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Abstract— Wire detection, depth estimation and avoidance is
one of the hardest challenges towards the ubiquitous presence
of robust autonomous aerial vehicles. We present an approach
and a system which tackles these three challenges along with
generic obstacle avoidance as well. First, we perform monocular
wire detection using a convolutional neural network under
the semantic segmentation paradigm, and obtain a confidence
map of wire pixels. Along with this, we also use a binocular
stereo pair to detect other generic obstacles. We represent wires
and generic obstacles using a disparity space representation
and do a C-space expansion by using a non-linear sensor
model we develop. Occupancy inference for collision checking is
performed by maintaining a pose graph over multiple disparity
images. For avoidance of wire and generic obstacles, we use
a precomputed trajectory library, which is evaluated in an
online fashion in accordance to a cost function over proximity
to the goal. We follow this trajectory with a path tracking
controller. Finally, we demonstrate the effectiveness of our
proposed method in simulation for wire mapping, and on
hardware by multiple runs for both wire and generic obstacle
avoidance.

I. INTRODUCTION

Thin obstacles such as wires, ropes, cables, and power
lines are one of the toughest obstacles to detect for unmanned
aerial vehicles. They can be especially hard to perceive
in cases when the background is cluttered with similar
looking edges, when the contrast is low, or when they are
of barely visible thickness. Furthermore, using a horizontal
binocular stereo pair does not help if they are right on the
drone’s path and parallel to the stereo baseline, thus evading
detection in the disparity image. State of the art in drone
obstacle avoidance, arguably Skydio [1], admit that their
technology can not detect wires and power lines. Power line
corridor inspection is another area of potentially widespread
application of wire detection and avoidance capabilities, and
leveraging UAVs for this task can save a lot of money, time,
and help avoid dangerous manual labor done by linemen. For
our purposes, we favour cameras because they are cheap, low
weight, have long range sensing capabilities, and consume
a fraction of power as compared to expensive and heavy
sensors like lidar, radar, etc.

To the best of our knowledge, previous work does not
demonstrate thin obstacle detection, depth estimation, and
avoidance all together in a single package, nonetheless there
are multiple works which attempt to solve parts thereof. [2]
developed a method to avoid multiple strings in a cluttered,
indoor environment by convexifying the free space and
using mixed integer programming to generates trajectories
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Fig. 1: Wire Mapping using Monocular Detection and Obstacle Perception
using Disparity Expansion. Obstacles perceived using a stereo-camera are
shown in red ellipses, and wire obstacles detected from monocular camera
are shown with yellow ellipses. The bottom half shows the obstacle grid
represented by our pose of graph of disparity images. Wires are shown as
black boxes, and stereo camera perceived obstacles are colored by height.

consisting of polynomial segments. However, the assume that
the location the of strings is provided to them as convex
hulls, and hence, do not solve the perception challenge. [3]
develop a generic, thin obstacle detection pipeline for both
monocular and stereo cameras based on previous work edge-
based visual odometry [4]. They also show results for thin
obstacle detection on with a DJI Guidance stereo camera, but
do not show avoidance. [5] does image based reconstruction
of 3D wire art objects, but their method is not real time.

In this paper we combine and extend our previous
works, DROAN (Disparity-space Representation for Obsta-
cle AvoidaNce) [6] and monocular wire detection using
synthetic data and dilated convolutional networks [7], by
stitching monocular and binocular stereo observations in a
seamless way to enable detection and avoidance of generic
obstacles and especially hard to perceive thin obstacles such
as wires and power lines, in a novel fashion. For monocular
wire detection, we use a semantic segmentation paradigm
using fully convolutional neural networks [8] with multiple
dilation layers [9] and no downsampling, trained on synthet-
ically generated wires superimposed on real flight images as
explained in [7]. For a complete obstacle avoidance system
however, a monocular camera is not enough. Hence, we
use a binocular stereo pair as a generic obstacle perception
sensor. The standard paradigm for doing this involves using
the point cloud obtained from the stereo images to maintain
and update a 3D occupancy map, where obstacles are then
expanded according to the robot’s radius to do motion plan-
ning by treating the robot as a point-sized obstacle. However,
such an occupancy map is expensive to maintain and store
in practice. Hence, we use the inverse depth or disparity
space as our configuration space [6], [10]. We model the



