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Abstract
One of the most fundamental tasks for any robotics application is the ability to

adequately assimilate and respond to incoming sensor data. In the case of 3D range
sensing, modern-day sensors generate massive quantities of point cloud data that
strain available computational resources. Dealing with large quantities of unevenly
sampled 3D point data is a great challenge for many fields, including autonomous
driving, 3D manipulation, augmented reality, and medical imaging. This thesis ex-
plores how carefully designed statistical models for point cloud data can facilitate,
accelerate, and unify many common tasks in the area of range-based 3D percep-
tion. We first establish a novel family of compact generative models for 3D point
cloud data, offering them as an efficient and robust statistical alternative to traditional
point-based or voxel-based data structures. We then show how these statistical mod-
els can be utilized toward the creation of a unified data processing architecture for
tasks such as segmentation, registration, visualization, and mapping.

In complex robotics systems, it is common for various concurrent perceptual
processes to have separate low-level data processing pipelines. Besides introducing
redundancy, these processes may perform their own data processing in conflicting
or ad hoc ways. To avoid this, tractable data structures and models need to be es-
tablished that share common perceptual processing elements. Additionally, given
that many robotics applications involving point cloud processing are size, weight,
and power-constrained, these models and their associated algorithms should be de-
ployable in low-power embedded systems while retaining acceptable performance.
Given a properly flexible and robust point processor, therefore, many low-level tasks
could be unified under a common architectural paradigm and greatly simplify the
overall perceptual system.

In this thesis, a family of compact generative models is introduced for point
cloud data based on hierarchical Gaussian Mixture Models. Using recursive, data-
parallel variants of the Expectation Maximization algorithm, we construct high fi-
delity statistical and hierarchical point cloud models that compactly represent the
data as a 3D generative probability distribution. In contrast to raw points or voxel-
based decompositions, our proposed statistical model provides a better theoretical
footing for robustly dealing with noise, constructing maximum likelihood methods,
reasoning probabilistically about free space, utilizing spatial sampling techniques,
and performing gradient-based optimizations. Further, the construction of the model
as a spatial hierarchy allows for Octree-like logarithmic time access. One challenge
compared to previous methods, however, is that our model-based approach incurs a
potentially high creation cost. To mitigate this problem, we leverage data parallelism
in order to design models well-suited for GPU acceleration, allowing them to run at
real-time rates for many time-critical applications. We show how our models can
facilitate various 3D perception tasks, demonstrating state-of-the-art performance
in geometric segmentation, registration, dynamic occupancy map creation, and 3D
visualization.
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Chapter 1

Introduction

In any given large-scale robotics application, there might be dozens of perceptual tasks running
concurrently, often using the same underlying sensor data, but each maintaining completely sep-
arate data processing pipelines. This situation is not ideal.

In terms of data processing, most common range-based 3D perception algorithms (e.g. seg-
mentation, object detection, registration, path planning) do not operate directly on the raw point
data that comes from the sensor. There are several reasons for this: often, the data is too dense,
contains too many outliers or too much noise, or the points simply can’t encode the required
primitive elements needed for the perceptual task, like geometric or connectivity information.

To facilitate whatever perceptual operation needs to be performed, most algorithms that op-
erate over point clouds therefore typically subsample heavily, discretize, or create some interme-
diate representation. For example, if the operation is plane detection, PCA is often used to find
good planar fits around neighborhoods of points [118]; if it is object detection, pose-invariant
descriptors are calculated around interest points [61]; and for registration, points may be dec-
imated and locally approximated by Gaussian clusters [43]. In a complex robotics system, all
of these processes may be performed concurrently, leading to redundant and/or potentially infe-
rior techniques to filter, describe, and operate over the raw point data. Furthermore, when each
perceptual process has to produce its own application-dependent data processing pipeline, this
results in difficulties with information or context sharing between processes as well as an overall
loss in programming productivity in terms of systems integration.

It therefore seems useful and necessary to explore the possibility of a common data structure
that is both flexible and general enough to enable and unify as many common 3D perception
tasks as possible. Such a low-level point processing structure could handle the problems of
noise reduction, outlier handling, point sparsity, and solve basic questions about point geometry
and free space. These operations could be formed in principled way, such that each individual
perception algorithm doesn’t have to independently implement a separate version of noise and
outlier handling, geometric inference, model parametrization, etc. With a common model taking
care of these basic point processing tasks, basic context between perception algorithms could be
established under a unified architecture, offering a more cohesive, efficient, and overall better
engineered paradigm for 3D perception based on range data.
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1.1 Approach
Approaching the problem of 3D perception as an exploration of the representation of sensor data
is a sensible strategy since many perceptual tasks share many common computational primitives.
The problem is then to establish these perceptual primitives and devise a common model that
can both leverage their similarities while accelerating their computation. Towards this end, we
propose that a sufficient spatial model should have the following qualities:

1. Statistical: Statistics offer a natural ability to handle noise and represent uncertainties in
data acquisition. In contrast, deterministic representations tend to be more expensive in
terms of representational complexity or size.

