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Abstract— We consider the problem of online robotic sam-
pling in environmental monitoring tasks where the goal is to
collect k best samples from n sequentially occurring measure-
ments. In contrast to many existing works that seek to maximize
the utility of the selected samples online, we aim to find
the cardinality constrained subset of streaming measurements
under irrevocable sampling decisions so that the prediction over
untested measurements is most accurate. Using the information
theoretic criterion, we present an online submodular algorithm
for stream-based sample selection with a provable performance
bound. We demonstrate the effectiveness of our algorithm via
simulations of information gathering from indoor static sensors.

I. INTRODUCTION

Robotic sampling has received extensive attention in field
applications such as ecosystem monitoring [1], crop pheno-
typing [2], environmental surveillance [3], and patrolling [4].
Samples are needed so as to model and infer the hidden dis-
tribution of features of interest. In many cases the sampling
cost (e.g., time, on-board sample storage capacity, or energy
consumption) scales up quickly, therefore there is a need for
choosing samples selectively to collect the most informative
sample subset to reduce the prediction uncertainty of the
distribution modelling process, known as the Bayesian ex-
periment design. There has been prior work addressing the
optimal Bayesian experiment design problem, such as [5],
[6] where the entire set of available samples are given in
advance. However, in many applications, the nature of the
samples is not known in advance but samples are presented
online in a sequential manner that requires an instantaneous
and (often) irrevocable decision of taking the sample or
not, known as the secretary or stream-based setting [7], [8].
To the best of our knowledge, our work presents the first
approach to tackle the stream-based Bayesian experiment
design problem in robotic sampling.

In this paper, we consider the problem of online decision
making for robotic sample selection under the stream-based
setting where the robot has a budget limit for sampling
(e.g., time limit, battery life, or sample container size). In
this problem, a subset of available samples is recursively
selected so that the uncertainty from the learned Gaussian
process (GP) model from the subset is minimized with a
provable bound based on an information theoretic criterion
such as mutual information gain. Since the general sample
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Fig. 1: The robot travels along a fixed path that sequentially visits all 54
deployed stationary sensors in the Intel Berkeley Lab [9] in ascending order
of sensor IDs and obtains sensor reading information such as sensor location,
humidity, light and voltage to infer the temperature distribution.

selection problem under the cardinality constraint is NP-
hard [6], tractable approaches with sub-optimal bound are
acceptable.

A testing example scenario is shown in Fig. 1 in which
a robot sequentially visits all deployed 54 sensors along a
fixed path and obtains the sensor readings including sensor
locations, humidity, light and voltage as available features
at each corresponding discrete sensor location. We assume
that temperature readings are not available during the online
sample selection process. Obtaining sensor readings requires
additional visual and computing processes consuming battery
power (or time in a time-critical data collection), so the
number of sensor readings obtained should be constrained.
Therefore, the goal is to select the best k sensor readings out
of n by deciding whether or not to obtain the sensor data
upon visiting each sensor, such that the trained GP model
based on the available features could provide good estimation
of an objective feature (temperature in our scenario) with
minimized uncertainty over the testing sensor data, i.e. the
data from the remaining sensors that were not selected. As
the value of humidity, light and voltage for those candidate
sensors can never be known beforehand, we cannot directly
apply the Bayesian experimental design or path planning for
sampling algorithms [6], [10]. Therefore, a novel decision
making strategy regarding sample selection with the stream-
based setting is needed.

Our paper presents two contributions. First, our approach
embeds the online sample selection process into a stream-
based submodular optimization framework, with a provable
performance bound, for better learning the GP model with
constrained subset of training data. Second, we provide
extensive experimental results using a public dataset [9]
from Intel Berkeley Research Lab. Our experiments provide
an extensive comparison using different sample selection



algorithms with different information theoretic criteria and
shows the superior results of our approach.

II. RELATED WORK

Using GP models for modelling spatial phenomena has
been widely studied for modelling the hidden mapping from
available features of training data to the objective features
with consideration of uncertainty [11]. Built on the GP
modelling, approaches have been proposed to address both
the problems of selecting samples with highest utilities (i.e.,
Bayesian optimization [12]) and learning the underlying
distribution of the mapping with as few samples as possible
from a given pool of samples known in advance (i.e.,
Bayesian experiment design [5]).