sensor uncertainty in order to do a C-space expansion of
the observed data associated with generic obstacles. For
estimating the depth of wires, we first threshold and filter
the confidence map obtained from the CNN, and make
a synthetic disparity image for the wire obstacle with a
conservative depth estimate. Then, a pose graph maintained
over multiple disparity images is used to infer occupancy
for both wire and generic obstacle in order to perform
collision checking in the planning stage. For planning, we
use a receding horizon planner deploying a precomputed
trajectory library composed of dynamically feasible segments
to a pre-specified goal location. The precomputed candidate
trajectories are then evaluated online to assign a cost based
on how close they get to the goal in position, heading and
remain free from collisions. Finally a path tracking controller
from [6] is used to follow the selected candidate trajectory.
This process continues at the rate of the fastest observation
sensor i.e. the disparity image frequency of 10 Hz. We
test the effectiveness of wire depth estimation in simulation
as shown in Figure 6. Consequently, we demonstrate our
pipeline on multiple runs in both an outdoor environment
with wire obstacles and in an indoor environment with
generic obstacles.

II. RELATED WORK
A. Monocular detection

One of the earliest works in wire detection is from Kasturi
et al.[11], who extract an edgemap using Steger’s algorithm
[12], followed by a thresholded Hough transform. Candamo
et al.[13] find edges using the Canny detector and then weigh
them proportionally according to their estimated motion
found using optical flow, followed by morphological filtering
and the windowed Hough transform. Song and Li [14]
proposed a sequential local-to-global power line detection
algorithm which can detect both straight and curved wires.
Fully Convolutional Networks [8] proposed learned upsam-
pling and skip layers for the task of semantic segmentation.
However, for thin wires, FCNs and similar approaches like
SegNet [15] are intuitively suboptimal as crucial information
is lost in pooling layers which becomes difficult to localize
in the upsampling layers. Dilated or atrous kernels provide
a framework to capture an exponentially increasing field of
view as the network depth increases by increasing the dila-
tion parameter as explained in [9]. We use the approach of
[7] using dilated convnets which are pre-trained on synthetic
data and fine-tuned on small amounts for real data for decent
results on the test site in practice.

B. Depth or Disparity map based Obstacle Detection

Most approaches generate point clouds from disparity
images and generate 3D evidence or occupancy grids to
infer occupancy for collision checking [16], [17]. Gohl
et. al [18] proposed to use a spherical coordinate based
gridmap suitable for stereo sensors, but this requires that
each disparity map has to be converted to a 3D point cloud
before being injected into the 3D gridmap.

Working with 3D gridmaps is both memory intensive for
large occupancy maps, and computationally expensive for
registration and book keeping when scrolling or moving
the grid along with the robot. OctoMaps [19] have recently
become popular due to their efficient structure for occupancy
mapping. However, due to excess noise in stereo sensor gen-
erated data at long ranges, often a smaller map is maintained
and full stereo sensor data is not used. A pushbroom stereo
scanning method is proposed in [20] for obstacle detection
for MAVs flying at high speeds, however it is capable of
only detecting a prefixed disparity which it accumulates as
the robot moves in the environment, and therefore is limited
to myopic sensing.

We base our work on [10] which proposed a
Configuration-Space (C-Space) expansion step to apply an
extra padding around disparities based on robot size, but
it also fails to use complete sensor data as only the closer
occurring obstacles are represented by their method without
considering any sensor uncertainty.

III. APPROACH

We now explain each module in our pipeline.

A. Monocular Wire Detection

We treat wire detection as a semantic segmentation prob-
lem in monocular images and leverage our work in [7]
for the same. Due to unavailability of a large dataset of
synthetic wires, we generate a large number of synthetic
wires using a ray-tracing engine [21], [22], and superimpose
them on publicly available videos’ frames, in order to make
an ImageNet analogue for pre-training the network. We
then do a grid search over multiple dilated convolutional
networks we designed in [7], and pick the best in terms of
accuracy and performance on the Nvidia TX-2, specifically
the architecture k32-k32-k32-k32-d1-d2-d4-d8-d16-d1-k2 as
explained in Table III of [7]. For good performance on our
real world experiments, we fine-tuned the network weights
on an assortment of a few manually labelled images with
real wires we collected ourselves.

