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Abstract
There is a compelling need to robotically determine the location and activity of

radiation sources from their flux. There is also a need to create dense flux maps from
sparse flux measurements. This research addresses these dual problems.

An example use would be at the location of a nuclear accident. A mobile robot
could collect gamma flux measurements. Using these measurements, dense flux
maps and likely locations for fissile material could be created to guide cleanup ef-
forts.

Previous research has largely focused on locating point sources of radiation while
ignoring distributed sources. Additionally, little research has been put into creating
quality flux maps except in the field of geological survey. Nearly all prior research
has employed the use of directional sensors which limits the usefulness of their ap-
proaches.

This thesis demonstrates a set of algorithms that can locate sources and generate
maps of expected flux within and surrounding surveyed regions using measurements
from non-directional gamma ray sensors.

The efficacy of these solutions is demonstrated by comparing estimated versus
actual flux maps as well as estimated versus actual source maps .
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Chapter 1

Introduction

During a nuclear facility cleanup, whether for decommissioning purposes or after an accident
presents a situation where having accurate maps of radioactive source locations and the flux
generated by them would be useful. Figure 1.1 shows a situation where these maps would have
assisted a cleanup effort. This picture was taken at the Chernobyl nuclear facility in 1986 where
a steam explosion and subsequent graphite fire destroyed a nuclear reactor. Workers are shown
searching for and removing radioactive graphite that was used in the reactor. If a mobile robot
had taken a series of measurements in and around this location before workers approached, maps
built from those measurements could have guided the workers directly to larger pieces of graphite
without the need to search. This would have limited the workers exposure to radiation damage.

The fundamental particles that all things in existence can be chemically divided into are called
atoms. Atoms are made of protons, neutrons, and electrons. Protons and neutrons exist within
a small, central nucleus and electrons orbit around them. Atoms are categorized as different
elements by the number of protons contained within their nucleus. These elements are further
differentiated by the number of neutrons within their nucleus. Two atoms of the same element
with a differing number of neutrons are called isotopes of that element. Some isotopes are stable
and will retain the same number of electrons, protons, and neutrons forever if not influenced by
external forces. Other isotopes are unstable. These isotopes are described as radioactive and
can spontaneously undergo a process called decay where they emit high-energy particles which
can break chemical bonds or even transmute other elements. These interactions are hazardous to
lifeforms and can have negative effects upon man-made materials.

While there are three main products of nuclear decay, only gamma rays have the ability
to penetrate more than two meters from the atom which emitted them. Because of this, only
gamma rays will be considered in this thesis since it is desirable to locate radioactive materials
from larger distances. Gamma rays are high energy photons which exist in the same spectrum
as radio waves, visible light, and X-rays. They are not affected by magnetic fields and unlike
their lower energy relatives, experience no reflection at all and nearly no refraction. Gamma rays
are measured by their flux. Flux is typically measured in units of counts per unit time and like
other photons on the electromagnetic spectrum, gamma ray flux falls off with the square of the
distance from a point source.

A few terms will be repeatedly used throughout this thesis. Sources and emitters will both
refer to materials that produce gamma rays. Emitters will typically be point sources. The term
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Figure 1.1: Workers removing radioactive graphite at the Chernobyl nuclear facility in 1986

samples will be used to describe measurements taken at discrete locations by any sensor that can
detect gamma rays. These samples will represent a location and gamma flux measurement. A
sampled region will describe the area within the convex hull defined by measurement locations.
Finally, the rate which nuclear material decays will be referred to as its activity.

Previous research has largely focused on identifying the locations and activities of sources.
Typically, mechanical means are used to attenuate gamma rays unevenly to give a sense of di-
rectionality to one or more omnidirectional sensors. There are two methods frequently used to
locate sources. The first generates a two dimensional representation of what is being observed
from a single location. Approximately half of prior research projects that used a single location
resolved sources to points. The remaining projects provided a true image. The second method
used to locate sources was to observe an object or location from multiple viewpoints. Of these,
approximately half resolved sources to points, often in two dimensions. Most of the remain-
ing projects located sources in three dimensions and could resolve sources that were larger than
points.

While some research could produce images of sources in front of the sensor from a single
location, these images are not maps but rather perspective projections of the sources. It is likely
that those methods could provide maps if observations were made from multiple locations. All
of the research projects that observed a scene from multiple locations were capable of producing
a true map that gave coordinates in two or three dimensions for the observed sources. The vast
majority of sensing strategies that have been used to create source maps used directional sensors
which preclude their use in many situations due to their cost, size, or weight. While all prior

2



research related to mapping used flux measurements, only in the field of geological survey were
these measurements used to create a dense map of expected flux.

This thesis describes three methodologies that create dense flux maps as well as characterize
sources from sparse nondirectional gamma flux measurements. These measurements can be col-
lected using a sensor such as a Geiger counter, which is inexpensive, readily available, and light
enough that it can be used on nearly any robotic platform. This thesis starts by describing the
simulated annealing algorithm which is similar to one of the algorithms that will be presented
later. It then reviews several algorithms that have been used to locate sources of radiation. De-
scriptions of devices that can detect gamma rays in directional and non directional manners will
follow. The next chapter will briefly describe the four algorithms developed for this research
and then discuss how they are used together to create source and flux maps. It will follow with
detailed descriptions of the individual workflows and the algorithms work. After each workflow
is described, results generated by them will be shown and discussed. Future work will then be
discussed and this thesis will conclude.
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Chapter 2

Related work

2.1 Simulated annealing

Simulated annealing is an algorithm that has a wide variety of uses such as integrated circuit
layout [1], modeling seismic waveforms, financial predictions, and logistics [2]. In more gen-
eral terms, simulated annealing is a good solution for combinatorial optimization problems that
require near optimal solutions when the set of possible solutions is extremely large and can’t be
exhaustively examined. While no examples of simulated annealing could be found where it is
applied to the problem of locating and estimating the activity of radioactive sources, it shares a
strong similarity to an algorithm used in this thesis. This algorithm will be described in Chapter
5. Simulated annealing is loosely modeled after physical annealing where a metal is initially
heated to a high temperature and then slowly lowered This causes the internal crystal structures
to grow large which makes the material become more ductile and more easily worked. In a fully
annealed state, the internal stresses in the material are the lowest possible.

Simulated annealing algorithm starts with an initial state that is set either randomly or based
on an initial best guess. It then calculates a score for that state. After this initial setup, it begins an
iterative process of refining the state. For each iteration it perturbs the state and then calculates a
score for it. If the new score is better then that state is accepted and iteration continues. If the new
state has a worse score then this state is conditionally accepted according to a cooling schedule
[3]. The concept of accepting worse solutions prevents the simulated annealing algorithm from
becoming stuck in a local minimum. Without this, simulated annealing is just a hill-climbing
algorithm [4]. Pseudocode for the simulated annealing process is shown in algorithm 1.

The temperature referenced in Algorithm 1 is related to the cooling schedule. There is no
consensus about how a cooling schedule should be set. Instead, the temperature should be mod-
ified to best fit the needs of the task. It has been proven that the temperature should decrease
logarithmically for the algorithm to be guaranteed to arrive at the global minimum. There are
many variants to this cooling schedule such as simulated quenching [2], which uses an expo-
nential decay to increase the speed of convergence. In all cases the temperature will initially be
very high and will proceed towards zero in some manner. This causes the algorithm to initially
accept a large proportion of changes that decrease the level of fitness. As more iterations happen,
progressively fewer decreases to the level of fitness will be allowed. Figure 2.1 shows exam-
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Algorithm 1 Pseudocode for the simulated annealing algorithm

currentSolution← generateInitialSolution()
currentScore← calculateScore(currentSolution)
while iterations < maxIterations AND score > stopScore do

tempSolution← perturbCurrentSolution(currentSolution)
temperature = calculateTemperature(iteration,maxTemperature)
tempScore← calculateScore(tempSolution)
if tempScore > currentScore then

currentScore← tempScore
currentSolution← tempSolution

else
acceptanceProbability ← exp( currentScore−tempScore

temperature
)

if acceptanceProbability > rand(0..1) then
currentScore← tempScore
currentSolution← tempSolution

end if
end if

end while

ple output from a program which uses simulated annealing to replicate images using a series of
semi-transparent colored polygons.

Figure 2.1: Example output from a simulated annealing algorithm1

1Source: http://alteredqualia.com/visualization/evolve/
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2.2 Algorithms for locating gamma ray sources
Background radiation subtraction for aerial surveys to isolate man-made sources

Previous processes that have been described dealt with mapping the location and activity of nat-
urally occurring sources of radiation. When trying to locate man-made sources of radiation, it
can sometimes be difficult to determine what is a natural source of radiation and what is caused
by human activity. If prior aerial surveys were performed, that data could be subtracted from
newly recorded data to remove most of the natural background radiation from the survey area.
This leaves just the sources of radiation caused by human activity [5]. Figure 2.2 shows a sim-
ulated example of a situation where background subtraction reveals three sources that weren’t
previously there. On the left is a previously created map. In the middle is a newly created map
which contains the three new sources. On the right is the result of subtracting the old map from
the new map with enhanced contrast. The three new sources show up clearly. This method is not
without false positives. Due to the inherent noise in the measurements, there will be differences
between the two maps. In order to be detected, the new sources will have to be active enough to
be seen above this noise floor.

Figure 2.2: An example of background subtraction
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2.2.1 Maximum Likelihood Expectation Maximization
Maximum Likelihood Expectation Maximization, which is abbreviated as MLEM and some-
times referred to as just EM is a common algorithm used to locate sources of radiation from
recorded data. MLEM is an iterative algorithm that progressively tries to find better solutions.
It does this by first performing an expectation step, which weights how much each data point
is represented by each variable in the current model. Next it performs a maximization step that
adjusts the model based on the weights applied in the previous step [6]; [7].

An example of where MLEM is used when locating nuclear radiation is given in [8] where
a tubular rotating slit collimator was used in conjunction with a non-directional germanium de-
tector. The collimator allowed the researchers to collect data about the observed flux for a 360
degree sweep around each location where the sensor was used. In the experiment, three caesium
point sources were used. Because the collimator had a slit with a width that was greater than
zero, the resulting graphs of the observed flux looked similar to a Gaussian for every observed
source. The original data was sharpened using the Richardson-Lucey deconvolution algorithm
and then a MLEM estimation was made using data from all sample locations to determine the
original positions of the sources. Figure 2.3 shows the collimator that was used for this experi-
ment and Figure 2.4 shows some results. The image on the left of Figure 2.4 shows the output
after one iteration of MLEM and the image on the right is after fifteen iterations. The locations
where measurements were taken are shown as white half-circles on the perimeter of the images
and the locations of the sources are shown as black X’s.