2. Generative: In the context of 3D perception, generative models capture the full joint prob-
ability of 3D space, leading the way to efficient sampling methods and Bayesian inference
techniques allowing one to incorporate prior knowledge into the model.

3. Hierarchical/Multi-Scale: The model’s ability to describe the world needs to be dynamic
and data-driven in order to handle scenes of arbitrary complexity and provide finer or
coarser grained access to information depending on the demands of the application. Im-
posing a hierarchy can exponentially accelerate spatial reasoning systems by compressing
empty space, provide view-dependent levels of visual detail to an operator, and enable
anytime optimality.

4. Data-Parallel: Serial processing of sensor data is a common bottleneck. Sensors generate
large amounts of data that must be operated over in parallel in order to obtain good scaling
and real-time performance. Data structures for 3D perception then must be designed to
have limited spatial interdependence in order to scale well on highly parallel architectures
such as FPGAs and GPUs.

5. Parametric/Differentiable: Parametric models facilitate fast spatial transformations since
only the parameters that describe the model need to be operated over, as opposed to spatial
transformations over large arrays of voxels or 3D points. Parametric forms that are differ-
entiable also facilitate well-defined and computationally tractable optimization techniques
and allow the use of maximum likelihood methods when paired with statistical models.

6. Compact: Highly structured parametric models allow more compact representations and
lead to smaller memory footprints, a key component when transferring data to other de-
vices or through a network or when performing calculations on low-power or embedded
hardware where memory is limited.

Much work in perception, learning, and control has been primarily focused on new algorith-
mic, theoretical, or mathematical developments, relegating the data processing element in these
methods to a secondary role. Many commonly used 3D perception algorithms tend to deal with
point cloud data in ad hoc ways (e.g. by subsampling, binning, decimating, or voxelization), use
heuristic-based optimization approaches (e.g. ICP for 3D registration [3]), and do not scale well
to massive amounts of data (e.g. most previous generative model-based approaches are far from
real-time [43] [40]). Hierarchical spatial decompositions such as Octrees [153] or K-d trees [105]
work well to facilitate efficient range searches, but can still require expensive preprocessing, are
hard to parallelize, and, like raw point clouds, do not facilitate easy parametrization, reasoning
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about uncertainty, or numerical optimization. Statistical constructions have been more success-
ful in these latter areas, such as the Normal Distance Transform (NDT) [134], but these models
too are affected by voxelization artifacts, scaling issues, and tradeoffs in representational fidelity
(see Chapter 5.6.1 for an in-depth study of these issues).

It is for these reasons that we’ve chosen to explore the Gaussian Mixture Model as the fun-
damental statistical primitive to describe and parameterize raw point cloud data. The Gaussian
Mixture is simply a convex sum of Gaussian distributions, but being generative and extensible
to a full Bayesian formulation, it offers a natural way to denoise and prune outliers from poten-
tially noisy clouds, and encoded in the Gaussian structure is inherent connectivity/continuity and
geometric information. The Gaussian Mixture trivially includes and therefore generalizes the
Gaussian distribution (a single component mixture), but also can describe any arbitrarily com-
plex function or probability distribution as the number of mixtures is increased. Furthermore, if
the Gaussian Mixture is used in conjunction with a partitioned or hierarchical scheme, many of
the best benefits of various popular recursive subdivisioning techniques (e.g. Octrees, Kd-Trees)
can still be obtained (Chapter 5).

The main trade-off between a mixture-based structure and something like an Octree/Kd-
Tree is that construction isn’t as trivial as repeated numerical comparison of 3D coordinates,
but instead typically involves solving a maximum likelihood optimization problem. However,
as we show in Chapter 3, this construction cost can be mitigated by a GPU or FPGA-based
implementation that properly exploits the inherent data parallelism of point clouds.

Other generative Gaussian Mixture-based approaches have been used to accelerate various
point-based perception tasks [43, 59]. The proposed approach in this thesis generalizes them
into a single unified family of models, and shows how this generalization leads to various novel
strategies for organizing mixture-based structures into compact yet statistically descriptive forms.
Compactness, as we will show, is an especially important property for generative point models
as it provides computational tractability and added robustness, and it is this property that most
differentiates our proposed structures over other models discussed in the literature.

This thesis includes an in-depth discussion about the creation of this family of compact,
hierarchical generative models for point cloud data, including their theoretical noise handling
properties, model identifiability, convergence properties, fidelity and model size trade-offs, com-
putational properties, limitations, and fully Bayesian formulation and use of priors. We discuss
how these models relate to other generative models in the literature, including basic models used
to facilitate registration and segmentation and other popular models such as the NDT.