The problem where (a) the pool of samples are not known
in advance, (b) samples are sequentially presented, and (c)
the sampling decision is irrevocable is known as the secretary
problem and has been extensively studied [13], [14]. The
classical secretary problem seeks irrevocable online selection
of the best candidate (or best k candidates) out of n appli-
cants. The work in [15] considers a variant of the k-choice
problem in which the objective is to choose k applicants
maximizing the expectation of a submodular utility function,
which characterizes overlapping skills among the chosen
applicants. Das et al. [1] presented the first online algorithm
to select k best samples from n candidate measurements in
the stream-based setting for robotic monitoring, in which
each measurement is evaluated by the utility function spec-
ified by the fixed weighted sum of posterior mean and
variance functions [12] from an initial pilot survey. Although
[1] could select the samples with highest utility in stream-
based setting, it does not incorporate the correlations between
candidate samples online. Moreover, it does not set out to
minimize the uncertainty from the learned GP model over
untested measurements. Thus, large prediction errors could
occur when the training data is constrained with few pilot
surveys. Therefore, we propose to use information theoretic
criteria with submodular framework that could characterize
the correlations among the candidate samples online and
hence improve the prediction accuracy from the learned GP
model with sub-optimality bounds after selecting each new
untested sample.

III. PROBLEM STATEMENT

In general, consider the entire sequenced set of n sensor
measurements V = {v1, . . . , vn} where each measurement
vt = {locations, humidity, light,...} ∈ RD for t = 1, . . . , n
corresponds to an environmental feature vector in D dimen-
sion feature space. There exists an unknown utility function
f : RD → R+ that maps the measurement input vt with
observable features to the scalar value of objective feature
f(vt), in our testing case the temperature yt ∈ R. On
each arrival of the measurement vt, the robot will make an
irrevocable decision1 of whether to sample this measurement

1We assume that revoking a decision requires a cost that is prohibitively
large. For example, a robot collecting physical samples will have a large
cost to clean the sample containers to prevent possible cross-contamination.

or not. Due to a budget limit, the robot will only be able to
sample k measurements in total (k < n). After sampling
k measurements, the robot will observe the actual utilities
(the temperature reading in our case) of the measurements
{yi}ki=1 and use GP regression to learn the underlying
mapping f , assuming the joint distribution of the observed
offline temperature readings is Gaussian [6]. Hence, the
goal is to select k best measurements under the stream-
based setting for learning the mapping that minimizes the
prediction error on new measurements.

A. Probabilistic Model

It has been shown that many environmental variables
such as the temperature have a (multivariate) Gaussian joint
distribution [6], [16], and hence we use the GP regression
to learn the mapping from an environmental measurement
vt ∈ RD to the desired objective feature such as temperature,
namely, compute the conditional posterior mean and variance
for that objective variable as in [12]. Note that the mean
function is assumed to be zero without loss of generality.
Defining the training set of feature vectors as A ⊂ V , the
conditional posterior mean µvt|A in (1) is hence considered
as the normalized predicted temperature for unobserved test
measurement vt.

µvt|A = k(vt)
T (KA + σ2I)−1y

σ2
vt|A = k(vt,vt)− k(vt)

T (KA + σ2I)−1k(vt)
(1)

where y = [y1, . . . , y|A|]T is the noisy observation set for
each training measurement vi ∈ A with yi = f(vi) + ε and
Gaussian noise term ε ∼ N(0, σ′2). σ2 is the measurement
noise. k(vt) = [k(v1,vt), . . . , k(v|A|,vt)]

T where k(v,v′)
is the kernel function that captures the correlation between
two measurement vectors. KA is the positive definite sym-
metric kernel matrix [k(v,v′)]v,v′∈A. In particular, we use
the following squared-exponential kernel function to specify
the inter-sample correlation.

k(v,v′) = σ2
SEe

− (v−v′)T (v−v′)
2s2 (2)

where the hyper-parameters s and σSE are length-scale and
scale factor respectively that can be learned by optimizing
the log marginal likelihood regarding the two parameters as
done in [11].

In our case the actual value of the objective feature for the
received measurements online cannot be observed until an of-
fline analysis is processed, which makes the prediction µvt|A
unavailable for the online decision making due to unknown
y. To that end, we need metrics that capture the correlations
between observed and untested measurements so as to select
the most representative set of k measurements that reduce
the uncertainty for prediction on untested measurements.

B. Objective Function

First, we consider the notion of differential entropy that is
often used in spatial statistic optimization problems such as
experimental design to specify the informativeness of a new
unobserved sample given a set of previously selected un-
observed measurements. Formally, for any new unobserved



measurement vt and existing training set of samples A, the
entropy of vt conditioned on set A is defined as follows [6].