The output of the CNN is a confidence map, where each
pixel maps to a confidence value € [0,1] of that pixel
belonging to the wire class. First, we threshold this map
and remove pixels with confidence < 0.95. The generated
mask at times has false positives in terms of speckles or
disconnected regions similar to stereo-sensor generated dis-
parity maps. Since, our current approach is very conservative
about avoiding wire obstacles, such speckles are detrimental
when planning for avoidance of obstacles, resulting in erratic
robot motion, or in the worst case, complete failure to find
a plan to avoid the wire. Hence, we run it through a speckle
filter to get rid of small non-wire patches. The filtered mask
is then treated as the wire-obstacle map as shown in Figure 1.
In Section III-C.1, we discuss how we convert this map
to a disparity space map for seamless integration into the
occupancy inference pipeline.



B. Characterizing Disparity Space Uncertainty

1) Modeling perception error: In order to detect generic
obstacles, we use a binocular stereo camera, and in this
section we explain the need for using a sensor model
and how we develop the same. We use the disparity or
inverse depth image for obstacle representation as it naturally
captures spatial volume according to the sensor resolution
[18], which means that implicitly nearby obstacles have a
denser representation, whereas obstacles which are further
away are represented with a sparser resolution.

In stereo vision, the depth z of a pixel (u,v) and the
corresponding disparity value d are related as:

Z:% 6]

where b is stereo baseline and f is the focal length in
pixels. The 3D coordinates of the corresponding point can
be expressed as

Pla,y,z) = (uz/f,vz/ [, 2) 2

The accuracy of the stereo setup is drastically affected
as the disparity decreases. The error in depth increases
quadratically with depth, as can be seen by differentiating
equation (1) wrt d and then back-substituting for z as
explained in [6], i.e. Oz ~ 22.

It is evident that the sensor model is non-linear in the
depth space and has a long tail distribution, as can be seen in
Figure 2a. However, in the disparity space, it can be modelled
as a Gaussian distribution, A (d, 02), where d is the observed
disparity, and o2 is the covariance parameter of the sensor
model which we determine empirically in the next section.
The reasoning behind using a Gaussian in disparity space is
that disparity error is primarily caused due to correspondence
error while matching pixels along the epipolar line. Figure 2a
shows that a Gaussian pdf in disparity space captures a
difficult to model pdf in depth which has an elongated tail on
one side and a compressed tail on the other. The blue curve
shows how depth is related to disparity. We can see that a
Gaussian pdf centred around a low disparity value (red on
X-axis) maps to a long tail distribution (red on Y-axis) in the
depth space. Similarly, a Gaussian around a larger disparity
value (green on X-axis) maps to less uncertainty in depth
(green on Y-axis). This fits well with the fact that disparity
naturally captures spatial volume according to the sensor
resolution, and establishes our motivation to use disparity
image space domain directly for occupancy inference rather
than resorting to depth or 3D spatial domain.

2) Finding the sensor model parameters empirically: In
this section, we explain how we find the o value from the
previous section, given a disparity image and corresponding
ground truth value of depth. To this end, we generate
disparity using an FPGA based solution [23], and obtain
the ground truth depth value by placing a known chequered
board pattern in front of the sensor. Then, we generate a
histogram of disparity errors by collecting several samples of
disparity values corresponding to each corner pixel. Figure 3
shows our setup at a distance of 2.5 m. Data was sampled at
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Fig. 2: (a) Disparity and corresponding depth values are shown in blue.
A Gaussian pdf centred around a low disparity value (red on X-axis) maps
to a long tail distribution (red on Y-axis) in the depth space, whereas a
Gaussian for larger disparity value maps to less uncertainty in depth space.
This explains how we capture difficult to model distributions in the depth
space with a Gaussian counterpoint in the disparity space. (b) Shows the
pixel-wise area expansion of a point obstacle according to robot size in the
image plane.
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Fig. 3: Experimental setup to collect data for error modelling and the
fitted model. Top left, clock wise: Projection of ground truth/known corners
into the current image, disparity map, the fitted PDF for disparity error. The
point cloud shows the ground truth points in blue and sampled points in
pink. The small sized red point cloud is the disparity generated point cloud.

multiple distances to model the error, and we fit a Gaussian
distribution to the obtained histogram to obtain a value of
o = 0.23, as depicted in Figure 3.