Having established these basic properties, we then show how many common perceptual tasks
can be unified under this single model, positioning it as an essential statistical structure used to
provide common perceptual primitives to each. We demonstrate in this thesis how the following
fundamental applications may be implemented efficiently under this common model: geometric
segmentation (Chapters 3 and 5), registration (Chapter 4), inference and visualization (Chap-
ter 6), and model fusion and mapping (Chapter 7).
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1.2 Thesis Contributions
This thesis offers a broad exploration of a family of compact statistical models for 3D point cloud
data that facilitate and unify several common low level 3D perceptual tasks. Given the model’s
ability to bundle common computational primitives into one coherent, compact statistical world
model, we foresee this work having widespread applicability in domains that utilize 3D range
data but have limited computational resources, which includes domains like autonomous driving,
augmented reality, computational photography, multi-robot mapping, or teleoperative interfaces.
Specifically, this thesis offers the following research contributions:

1. Hierarchical Generative Modeling A set of data-parallel algorithms for creating com-
pact, hierarchical, parametric, and generative point cloud models that can be used to facil-
itate, accelerate, and unify various low to mid-level perceptual tasks in novel ways.

2. 3D Registration A set of novel 6-DoF rigid registration algorithms based on these estab-
lished models, showing robustness to large transformations and noise, and that beat current
state-of-the-art.

3. Context-Aware Registration A novel augmentation to the traditional model-based regis-
tration pipeline is made to encodes sensor intrinsics into the registration process for further
robustness over state-of-the-art.

4. Model Fusion A new algorithm for fusing together different generative representations of
point cloud data over time for building arbitrarily complex models.

5. Sampling and Visualization New stochastic sampling methods for fast inference and sev-
eral methods for 3D visualization.

6. Embedded System and Real-World Performance Testing An embedded, low-power
NVIDIA Tegra based system running the aforementioned algorithms in real-time and
tested on various challenging real-world LIDAR data captures, from structured urban en-
vironments to unstructured outdoor.

1.3 Thesis Outline
The next chapter (Chapter 2) will introduce previous approaches for point cloud data processing
as it pertains to 3D perception and explain how our proposed architecture differs. Chapters 3-7
will cover the in-depth technical details of our model and our contributions in accelerating and
unifying various 3D perception applications.

The full content chapter-by-chapter breaks down as follows:

• Chapter 2 – Background: We cover various historical methods for organizing point cloud
data, including voxel grids, Octrees, and NDTs. We show how our approach of compact
hierarchical and generative modeling differs in its intended use, abilities, and scope.

• Chapter 3 – Data-Parallel Gaussian Mixtures: We introduce the our basic representation
used for point cloud data and an algorithm for efficient data-parallel construction. The
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proposed model can be seen as a lossy compression scheme, allowing dynamic run-time
trade-offs between compression rates and geometric accuracy.

• Chapter 4 – Registration: We show how our proposed representation can aid registration
and how this can be used as a building block for 3D perception algorithms.

• Chapter 5 – Hierarchical Mixture Construction: We introduce a novel method for pro-
ducing generative hierarchies of 3D point cloud data. We show how to recursively form
probabilistic subdivisions of the data through local mixture modeling, and how these sub-
divisions can provide a maximum likelihood segmentations of the data at multiple levels
of detail.

• Chapter 6 – Inference and Visualization: We discuss how to perform parallel sampling
for stochastic inference about occupancy, how to produce voxelized maps, and also how
one may visualize these models as fine-grained isosurface meshes for real-time display on
embedded devices.

• Chapter 7 – Context-Aware Modeling, Fusion and Mapping: A Unified Perception
System: We augment our point cloud models to be able to incorporate known range sensor
properties in order to more robustly register together points to models when the amount of
spatial overlap may be incomplete. We then discuss how to integrate many of the applica-
tions discussed in Chapters 3-6 into a single cohesive perception system.
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Chapter 2

Background – Range Data Representations

The production of a structured data representation from raw sensor information is one of the
cornerstones of robotics, dating as far back as the late 1960’s where Stanford’s Shakey Robot
used a type of Quadtree-like data structure to organize its own internal map [103]. New data
representations have the capacity to enable algorithms and techniques that might have been in-
tractable otherwise, fundamentally reshaping and augmenting a robot’s ability to perceive and
effectively navigate through the world. In order to contend with the noisy and often spurious
data produced by sonar sensors, for example, Moravec, Elfes, and Matthies in the late 1980’s
developed the probabilistic occupancy grid, and used it to enable many new applications and
advances in mapping, navigation, and perception [25, 27, 28, 87, 96].

