic policy gradient update that we use for

training our deterministic split location policy µ(s|θ) in the cost sensitive imitation

learning setting.

We further note that applying the Deterministic Policy Gradient Theorem [27]

typically requires an approximation of the true gradient ∇θJn(θ) from [10], due to

the implicit dependence of Q(st, at|ω) on the parameters of the policy θ. However,

in DRAG, the learned estimates ofQ(st, at|ω) estimate the cost-to-go of the oracle π∗,

and not the learner’s policy π(at|st, θ). The true cost-to-go of the oracle Q∗(st, at)

(and any estimate Q(st, at|ω) of this cost) are both independent of the parameters θ

of the learner’s policy. DRAG hence removes the dependence of Q(st, at|ω) on the

learner’s policy θ by virtue of following the oracle after time t, hence the gradient

update we present in equation 3.7 is no longer an approximation to the true gradient

based on [10].

DRAG allows us to compute a gradient update to deterministic split-location

component of our neural parser, while we employ a standard stochastic actor-critic

policy gradient update to for the rule policyπ(a|s, θ). This leads to a mixed stochastic-

deterministic policy gradient update in Eq. (3.18):

∇θJn(θ) = E t∼U(1,...,H),st∼dtπn,µn ,rt∼πn(r|st,θ)

[
∇θ log π(rt|st, θ) ·Qt(st, rt, µ(st|θ)|ω)

+∇l Qt(st, rt, l|ω)|l=µ(st|θ) · ∇θµ(st|θ)
]

(3.8)

The full derivation of this mixed policy gradient update is provided below. This

mixed stochastic-deterministic policy gradient update is based on DRAG, and is ap-

plicable to any policy with both a deterministic and stochastic component. We uti-

lize this mixed update to train our neural parser, as described in Algorithm 1.
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3.5.1 Mixed Policy Gradient

Above, we derived a deterministic policy gradient update to deterministic policy

trained in the AggreVaTeD [28] setting.

The specific policy representation that we employ in our neural parser has a

stochastic component predicting which rules to apply, π(r|st, θ), as well as a deter-

ministic component to predict split locations, µ(st|θ). Given such a mixed stochastic-

deterministic policy representation, we derive a corresponding mixed stochastic-

deterministic policy gradient update that we employ to train our neural parser.

Consider that at any time step t, rules rt are sampled from π(r|st, θ), and split

locations lt are given by µ(st|θ). Following the AggreVaTeD [28] training paradigm,

we seek to train the components of our policy π(r|st, θ) and µ(st|θ), to maximize the

cost to go of the expert, Q∗(st, rt, lt). Formally, we seek to maximize:

Jn(θ) = E t∼U(1,...,H),st∼dtπn,µn ,rt∼πn(r|st,θ)

[
Q∗t (st, rt, µ(st|θ))

]
(3.9)

As described in section 3.4 of the main paper, the actor critic variant of AggreVaTeD

uses a learnt estimate Q(st, rt, lt|ω) of the cost-to-go of the expert Q∗(st, rt, lt). The

objective equation 3.9 thus becomes:

Jn(θ) = E t∼U(1,...,H),st∼dtπn,µn ,rt∼πn(r|st,θ)

[
Qt(st, rt, µ(st|θ)|ω)

]
(3.10)

The expectation of rt ∼ π(r|st, θ) may be represented as follows:

Jn(θ) = E t∼U(1,...,H),st∼dtπn,µn

[∑
r∈R

π(rt|st, θ) Qt(st, rt, µ(st|θ)|ω)
]

(3.11)

To compute an update to the policy, we may compute the gradient of this objec-

tive Jn(θ) with respect to the parameters of the policy θ:

∇θJn(θ) = ∇θ E t∼U(1,...,H),st∼dtπn,µn

[∑
r∈R

π(rt|st, θ) Qt(st, rt, µ(st|θ)|ω)
]

(3.12)
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Considering the linearity of expectations, and taking the gradient∇θ inside the sum∑
r∈R, this gives us:

∇θJn(θ) = E t∼U(1,...,H),st∼dtπn,µn

[∑
r∈R
∇θ
{
π(rt|st, θ) Qt(st, rt, µ(st|θ)|ω)

}]
(3.13)

Applying the product rule, we have:

∇θJn(θ) = E t∼U(1,...,H),st∼dtπn,µn

[∑
r∈R

{
∇θπ(rt|st, θ) . Qt(st, rt, µ(st|θ)|ω)

+ π(rt|st, θ) .∇θQt(st, rt, µ(st|θ)|ω)
}]

(3.14)

The first term in the expectation, ∇θπ(rt|st, θ) . Qt(st, rt, µ(st|θ)|ω) may be simpli-

fied by applying the importance sampling trick:

∇θJn(θ) = E t∼U(1,...,H),st∼dtπn,µn

[∑
r∈R

{
π(rt|st, θ) .