H(vt|A) =
1

2
log(2πeσ2

vt|A) (3)

where σ2
vt|A is computed in (1). While the differential

entropy provides a good way to imply the reduction of
uncertainty by the new unobserved measurement, it only
concerns the entropy of selected measurements instead of
the overall quality over the sampling space. To that end, an
improved information theoretic criterion such as the mutual
information [6], [12] is used here to indicate the reduction
of uncertainty over the rest of the sampling space. Given the
entire sampling set V , the mutual information gain between
any subset A ⊂ V and the rest set V\A is defined as follows.

I(A;V \ A) = H(V \ A)−H(V \ A|A) (4)

where H(V \A) is the entropy of the rest sampling set that
can be computed by chain rule [6]. Hence, our objective
to select the best subset A∗ of k measurements is formally
defined as follows.

A∗ = arg max
A⊂V:|A|=k

I(A;V \ A) (5)

Note that although the optimization criterion is similar to
the experimental design problem [6], we do not assume that
the knowledge of the entire sampling set V is available in
advance. In the stream-based setting as described in Fig. 1,
the decision of sampling the current received measurement
vt or not should be made before obtaining the information of
the next measurement vt+1. Therefore, a stream-based op-
timal stopping strategy is needed to solve the combinatorial
optimization problem (5).

IV. ONLINE SAMPLING USING STREAM-BASED
SUBMODULAR SECRETARY ALGORITHM

The optimization problem (5) has been proven to be NP-
hard [17]. Therefore, suboptimal solutions are acceptable.
Given the additional constraint of irrevocable sampling de-
cisions, we propose to combine optimal stopping theory and
submodularity of the objective function (5) to obtain a sub-
optimal online decision making policy with provable bounds.

A. Classical secretary algorithm

In the classical secretary problem, a company interviews n
applicants sequentially without knowing their quality ranking
at time of arrival, (and hence assumes that the arrival order
is independently and identically distributed) with the goal
to hire the person of the highest quality. The employer
should make the irrevocable decision to hire or not right
after interviewing each applicant. The solution is as follows:
applicants are interviewed without hiring until the number of
interviewed applicants reaches the cutoff point n/e. Then any
applicant better than the best applicant until the last candidate
will be hired. The optimal cutoff is n/e for a large n and
the probability of choosing the best candidate is 1/e [13].

Consider the extension of the secretary problem to the
multi-choice case where the goal is to select top k candidates
from the stream of n candidates in total. Prior work [15]
presented submodular secretary algorithms to select top k
candidates given the submodularity of the monotone evalu-
ation function. Such algorithms are particularly suitable for
our problem since they do not suffer from highly correlated
neighboring samples, as in other multi-choice secretary al-
gorithms [18].

B. Submodularity Analysis

We prove that our objective function (5) is submodular.
Definition 1 (Submodularity [19]): Let V be a finite set.

A function f : 2V → R is submodular if for all sets S and
T with S ⊆ T ⊆ V , the following is satisfied.

∀v /∈ T : f(S ∪ {v})− f(S) ≥ f(T ∪ {v})− f(T ) (6)

Lemma 1: The set function of mutual information gain
A → I(A;V \ A) in (5) is submodular.

Proof: Let A ⊆ A′ ⊆ V and v ∈ V \ A′, which
implies v ∈ V \A. For simplification we use MI(·) to denote
I(·;V \ ·). Then based on (4) we have
∆ ={MI(A′ ∪ v)−MI(A′)} − {MI(A ∪ v)−MI(A)}

={H(v|A′)−H(v|V \ (A′ ∪ v))} − {H(v|A)−H(v|V \ (A ∪ v))}
={H(v|A′)−H(v|A)}+ {H(v|V \ (A ∪ v))−H(v|V \ (A′ ∪ v))}

(7)

As more information indicates non-increasing entropy [6],
[20], we have H(v|A′) ≤ H(v|A) and H(v|V \ (A∪v)) ≤
H(v|V \(A′∪v)). Hence ∆ ≤ 0 which concludes the proof.

[6] has proven that the mutual information gain is ap-
proximately monotone given fine discretization of the GP.
Then together with Lemma 1, under the pool-based setting
where V is available in advance, we have the sub-optimality
bound of (1 − 1/e) using simple greedy algorithm that
iteratively selects a candidate at each round t so that vt =
arg maxMI(At−1 ∪ vt) until |At| = k.