The choice of data representation is especially important for systems that utilize modern 3D
range sensors. Modern LIDAR, structured light, and time-of-flight systems generate massive
amounts of data on the order of millions of points per second. The high data throughput of
these range sensors makes it extremely difficult if not impossible to perform any kind of complex
computation directly on the raw data while preserving real-time or online operation, yet real-time
computation is often a critical requirement for mobile robotics applications. Many algorithms
therefore simply discard or sub-sample data for computational tractability, even if throwing away
data may potentially waste useful sensor information.

For real-time perception applications, an intermediate data representation only helps if it
can accelerate further data processing enough to offset its own construction cost. However, this
acceleration is often at odds with descriptive fidelity of the original data. Thus, when discussing
models for point cloud data, there is an innate trade-off between the descriptive power of the
model and its space and time complexity.

In the rest of this chapter, we will review various representations that have been used to
model point cloud data for 3D perception and discuss them in terms of their fidelity and com-
plexity trade-offs. We discuss voxel-based structures, parametric models, and hybrid techniques
combining elements of both voxelization and parametric modeling. Finally, we will discuss how
our approach of compact generative modeling fundamentally differs from previous approaches
in its methodology, applicability, and scope.
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2.1 Voxel-Based Representations
A fundamental area of world model research concerns the structure of the basic perceptual prim-
itive. Early work tended to favor an object-based approach, using sparse sets of polyhedra, lines,
and planes as the fundamental building blocks behind world representation (e.g. early topological
maps), but historically these types of approaches have trouble scaling with dense measurements
and unstructured terrain. Voxel grid techniques and other types of discretized metric mapping
approaches, on the other hand, have proven to be an efficient way to rapidly synthesize large
amount of range data, the perceptual primitive in this case being the cell (2D) or voxel (3D).

2.1.1 Dense Voxel Grids
In 1985, Moravec introduced a way to glean more data from range sensors than before by not
only recording the depth return itself but also the empty space leading up to it [93]. In this way,
free space could be seen as being “carved out” by range sensors. By combining a rasterized grid
with a simple Bayesian sensor model for probabilistic occupancy estimation, one could easily
calculate degree-of-belief values for cells indicating whether they were empty or occupied and
update them over time given new sensor data. Given that these methods are easy to implement
and can well handle noisy sensor measurements, Moravec’s probabilistic occupancy grids have
since been used extensively, enabling many advances in range-based navigation, path planning,
and mapping [25, 27, 28, 87, 96].

The transition from 2D cell maps to 3D voxel grids started also around the same time as the
development of probabilistic occupancy maps, but had limited applicability due to the computa-
tional and memory limitations at the time [132]. For dense grids, increasing the dimensionality
from 2D to 3D causes an exponential increase in the number of elements needed to be tracked.
Even now, memory can be a limiting bottleneck for modern algorithms that rely on fine-grained
dense 3D voxel grids [100].

To circumvent the computational limitations of maintaining a fully 3D dense voxel grid,
some applications utilize a degenerate “2.5D” dense representation of range data in the form
of elevation maps or multi-level surface maps [71, 111, 112, 141], or multi-volume occupancy
grids [20, 97]. In all of these methods, some form of height information is stored in each cell of
a 2D rasterized grid. In situations where the world is mostly planar but not necessarily flat (like
sloping ground), or in the case of aerial robots, it becomes very advantageous to be able to model
ground height. In cases where there exist multiple surfaces that might constitute valid ground
(e.g. on and below a bridge), multi-level and multi-volume techniques are able to model these
ambiguities when simple elevation maps cannot. Multi-level surface maps have been augmented
to incorporate sensor uncertainty [115] and also used to facilitate plane detection [114].

Another problematic aspect of dense voxel grids is that the grid extent and voxel size typically
must be statically set before any data acquisition occurs. Given finite memory, there is an inherent
tradeoff therefore between how fine-grained the grid can be as well as how large its extent can be.
In some applications where the environment may be relatively unknown a priori, this introduces
an engineering challenge of needing a certain amount of granularity for the perceptual task at
hand but also needing to set the size of the grid so that the robotic agent cannot leave its bounds.
Toward this end, attempts have been made to make voxel size and grid extent dynamic. On
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the topic of voxel size, some have tried to remove the static voxel size constraint by expanding
voxels dynamically during data collection [29][47]. On the topic of extent, one popular way
to create dynamic extent is by using a dynamically scrolling map, centered around the mobile
agent, where data is placed onto the world frame using modulo arithmetic and timestamps to
differentiate old from new [73][66]. The scrolling voxel grid still has finite extent in this case,
but since the map effectively “moves” with the robot, the robot will never be able to run off the
edge of the map. In both of these cases, however, memory efficiency can still be problematic for
fully dense 3D grid techniques.