Figure 2.3: A rotating slit collimator2

2Image from [8]

8



Figure 2.4: Results from the rotating slit collimator experiment3

3Image from [8]
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Another example of where the MLEM algorithm is used to locate sources of radiation is
when the raw data from a Compton camera is being processed. When a high-energy photon
strikes the scintillator inside of a camera and the result is a Compton scattering, the gamma
ray will lose some of its energy and an electron will be liberated from one of the scintillator’s
atoms. If the gamma ray interacts once again with part of the scintillator, then the direction of the
original gamma ray can be resolved down to the surface of a cone due to the physics of Compton
scattering[6]. For a single point source, the direction to the source can be quickly determined
using simple math. If, on the other hand, the source is an area source or multiple point sources,
using the MLEM algorithm becomes necessary[9]. Figure 2.5 shows three cones resulting from
interactions with three gamma rays from the same source. Given enough of these interactions,
the MLEM algorithm can produce an image that shows likely source locations.

Figure 2.5: Intersecting cones used to determine direction to gamma ray source4

Rotational modulator collimators are a type of collimator where there are two parts. Both are
identical with the exception that they are sometimes scaled versions of each other. The individual
pieces are made of many parallel slits. When these pieces are rotated in tandem, they alternately
attenuate or let gamma rays pass freely depending on the angle to the sensor. The sensing element
is a non-directional sensor. MLEM is one algorithm that can be used with this sort of collimator
to figure out where a source of gamma rays is located [11].

4Image from [10]
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2.2.2 Computed tomography algorithms

Another class of algorithms that can be used to locate the source of gamma radiation are varia-
tions of the algorithms used to decode the data from computed tomography (CT) scans. In [12],
the researchers reconstructed a 3D representation of a scene using an off-axis coded aperture
rotating slit in conjunction with a scintillation camera. While details were lacking in the paper,
it reported "the imaging technique can be modeled mathematically with a formalism analogous
to the one employed in CT". CT scans have two major classes of algorithms used to reconstruct
their images [13]. These two classes are analytical and iterative. Analytic versions are typically a
filtered back projection algorithm such as the inverse Radon transform such as described in [14].
These algorithms are popular because of their computational efficiency. Iterative reconstruction
methods typically work by repeatedly forward projecting and then back projecting. Often, itera-
tive reconstruction leads to a result that has less noise than an analytical solution. Recent trends
in iterative reconstruction also incorporate expectation maximization within the algorithm. [15]

One other notable experiment that used a computed tomography algorithm to locate sources
was [16]. For this experiment, a live mouse was injected with small amounts of three differ-
ent radioactive materials. As can be seen in Figure 2.6, these materials migrated to different
parts of the mouse’s body where they were then imaged from multiple angles using a Compton
camera. A 3D representation of the sources was reconstructed using a computed tomography
algorithm. This representation differentiated between the three sources and displayed them in
different colors.

Figure 2.6: Output from the experiment that imaged a mouse5
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2.2.3 Particle filter
A type of algorithm that has been explored to locate sources of radiation with some success is
the particle filter. A particle filter is a sequential Monte Carlo algorithm which starts with a
randomly distributed population of particles throughout the solution space. At each iteration, the
particle filter moves all of the current particles forward using a control input, which includes a
model of the system noise. Then it evaluates how well each particle individually solves the given
problem and assigns it a score. Next, it resamples the current set of particles to create a new set
of particles before continuing on to the next iteration [17]; [18].

Reference [19] describes a process where multiple sources of radiation were located using
a particle filter combined with a clustering algorithm. This process resolved sources into point
sources by running the particle filter as previously described. Every nth iteration, it stopped
and evaluated the particles by clustering them and representing the whole set of particles by the
cluster centers. These are labeled as candidate sources and are evaluated for their quality. If
the candidate’s quality is high enough, it is labeled as a source which is then considered in later
iterations. This process continues until the requested number of sources have been labeled.

Example output from this experiment is shown in Figure 2.7.

Figure 2.7: Locating sources using a particle filter6

5Image from [16]
6Image from [19]
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2.2.4 Landform surveying methods
When gamma flux is measured by an aerial survey, sample locations are relatively sparse. Ad-
ditionally, sample locations are much closer together along the flight path than they are between
other nearby passes. In order to estimate the distribution of radioactive material on the ground in
the form of deposits, two main methods have historically been used.

Gridding

Gridding is a process where the original data is interpolated onto a set of regularly-spaced grid
locations. The grid points can then be used to draw contours or displayed directly. There are a
number of gridding algorithms. One such algorithm is bidirectional gridding. This can be used
when flight paths are roughly parallel. This algorithm interpolates data points along the flight
path at an equal spacing to the grid spacing using spline interpolation. Spline interpolation is
once again used between these interpolated values on successive flight paths to arrive at the final
grid [20]. A similar gridding algorithm is minimum curvature gridding. This algorithm uses
two-dimensional splines. The splines are adjusted using an iterative process and are then used
to create the final map. Minimum curvature gridding produces a better result than bidirectional
gridding as long as there is no dominant geological trend perpendicular to the flight paths.

Kriging

Kriging is an interpolation method that works well for gamma ray interpolation because it splits
data into three components: the general trend, a spatially dependent component, and a noise
component. The spatially dependent and noise components are calculated using the semivari-
ances of the data with different time lags [20]. Reference [21] states that "kriging is concerned
with prediction of one part of a stochastic process from observations on other parts."

2.3 Nondirectional sensing

2.3.1 Geiger-Müller tubes
One way that gamma rays are detected is through the use of a Geiger-Müller tube, which is
a partially-evacuated tube that has an anode running through the center of it. A high voltage
is placed between the anode and the outer wall of the tube, which is either made of metal or
is coated with a conductive material. When a gamma ray enters the tube and strikes another
atom inside of the tube, this atom becomes ionized. Due to the voltage gradient inside of the
tube, the freed electrons will be collected at the center of the tube. In a Geiger-Müller tube, the
voltage gradient is sufficient that the freed electrons may pick up enough kinetic energy as they
move towards the center of the tube that they can also free other electrons [22]. Geiger-Müller
tubes have a high enough voltage differential that no determination can be made about the initial
energy of an incident gamma ray and therefore can only provide a count of how many gamma
rays struck them. One additional characteristic of a Geiger-Müller tube is that there is an amount
of time after detecting a count where it will be unable to detect further counts. Currently, the best
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available Geiger-Müller detectors can measure up to about 100,000 counts per second [23]. The
Geiger-Müller tube is generally used as a non-directional sensor but if it is modified so that its
length is much less than its diameter, it can have some sense of directionality.

Figure 2.8: A Geiger-Müller tube7

2.3.2 Proportional counters
If an evacuated tube uses a lesser voltage than a Geiger-Müller tube between the outside wall and
the center anode, it becomes possible to not only detect when a gamma ray hits the detector but
also what its energy was. The output pulses can be counted as they were with a Geiger-Müller
tube but the amplitude of the pulse will be proportional to the initial energy of the gamma ray.

7Source: https://www.imagesco.com/geiger/geiger-counter-tube.html
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2.3.3 Scintillators
Some materials emit visible light when gamma rays strike them. The incoming gamma rays
cause some electrons within the scintillator to move to higher excitation states. When they return
to a lower excitation state, they emit a photon that has the energy difference between the two
states [24]. This photon can then be detected through a variety of means. One way that these
photons are detected is with a photomultiplier tube, which initially converts each photon into an
electron via the photoelectric effect. This electron is then passed between a series of plates that
have a voltage gradient along the length of the tube. Each time an electron strikes one of the
plates, several other electrons are freed and move further down the tube. This has the effect that
while there were initially only a handful of electrons that hit the first plate, a very large number
of electrons, which are more easily detected, strike the final plate. Another method of detecting
photons is through the use of photodiodes, which, unlike photomultiplier tubes, directly detect
the photon in one step. One additional property of scintillators is that the number of photons
created by a gamma ray is proportional to its energy. This in turn leads to a proportional change
in the number of electrons detected by the photomultiplier tube. Because of this, it is possible to
identify with some accuracy what isotope a group of gamma rays came from when you consider
the spectrum of detected energies.

Figure 2.9: A scintillator and photomultiplier tube8

8Source: https://web.stanford.edu/group/scintillators/scintillators.html
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2.3.4 Semiconductor detectors
Gamma sensors can be built from semiconductor materials. Typically semiconductor detectors
have superior energy resolution when compared to scintillating detectors. They are currently
limited to small sizes, which depending on the intended use could be beneficial or detrimental.
Semiconductor detectors have the downside of degradation due to the radiation that they are
sensing so that over time they become less sensitive. This reduction of sensitivity can be largely
eliminated by operating the semiconductor detector at very low temperatures. Semiconductor
detectors are made out of materials such as silicon, germanium, or diamond. By doping them so
that they act as a diode and then reverse-biasing them, it is possible to detect gamma rays that
strike them directly [25].

2.4 Directional sensing

2.4.1 Radiation-sensitive materials
While the previous types of detectors have all been electrically operated, radiation-sensitive ma-
terials require no electrical connection at all. The way that they function is that when a gamma
ray strikes these materials, they have a property change. An example of this is the Radball de-
tector [26]. It is made of a radiation sensitive polymer sphere which is surrounded by a tungsten
sphere with collimation holes covering its surface. By placing this device within a contaminated
area and leaving it for an amount of time, damage to the inside sphere changes its color along
the paths that gamma rays passed. When the radball is removed and disassembled, the inner
sphere can be optically examined to determine the direction and activity of sources within the
examined area. By its very nature, this type of detector gives a sense of what direction radiation
is coming from. Another example of a radiation sensitive material is radiographic film. This type
of material was first used by Roentgen when he discovered X-rays. Newer radiographic film is
sensitive to gamma rays as well.

Figure 2.10: The Radball detector9

9Image from [26]
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2.4.2 Planar detectors
It is possible to construct an electronic gamma detector that is directional. One method is to
construct it so that the device is thin and wide like a pancake or consisting of many thin layers.
In this configuration, the detector will have a non-uniform response to a source as it is rotated.
To avoid confusion about which side of the device the gamma source is coming from, one side
of the device should be covered with a layer of high-impedance material such as lead and the
other with something that has low impedance like plastic. Reference [27] reports that for gamma
rays that have greater than 0.6 MeV of energy, the sensor response is greater when gamma rays
enter through the low impedance side. The trend reverses with gamma rays that have less than
that amount. The end result is that in order to determine the true direction to a source, one must
first locate a direction where a peak in response is found, then the detector must be flipped 180
degrees so that the other face is towards the source. Using knowledge of the detector orientation
and the measured energy of the gamma rays, the true direction to the source can be determined.