As the objective function is submodular, next we present
the adapted stream-based submodular sampling algorithm
with performance bound.

C. The Stream-based Submodular Sampling Algorithm

We employ the general stream-based submodular secretary
algorithms from [8], [15] and modify them in our problem
considering that our objective function of mutual information
gain MI(·) is monotone and submodular. The pseudocode is
given in Algorithm 1 with inputs as sequenced set V , sampled
measurement set A and cardinality constraint k .

Similar to [8], [15], Algorithm 1 first divides the mea-
surement sequence V = {v1, . . . ,vn} into k equally-sized
selection windows defined by Sl = {vt ∈ V|(l − 1)n/k <
t ≤ ln/k} for l = 1, . . . , k (line 3).2 In each segment (line 4–
13) the classical secretary algorithm is applied to select one

2Without loss of generality we assume n is a multiple of k, or we
can virtually fill some dummy measurements with zero incremental mutual
information gain into the smaller segments to make them equivalent in
length.



Algorithm 1 Stream-based Submodular Secretary Algorithm
1: procedure STREAMSUBMODULAR(V , A, k)
2: A ← ∅, a← 0
3: for each segment Sl = {vt ∈ V|(l − 1)n/k < t ≤ ln/k}

do
4: for each measurement vt ∈ Sl do
5: if (l − 1)n/k < t < (l − 1)n/k + n/(ke) then
6: if MI(A ∪ vt) > a then
7: a←MI(A ∪ vt)
8: end if
9: else if MI(A ∪ vt) > a or vt the end in Sl then

10: A ← A∪ vt

11: a← 0 and continue to the next segment Sl+1

12: end if
13: end for
14: end for
15: end procedure

measurement with maximum mutual information gain on the
existing selected sample set A. Namely, during each observa-
tion phase (line 5–8) the robot will not sample the first nk/e
new measurements while recording the maximum mutual
information gain. During the following sampling phase (line
9–12), the incoming measurement will be sampled as long
as (i) its mutual information gain is larger than the largest
recorded value stored from the previous observation phase, or
(ii) the current measurement is the end of the current segment
Sl. Once the measurement is sampled, the robot will reject
all the rest of the measurements in the current segment Sl

and move on to the next segment Sl+1 (line 11). Different
from the algorithm design in [15] that selects at most one
sample per segment, the Algorithm 1 ensures the selection
of exactly one one measurement at each segment.

Performance Bound: Since we use the same segment
partition assuming the identically distributed arrival order for
the measurements as in [15] and the mutual information gain
is proved to be submodular in Lemma 1, our Algorithm 1
shares the same sub-optimality bound (1− 1/e)/7 as [15] .

V. RESULTS

In this section, we present several simulation results on
the benchmark dataset from Intel Berkeley Lab [9]. The
dataset contains sensory data collected from 54 sensors in
an office area between Feb 28th and Apr 5th, 2004. The
data includes time-stamped readings such as sensor 2D lo-
cations, temperature, humidity, light and voltage. We want to
predict temperature or light. The attributes in the dataset are
divided into available training features and objective feature
(temperature or light) to test the prediction performance. As
described in Fig. 1, we assume that the robot starts from
Sensor 1 and sequentially visits all the 54 sensors. Within the
stream of 54 measurements, the robot makes k irrevocable
sampling decisions. We compare the result of our approach
described in Algorithm 1 to other competitive algorithms.

A. An Illustrative Example

First we consider an illustrative example where the robot
collects 18 best measurements at one run using our stream-

based submodular secretary algorithm (Algorithm 1) to pre-
dict the temperature distribution of all points in the map.
Since data on light, humidity and other variables are sensed
only at the 54 sensor locations, we use only the 2D location
information of the 18 sensors to learn the mapping to the
temperature f : R2 → R. For training purposes, we also
use additional 5 randomly selected sensor data of location
and temperature. After taking the 23 samples with location
and temperature data in total as training measurements, the
mapping from 2D location to temperature is learned to
predict the temperature distribution over the whole map.
Fig. 2a shows the ground-truth heatmap of temperature
data in degrees Celsius fitted from sensory readings on the
discrete locations of stationary sensors. Fig. 2b shows the
predicted temperature distribution using only 18 selected
measurements obtained from Algorithm 1 as well as the
first five available measurements as randomly selected prior
training data. With only data on location and from about
half of the available sensors, our algorithm already shows
good prediction performance compared with the one using
the entire data stream.