2.1.2 Recursive Subdivisioning and Sparse Techniques
Tackling the problem of memory inefficiency for dense grids most often means tackling the prob-
lem of data sparsity. Whether it be through structured light, LIDAR, or sonar, all range sensor
data is collected as point samples from the solid outer layers of solid objects. In this way, point
clouds can only contain samples of a set of sub-dimensional manifolds and thus are naturally
sparse (i.e. range sensors cannot see “inside” volumes, only their surfaces). Even with 2D data,
the vast majority of cells in a grid map will be empty, and this situation is made exponentially
worse with the transition to 3D. Recursive subdivisioning and sparse representations save mem-
ory by not explicitly representing empty space.

Quadtrees

Quadtrees were introduced as a way to effectively compress empty cells in 2D grid maps. Pro-
ducing a Quadtree is a recursive process: every cell is repeatedly split into four smaller child
cells representing the quadrants of its parent. In this way, given a stream of range data points, a
tree can be constructed where the nodes are cells each having four children that represent its four
quadrants and leaves store the fine-grained occupancy information. This representation obviates
the need for shifting or scrolling as new terrain is added because one can simply add more nodes
to an existing tree. Space is conserved by not having to represent large empty spaces as many
densely packed yet empty voxels, but instead empty space is implicitly defined by the absence of
children at a particular node.

Though the early robot “Shakey” used a primitive form of the Quadtree for its internal map
representation in the 1960’s [103], Finkel and Bentley in 1974 were the first to formally define
the modern Quadtree structure [34]. Samet further elaborated on these structures a few years
later [124] and would go on to publish many other works in the area of spatial data structures,
including an early survey as well as several textbooks [125, 126, 127, 128]. Quadtrees have been
used for collision-free path planning [64], compact probabilistic occupancy grids [68], in con-
junction with potential fields techniques [109], and augmented to accelerate range queries [31].

Octrees and K-d Trees

Octrees are the 3D analog of quadtrees. Given three dimensions, Octrees split in eight ways
(octants) at each node. Octrees have a rich history in both computer graphics and robotics since
they were introduced. In 1980, Moravec proposed Octrees for 3D computer graphics in order to
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compute Fast Fourier Transforms for illumination calculations [94, 95]. Its uses for geometric
modeling [88] and the important robotics-related problem of generating models from succes-
sive range scans [16] were explored throughout the 1980’s. Applications of Octrees can be seen
in path planning [67], collision detection [62], and 3D navigation [110, 148]. More recently,
researchers have focused on using statistical techniques in conjunction with Octrees, including
coding [54], optimization to searches [9], and approximations for efficient rendering [1]. Octrees
have also proven to be highly compressible [8, 46, 91, 129]. A modern open-source implemen-
tation of an Octree for probabilistic occupancy mapping can be found in [153].

K-d trees are similar to Quadtrees and Octrees in that they use recursive subdivisions in order
to compress empty space, but instead of using a regular splitting criteria, the splits occur as
branches on a binary tree and are calculated relative to a space splitting hyperplane derived from
the parent along a chosen dimension. Using this process recursively, one can construct a tree
that successively splits space into voxels of different sizes. Compared to Octrees, K-d trees have
received less attention in the robotics community due to their slower insertions, but they can be
highly optimized for range search and ray tracing [55] and have been utilized for SLAM [105]
and terrain modeling [147].

Sparse Voxel Techniques

Due to the extreme sparsity of occupied voxels in 3D environments, it sometimes becomes more
efficient to simply store only the occupied voxels as a hashed voxel list. Ryde and Hu propose this
construction, keeping around any voxel with a more than 0.5 probability of being occupied [120].
In comparison to traditional occupancy grids, ray tracing is not done until the path planning
phase, where rays are reconstructed from stored poses. Sparse voxel techniques also appear in the
context of 3D terrain classification [146] and more recently for online 3D reconstruction [102].
We use these techniques as well as a way to implement a fast Marching Cubes method for 3D
visualization in Chapter 6.

2.2 Parametric Point Cloud Models
Unfortunately, discretizing the world in the form of a voxel-based representation comes at a cost.
High spatial frequencies in a scene can be hidden through aliasing and smoothly sloping geome-
try can appear stair-like. The choice of base voxel size also prevents any type of geometric-based
object recognition for small objects approaching the size of a single voxel. Decreasing the voxel
size, however, increases computational and memory demands. Discrete representations also offer
challenges when using numerical optimization methods. It is often the case that one might want
to utilize continuous spatial gradients, for example, in order to perform 3D registration, but dis-
crete representations of spatial data can render continuous optimization techniques impractical
or impossible.