2.4.3 Tubular slit collimator
The planar direction towards a source of gamma radiation can be found when using a non-
directional sensor if it is used in conjunction with a tubular slit collimator. Tubular slit collimators
are tubes of a high impedance material that resists the passage of gamma rays. Along one side
is a slit. By rotating the collimator, the slit selectively allows gamma rays from one direction to
enter freely while blocking most other gamma rays from other directions. With this type of setup,
there is a trade off between directional resolution and how quickly measurements can be taken.
Widening the slit allows more gamma rays to enter but also decreases the angular selectivity.
The width of the slit also determines the minimum angle between two sources where they can
no-longer be resolved as separate [8].

2.4.4 Pinhole aperture
Similar to visible light, it is possible to build a pinhole gamma camera. Unlike its visible light
equivalent, the gamma camera must not only have an aperture that is circular when viewed par-
allel to the image plane but this aperture must be thick and have a cross section that is conical.
This sort of arrangement will produce a fuzzy image because gamma rays can still penetrate the
aperture where it is thin near the opening. An additional drawback of pinhole apertures is that
exposure times must be long if the aperture is small because relatively few gamma rays will pass
through the opening. Widening the size of the aperture allows more gamma rays to enter, which
decreases the exposure time, but the trade off is that resolving power is reduced as the gamma
image becomes fuzzier [28].

2.4.5 Coded apertures
An alternative to using a pinhole aperture is to use multiple apertures. Although the images
from each aperture will overlap, the true image can be reconstructed using Fourier convolution.
Coded apertures are made of sheets of a dense material that can be cut or drilled in a known

17



pattern. There are a variety of different strategies for arranging the holes. In all cases, the hole
locations are chosen to reduce the amount of noise that results from the Fourier transform. Holes
are typically arranged in a grid or hexagonal pattern as can be seen in Figure 2.11 [29];[30].

Figure 2.11: Coded apertures10

2.4.6 Scintillator with multiple detectors
While a single scintillator with an associated detector is useful for non-directional sensing, pair-
ing a scintillator crystal with some form of aperture allows a scintillator to perform imaging. The
way that this is done is to use an array of photomultiplier tubes behind the scintillation crystal.
Physically, photomultiplier tubes are fairly large so using the output from them directly would
result in a very low resolution image. The resolution issue can be overcome by examining the
output of all of the photomultiplier tubes in conjunction. By comparing the relative outputs of
the photomultiplier tubes, the two-dimensional position where the scintillation took place can be
determined [32].

Figure 2.12 shows a pinhole aperture imaging device. Gamma rays pass through the aperture
where they then strike a scintillator. Multiple photomultiplier tubes located behind the scintillator
detect the location of the interaction.

Figure 2.12: A pinhole aperture imaging device

10Image from [31]
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2.4.7 Compton camera
More recently, Compton cameras are starting to be used to determine the activity and direction
that a gamma ray came from using no aperture at all. A Compton camera is made from a cubic
block of semiconductor made from a material such as cadmium zinc telluride. On one side
of the cube there is a single cathode. On the opposite side there is an array of anodes. The
three-dimensional position of the interaction can be determined by observing the output of the
anodes and cathode. When a gamma ray strikes the semiconductor detector it produces a cloud of
electrons. The cathode will always detect the interaction but there will be a weighting potential
for the anodes based on where the gamma ray interacted with the detector. The signal measured at
the cathode is proportional to the depth through the semiconductor and the charge imparted by the
gamma ray. The anode’s signals will only be proportional to the charge. Using the information
that was measured, the three-dimensional location of the interaction can be computed [33]. If
two events are measured in rapid succession in different areas, it can be assumed that these are
due to Compton scattering. Using multiple two-event interactions and knowledge of Compton
scattering, a probabilistic direction map indicating where gamma rays may have come from can
be made. This sort of sensor is omnidirectional and its directional sensitivity is only reduced by
the shielding effect of other equipment used to run the sensor such as circuit boards and batteries
[34]; [35].
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Chapter 3

Algorithms and workflows for mapping
source locations and gamma flux fields

3.1 Algorithms
Four algorithms were developed for this research. This section will give a quick overview of
each and discuss its strengths and weaknesses. Later chapters will describe these algorithms in
greater detail.
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3.1.1 Triangulated gradient method
The triangulated gradient method takes a set of sparse gamma flux measurements and outputs a
set of source location estimates. It starts by triangulating the measurement locations. For each
triangle, it fits an inverse square gradient across the triangle so that the measurements at the
vertices match the values of the gradient at those same locations. It uses the direction of the
gradient and the knowledge of where the inverse square curve goes to infinity to determine the
source location. This algorithm is computationally efficient and could run on a mobile robot to
help it make decisions about where it should take gamma flux measurements. A drawback of
this algorithm is that multiple sources, large area sources, and linear sources can cause incor-
rect though still useful estimates. Additionally, noise in gamma flux measurements can cause
estimated source locations to move have positional error.

Figure 3.1: Triangulated gradient method

22



3.1.2 Inverse square renderer
The inverse square renderer takes a set of sparse gamma flux measurements and outputs a dense
gamma flux map for the area within the sampled region. This algorithm is very similar to the
triangulated gradient method. The main difference is that after the gradient is fit to the triangle
it is rendered within the triangle to create a map of dense flux values within the triangle. This
algorithm is computationally efficient and is suitable for use on a mobile robot that needs a
dense flux map. Because it is based on the triangulated gradient method, this algorithm can
also optionally provide estimates about where sources may be located. This algorithm has some
drawbacks. Although it outputs a dense gamma flux map, the error is higher than what can be
achieved using other methodologies detailed later in this thesis. The inverse square renderer
is also more susceptible to noise in the gamma flux measurements because, in essence, it is
interpolating directly between these measurements. Finally, while helpful, the estimated source
locations may not be as accurate as needed if there are multiple sources in the region being
surveyed or if there is a single source that is relatively large.

Figure 3.2: Inverse square renderer
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3.1.3 Flux match annealing
The flux match annealing algorithm takes a set of sparse gamma flux measurements and a set of
emitters that are placed in likely source locations and outputs the emitters with activity levels that
cause a flux field that matches the flux measurements as closely as possible. This algorithm is
similar to the simulated annealing algorithm. Flux match annealing replicates flux fields with low
amounts of error. It is mostly immune to the shot noise present in all gamma flux measurements
and can still produce usable results even when the median number of counts at each location
is less than twenty. A drawback to this algorithm is that it is computationally expensive and is
better suited to offline mapping rather than on a mobile robot. Typical processing times based on
the number of emitters and sample locations used in this research varied between one and five
minutes. Code was written in Matlab and ran on a mid-range i7 laptop purchased in 2017. While
this algorithm estimates source locations and activities that produce flux that closely matches
measured flux, the resulting emitter activity map is often not representative of the actual source
locations and activities.

Figure 3.3: Flux match annealing
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3.1.4 Point source renderer
The point source renderer takes a set of emitter locations and activities and outputs a dense
gamma flux map. A modified version of this algorithm that renders flux only at specified loca-
tions is used by the flux match annealing algorithm at each iteration to estimate the flux at the
measurement locations. This algorithm runs relatively quickly and is capable of rendering flux
maps for any desired region. Its speed is linearly proportional to both the requested number of
flux estimates and the number of emitters passed to it.

Figure 3.4: Point source renderer
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3.1.5 Workflows
There are three workflows that use the algorithms described in this thesis. The first workflow
takes a set of sparse gamma flux measurements and outputs a dense gamma flux map within the
convex hull of the measurement locations. It optionally produces estimates of source locations.

Figure 3.5: First workflow

The second workflow takes a set of sparse gamma flux measurements and outputs a dense
gamma flux map that can be extrapolated beyond the sampled region. This workflow is optimal
for situations where the measurement locations surround all sources.

Figure 3.6: Second workflow
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The third workflow takes a set of sparse gamma flux measurements and outputs a dense
gamma flux map that can be extrapolated beyond the sampled region. This workflow is suggested
for situations where the sources are partially or fully outside of the sampled region.

Figure 3.7: Third workflow
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Chapter 4

The point source renderer algorithm

The point source renderer takes a set of emitter locations and activities and uses them to generate
estimated gamma flux values for locations within a map. There are two variants of the point
source renderer used in this thesis. One generates a dense flux map within a specified region.
The other only generates flux values for specific locations. The first variant is used for final
output where an image or dense flux map is required. The second is used in the main loop of the
flux match annealing algorithm as a part of assessing the suitability of a solution.

The operation of the point source renderer is relatively straightforward. For each location
where an estimate of the gamma flux is required, the renderer calculates the distance from that
location to the locations of each of the emitters. Next it uses Equation 4.1 to arrive at the indi-
vidual contribution to the total flux from each emitter.

flux =
activity

4πr2
(4.1)

The flux contributions from all emitters are summed together to arrive at a final flux value for the
desired location. Algorithm 2 shows pseudocode for the point source renderer.

Algorithm 2 Pseudocode for calculating flux values from a set of point source emitters
for every desired location do

flux[location]← 0
for every point source emitter do

dist← euclideanDistance(location, emitter)
activity ← thisEmitter.activity
thisEmittersContribution← activity

4∗π∗dist2
flux[location] += thisEmittersContribution

end for
end for
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Chapter 5

The flux match annealing algorithm

The flux match annealing algorithm takes a set of sparse gamma flux measurements and a set of
emitters and outputs the emitters with activities optimized to produce flux that closely matches
the provided measurements.

Flux match annealing is similar to simulated annealing, which was described in the related
work section. The main difference is how solutions that increase the error between estimated
and actual flux are accepted. In simulated annealing, any solution that increases this error can
potentially be accepted using Formula 5.1. In this formula, the temperature variable is controlled
by a cooling schedule and is initially high, which allows many increases in error to be accepted.
As the number of iterations increases, the temperature is progressively reduced to allow fewer
increases in error to be accepted. Flux match annealing uses a different process that moves faster
towards a solution. Every Nth iteration, it accepts any solution that doesn’t increase the error
by more than a certain fixed percent. This works because of the second change that has been
made. While simulated annealing uses a fixed method to modify the state, flux match annealing
modifies the state in a continually variable manner. In each iteration, the activities of some of
the emitters are adjusted using a Gaussian random variable with a mean of zero. The standard
deviation of this random variable is proportional to the sum of the squared flux errors at the
measurement locations.