∇θπ(rt|st, θ)
π(rt|st, θ)

. Qt(st, rt, µ(st|θ)|ω)

+ π(rt|st, θ) .∇θQt(st, rt, µ(st|θ)|ω)
}]

(3.15)

This becomes the gradient of the log-probability of the policy π(r|st, θ):

∇θJn(θ) = E t∼U(1,...,H),st∼dtπn,µn

[∑
r∈R

{
π(rt|st, θ) .∇θ log π(rt|st, θ) . Qt(st, rt, µ(st|θ)|ω)

+ π(rt|st, θ) .∇θQt(st, rt, µ(st|θ)|ω)
}]

(3.16)

The second term in the expectation, π(rt|st, θ) .∇θQt(st, rt, µ(st|θ)|ω), may be com-

puted using the Deterministic Policy Gradient Theorem [27] (i.e. essentially apply-
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ing the chain rule):

∇θJn(θ) = E t∼U(1,...,H),st∼dtπn,µn

[∑
r∈R

{
π(rt|st, θ) .∇θ log π(rt|st, θ) . Qt(st, rt, µ(st|θ)|ω)

+ π(rt|st, θ) .∇l Qt(st, rt, µ(st|θ)|ω)|l=µ(st|θ) .∇θµ(st|θ)
}]

(3.17)

We may now convert the expression
∑

r∈R π(r|st, θ) back to an expectation of rt ∼

π(r|st, θ), leading to the following policy gradient update to our neural parser:

∇θJn(θ) = E t∼U(1,...,H),st∼dtπn,µn ,rt∼πn(r|st,θ)

[
∇θ log π(rt|st, θ) . Qt(st, rt, µ(st|θ)|ω)

+∇l Qt(st, rt, µ(st|θ)|ω)|l=µ(st|θ) .∇θµ(st|θ)
]

(3.18)

Note that applying the Deterministic Policy Gradient Theorem typically requires

an approximation from [10], due to the implicit dependence of Q(st, at|ω) on the

parameters of the policy θ. However, in the deterministic variant of AggreVaTeD,

the learnt estimates of Q(st, at|ω) estimate the cost-to-go of the expert policy π∗, and

not the learner’s policy π(at|st, θ).

The true cost-to-go of the expert Q∗(st, at) (and any estimate Q(st, at|ω) of this

cost) are both independent of the parameters of the policy θ. The deterministic actor-

critic variant of AggreVaTeD removes the dependence of Q(st, at|ω) on θ, thus re-

moves the necessity for the approximation from Degris et al. [10].
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Chapter 4

Experimental Results

4.1 Experimental Objective and Setup

The objective of our experiments is to evaluate the following:

1. The idea of learning to parse objects by imitaton learning.

2. The ability of a learnt parser to generalize to unseen objects.

3. The relative benefit of Reinforcement Learning, Imitation Learning, and hy-

brid Imitation and Reinforcement Learning approaches in the problem of learn-

ing a parser.

4. The ability of our policy update, DRAG , to learn a parsing policy.

In order to be able to evaluate our approach with regard to the above points, we

evaluate DRAG relative to several baseline imitation learning (IL), reinforcement

learning (RL) and hybrid IL+RL approaches, and the IGM oracle.

We describe the baseline algorithms, and the exact policy representation they

use below. Each model uses a convolutional neural network with 7 convolutional

layers and 2 dense layers as a base model. The baseline approaches then represent

their respective policies as follows:
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Table 4.1: Parsing Accuracies of Proposed model and various baselines

Model Train Accuracy Test Accuracy

IGM Oracle with GT Access (Depth 7) 98.50% —

Monte-Carlo Policy Gradient (RL) 53.54% 51.23%
DDPG (RL) 51.94% 48.78%
Behavior Cloning (IL) 75.11% 75.10%
DAgger (IL) 84.01% 84.03%
Stochastic AggreVaTeD (IL+RL) 81.85% 81.07%
Off-Policy Monte-Carlo Policy Gradient (IL+RL) 84.85% 83.65%
DRAG (IL+RL) (Ours) 88.05% 86.86%

Reinforcement Learning baselines:

In the pure RL setting, the learner is provided with evaluations of the quality of the

parses it constructs via the reward function, and does not have access to the IGM

oracle agent in any form. We consider two RL baselines, where the objective is to

simply maximize the cumulative reward achieved by the learner:

• Monte-Carlo Policy Gradient (MCPG): We consider an on-policy stochastic Monte-

Carlo Policy Gradient approach, similar to REINFORCE. The policy maintains

a categorical distribution over valid rules, predicted as a softmax of deep net-

work features over the valid rules applicable at the current image segment, and

a logit-normal distribution over valid split locations within the boundaries of the

current image segment.