C. Configuration-Space Expansion in Disparity Space

Now that we have established a sensor model in disparity
space, in this section we explain how we do configuration
space expansion for collision checking. We capture the vol-
ume occupied by an obstacle using two virtual limit surfaces,
one each for front and back by generating two corresponding
disparity images via the sensor model we developed in the
previous section. Each pixel in these two images effectively
captures the range of disparity based on the robot size and
the sensor error model as shown in the Figure 2a. We do
the expansion in two steps : the first one expands disparities
along the image XY axes as shown in Figure 2b, and the
second step expands along the depth dimension (image Z
axis) as shown in Figure 4.

The first step does area expansion of the obstacle
pixel (u,v) in the disparity image, to occupy a set of
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Fig. 4: Disparity expansion shown as point cloud. The pink and red point
cloud represent the foreground and background disparity limits.

pixels ranging from [uj,us] to [v1,vs] after inflation. This
is similar to [10] which introduced a procedure to gener-
ate a look-up table (LUT) to obtain the expansion map-
pings across both image dimensions, u — [uj,us] and
v — [v1,v9], given disparity value d. However, we differ
from [10] in that we also incorporate the sensor error
modelled in the previous section. To ensure robot safety
while flying, we introduce another parameter, A which is a
sigma multiplier in the expansion step depending on how
far the obstacle is from the robot. The intuition here is
that the nearby obstacles are expanded more, whereas the
obstacles further away are expanded less, to enable long-
range deliberate planning for exploration tasks. Thus, instead
of looking up for the raw disparity value d from the LUT as
done in [10], we rather look up for (d + \o). By varying A
we ensure safe planning at short range and a more optimistic
planning at long range.

The second step in C-space expansion expands disparities
in the depth dimension to get values for front and back
images using equation (3), as shown in Figure 4. These
images represent the maximum and minimum disparities for
every pixel respectively:

bf

zZ—Ty
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zZ+1ry

df = + Ao 5 db = — Ao (3)
where 7, is the expansion radius based on robot size, dy
and d,, are the computed front and back disparities which
encompass the obstacle. As shown in illustration on left side
of Figure 4, the red area around the original disparity of
obstacle is the padding generated in the expansion step. This
padding is based on the robot size and sensor error model.
The reader is advised to refer to our previous work [6] for
further details on the algorithm used for C-Space expansion.
Note: For the experiments in this paper we set A = 1.

1) C-Space expansion of detected wire pixels: As ex-
plained in Section III-A, we obtained a thresholded and
filtered confidence map of detected wires from monocular
images. However, we have no estimate of depth to generate
a disparity map, so we assume the wire to be present between
4 m and 20 m distance. Using the 4 m assumption we apply
this prior to all wire-pixels and obtain a synthetic disparity
image. Using this synthetic disparity we apply the steps from
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Fig. 5: Synthetic disparity generation and expansion of wire. The frontal
and backward image planes show the thin wire projection along with the
result of applied expansion steps.
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Fig. 7: Probability mass (shown in blue area) occupied by a robot of
radius 0.5m at a distance of 50m(3.5px) and 5m(35.6pz). As the distance
increases or disparity decreases the probability mass occupied by the robot
varies.

the previous subsection to generate a frontal expansion. For
back expansion however, we apply a fixed padding using
second assumption of wire being as far as 20 m as shown in
Figure 5. These assumptions can be attributed to generation
of fixed size solid planes in 3D space and by using multiple
such observations we can triangulate the real location of wire
within those ranges. The motivation of using these close
proximity depths is to avoid wires as early as possible or
move wire obstacles out of robot view by changing course
of motion. We test the effectiveness of depth estimation in
simulation as shown in Figure 6.

D. Probabalistic Occupancy Inference

Occupancy inference is the method to derive occupancy of
a volume using all the observations or evidence we have. This
is a widely studied topic and is often not a trivial problem.
Chapter 9 of [24] explains this in detail. 3D Evidence grids
or occupancy grid maps are practical methods for fusion
of different measurements taken over time. The proposed
pose-graph, explained later in Section III-F, enables similar
fusion of multiple observations. In [25] we showed how an
inverse sensor model for stereo-cameras can be used for
occupancy inference in a probabilistic manner, i.e. similar
to log-odds used in evidence grids. We also compared it to
a easy to compute Confidence Function. Following is a brief
discussion, for details please refer [25].

1) Confidence Function for inference in Disparity Space:
Using the Gaussian sensor error model as explained earlier
we make the following analysis. Figure 7 shows how the
occupied volume changes in disparity space given a fixed
robot size. Figure 8a shows the probability mass as a function
of inverse depth or disparity and shows that the same
Gaussian distribution at different disparities the actual range
of disparity that the robot would occupy falls drastically.