Figure 5.1 shows a comparison of the sum of the squared flux errors over time for code using
the simulated annealing acceptance function and the acceptance function used in flux match
annealing. Both plot lines represent the average of 40 trials which ran for 10,000 iterations each.
Pseudocode for flux match annealing is shown in Algorithm 3.

accept = exp
∆fitness

temperature
> rand(0→ 1) (5.1)
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Algorithm 3 Pseudocode for the Flux Match Annealing algorithm

emitterLocations← decideOnEmitterLocations()
sigmaConstant← 20
acceptanceFreq ← 8
maxPctIncrease← 0.2 . 20%
activities← initializeEmitterActivities()
lastScore←

∑
measuredF lux2

sigma← lastScore
sigmaConstant

while iteration 6= maxIterations do
tempActivities← activities
rectangle← randomlyGenerateRectangle()
selectedEmitters← selectEmittersUsingRectangle(rectangle, emitterLocations)
adjustment← gaussian(0, sigma)
tempActivities← tempActivities+ adjustment
tempActivities← max(tempActivites, 0) . Don’t let them go negative
computedF lux← computeF lux(tempActivities, emitterLocations)
thisScore =

∑
(measuredF lux− computedF lux)2

if thisScore < lastScore then
lastScore← thisScore
activities← tempActivities

else
pctIncrease← thisScore−lastScore

lastScore

if pctIncrease < maxPctIncrease AND (iteration MOD acceptanceFreq == 0) then
lastScore← thisScore
activities← tempActivities

end if
end if
sigma← lastScore

sigmaConstant

end while
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Figure 5.1: A comparison of error over time for simulated annealing versus flux match annealing

Before the flux match annealing algorithm can run, emitter locations must be decided upon.
The initial activity for all emitters is zero. The examples in this thesis place emitters using the
three strategies shown in Figure 5.2.

The first placement strategy is used for situations where sources are mostly or completely
surrounded by measurement locations. This strategy operates on the assumption that there are
spaces around sources where no measurements were taken. These spaces are filled with emitter
locations in a grid pattern. The rationale behind taking measurements in this manner is that a
mobile robot designed to take flux measurements would be likely to take the measurements in a
manner that sampled as closely as possible to the sources without traversing directly over them.

The second strategy to place emitters is used when a source is located outside of the sampled
region. In this situation, a large area that includes the source locations is filled with a grid
of emitters and the flux match annealing algorithm is left to determine where the sources are
located on its own.

The third method is also used when sources are located outside of the sampled region. It is
used to improve the speed and accuracy of the flux match annealing algorithm. This strategy uses
the triangulated gradient method to estimate likely source locations. Emitters are then placed in
a grid pattern within a fixed distance of the estimated source locations.
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Figure 5.2: The three strategies for placing emitters

Once the locations of the emitters have been decided, the flux match annealing algorithm
can start. First, some constants are set to values that were determined through experimentation.
These experiments will be described later. An initial score is calculated which is the sum of the
squares of the measured fluxes. The last step before starting the iterative portion of the code is to
initialize a sigma variable that is used when perturbing the emitters’ activity levels.

In the iterative portion, rectangular regions are randomly selected until a region contains at
least one emitter. Then, a Gaussian random number with a mean of zero and a standard deviation
of ’sigma’ is found. This value is added to the selected emitters activity. A check is done to
make sure that no emitter’s activity has gone below zero. A score is found by summing the
squared flux errors between the calculated and actual fluxes. Lower scores are better as they
indicate that the solution more closely matches what was measured. If the new score is lower
than the old score this set of emitters is accepted as the best solution. Every Nth iteration, if the
score went up, it will still accept the new set of emitters as the best solution as long as the score
didn’t go up by more than a certain percentage. The last thing that is done within the iterative
section is that a new sigma value is generated. This value is the last score divided by the constant
"sigmaConstant", which will be discussed later.

There are three variables that can be changed to tune the performance of the flux match
annealing algorithm. The first determines the maximum allowable increase in error. This is
maxPctIncrease in the pseudocode. This variable has a wide range of acceptable values which
range from around 2% to 1000%. At very low values, this variable tends to prevent the algorithm
from jumping out of local minimums. This causes the final solution to have more error than it
could have had with a higher percentage. At very high values, the algorithm can be unstable
when it first starts. When starting, changes in the score of over 1,000 percent are possible. This
instability is more common with maps that have a source that is physically large. Limiting the
maximum increase in score helps the algorithm through the initial period of instability. The value
used by this research was twenty percent.

The second variable that can be adjusted to refine the performance of this algorithm deter-
mines how often it allows an increasing amount of error to be accepted. In the pseudocode this
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variable is "acceptanceFreq". Figure 5.3 plots out the progress of the score for different accep-
tance frequency values. Lower scores are better. Each line represents the average of 40 trials
using a particular acceptance frequency over 50,000 iterations. A maximum of 40 percent error
increase was allowed for the tests shown. Acceptance frequency settings of three and four di-
verge. On average, an acceptance frequency of six starts to converge after about 5,000 iterations
but several runs had trouble converging at the beginning which throws off the average until about
15,000 iterations. Although a setting of six on average achieves a better score, this research used
an acceptance frequency of eight because of its increased stability.

Figure 5.3: Graph showing running scores for different acceptance frequencies

The final variable that can be adjusted to tune the results of this algorithm is the variable
that controls how large the standard deviation is when randomly adjusting emitter values. In the
pseudocode, this is the variable "sigmaConstant". Changing the sigmaConstant value controls
the convergence rate as well as how low of a flux error the algorithm can converge to. Figure
5.4 shows a series of trials which used different sigmaConstant values. Each line represents the
average of five trials that have been run for 500,000 iterations each. There are a wide range
of values that sigmaConstant can be set to where the algorithm will converge to similar final
amounts of flux error. Setting sigmaConstant to a very low value will cause the emitter values
to fluctuate wildly which doesn’t allow for good results. In Figure 5.4, when sigmaConstant is
set to one, the final result is more than an order of magnitude worse than other results. Setting
sigmaConstant to a value that is too high causes the emitter values to fluctuate by very small
amounts, which has two effects. The first is that because the emitter activities can only change by
small amounts, the algorithm takes a large number of iterations to to achieve similar results when
compared to when sigmaConstant is lower. The second effect is that the flux match annealing
algorithm can’t get out of local minimums with too high of a sigmaConstant. One interesting
thing to note is that even though values of 10 and 100 cause the curve to mostly level off by
around 300,000 iterations, it never becomes completely flat and improvement is still seen through
the remainder of the iterations. This was not the case when sigmaConstant was set to 1. Instead,
the graph levels off around 100,000 iterations where it remains flat until 200,000 iterations where
it drops a small amount again and then stays flat for the remaining 300,000 iterations.
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Figure 5.4: Graph showing running scores with varying sigmaConstants

5.1 Replicating source shape and activity

While this algorithm is, in part, intended to help determine the shape and activity level of
arbitrarily-shaped area sources, the reality is that no algorithm can truly replicate exactly what
is happening in areas that haven’t been directly surveyed. This algorithm creates a set of emit-
ters that can nearly replicate the measured flux at the sampled locations. When the actual and
computed source activities are compared side by side, there can be some profound differences.
Figure 5.5 shows a grid of images.

The source map on the top left was used to construct a set of emitters based on its pixels. One
point source emitter was created for each pixel. The pixel’s value determined the activity of its
associated emitter. From these emitters, a map of the flux field emitted by them was created using
the point source renderer. A new set of emitters were created for use by the flux match annealing
algorithm. These emitters were arranged in a grid everywhere within a fixed radius of any pixel
in the source map with a non-zero value. These emitters were given an initial activity of zero.
Measurements were taken from the flux field in a sparse grid pattern everywhere that emitters
weren’t placed. Multiple runs of the flux match annealing algorithm used these measurements
to generate the remaining source maps seen in Figure 5.5. Each image shown is the result of
500,000 iterations of the flux match annealing algorithm. When measurements are taken as they
were for this experiment, the flux match annealing algorithm tends to replicate the edges of large
area sources and then usually places one or more strong sets of emitters towards the center of the
active region.

The emitter map used for Figure 5.5 was the most complex map that was used in testing.
Figure 5.6 shows the results from six other maps and Figure 5.7 shows the regions where emitters
were placed and where measurements were taken for these maps. Where Figure 5.7 is white
emitters were placed in a grid pattern. Black regions indicate where measurements were taken.
The left column in Figure 5.6 shows the original source maps. The next column to the right shows
the flux maps resulting from these sources. The remaining columns show the reconstructed
locations and activity levels for sources which were computed using the flux maps. Like the
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Figure 5.5: Actual (top left) vs. computed emitters for multiple runs of the annealing algorithm

previous example, the reconstructed source maps tend to have clumps of emitters with high
levels of activity. On the other hand, with the exception of the map used in row six, flux match
annealing tended to confine the activity to places where it was actually located. This is perhaps
most clearly seen in rows two and four. In the second row, the sources are small, round areas.
The regions around them where emitters could be placed are much larger than the actual sources
and yet the reconstructions are approximately the same size. In row four, the original map is
a manipulated version of the Robotics Institute’s logo. An editing error left a horizontal strip
of pixels with a non-zero value around the person’s midsection between the two vertical areas.
This was then expanded when creating the map that determined where emitters would be placed.
Despite having this unintended area where emitters were placed, relatively few emitters within
that region finished with an activity level that wasn’t zero. The map in row six is not very
representational of what existed in the actual source map. Despite being a mess of seemingly
randomly-placed sources, these sources emit flux fields that closely match the actual flux field.
Flux field errors will be examined in detail in later chapters.
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Figure 5.6: A comparison of actual (left column) and computed emitters for multiple maps

Figure 5.7: The exclusion maps used for the maps in Figure 5.6
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Chapter 6

The triangulated gradient method

6.1 Triangulated gradient method overview
The triangulated gradient method is an algorithm that estimates the locations of gamma ray
sources from a set of sparse gamma flux measurements. The functionality of this algorithm
is described in simple terms starting with Figure 6.1 and then a more detailed description will
follow.

In Figure 6.1, sources are seen as grey pluses and measurement locations are shown as black
dots. The measurement locations are triangulated as shown in Figure 6.2. For each triangle, the
direction of the gradient is found. The gradient directions are represented by arrows in Figure
6.3. Finally, using the gradient direction and the flux values at the vertices of the triangle, a
source location can be determined. These estimates are shown in Figure 6.4 as black dots.
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Figure 6.1: Map of source and sample locations

Figure 6.2: Triangulation of the map
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Figure 6.3: Map showing calculated gradient direction for each triangle

Figure 6.4: Map of estimated source locations
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6.2 Finding the gradient direction
An important step in the triangulated gradient method is the process of finding the gradient for
each triangle. This is done with an iterative algorithm. Pseudocode for this is shown in Algorithm
4. To start, the two vertices that have the minimum and maximum flux measurements are found.
The initial estimate of the gradient angle is set to be the direction from the vertex that has the
minimum amount of flux to the one that has the maximum amount. An initial angular step size
and direction is set. The initial step angle used for this thesis was negative 45 degrees. The
estimated flux at the middle vertex that was nether a minimum nor maximum is calculated based
on the current estimate of the gradient direction. Finally an initial error amount is stored. This
error is the difference between the estimated and measured flux at the middle vertex.