To explicitly demonstrate the prediction performance com-
pared to the ground truth for temperature estimation in the
discrete locations of the non-selected sensors where data on
light, humidity and other variables are also available, we
run another trial using our algorithm with these additional
dimensions of information. The inferred temperature distri-
butions with variance over the discrete sensor locations is
shown in Fig. 3a (with three prior measurements only) and
Fig. 3b (after sampling another 20 selected measurements). It
is straightforward to see that with our algorithm the posterior
mean of predicted temperature over each sensor location
is close to ground truth temperature reading using only
20 newly sampled data as the training set. The prediction
variance is also largely reduced compared to the model from
the three prior training measurements.

B. Numerical Results

To compare the algorithm performance with other similar
works, we conducted experiments on 40 different streams of
54 sensory data from the Intel Berkeley data set randomly
collected from Feb 28 to Mar 1, 2004 [9]. We use both
mutual information gain (4) and Root Mean Square (RMS)
error between predicted posterior mean and actual value for
the objective feature to quantify the algorithm performance.
On each experiment, different predefined number of selected
samples are collected as different training datasets and the
testing data is the sensor measurements recorded in the 54
sensor locations within the same time period on the following
two days (Mar 2–3, 2004). In particular, we tested different
algorithms for two different tasks: the temperature prediction
and light prediction in the locations of the non-sampled
sensors, using available measurements on sensor locations,
humidity, voltage as well as temperature (when predicting
light) or light (when predicting temperature).

We compare five representative online sampling algo-
rithms (i.e., Uniform, Multi-choice secretary [7], Stream GP-



(a) (b)
Fig. 2: An example of the temperature distribution modelling by sampling the best (according to Algorithm 1) 18 sensor location only information during
a trip of the robot from sensor 1 to 54 (sequenced by the white arrows). (a) The ground-truth heat map of temperature in degrees Celsius with 47 available
sensors (the readings from Sensor 4, 5, 25, 32, 33, 43, and 44 are not available in the dataset). (b) The modelled temperature distribution resulting from
the best 18 available sensors selected plus first 5 available sensors that give location and temperature as training measurement set (both marked by the red
box) by Algorithm 1.

UCB [1], Stream Entropy, Stream Mean) with our Stream
Submodular secretary algorithm (Algorithm 1). The cor-
responding results are shown in Fig. 4 and Fig. 5 for
inferring temperature and light, respectively. For the Uniform
algorithm the robot uniformly selects the k measurements
from the sequenced sensory data set regardless of value of
observable features in each measurement. The Multi-choice
Secretary algorithm [7] is a natural extension to the classical
secretary algorithm. During the observation phase the first
n/e measurements are passed without being selected and
the best k measurements’ incremental mutual information
gain during this phase are recorded and ranked. In the
following selection phase for the rest n − n/e sequenced
measurements, any new measurement will be selected as long
as its incremental mutual information gain is larger than any
one from the k records. The Stream GP-UCB [1] employed
a similar multi-segment submodular algorithm as ours, but
the sample selection criterion is based on the GP-UCB [12],
which seeks for samples with maximum weighted sum of
posterior mean and variance from (1) using pilot surveys.
The Stream Entropy algorithm shares the same framework
as our Algorithm 1, while using the entropy criterion (3) to
select the best measurements. The Stream Mean also has
the same framework as Algorithm 1 but with a different
selection criterion that picks up measurements with highest
posterior mean from (1). In Fig. 4 and Fig. 5, it is shown that
our Stream submodular algorithm outperforms all the others
in both prediction tasks given the resulting RMS error that
directly indicates the prediction accuracy.

VI. CONCLUSION

We presented an online budget-restricted sampling algo-
rithm under the stream-based setting. By using the mutual
information gain as the selection criterion and exploiting the
submodularity of the criterion, we improved the prediction
accuracy of the learned GP model from budgeted sampled
measurements and ensure the sub-optimality bound. Numer-
ical simulations were performed on a real-world dataset to
compare our stream-based submodular algorithm to other
representative works in two different prediction tasks. The

results validated the effectiveness of the proposed algorithm.
Our current problem setting does not consider the actual

objective feature value of those measurements (say tem-
perature in our case) online until GP modelling. In the
future we will investigate the situation that allows immediate
realization of the objective feature value after sampling each
measurement, so that we can better reduce the prediction
uncertainty or improve the utility of the selected measure-
ments in an adaptive manner. To further test and refine our
algorithm we also plan to conduct field experiment with our
sampling algorithm on data samples of sorghum varieties to
predict the varieties’ yields and susceptibility to disease.
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