• Deterministic Policy Gradient (DPG): We then consider a DDPG [18] style approach,

where the policy deterministically predicts split locations as scaled logistic func-

tion of the object image features. The rules here are still predicted stochastically

as a softmax output of the deep policy network.

IL baselines:

In contrast with the RL setting, the learner in the pure IL setting has access to the

actions taken by the IGM oracle, and not the reward function. Here, the learner sim-
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ply tries to copy the actions executed by the expert; this corresponds to maximizing

the likelihood of the rules selected by the expert under the learner’s policy, and

regressing to the split locations selected by the expert. We consider two IL baselines:

• Behavior Cloning: Here, the agent minimizes the categorical cross entropy be-

tween the rules selected by the IGM oracle, and the softmax probability distribu-

tion over rules predicted by the policy network. This is equivalent to maximizing

the log-likelihood of the rules selected by the IGM oracle. The split locations are

predicted as a scaled logistic function of the deep network features. A L2 norm

loss between the predicted and IGM oracle split is used to train the agent’s split

location policy.

• DAgger: Following the interactive learning paradigm DAgger [24], objects are

parsed according to a mixture of the expert and the learner’s current policy. The

policy representation is identical to that used in the Behavior Cloning case.

Hybrid IL+RL baselines:

Of particular interest to us is the hybrid IL+RL case, where the learner has access to

both the actions executed by the expert, as well as samples of the reward function

for the parses it constructs.

• Off-Policy Monte-Carlo Policy Gradient (Off-MCPG): As in the case of the vanilla

MCPG, the policy representation is a categorical distribution over the valid rules,

and the splits with a logit-normal distribution over valid splits.

• AggreVaTeD: We finally consider the original stochastic policy gradient training

paradigm of AggreVaTeD [28]. As in the Off-MCPG case, the rules are predicted

via a categorical dsitribution from the deep policy network features, and the split

locations are predicted as a logit-normal distribution over valid splits.
The IL and IL+RL baselines are provided access to the IGM Oracle, with a maxi-

mum allowed parse tree depth of 7 enforced for computational reasons.
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Experimental Setup:

To evaluate our proposed DRAG approach against the above baselines, we use the

following experimental setup. We collect a set of 300 RGB training object images

of size 256 × 256 pixels, each annotated with a per-pixel binary label of 1 (to be

painted), or 1 (not to be painted), serving as ground truth object labels. We evalu-

ate our models on a set of 62 test images annotated with similar ground truth labels,

measuring performance as the pixel accuracy between the predicted assignment of

labels of the object image against these ground truth object labels, presented for

each of the above baselines and our approach in Table 4.1. An ideal object parse

assigns paint labels to all portions of the object to be painted over contiguous seg-

ments, ensuring that parts of the object do not go unpainted. We present the parses

created for 3 sample images in Fig. 4.1 for the oracle, our DRAG approach, and the

various baselines.

4.2 Experimental Results and Analysis

Based on the results presented in Table 4.1, and the sample parses as depicted in

Figure 4.1, we make the following observations.

(1) Reinforcement learning applied to our task is unsuccessful.

As seen in Table 4.1, both the stochastic MCPG and deterministic DPG baselines

achieve no better than random performance. This is likely because RL relies on

sampling good rules and split locations via random exploration to learn. The recur-

sive nature of parsing means that constructing a good parse after selecting initially

bad actions is difficult. Conversely, good initial actions do not guarantee an appro-

priate parse; leaf node assignments must be made appropriately in order to obtain

a high-reward parse. Good initial rule and split location selections must also be

followed by correctly labeling the parsed segments. These challenges contribute to

the failure of the MCPG and DPG baselines to parse object images at all.
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Figure 4.1: Depiction of constructed sample parses for a metal plate (rows 1 & 2), a
window frame (rows 3 & 4), and a car door (rows 5 & 6), from the oracle (column 2),
the proposed DRAG(column 3), and the various baselines (columns 4-7). The first
column shows the original image (odd rows) with ground truth labels (even rows,
red object pixels are to be painted, blue are not to be painted). Each column shows
the segmented object image along with the predicted label assignment.