The iterative section starts now and repeats until the magnitude of the angular step size is
below a predefined threshold. The current gradient direction estimate is adjusted by the current
step angle. It then calculates the predicted flux at the middle vertex and finds the error between
this value and the measured value. If the sign of this error is different from the sign of the last
error it halves the angular step size and reverses the step direction. If the sign for both errors was
the same it does nothing. It then continues to the next iteration.

Figure 6.5 shows this process pictorially. The triangle on the left shows a triangle with
hypothetical flux readings at its vertices. A unit vector is created in the direction from minimum
to maximum as shown in the second triangle. This becomes the current guess of the gradient
direction. The third triangle gives a visual example of dense flux based on the initial gradient
direction. The dotted line shows where in this gradient the actual flux value for the middle vertex
is. This algorithm iteratively changes the gradient direction until the estimated flux at the middle
vertex matches the measured flux as shown by the triangle on the right.
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Figure 6.5: Steps towards finding the gradient direction

Algorithm 4 Pseudocode for iteratively finding the gradient direction

sortedV ertices← sortV erticesMinToMaxBasedOnFlux(vertices)
minV ertex← sortedV ertices(1).position
maxV ertex← sortedV ertices(3).position
currentDirection← vectorToAngle(maxV ertex−minV ertex)
normal← angleToUnitV ector(currentDirection)
stepAngle← −initialStepSize . -45 degrees
middleF lux← sortedV ertices(2).f lux
computedF lux← findF luxAtMiddleV ertex(normal, vertices)
lastError ← middleF lux− computedF lux
while abs(stepAngle) < finalStepSize do

currentDirection← currentDirection+ stepAngle
normal← angleToUnitV ector(currentDirection)
computedF lux← findF luxAtMiddleV ertex(normal, vertices)
thisError ← middleF lux− computedF lux
if sign(thisError) != sign(lastError) then

stepAngle← stepAngle ∗ −1
end if

end while
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6.3 Triangulated gradient method algorithm
Pseudocode for the triangulated gradient method is shown in Algorithm 5.

Algorithm 5 Pseudocode for the triangulated gradient method

triangles← delauneyTriangulation(sampleLocations)
for all triangles do

gradientDirection← findGradientDirection(triangle)
intersections← findInstersections(gradient, triangle)
fluxes← findF luxAtIntersections(triangle, intersections)
intersectionDistance← euclideanDistance(intersections)
percentRemaining ← fluxes.min

fluxes.max

X ←
√

1
percentRemaining

Xrange← X − 1
distanceToPointSource← intersectionDistance

Xrange

end for

The initial triangulation of the measurement locations is performed using Delauney triangu-
lation. The gradient direction is then found using the algorithm described previously. A line
is constructed which passes through the centroid of the triangle in the direction of the gradient.
The two intersections between the line and the triangle are found. At each intersection the flux
is estimated. This is done using inverse square interpolation which is calculated as follows. For
each side where there is an intersection, the flux measurements at its endpoints are sorted. The
lower flux measurement is divided by the higher flux measurement which results in a value be-
tween zero and one. The adjusted lower flux is then used to find an X coordinate using an inverse
square curve. Formula 6.1 shows how this X value is found. The larger flux will correspond to
an X value of one. The range of X values between one and the X value that corresponds to the
lower amount of flux represents the distance between the vertices of the edge of the triangle that
is being intersected. Figure 6.6 shows this relationship. The distance between the intersection
point and the vertex with the larger flux is scaled into the X value range that was just found. This
scaled intersection point is used to find an estimated flux value using Formula 6.2.

X =

√
1

Y
(6.1)

flux =
maxflux

X2
(6.2)
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Figure 6.6: Graphic showing how estimated flux is found
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6.4 Results
The triangulated gradient method is meant to give an estimate of source locations. Previously,
estimates were shown for a small area source that was located outside of the sampled region.
Figure 6.7 shows the results of estimating the location of a single point source emitter. The
image on the left shows the estimates when measurements are only taken in the bottom half. The
image on the right shows estimates when measurements are taken everywhere within the map.
The results for a point source look very similar to the results for the small area source. This is
due to most triangles being relatively distant from the sources. As the distance between sources
and triangles increases, the flux from area sources combine to appear as a single, more active
source.

Figure 6.7: Estimated locations of a point source

One further observation from this example is of the triangles on the edges. Thin triangles
tend to not give good estimates and should be eliminated. Figure 6.8 shows an expanded view of
the edge. Triangles that give bad estimates are highlighted in grey.
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Figure 6.8: Bad source estimates from edge triangles
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The triangulated gradient method doesn’t always provide estimates like the previous ex-
amples. In situations where there are multiple sources, estimates will tend to connect the two
sources. This can be seen in Figure 6.9. This figure shows two area sources which are drawn
with grey pluses. Estimates are shown with black dots. The estimates on the left use mea-
surements that were taken on the bottom half of the map only. The estimates on the right use
measurements from everywhere within the map. Taking measurements from everywhere places
many more estimates on the actual source locations. There are a number of estimates connecting
the two source locations. This can be understood by looking at a map that shows the flux. Figure
6.10 shows the same map with the flux drawn as zebra stripes rather than a gradient. The edges
of each stripe represent areas with equal amounts of flux. Triangles that are equally distant from
both sources have gradient directions that point directly between the two sources. Triangles that
are closer to one source than the other will give better estimates of where the closer source is
located. Because of this, it is important to take measurements as closely as possible to actual
sources. This suggests measurement strategies where a robot might initially take measurements
with wide sample spacing to get a general overview of source locations then navigate towards
estimated locations to refine its estimates. There are some stray estimates in the image on the
right of Figure 6.9. These are due to triangles that overlapped the two sources. When that hap-
pens, the estimates are wildly inaccurate so triangles should be removed if it is suspected that
they may contain sources. One way to automate this it to remove estimates from triangles that in
turn have estimated sources within their boundaries.

Figure 6.9: Estimated locations of two area sources
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Figure 6.10: Map with two sources and flux lines
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Figure 6.11 shows two maps of estimates from linear sources. On the left are estimates from
measurements that were only taken in the bottom half of the map. On the right are estimates
from measurements that were taken everywhere in the map. There are two things to note in these
maps. The first is that the end points of the linear source are not well represented. This will be
the case for any thin source or sharp corners for area sources. This is because the estimates tend
towards the center of mass of a source. The second thing to note is that many of the estimates
overestimated the distance to the source. In the left map, these estimates are above the linear
source since measurements were only taken on the bottom half. In the right map, triangles on
both sides of the linear source overestimated, creating lines of estimates on either side of the
actual source location. The reason for the overestimates is because an inverse square falloff with
respect to distance is used when estimating. With a linear source, if it is long enough, the falloff
is the inverse of the distance. This leads to errors in estimation.

Figure 6.11: Map with a linear source

One final situation that produces potentially unexpected results is shown in Figure 6.12. This
figure has two representations of a map that has a large rectangular area source. Measurements
were taken from everywhere within the map. The majority of the estimates lie towards the center
of the source in a relatively linear manner. The map on the right shows the flux generated by this
source as well as the estimated gradient directions for each triangle. The flux lines that are close
to the source are nearly linear causing a linear pattern of estimates. The flux lines near corners
have a lot of curvature and cause estimates to radiate from the corner towards the central line of
estimates Assuming that the source has a uniform level of activity throughout, when the number
of measurements are taken to an extreme, the result is that the estimates cluster into a shape that
resembles the lines of a Voronoi diagram that has seeds along the perimeter of the area source.
Figure 6.13 shows this relationship.
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Figure 6.12: Map with a large area source

Figure 6.13: Source estimates compared with a Voronoi diagram
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6.5 Shot noise
So far every example has used measurements that were perfect. Actual gamma flux measure-
ments have shot noise because gamma rays are emitted one at a time rather than in a continuous
manner. Figure 6.14 shows how this algorithm holds up when noise is present. Each map in
this figure has a small area source in its top left corner. Source location estimates are shown as
black dots. The top left map shows results with perfect data. The top right map has a similar
distribution but this comes with a somewhat heavy cost. The median number of counts at each
measurement location in this map is 3,044. It isn’t practical to take such long measurements at
every sample location. It may be an acceptable strategy for a robot to periodically take a set of
three longer measurements in an equilateral triangle to help navigate to better locations where it
will take shorter measurements. The bottom left map shows the results if measurements have an
order of magnitude fewer counts per measurement. In that map, the median number of counts
is 297. Moving one more order of magnitude downward, for map on the bottom right the me-
dian number of counts per measurement is 30. While the bottom right map still shows a more
dense concentration of estimates around the actual source location, it is likely that in practice
measurements with so few counts wouldn’t produce useable results.
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Figure 6.14: How shot noise affects the triangulated gradient method
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Chapter 7

The inverse square renderer workflow

The first workflow that was described in Chapter 3 uses the inverse square renderer to take a
set of sparse gamma flux measurements and directly output a dense gamma flux map for all
areas within the convex hull of the sampled region. The inverse square renderer is based on the
triangulated gradient method. The only difference is that instead of estimating a source location
for each triangle, the inverse square renderer uses the estimated gradient direction and the flux
at the vertices to fill the triangle with dense flux values. Since this workflow is based on the
triangulated gradient method, it shares all of the strengths and weaknesses previously described
for that algorithm.

Figure 7.1: The inverse square renderer workflow

The initial steps for the inverse square renderer are exactly the same as the triangulated gra-
dient method through finding the gradient direction. At this point it can now start rendering the
triangle. Directly rendering a general triangle isn’t easily done. Each triangle is split by dividing
it into top and bottom halves at the vertex that is in the middle vertically. See Figure 7.2 for
reference. This leaves two triangles with a horizontal edge.

Splitting the triangle makes it easy to figure out the coordinates for the first and last pixels in
each row of pixels that must be rendered. Before starting to render, the vertices of the original
triangle with the minimum and maximum flux are projected onto the gradient vector and the
resulting coordinates are saved for later. The triangulated gradient method projected the vertex
with the middle flux value onto the gradient vector during each iteration in order to estimate the
flux at that vertex. The same process is used in the inverse square renderer when calculating the
dense flux values. The coordinates of each pixel being rendered are projected onto the gradient
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Figure 7.2: Original triangle before split (left) and after (right)

vector which results in a coordinate along the gradient. This coordinate lies somewhere between
the two coordinates that were saved previously. By scaling the pixel’s coordinate so that it fits
into the range shown at the bottom of Figure 7.3, a final flux value can be found using Equation
7.1. Algorithm 6 shows pseudocode for the inverse square renderer.