Many researchers therefore have been attracted to the idea of using a continuous parametric
model to describe the original point cloud data instead of using voxels. If geometric information
can be encoded into a continuous and differentiable parametric model, efficient transformations
and gradient calculations may be performed over 3D space. Significant space savings can also be
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attained by representing large amounts of point data as a compact set of descriptive parameters.
However, it is not clear how to build an explicit or implicit parametrization of point cloud into a
compact form that provides robust, continuous point estimates.

2.2.1 Planar Models
Many environments, especially those indoors, are composed of mostly rectilinear or planar struc-
tures. In these scenarios, it can be advantageous to use a parametric planar object as the basic
geometric primitive for perception. Research on this topic first started appearing in the late
1990’s [37, 151]. Under this paradigm, the task of point cloud registration, for example, changes
to the task of first decomposing the environment into a set of planes and then finding the best
transformation of a new set of points onto the set of planes [77, 86, 137]. Various methods have
been developed to decompose range data into a set of planes. Plane fitting under the Octree
paradigm is discussed in [149]. Multiscale approaches are given in [107, 108]. Tseng et al.
discuss the problem of growing planes from regions [155].

Of particular interest are techniques using the Expectation Maximization (EM) algorithm [18]
to generate low complexity planar models of indoor environments [48, 76, 137, 139]. These
EM-derived models reduce the variance of the data, thereby also reducing the effects of noisy
measurements, a characteristic that is shared by our proposed models. Planar modeling can be
improved using multiple rounds of EM, and can be used to robustly find planes and the main nor-
mal directions for rectilinear environments [140]. Though well-suited for some types of indoor
environments, planar-based world models may prove too restrictive in cases where clutter, occlu-
sion, lack of structure, or non-uniform sampling predominate the scene; a richer representation
is often required for more unstructured types of environments.

Though we also use EM as our main method for model construction, our proposed model
uses the full 3D anisotropic Gaussian as its main basis function instead of planes. This formu-
lation still retains the ability to geometrically describe highly planar surfaces if one allows the
Gaussian to become degenerate in one dimension during model creation. The fully anisotropic
3D Gaussian, however, can well-describe non-planar pieces of scene geometry as well, providing
a richer set of representational types.

2.2.2 Generative Models
Another class of models view the data as a set of independently and identically distributed (iid)
samples from some unknown latent distribution [56]. These statistical algorithms use the princi-
ple of maximum data likelihood to optimize a set of latent parameters that describe the original
data. By jointly describing the probability of the entire 3D space, these generative models can
make use of a fully Bayesian paradigm for data collection and updating state beliefs. These
models often suffer from high construction costs, however, and may require a lot of a priori
knowledge about the model’s structure and the nature of the surrounding physical environment.

For modeling 3D point cloud data, the most common generative model used in the literature
is the Gaussian Mixture Model (GMM). Most notably, GMMs have been used successfully to
facilitate robust point cloud registration techniques [5, 21, 23, 32, 60], which we will cover in
detail in Chapter 4. The work of Jian and Vemuri [60], for example, convert a point cloud into a
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GMM by placing a covariance around each point. Though this minimizes the model construction
cost, inference then becomes very slow as the GMM is more complex than the original raw
points. In contrast to these methods, our proposed hierarchical technique is exponentially faster
with respect to the size of the model. A “flat” version must iterate linearly O(J) through all J
mixtures, whereas our method is O(log J). Furthermore, we do not need to specify the number
of mixtures a priori. Our coarse-to-fine construction allows us to both filter out low-frequency
details quickly (floors and walls) and drill down to deeper levels for high-frequency details.

Other work has experimented with hierarchical forms of GMMs for applications like 2D
image segmentation [36]. Typically, these methods operate bottom-up, repeatedly grouping to-
gether like clusters of points using divergence measures to split and merge the data. For example,
Goldberger et al [41] construct an iterative EM-like algorithm using KL-Divergence in order to
repeatedly merge candidate clusters. In contrast, we adopt a top-down hierarchical approach,
motivated by the need to keep the calculation of point-mixture correspondences sparse for 3D
point clustering. As such, our approach is more amenable to parallel hardware and is much more
computationally efficient.

2.2.3 Normal Distance Transforms

Normal Distance Transform (NDT) methods first discretize the point cloud into voxels and then
compute Gaussian distribution parameters for each voxel by simply recording the mean and
covariance of all points that fall into it [5, 123]. As such, these family of methods can be seen
as a “hybrid approach” to both voxel-based methods and parametric methods. Given that each
voxel now contains a probabilistic interpretation of a point falling into it, the likelihood has a
well-defined gradient and the optimization over the rigid transformation can be more robust than
methods that operate directly over raw points. In fact, a GMM can then be constructed as a
weighted sum of the voxel’s respective Gaussian parameters. As opposed to point-based GMM
constructions, the NDT is a voxel-based GMM construction and thus can provide large time
savings, which is especially important for many time-critical applications. Imposing a voxel grid
presents the same technical issues and computational limitations as before, however, since the
grid boundaries may lie across objects, and small grid sizes produce large amounts of parameters.