(2) Imitation learning applied to our parsing task is successful.

The structural similarity between the “decision-trees” built by the IGM oracle and

the parse trees constructed by parsing allows the IGM oracle to guide sampling to-

wards good rules and split locations, rather than naively explore all possible rules

and splits via RL. In constrast with the RL setting, the IL setting hence allows for
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actually learning a parser. As empirically validated in table Table 4.1, even our

most naive IL baseline, Behavior Cloning, significantly outperforms the RL base-

lines achieving 75.10% test accuracy. The DAgger baseline reconciles with the state

distribution mismatch [24], boosting the parser to 84.03% test accuracy. The IL

paradigm is thus able to learn reasonable parses of object images, overcoming the

issues of learning a parser present in the RL setting. The IL setting however is not

perfect - it learns parses of objects that are often not coherent, or mislabels large

portions of the object.

(3) DRAG outperforms state-of-the-art IL and RL baselines on the task of parsing

novel objects.

We observe that the relative benefits of the IL paradigm transfer over to the hybrid

IL+RL paradigm, as validated by both the quantitative (Table 4.1) and visual parse

results (Figure 4.1). The hybrid IL+RL paradigm in theory moves towards optimiz-

ing the underlying cost function, in addition to imitating the expert. This facilitates

learning particularly when the expert is suboptimal with respect to the underlying

cost function, which occurs in our case due to the restricted depth of the parse tree

allowed to the expert.

We note that the hybrid IL+RL baselines (stochastic AggreVaTeD and Off-MCPG)

perform nearly as well as the best performing IL baseline DAgger. Further, the hy-

brid IL+RL paradigm is demonstrated to be Quantitatively, our proposed DRAG

approach achieves significantly higher train and test set accuracies (88.05 % and

86.86% respectively) than all other baseline approaches. While other stochastic hy-

brid IL+RL baselines (Off-MCPG and AggreVaTeD) are able to capture coarse ob-

ject structure, they fail to capture splits aligned with prominent image gradients.

In contrast, DRAG is able to assign labels that correlate strongly with that of the

ground truth (and the IGM oracle). Further, DRAG’s deterministic representation

of split locations enables DRAG to construct more regular parses of the object im-
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ages by selecting splits that align with object boundaries, as compared to baseline

approaches. This is particularly suitable for axis-aligned images, or images with

small abberations (such as rows 3 & 4 in Figure 4.1). In the case of irregular im-

ages such as the car door in rows 5 & 6, when the IGM oracle misses out on the

correctly labeling the rim of the door (due to a restricted parse tree depth), DRAG

is able to correctly label this portion of the door, in contrast with all other baseline

approaches.
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Chapter 5

Conclusions and Future Work

5.1 Conclusion

In this paper, we address the problem of learning to parse objects into hierarchical

decompositions via imitation learning. By treating an Information Gain Maximiz-

ing algorithm as an expert parsing oracle, our neural parser learns to parse objects

by imitating this IGM oracle, observing only raw object images as input. We fur-

ther introduce a novel deterministic policy gradient update, DRAG , suitable for

generic imitation learning tasks with a deterministic policy representation. The

proposed DRAG may be seen as both as an deterministic actor-critic variant of Ag-

greVaTeD [28] and a variant of DDPG [18] suitable for imitation learning. Training

our neural parser to parse objects using DRAG outperforms existing RL, IL and

IL+RL baselines, leading to more accurate and coherent parses. Our experimen-

tal results demonstrate the capability of our approach to successfully parse objects,

and potentially address more generic spatially decomposable tasks.
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5.2 Future Work

We present several avenues of future work that are potentially interesting directions

to extend the work presented in this thesis. Note that we present the results of our

novel deterministic policy gradient update, DRAG , in the context of the parsing

problem. We note, however, that DRAG is indeed a more general policy gradient

update suitable, and is applicable to generic hybrid IL+RL problems. We believe

evaluating DRAG on other such hybrid IL+RL problems, such as on the OpenAI

Gym-Robotics manipulation tasks, could be an interesting direction to pursue. The

parsing approach to coverage problems that we derive here is generally applicable

to other coverage problems. However, it would be interesting to observe whether a

similar approach may be adopted to other spatial tasks, in a hierarchical RL setting.
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