However, it is difficult to compute the probability mass
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Fig. 6: All snapshots at bottom show the camera view and detected + expanded wires. (a)-(c) show single observations at different heights using our
representation. The wire ground truth is shown as black linear point cloud. It is assumed to be uniformly distributed in this space as depicted by colored
voxels (by height). (d)-(e) show the final result of our fusion and occupancy inference from oblique and along the wire direction perspectives. Our approach
is successful in mapping the three wires. The robot odometry is shown in red and the individual nodes of the pose-graph as green arrows.
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Fig. 8: (a) Probability Mass of occupancy, given a robot at disparity d
pixels. This curve is used to compute the log-odds to infer occupancy.
(b) Disparity vs Confidence plot obtained from equation (4). This is
inexpensive to compute online compared to computation of probability mass
which involves integration of inverse-sensor-model over robot radius. (c)
Occupancy update comparison between log-odds and proposed confidence
inference. Confidence based occupancy update is more conservative in
nature and will lead to detection of an obstacle using fewer observations.
Hence, this function is pessimistic about free-space and ensures an obstacle
will be detected in all cases when log-odds also detects an obstacle.

online as it requires integration of inverse-sensor-model,
hence we propose a new confidence function which is
inexpensive to compute online. Given the standard deviation
of correspondence error o, we compute confidence of a
disparity state d in the following manner.

(d—o)
d

Confidence measure from equation(4) gives us a measure
of how much can we trust a given disparity for occupancy
inference. Figure 8b shows how this measure relates to
disparity. For details please refer [25].

We compare the occupancy update using the log-odds
probabilistic inference and the proposed confidence inference
method. Figure 8c shows the plot of occupancy update
using the two methods. The confidence function is more
conservative in nature when doing occupancy update at
longer ranges. Hence, it is guaranteed that the proposed
confidence function will mark a state as occupied if the
probabilistic inference also evaluates to the same. We further
discount measurements that mark an area safe or potentially
safe(occluded) by 0.5 to be more conservative about clearing
areas previously marked occupied.

O(d) = @)

E. Collision Checking

Collision checking is used to plan a new path and to
validate if an existing path is safe to follow. Collision
checking is performed by projecting the 3D world point

(c) high

(d) oblique perspective  (e) another perspective

TABLE I: Occupancy update

Check Remark occupancy cost occ(ds)
ds > di(u,v) safe _0.5%
ds < di(u, U)
and obstacle %
ds > dy(u, U)
i C(ds)
ds < dp(u,v) | potentially safe 05—

P(z,y,z) to image pixel I(u.v) with disparity ds using
equation (1) and equation (2). The point P is projected in all
the images that constitute the nodes of the pose-graph and
checked for collision as follows.

A state is in collision if the total occupancy measure M
as shown in equation (5) crosses a pre-defined threshold ~.

M = mazx( Z oce(ds),0) ®)
nodes
Collision = Lo if M=y (6)

0, otherwise

where occ(ds) is computed according to Table I. If the
occupancy for a state is below the threshold, we consider
that state as not occupied by an obstacle. We also clamp
M to be not negative to prevent over confidence for free
volume.

Note: For wire occupancy inference, since the wires are
assumed to be uniformly distributed over a region per
observation (see Figure 5), we directly use the confidence
function C'(d) with o = 0 instead of its odds to compute
the occupancy cost occ(d). This simplifies to summation of
observations with wire over a given volume.

F. Pose Graph of Disparity Images

A single observation is often not enough to construct a
reliable occupancy map, hence several observations are fused
into a local map enabling local spatial memory. Moreover,
stereo cameras only observe the environment in the overlap-
ping field of view. Hence, a spatial memory is required to
create a local map of the environment as the robot moves in
it. We propose to use a pose-graph of our disparity image
based representation to maintain a spatial memory. A pose-
graph can further benefit from a simultaneous localization
and mapping solution to correctly register the observations
[26], and can be later used to generate a global occupancy
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Fig. 9: (a) Side view (b) back view of 3D Trajectory Library used on the
robot. The Axes represent the robot pose, red is forward x-axis and blue is
down z-axis.

map. By maintaining a pose graph of expanded disparity
images, we can do fusion without building a spatial grid
which are not suited for stereo data as discussed previously.
Details are provided in [6]