Figure 6.6 provides a visual reference for the next part. The plot within the graph is of
Equation 7.1.

flux = maximumflux/X2 (7.1)
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Figure 7.3: Graphic showing how the value for a pixel is found
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Algorithm 6 Pseudocode for rendering a dense flux map

triangles = triangulate(sampleLocations)
for all triangles do

minF lux← min(vertex1flux, vertex2flux, vertex3flux)
maxFlux← max(vertex1flux, vertex2flux, vertex3flux)
percentRemaining ← minF lux

maxF lux

minX ←
√

1
percentRemaining

for all vertices in triangle do
projectV ertex() . Project vertex onto gradient vector

end for
minV al← min(projectedV ertices)
maxV al← max(projectedV ertices)
splitT riangle() . Split the triangle into two, each having a horizontal side
for all split triangles do

for all rows of pixels in the triangle do
calculateF irstAndLastP ixelWithinTriangle()
for all pixels in each row do

projectedCoord← projectP ixel() . Project pixel onto gradient vector
percentBetween← findPercent(minV al,maxV al, projectedCoord)
X ← ((minX − 1) ∗ percentBetween) + 1 . Scale into range (1,minX)
Y ← 1

X2

PixelV alue← maxFlux ∗ Y
end for

end for
end for

end for
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7.1 Results
Figure 7.4 shows a flux map that was caused by a single point source emitter. The top left image is
the actual flux map. Measurements were taken of this flux in a 12x12 grid. These measurements
were then passed to the inverse square renderer which generated the flux map on the bottom left.
The image on the top right is a map of the percent error in flux between the actual and rendered
flux maps. The image on the bottom right is a histogram of the percent error in flux for this map.
In the maps shown here, triangles that contain sources are still rendered. In actual use, there are
likely to be areas where measurements were not taken around the actual source locations. In that
situation, it is recommended that triangles that span the unmeasured area be removed because
they will have high amounts of error. Note that along the bottom and right of the percent error
map there are thin sections with high error. This is due to the edges having very thin triangles
like what was seen in Figure 6.8 in the triangulated gradient method chapter. If this algorithm is
to be used by a mobile robot which will make decisions base on these maps, it is recommended
that these triangles be removed.

Figure 7.4: Map of point source with 12x12 measurement grid
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Figure 7.5 shows the same map where measurements were taken in a 7x7 grid. Note that the
error is much higher in this map. Larger sample spacing will lead to higher amounts of error. This
is particularly true along triangle edges that are perpendicular to the gradient direction. Figure
7.6 helps show why this happens. In this figure there is a point source and a triangle filled with
a representation of the actual flux that would be caused by the point source. The inverse square
renderer uses a linear gradient direction instead of the radial gradient that a point source causes.
The three corners of the triangle will be rendered with correct flux values. This is why the sample
locations in the maps all have no error and are drawn in black. The center of the vertical edge in
Figure 7.6 will have a large amount of error because it will be rendered with the same amount of
flux as the corners nearest to the point source due to the linear gradient direction. This value will
be too low. The dotted line in the figure shows the locations in the triangle that share the same
flux values as the near corners.

Figure 7.5: Map of point source with 7x7 measurement grid
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Figure 7.6: Example triangle showing why interpolation can fail along some edges

Figure 7.7 shows a map with a large rectangular area source. This map has less error than
the point source but that may be due to the source’s shape aligning nicely with the spacing of the
measurements. Note that although there are large sections of this map that have larger than ten
percent error, these are only within the boundaries of the source. The histogram doesn’t have a
spike for these areas because they are distributed fairly evenly over a large range of values.
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Figure 7.7: Map of a large area source

Figure 7.8 shows another area source. Measurements were taken from this map with little
space between them. This results in a map that has very low amounts of error even when triangles
are close to the source.
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Figure 7.8: Map of a thin area source
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7.2 Noisy measurements
All previous maps have had perfect measurements. Actual gamma flux measurements have shot
noise because gamma rays are emitted one at a time from a radioactive source instead of continu-
ously. Figure 7.9 shows four maps where measurements were taken for varying amounts of time.
This causes the median number of gamma rays that have been detected to vary. These median
counts are listed above each map. While some difference can be seen in the maps themselves,
the difference can be more clearly seen in the histograms. The longer that measurements can be
taken, the better the results of this algorithm will be.

Figure 7.9: A comparison of results with different measurement durations

7.3 Suggested measurement strategies
The main source of error within a triangle is caused by the direction of the gradient changing.
Small triangles reduce how much the gradient direction can change across a triangle. The gra-
dient direction farther away from a source changes less quickly thus triangles that are far from
a source have less error and could be larger. Because sometimes it is only required that error
stay lower than some threshold, a suggested measurement strategy is to take measurements more
frequently in areas where the flux is high and less frequently in areas where there is less flux. A
way to check if measurements are being taken often enough is to have the robot which is taking
measurements navigate to the center of a triangle. It will then take one more measurement. If
that measurement is within a prespecified tolerance of the value that the inverse square renderer
predicts then measurements are being taken often enough in that area.
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Chapter 8

The flux match annealing and point source
renderer workflow

The second workflow uses the flux match annealing algorithm and point source renderer to take
a set of sparse gamma flux measurements and emitter locations and outputs a dense gamma
flux map as well as a set of emitters that are optimized to produce flux that closely matches the
provided measurements. Figure 8.1 shows this workflow. Measurements were taken wherever a
dot is located in the map on the left.

Figure 8.1: The second suggested workflow

This workflow is intended for situations where sources are located within the convex hull
of the sample locations and operates on the assumption that samples were not taken directly
over an actual source. The areas where there are no samples are filled with a grid of emitters
that initially have an activity of zero. These emitters and the flux measurements are provided
to the flux match annealing algorithm which adjusts their activity levels to produce flux that
closely matches the provided flux measurements. The optimized emitters are then passed to the
point source renderer which outputs a dense gamma flux map that can be extrapolated beyond
the surveyed region. This workflow provides a higher-quality flux map when compared to the
inverse square renderer workflow and is much more tolerant of the shot noise inherent in gamma
flux measurements. Drawbacks to this workflow are that the flux match annealing algorithm is
computationally expensive and it does not provide good estimates of source locations when the
sources are not surrounded by sample locations. While this workflow can match the flux radiated
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by sources which are outside the sampled region, it tends to be an inefficient process due to how
many emitters must be used. Additionally, the flux match annealing algorithm requires a much
higher number of iterations to match the provided flux measurements as closely as a situation
where the source was completely surrounded by measurement locations.

8.1 Results with different source maps

8.1.1 Map with single point source
Figure 8.2 shows results from a source map which has a single point source. The image on
the top left shows the actual source map. In source maps, white pixels represent locations with
high activities and black pixels represent areas with no activity. Varying levels of gray represent
varying levels of activity. The image on the bottom left shows an estimated source map. Note
that the algorithm that drew the estimated source map was written to draw activities from emitters
that weren’t necessarily in a grid pattern. It uses a predetermined grid spacing and shows the sum
of the activities of all emitters within each grid location. Because of this, estimated source maps
look a bit different in shape when compared to estimated flux maps which show the actual emitter
locations. The estimated source maps should be used as a general reference for what areas in a
map are active. The image at the top center shows the actual gamma ray flux produced by the
source in the source map. Below it is an image which shows the gamma ray flux produced by
the emitters in the estimated source map. On the right at the top is a map that shows the percent
error between the two gamma ray flux maps. Finally, on the bottom right is a histogram of the
percent error seen within the map.

The flux match annealing algorithm has difficulty matching the flux from point sources or
sources which are very thin. In these situations, while the overall level of error may still be low,
the percent error seen on the map will tend towards higher values rather than lower values.

66



Figure 8.2: Map with a single point source
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8.1.2 Map with a linear source
Figure 8.3 shows a map that has a linear source. The percent error map has a large section on
the right side that is between one and two percent error. This is because this is a thin source and
the grid of emitters that was placed in unexplored regions doesn’t align perfectly with the actual
source.

Figure 8.3: Map with a linear source
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8.1.3 Map with an area source
Figure 8.4 shows a large rectangular area source. Because this map has an area source, flux match
annealing can more easily replicate the flux within the sampled region. While the previous two
examples had large regions of up to three percent error, this map’s error is well below one percent
in most locations. The errors seen where the source is located are generally above ten percent.
Wile the flux match annealing algorithm can closely replicate measured flux, it doesn’t model
sources as well. These errors don’t show up as a lump on the percent error histogram because
they span a large range with a low number of counts per value.

Figure 8.4: Map with an area source
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8.1.4 Map with a complex source
Figure 8.5 shows a map that has a source with a complex shape. Although the source is easily
identifiable as a symbol indicating radiation hazard, don’t think of it as an image but rather a map
of where radioactive paint may have been painted. This map shows that the flux match annealing
algorithm works equally well regardless of the complexity of a source’s shape. Once again, error
is concentrated well below one percent for areas where the source is not located.

Figure 8.5: Map with a complex source
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8.1.5 Map with a complex source having variable activity
Figure 8.6 shows a large area source that not only has a complex shape but also has a range of
activities. While this map has a bit more error than the previous map, the bulk of the error is still
well below one percent.

Figure 8.6: A second map with a complex source
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8.1.6 Map with multiple sources and variable activity

The last example shown in this section shows a map that has multiple sources and varying ac-
tivities. Flux match annealing has more difficulty matching flux when there are multiple sources
rather than one within a map. This can be seen in the corners of the percent error map where
error is between one and two percent as well as in the shape of the error histogram.

Figure 8.7: A map with multiple sources and variable activity

The flux match annealing algorithm was run for 100,000 iterations for each of the maps pre-
sented so far. Processing time for each iteration of the flux match annealing algorithm is linearly
related to the product of the number of emitters and the number of measurement locations. For
these examples, measurement spacing was larger than the emitter spacing. Because of this, as
the size of a source increased, so did the processing time. Run time ranged from just above one
minute for the point source map to 3.7 minutes for the second map with a complex source. These
maps were processed on a desktop computer with an Intel i7-6700K CPU that ran at 4.0 GHz.
The code for this thesis was written in Matlab. It would likely run several times faster if the
algorithm was rewritten in a compiled language.
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8.2 Error progression over time
The flux match annealing algorithm iteratively refines its solution over time. The following
figures show results at various points along a single map’s refinement. The actual source map
is shown in Figure 8.8. The number of iterations shown in the figures are, going left to right
and top to bottom, 245, 665, 1808, 4915, 13360, 36316, 98716, and 268337. These values were
chosen because they are evenly spaced when plotted on a log scale and show a progression from
a low number of iterations to a likely stopping point. During early stages, large changes happen
often. Towards the end, changes can still be seen in the activity levels of the emitters but the total
amount of flux in the various source locations has largely stabilized. When computing the results
for this example, the random number generator was seeded to the same number each time so that
the estimations all progressed in the same manner.

Figure 8.8: Actual source map used in this section
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Figure 8.9: Estimated flux maps after different numbers of iterations

Figure 8.11 shows the progression of the flux error map. When the number of iterations
are low, the error is significant and the algorithm’s results would likely be unusable. At 4915
iterations, most error is below ten percent. The result at 36,316 iterations, which was calculated
in 51 seconds, is likely to be a good trade-off between computation time and accuracy if this
algorithm were to be used on a mobile robot. At 98,716 iterations, the majority of improvement
has completed.