Building off the work of [4, 6] for Normal Distance Transforms (NDT), a 3D-NDT method
for registration was introduced, and later further refined in [133, 134]. The 3D-NDT shares
similarities to our proposed work in that it first establishes a compact model from the data that
is then operated over for the purpose of registration. In contrast to our work on registration,
however, they do not employ EM, but instead use the voxel occupation of the projected scene or
Euclidean distance to voxels to establish correspondence. However, the NDT methods use only
an approximation to the true likelihood (sum instead of product) so that the derivatives are easy
to calculate, but in contrast we use the EM algorithm and latent correspondences to factorize the
joint likelihood completely so that simple closed form solutions may be used.
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2.3 A Comparison of our Proposed Method
Our proposed model is novel in its scope and applicability. Many generative models discussed
in the literature for point cloud data are “one-off” implementations, where the data model is
inextricably linked to a specific algorithm and thus not generalizable across a wide range of
perception operations. In contrast, we seek to provide a set of compact generative models that
are flexible enough to be suitable for many common operations in 3D perception. Indeed, the
hierarchical variant of our model generalizes the NDT under certain assumptions. We will give
many examples of this generalizability in subsequent chapters.

Similar to an Octree, one can view our proposed model also as a type of 3D hierarchical
spatial decomposition. However, instead of voxels and recursive regular subdivisioning, as in
the case of an Octree, we use a hierarchy of soft probabilistic boundaries defined by a series of
maximum data likelihood optimization processes. Thus, like an Octree, we produce a structure
that has logarithmic spatial access time but does not have the problem of discretization artifacts.
Furthermore, the compact and parametric structure of our model provides potentially large space
and time savings when trying to operate over the data for common perception applications.

Our proposed method does have several trade-offs over other established structures for 3D
point cloud data. In order to obtain the benefits of hierarchical mixture modeling, such as higher
fidelity and compact size, we must solve many small EM-based optimization problems. Our
proposed model’s primary trade-off therefore is in its potentially burdensome construction time.
We attempt to mitigate this cost, however, by exploiting point cloud data parallelism as much
as possible and designing these models almost exclusively for highly parallel hardware such as
FPGAs or GPUs. Toward this end, we borrow from ideas from data parallel adaptations of EM
over high dimensional data used in the Machine Learning community [70, 83], but modify these
algorithms to be more efficient and well-suited for the problem of 3D point cloud parametrization
and segmentation, where our data contains vastly many more points than dimensions and where
the sensor capture properties are well-understood and can be used to augment our methods further
(see Chapter 7).
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Chapter 3

Data-Parallel Gaussian Mixtures

In this chapter, we will introduce the basic underlying point cloud model that we will use and
further augment throughout the rest of this thesis.

3.1 Model Construction

Our goal for model construction is to transform the raw 3D points coming from the sensor into a
parametric form that conveys higher level statistical geometric entities. A suitable model not only
reduces the amount of data needed to describe the world, but it also provides a more tractable
statistical representation for perception tasks.

Given that we have an unknown world model, Θ, and a set of N point samples of surfaces,
Z = {zi = (xi, yi, zi)

T}, we would like to find the most likely Θ that “explains” Z . That is, we
wish to find a collection of parameters Θ̂ such that

Θ̂ = argmax
Θ

p(Z|Θ) (3.1)

We choose to parametrize Θ by a convex combination of J probability distribution functions,
or mixtures. This basic formulation will form the common element for all subsequent models.
Using the mixture model, each individual point in the point cloud, zi, has a probability defined
by

p(zi|Θ) =
J∑
j=1

πjp(zi|Θj) (3.2)

where πj represents our mixing weights and
∑J

j=1 πj = 1.
The total probability of a point cloud is then the product of the individual point probabilities,

given that each point is an iid sample of the world.

p(Z|Θ) =
N∏
i=1

p(zi|Θ) =
N∏
i=1

J∑
j=1

πjp(zi|Θj) (3.3)
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Using this model, we can re-interpret the point cloud data (PCD) as a sampling of N points
generated from J distinct probability distributions, with prior sampling probabilities given by
πj . If we parametrize each function by a small set of parameters and constrain J to be small
(J � N ), we can compress the possibly millions of raw 3D points into a collection of easily
storable functions that describe the spatial characteristics of the original cloud.

Unfortunately, calculating the optimal world model directly from the data is intractable. If
we wish to maximize data likelihood, the common strategy is to first transform the total data
likelihood product into a sum by taking its logarithm. However, if we look at the log likelihood,

ln p(Z|Θ) =
N∑
i=1

ln
J∑
j=1

πjp(zi|Θj) (3.4)

we see a sum inside the logarithm due to the mixture formulation, which in general we cannot
solve analytically for each component Θj .