IV. PLANNING & MOTION CONTROL

We implemented a receding horizon planner based on
a trajectory library. Trajectory or manoeuvre libraries have
been widely used in the robotics community to solve high
dimensional control problems such as graph selection or
for trajectory set generation for mobile robot navigation
[271,[28],[29],[30],[31]. The motivation for using a prior
set of libraries is that they effectively discretize a large
control or planning space and enable good performance
within possible computational limits. All candidates in the
library are evaluated at runtime, and the one with least cost
and free from collision is chosen and executed. However,
the performance is hugely affected by the size and content
quality or coverage of the library. Size refers to the number
of candidates that can be evaluated during runtime and
quality or coverage refers to dispersion of the candidates
[32]. The main advantage of using such libraries is that they
are guaranteed to be dynamically feasible and hence allow
smooth motion, or manipulation of the original library.

Figure 9 shows a set of 3D trajectories used on the robot.
To evaluate a trajectory, it is split into m waypoints and
the following cost function is used to prune the original
trajectory:

i:argminaAaci—F(l—a)AGi , where i€ [1,m] (7)

7

J(r) = alz, + (1 —a)Ab, (8)
n=1

where Ax; is the distance to goal and Ad; is the angle offset
from goal for the waypoint 7;. The parameter « is hand tuned
to prefer proximity v/s heading offset to goal. The trajectories
are checked for collision in ascending order of their traversal
cost, by checking each waypoint on the trajectory using the
method explained in Section III-E, until a valid trajectory is
found. If no valid trajectory is found, the robot is commanded
to brake and rotate in place as a recovery manoeuvre to find
alternate paths.
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Fig. 10: Robot-1: Quadrotor platform used for experiments: equipped
with stereo camera + color (middle) camera sensor suite and onboard ARM
computer
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Fig. 11: System diagram of the robot. Shows the hardware and main
software components and their data exchange. ROS is used to interchange
data between various onboard software components and to provide goal
from the ground station.

V. SYSTEM & EXPERIMENTS
A. System

We developed two MAV systems to conduct the experi-
ments. Both are similar in capabilities but with different sizes
as explained below.

Robot-1: For wire avoidance tests, we used a COTS
(Commercial Off-The-Shelf) quadrotor (DJI Matrice m100),
retrofitted with in-house developed sensor suite consisting of
a stereo-camera, an FPGA stereo processor [23], a monocular
color camera, an IMU, and a Nvidia TX2 ARM computer as
shown in Figure 10. Figure 11 shows the system diagram
with the algorithms that run onboard. The FPGA board
computes the stereo disparity while the rest of computation
is done on the TX2 board. A ground station computer is
used to set the goal or to provide a set of intermediate goal
locations.

Robot-2: For regular obstacle avoidance using stereo-

Tegra TX1

Stereo Pair_ QuadCore ARM

Fig. 12: Robot-2: A smaller quadrotor platform used for experiments:
equipped with stereo camera sensor suite and onboard ARM computer



Fig. 13: Demo setup for Robotics Week, 2017 at RI-CMU. The Start is
on left and Goal is 10 m away on right with several obstacles restricting
a direct path, hence forming a curvy corridor (in blue) to follow. We did
more than 100 runs with no failures at 2.5 m/s

camera disparity we used a small COTS base platform (Autel
X-Star quadrotor) retrofitted with in-house developed sensing
and computing suite consisting of a stereo camera pair, an
integrated GPS/INS unit, and an Nvidia TX1, as shown
in Figure 12. The stereo camera pair provides 640 x 512
resolution image which is used to compute a disparity image
at 10 fps on the embedded GPU. All computation for
autonomous operation is performed onboard.

B. Experiments

We conducted separate experiments for wire and regular
obstacle avoidance using trajectory libraries. Two different
systems as explained in previous section were used.

We then tested our DROAN mapping approach on regular
and wire obstacles combined as shown in Figure 1.

1) Wire Avoidance: We suspended a metal wire between
two ladders such that it lies directly between the start and
goal locations. We first conducted some baseline experiments
using COTS DJI-Phantom4 PRO quadrotor. It has a onboard
obstacle detection system that uses a stereo-camera sensor.

To validate our approach for wire avoidance, we config-
ured Robot-1 system to only detect and avoid wires. We
conducted 10 runs where the goal was set roughly 10 m
behind the wire with varying start distances from the wire.
The robot was configured to fly at a maximum speed of
2 m/s.