In the flux match annealing algorithm, the sum of the squared flux errors at the measurement
locations is calculated. While this variable isn’t directly relatable to the percent error, it is helpful
to understand how this value progresses over time. It was found that this variable roughly follows
the curve generated by Equation 8.1. In this equation, C is a variable that roughly relates to the
number of emitters used. Figure 8.10 shows a graph where the sum of squared flux errors over
time are compared to the predicted value.

sumOfSquaredF luxError =
C

iterations
(8.1)
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Figure 8.10: Flux error maps after different numbers of iterations
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Figure 8.11: Graph comparing the sum of squared flux
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Perhaps the most telling progression sequence is of the flux percent error histogram. While
there is no way to predict the shape of the histogram at any given iteration, as more iterations
happen, the histogram will progressively compress down to lower error amounts.

Figure 8.12: Flux error histograms after different numbers of iterations
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8.3 Results with different measurement spacing
The maps in this thesis represent an area ten meters square. The default grid size for measure-
ments is 0.25 meters. This section shows how changing the measurement grid’s size affects the
results of the flux match annealing algorithm. Figures 8.14 and 8.15 show maps where the mea-
surement spacing varies from .25 meters to 1.5 meters. The actual source map is shown in Figure
8.13. Emitters in the examples are shown as light gray dots. Measurement locations are shown
as black dots. The flux match annealing algorithm was run for 100,000 iterations on each set
of measurements. Having a large number of measurements produces better results than a small
number of measurements but the difference isn’t as pronounced as might be expected. Despite
only having thirty one flux measurements, the map with a grid size of 1.5 meters still manages to
keep the flux percent error less than six percent in most places on the map. While it is not shown
here, the flux match annealing algorithm was run for 400,000 iterations using the thirty one mea-
surements just to see how much error improved. The result was similar to the error shown for a
grid spacing of 1.0 meters.

Figure 8.13: Source map for the measurement spacing examples
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Figure 8.14: Results with measurement grid sizes from 25 to 50 centimeters
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Figure 8.15: Results with measurement grid sizes from 75 to 150 centimeters
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8.4 Results with shot noise
All of the previous examples have used perfect, continuous measurements that didn’t contain
noise. Gamma flux measurements taken with real sensors have shot noise which follows a Pois-
son distribution. This noise is due to the discrete nature of how gamma rays are detected. This
section shows the performance of the flux match annealing algorithm using measurements that
have shot noise. Gamma ray sensors detect individual gamma rays as they strike the sensor.
Because of this, sensors often report in units of counts per second or counts per minute. When
evaluating the performance of flux match annealing in the presence of noise, units of counts will
be used because the measurement time will be varied.

Figure 8.16 shows a graph produced by running a set of measurements through this workflow
three hundred times. Each trial was run for 100,000 iterations. Before each trial, the simulated
measurement time was changed. After the trial, the median amount of error was found. The
measurements provided to the flux match annealing algorithm were taken using a 0.75 meter
grid. The same map that was used for the measurement spacing test was used for this test.

Due to the stochastic nature of this workflow, the resulting data is noisy. Despite this, a
general trend can be seen where the median error decreases as the median number of counts
increases. Note that for median counts above 100, there is still some reduction in error but it is
minimal.

Figure 8.17 shows the sum of squared flux error over time for median counts of 8 through
233. Unlike Figure 8.11 which used perfect data and showed continual improvement over time,
when noise is present, error tends to level off after a relatively low number of iterations. In the
charts that used measurements with high median counts, some improvement is seen throughout
but with very low median counts, no improvement is seen in later iterations.
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Figure 8.16: Scatter plot showing the relationship between median counts and median percent
error
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Figure 8.17: Error over time for measurements with different median number of counts
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8.5 Extrapolation
Previous sections have shown only results within the sampled region. The point source renderer
can generate dense flux maps of any region so extrapolation outside of the sampled region is
possible. Figures 8.18 through 8.20 are formatted the same as all previous figures of this type
with the exception that the flux percent error maps show a larger area around the sampled region.
In each, a white square indicates the size of the sampled region.

Figure 8.18 shows results for a map containing a single area source with a gradient of activi-
ties. This is the best case scenario for extrapolation. Because error is less than one percent nearly
everywhere within the sampled region, error is also less than one percent in the extrapolated
region.

Figure 8.18: Extrapolated map with single source
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Figure8.19 shows a situation where there are areas of error greater than one percent outside
of the sampled region. This map is typical of an extrapolated map where there are areas of error
greater than one percent. Error outside of the sampled region is constrained to the maximum
amount of error seen at the perimeter of the sampled region. This is true with two exceptions.
The first is when there is a point source or thin source within the map such as seen in 8.2. In
those cases, error can increase past the perimeter of the sampled region. When it does increase,
the rate at which it increases slows down as you get farther away from the source. The other
situation where error increases is if there is an external source. In that case, percent error can
increase without limit.

Figure 8.19: Extrapolated map with multiple sources
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Figure 8.20 shows a situation where a source touched the edge of the sampled region. Be-
cause no measurements were taken to the right of the source, there is a large amount of error to
the right of the source. This map shows the importance of completely surrounding sources with
measurement locations.

Figure 8.20: Extrapolated map with multiple sources and source not completely surrounded
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Chapter 9

Mapping external sources using the
triangulated gradient method

Figure 9.1 shows the third workflow proposed by this research. This workflow addresses the
shortcomings of the second workflow when sources aren’t located within the sampled region.
In all of the examples in this section, measurements were only taken in the lower half of the
map while the sources are located in the upper half of the map. The third workflow adds the
triangulated gradient method to provide estimates of source locations. By placing emitters in a
grid within a fixed radius of these estimates, the flux match annealing algorithm produces better
estimated source activities which ultimately leads to lower error in the final flux map.

Figure 9.1: The third suggested workflow

Four maps will be used in this section. Each map will be presented twice. The first map will
show results when the entire upper half of the map region is filled with a grid of emitters and the
flux match annealing algorithm is free to adjust emitter activities anywhere. This is representative
of the results of the second workflow. The second map will show results when the triangulated
gradient method is used to help place emitters. The triangulated gradient method takes a set of
gamma flux measurements and outputs estimated source locations. These locations are used to
create a placement map that defines where emitters can be placed. For each estimated source
location, a region within a fixed radius will be defined in the placement map as an area where
emitters can be placed. Once the placement map is complete, a grid of emitters is created for the
entire upper half of the map. Emitters that fall outside of the indicated areas on the placement
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Figure 9.2: Map with single point source and filled region of emitters

map are then removed. The remaining emitters are then passed to the flux match annealing
algorithm along with the original measurements. The rest of this workflow is exactly the same
as the workflow that uses flux match annealing and the point source renderer. For all examples
shown here, the flux match annealing algorithm was run for 100,000 iterations. The bottom right
image in each example shows where measurements and emitters were placed. Emitters are drawn
as black dots and measurements are drawn as light gray dots.

Figure 9.2 shows a map that has a single point source which is located outside of the surveyed
region. The entire upper area is filled with emitters. The triangulated gradient method finds a
solution where the percent error in the sampled region is mostly less than two percent. The upper
half of the map shows more than ten percent error in most areas. Like other examples, if the flux
match annealing algorithm was run for more iterations, results would improve. This wouldn’t
be the best plan though. Not only would it run for more iterations, those iterations would take
longer to compute than a solution where emitters were placed more strategically.
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Figure 9.3 shows the same map as 9.2 but instead of blanketing the upper half with emitters,
the triangulated gradient method was used to guide emitter placement. This constrained emitter
placement to likely source locations and results in a more accurate result. The entire sampled
region now has less than one percent error and about a quarter of the upper region does as well.
The addition of the triangulated gradient method to this workflow has improved the results.

Figure 9.3: Map with single point source and emitters placed using the triangulated gradient
method
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The example in Figure 9.4 has a small area source in the upper left corner of the map. Here
the sampled region doesn’t have any areas that are less than one percent error. Almost the entire
upper region has more than ten percent error.

Figure 9.4: Map with square area source and filled region of emitters
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Figure 9.5 uses the triangulated gradient method to place emitters. The triangulated gradient
method found the location of the actual source but also had an estimate in an incorrect area.
That estimate was likely due to a triangle along the edge of the sampled region. Edge triangles
were not removed for this sequence of tests. Despite the incorrectly placed emitters, adding the
triangulated gradient method to the workflow increased the accuracy of the solution. Now, nearly
the entire sampled region has less than one percent error and some of the upper half of the map
does as well. If edge triangles had been removed then this solution likely would have been even
better.

Figure 9.5: Map with square area source and emitters placed using the triangulated gradient
method
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Figure 9.6 shows map with a single area source that has a gradient of activity levels. With
the entire upper half of the map filled with emitters, the flux match annealing algorithm finds a
solution where a large portion of the sampled region has less than one percent error.

Figure 9.6: Map with gradient area source and filled region of emitters
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Figure 9.7 shows the results when the triangulated gradient method is used. Here, despite the
triangulated gradient method producing a fairly poor set of estimates, the flux match annealing
algorithm still manages to produce superior results when compared to simply filling the entire
upper half of the map with emitters.

Figure 9.7: Map with gradient area source and emitters placed using the triangulated gradient
method
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The final example is shown in Figures 9.8 and 9.9. While using the triangulated gradient
method usually produces superior results, that was not the case in this example. This map was
designed to be difficult to replicate by placing one source close to the sampled region in the
center of the map. A second, more active source was placed in the upper right corner and finally
a third, weak source was placed in the upper left. It was expected that most solutions would
gravitate towards modeling the source that is close to the sampled region and that if anything
else was modeled, it would be the strong source in the upper right. The triangulated gradient
method placed all of its estimates in the expected areas and completely missed the source in
the upper left. This caused large errors on the left side of the map. When emitters were placed
everywhere in the upper half of the map flux match annealing did a better job on the left side.
This map was run twice more using both placement strategies and yielded similar results to what
has been shown here.

Figure 9.8: Map with three area sources and filled region of emitters
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Figure 9.9: Map with three area sources and emitters placed using the triangulated gradient
method

In most situations where sources are outside of the sampled region, using the triangulated
gradient method to assist in placing emitters results in a solution that has less gamma flux error.
Computation time is always reduced when compared to filling a large area with emitters. While
using this workflow may allow for improved flux maps in some situations, the best method to
reduce flux map error is to completely surround sources of gamma radiation with measurements
locations.