2) Regular Obstacle Avoidance using Stereo-Camera Dis-
parity: We conducted indoor and outdoor experiments using
a set of trajectory library. Tests involved autonomous take
off, navigate to pre-fixed well separated global waypoints
and finally land. For state estimation the EKF based methods
from [33] are used. In outdoor experiments, GPS was fused
with IMU data to obtain robot state information while
for indoor experiments stereo-camera based visual-inertial-
odometry was used. Figure 13 shows the setup. The Start
and Goal are separated by 10m with a curvy path obstructed
with multiple obstacles.

VI. RESULTS
A. Simulation Results

To test our wire mapping approach we setup a simulation
environment in Gazebo [34] with three horizontal wires
stacked 3 m away as shown in Figure 6. The first three snap-
shots show single observations at different heights using our
representation. The wire (ground truth shown as black linear
point cloud) is assumed to be uniformly distributed in this
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Fig. 15: Time Profile for trajectory library based planner approach on
Jetson TX2.

space as depicted by colored voxels. The last two snapshots
show the final result of our fusion and occupancy inference
from oblique and along the wire direction perspectives. It
is evident that our approach is successful in mapping the
three wires. The voxels are only generated for visualization
purpose by creating a 0.5 m resolution, ego-centric gridmap
(60 x 40 x 40 m?>) with respect to the robot. Hence, there
are no voxels beyond a certain point displayed in Figure 6.
Real world experiments are explained in next section.

B. Wire Avoidance Results

We first tested with a COTS DJI Phantom 4 Pro drone.
It successfully detected regular obstacles but fails to detect
wires as an obstacle. Figure 14 shows the process of wire
avoidance in Run-8 using our approach. We show the black
voxel collision map of wire obstacle only for visualization.
For collision avoidance, we only need to perform a colli-
sion check for the states traversed by the trajectories. In
Figure 14a the robot observed the wire and we show the
current collision map. The goal is set approximately 15 m
in front of the robot. Figure 14b shows the robot executing
the upward trajectory to avoid the wire in its path. Figure 14c,
after the robot has ascended enough to fly over the wire, the
straight trajectory going towards the goal is selected, and the
wire occupancy map gets updated.We obtained 90% success
rate as summarized in Table II.

TABLE II: 10 Runs of Wire Obstacle avoidance

Run | Success | Remark

1 TRUE Goal sent towards right. Avoids wire and moves rightwards

2 TRUE Pilot took over but the plan was successfully avoiding the wire

3 TRUE Robot moved straight and up to avoid the wire

4 TRUE Robot moved straight and up to avoid the wire

5 TRUE Goal sent towards left. Robot flew towards left and over the wires.
6 TRUE | Avoids wire by going left. Ladder obstacle was in the way.

7 TRUE | Avoided wire by going around it from left direction.

8 TRUE Robot moved straight and up to avoid the wire

9 TRUE Robot moved straight and up to avoid the wire

10 FALSE | Avoids the wire by going under it, GPS boom got stuck in the wire.

C. Disparity Map based Obstacle Avoidance Results

Figure 15 shows the effect on compute times on varying
the size of candidates in the trajectory library. In either case
we are able to do real-time planning i.e. within the sensor
frame rate. Most runs were conducted between the speed of
2m/s to 3m/s. During the Robotics Week, 2017 at RI-CMU
more than 100 runs were conducted in front of public with
no failures.

VII. CONCLUSIONS & FUTURE WORK

We have presented a novel method and a system which
can detect wires from monocular images, estimate their depth
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Fig. 14: This figure shows three timestamps from run 8 of our real world wire avoidance experiment. Top row shows the input color image used for wire
detection, disparity map, and (c-space) expanded wire obstacle map. Bottom row shows corresponding scenarios in different 3D perspectives (oblique and
side). The black voxels are shown for visualization of wire collision map. (a) Robot observes the wire. (b) Executes upward trajectory. (c) After ascending
upwards enough to avoid the wire, the robot executes a straight trajectory towards a goal 15 m ahead from the start point of the mission. Wire collision

map is updated with new observations void of wire.

and navigate around them. We proposed an efficient method
to represent wires and generic obstacles in 2.5D image-
space (disparity) suitable for cameras, while accounting for
perception uncertainty, and demonstrated avoidance using
a trajectory library. In the future, we aim to propose a
mapping framework which accounts for both state estimate
and perception uncertainty explicitly.
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