95



96



Chapter 10

Future work

10.1 Point source renderer
Probably the largest topic that this thesis doesn’t address is how to deal with other materials being
between a source and a sample location. This could be air, building materials, or intentional
shielding. Regardless of what the material is, it would cause some amount of attenuation to
the gamma ray flux. The point source renderer currently treats all space as if it were a vacuum
which doesn’t attenuate gamma rays at all. When using the flux match annealing algorithm,
attenuation can be addressed by modifying the point source renderer. This would require the
point source renderer to accept an attenuation map. This map would contain an attenuation
value for each pixel which would represent the expected attenuation per linear measurement
unit. When calculating the flux contribution from an emitter, other calculations would need
to be performed in addition to what is already being done. For each pixel in the attenuation
map, an attenuation factor would need to be computed by considering the length of the path
between the source and measurement location that passed through the pixel. This attenuation
factor would represent the expected percentage of gamma rays that would exit that region of the
map compared to the number which entered. The flux contribution would then be multiplied by
the product of the attenuation factors for all pixels in the attenuation map between the source
and measurement location. This would drastically slow computation time but if provided with
an accurate attenuation map, might allow source locations to be found even in the presence of
obstructions.

10.2 Triangulated gradient method
All work for the triangulated gradient method was done assuming that it would receive perfect
data. In actual practice, the data has noise in it due to the shot noise inherent to radioactive de-
cay. Because of this, it would be beneficial to adopt a probabilistic approach towards estimating
source locations. Instead of representing the estimated location of the source as a single point,
it would be represented by a two-dimensional probability distribution. This would take into ac-
count the number of counts in the flux measurements as well as the distance between the triangle
and its estimate. Low numbers of counts would increase the size of the distribution because there
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would be less certainty of the actual amount of flux at each vertex which would lead to larger
variance in the source location estimates. The distance from the triangle to its estimate matters
because triangles that are far from their estimated source are likely to have an incorrect gradient
direction if there is more than one source. By creating a map consisting of the sum of the log
probability distributions from all of the triangles, a more accurate estimate of source locations
may be found.

10.3 Flux match annealing
While it may be possible to tune the acceptance rate and sigmaConstant variable to match a
use case more exactly, better results might be achieved by replacing the flux match annealing
algorithm with a genetic algorithm. The genetic algorithm would mutate emitters in the same
manner as the flux match annealing algorithm. It would also evaluate the solutions in the same
manner. Various crossover methods would need to be explored. A potential crossover strategy
might be to randomly select half of the emitters from one map and to use the remaining emitters
from the other. This strategy has the potential to retain what is good about both maps because it
would relatively evenly select from everywhere in the maps without resorting to using a pattern
which could have artifacts. A genetic algorithm may be superior to the flux match annealing
algorithm. It was noted that when plotting multiple trials with the same settings that solutions
which had lower sums of squared flux errors tended to stay lower. This implies that despite
the local minimum avoidance shown by the flux match annealing algorithm that early decisions
tended to limit the amount of error that could be achieved. A genetic algorithm would allow
more successful early choices to greatly influence the end result.

Using a genetic algorithm would come at a greatly increased computational cost but on mod-
ern computers which could likely run each iteration on a graphics card, this may not be an issue
because each member of the population would be generated and evaluated in parallel.

10.4 Inverse square renderer
The inverse square renderer works well everywhere except when a triangle is close to a source
of radiation where there is a high degree of change in the gradient direction. This error could
be reduced by changing how triangles are rendered. The current method finds a single gradient
direction for each triangle and fits a flux gradient across the triangle. A possibly better method
would be to calculate the location and activity of a point source for each triangle without finding
the gradient direction first. The pixels within the triangle could then be rendered directly from
that point source using the point source renderer. This alone wouldn’t be sufficient to generate a
good map because there would be continuity errors at the triangle edges.

To fix this, a variant of the Phong shading model from computer graphics could be used. The
Phong shader uses a per-vertex normal to make a polygon appear to curve smoothly and to blend
nicely with its neighbors. To get a normal for a vertex, the normals for all polygons that a vertex
is part of are averaged. The resulting normal is applied to this vertex.

When rendering a flux map, nearly the same thing would be done. The locations and activities

98



of the estimated point sources for all triangles that shared a vertex would be averaged. The
averaged location and activity would then be applied to the vertex. Phong shading interpolates a
normal for each pixel that is rendered using the normals at the containing triangle’s vertices. For
the purposes of mapping gamma flux, instead of interpolating a normal, the activity and location
of the estimated point source would be interpolated. The point source rendering algorithm could
then use that estimated point source and the pixel’s location to calculate a final flux value.

While this process would be slower than the current version of the inverse square renderer, it
would have much less error in triangles that have large changes in flux direction. This modified
version of the inverse square renderer would still be a good candidate for running on a mobile
robot.

Besides having less error due to taking into account flux direction changes across a triangle,
this change could have greater tolerance to shot noise due to the estimated point sources at the
vertices being averages.

10.4.1 Three dimensions
The algorithms presented in this research functioned in two dimensions. There is no obstacle
preventing any of them from being expanded into three dimensions.

• The flux match annealing algorithm can easily be expanded by using voxels instead of
a two dimensional grid of emitter locations and by selecting the voxels using a cuboid
instead of a rectangle. Computation time will increase but otherwise the change is trivial.

• The point source rendering algorithm that was used in this thesis currently calculates dis-
tances in two dimensions but expanding it to three dimensions is trivial.

• The triangulated gradient method of locating sources is a bit more complex to bring into
3D. Instead of performing a triangulation pass on the measured data, measurement loca-
tions would need to be turned into a set of tetrahedrons. Delauney tetrahedralization is
the tetrahedral equivalent to Delauney triangulation and could be used as a starting point.
Gradient directions would need to be calculated based on the tetrahedrons. An intersection
between a line and a triangle must be found instead of a line and a line segment. Addition-
ally, flux must be interpolated along a triangle instead of just a line to find the flux at the
intersection points.

• The inverse square rendering method would require the same changes as the triangulated
gradient method. The rest of the algorithm could proceed as it does in two dimensions with
the exception that there would be a third dimension involved in the projection of a voxel
onto the gradient vector.

10.4.2 Mapping the locations of differing nuclides
This thesis lumped all radioactive materials into one category. Many detectors can differentiate
between different nuclides based on the energy spectrum of the gamma rays that they produce. It
may be possible to expand the algorithms presented here to determine the locations of different
radioactive materials existing in or around the same sampling region by taking into account the
energy spectrum of received gamma rays at each measurement location.
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10.4.3 Mapping using an inverse square mixture model
It may be possible to characterize sources with more fidelity by using an inverse square mixture
model. This would be the same thing as a Gaussian mixture model but would use an inverse
square distribution instead of a Gaussian.
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Chapter 11

Conclusion

Four algorithms and three workflows that use these algorithms were presented in this thesis. Ta-
ble 11.1 compares the algorithms and workflows. For the sake of brevity, the algorithm names
were reduced to the following acronyms: triangulated gradient method (TGM), flux match an-
nealing (FMA), point source renderer (PSR), and inverse square renderer (ISR).
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Table 11.1: Comparison of the algorithms and workflows presented in this thesis

TGM FMA PSR ISR
workflow

FMA & PSR
workflow

TGM, FMA,
&

PSR workflow
Makes dense
flux map No No Yes Yes Yes Yes

Estimates activity No1 Yes No No1 Yes Yes
Estimates source
locations Yes Yes No No2 Yes Yes

Computational
speed Fast Slow Varies3 Fast Slow Slow

Flux map quality
in sampled region — — — Good Excellent Excellent

Flux map quality
outside sampled
region

— — — — Poor Acceptable

Source activity
estimate quality — Fair — — Fair Fair

Source location
estimate quality Varies Fair — — Fair Varies

Tolerance to
shot noise Fair Excellent — Fair Excellent Good

1 The triangulated gradient method and inverse square renderer can easily be modified to provide
estimates of source activity but this would likely be of little use unless there was only one point
source near the sampled region.

2 The inverse square renderer, as written, doesn’t provide source location estimates but could be
easily modified to do so.

3 The point source renderer’s speed varies based on the number of locations that require flux
estimates as well as how many emitters are passed to it.
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This thesis presented three workflows that take sparse, non-directional gamma flux measure-
ments and output dense gamma flux maps. Measurements for all of the workflows can be made
using a Geiger counter, which is readily available, inexpensive, and can be lightweight. These
three features make it possible to quickly build one or more ground-based or aerial robots to
survey an area. These algorithms will also work using measurements taken using other non-
directional sensors.

The inverse square renderer workflow provides a flux map for areas within the convex hull of
a surveyed region. Its computations are efficient which makes it ideal for use on a mobile robot
that needs a dense gamma flux map. After at least three measurements have been made, each
time a new measurement is taken, the inverse square renderer would only need to update the map
inside of any new triangles. Additionally, for each triangle within the map, a source location
estimate can be made, which could be used to inform navigational choices.

The flux match annealing and point source renderer workflow is better suited for offline map-
ping purposes. The flux maps that it provides have lower amounts of error than the inverse square
renderer workflow’s flux maps. While this workflow characterizes sources, it computes flux with
higher fidelity than its determination of source location and activity. The flux match annealing
algorithm’s results are highly tolerant to the shot noise inherent in gamma flux measurements.
In most cases, if lower amounts of error are desired, running the flux match annealing algorithm
for more iterations will result in more accurate gamma flux maps. Because this workflow gen-
erates its flux maps from a set of emitter locations and activities, flux maps can extend beyond
the convex hull of the sampled region. When flux maps are extended beyond the sampled region,
error is bounded by the maximum error seen along the perimeter of the sampled region provided
that there are no external sources. Flux match annealing will perform best when measurement
locations completely surround all sources that are in or near the region in which a map is desired.
While longer measurements will result in less flux map error, improvement slows greatly when
the median number of counts per measurement is more than fifty. Very few measurements are
needed to generate useful results with the flux match annealing algorithm. While more measure-
ments will always improve results, a realistic target may be one or two measurements per square
meter to achieve less than five percent error within the sampled region.

The triangulated gradient methodology developed in this research characterizes the location
of sources that lie outside of a sampled region where it isn’t possible to obtain flux measurements.
When sources lie outside of the sampled region, the triangulated gradient method can be used
to help create a set of emitters to be used by the flux match annealing algorithm. In most cases,
placing emitters in this manner causes the flux match annealing algorithm to run more quickly
and to provide better results.

The workflows created for this research provide ways to generate dense gamma flux maps
within a sampled region that leave little room for improvement in flux map quality. This research
didn’t solve the problem of exactly characterizing area source locations and activities, however
it does provide estimates of where sources are located. Research still needs to be done to find
methods to more closely characterize source locations and activities both inside and outside of
a sampled region using non-directional gamma flux measurements. It is likely that most future
improvements in gamma source mapping will be done with Compton cameras but unless there
is a large reduction in their price, those sensors won’t see widespread use. Until then, relatively
inexpensive non-directional sensors are likely to be the most commonly used type of radiation
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sensor which will maintain the relevance of the research presented in this thesis.
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