To produce a tractable likelihood function, we need to introduce a NxJ set of binary cor-
respondence variables C = {cij} for each point-mixture component combination {zi,Θj} that
serve as labels for the mixture component to which the point belongs. In other words, each point
zi will have J correspondence variables with values 0 or 1, where 1 means “belongs to this mix-
ture” and 0 means “does not belong to this mixture.” Then we can represent the inner sum as a
product of terms with binary exponentials and thus completely factorize the log likelihood,

ln p(Z, C|Θ) =
N∑
i=1

J∑
j=1

cij {ln πj + ln p(zi|Θj)} (3.5)

We still can’t solve this factored form because we don’t know C. However, if we somehow
did know the correspondence variable cij for each zi, we could easily maximize this joint like-
lihood by setting Θj to the sample mean and sample covariance of all points for which cij = 1.
Alternatively, if we knew Θ, we could easily find the probability of a point’s correspondence
with a particular mixture component using Bayes’ rule and calculating,

p(cij|zi,Θ) =
p(zi|cij,Θj)p(cij|Θj)

p(zi|Θ)
(3.6)

=
πjp(zi|Θj)∑J
j′ πj′p(zi|Θj′)

(3.7)

To summarize the above equation, the probability that a certain point zi belongs to the jth
mixture component is the data probability of that mixture component having generated the point
normalized by the total point probability given all other mixture components. Also note that in
the expression above, p(zi|Θ) can be seen as a marginalization over mixture components of the
joint distribution p(zi, ci|Θ) where p(cij|Θj) = πj and thus p(zi|Θ) =

∑
j p(cij|Θj)p(zi|cij,Θj).

Since we do not know the correspondence labels C, nor do we know the model parameters
Θ, we can use the Expectation Maximization (EM) algorithm [18] to iteratively estimate both
the labels and cluster parameters alternately with the following two steps:
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E Step: calculate the expected values of C given Θold:

E[cij] =
πoldj p(zi|Θold

j )∑J
j′ π

old
j′ p(zi|Θ

old
j′ )

(3.8)

M Step: maximize the expected log-likelihood with respect to Θ using fixed point-to-
component associations by holding E[cij]

def
= γij as constants:

Θnew = argmax
Θ

∑
ij

γij{ln πj + ln p(zi|Θj)} (3.9)

We iteratively hold E[C] as a constant and optimize over Θ and then hold Θ as a constant and
optimize over E[C]. This procedure is guaranteed to converge and will lead to a local maximum
data log likelihood in the parameter space over Θ.

3.2 Gaussian Mixtures
In our world model, we assume that the PCD has been generated by a discrete set of 3D Gaus-
sians, producing a Gaussian Mixture Model (GMM). Thus, given a set of J 3D Gaussians with
Θ = {Θj = (πj, µj,Σj)}, our function describing the likelihood of a point is a linear combina-
tion of Gaussians,

p(zi|Θ) =
∑
j

πjN (zi|Θj) (3.10)

where
∑

j πj = 1 and N (·) is the multivariate (3D) Gaussian probability distribution.
Each Gaussian has nine free parameters representing its mean (three) and covariance (six,

due to symmetry). If we wish to produce a compact model, therefore, we must therefore restrict
our parameters such that J � 1

9
N . As we will show later in this proposal, due to the descriptive

nature of the Gaussian and the non-randomness of point cloud data, this restriction is easily
obtained while allowing very high model fidelity.

3.3 EM Parallelization for GMMs
Framing the model construction as a Gaussian mixture segmentation problem over point cloud
data offers several benefits. The EM algorithm is nicely parallelizable due to the relative lack of
interactions among points, low-dimensional parameter space, and mismatch in size of data points
compared to model parameters. Additionally, whereas many segmentation algorithms must rely
on nearest neighbor calculations at some point (e.g. region growing) or operations over local
neighborhoods, each point in the point cloud for EM segmentation needs to compare itself to
one of only a few cluster parameters. Thus, we do not need to impose any special spatial data
structure like Octrees to be able to quickly calculate nearest neighbors. The only interaction
among the points comes during the calculation of the normalization terms of the M step, which
is the sum of the expectations of the correspondence variable.
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In the M step on the kth iteration, we calculate

µnewj =

∑
i γijzi∑
i γij

(3.11)

Σnew
j =

∑
i γij(zi − µnewj )(zi − µnewj )T∑

i γij
(3.12)

πnewj =
∑
i

γij
N

(3.13)

Note that we can remove the dependence on µnewj when calculating the bulk of Σnew
j by

rewriting as

Σnew
j =

∑
i γijziz

T
i∑

i γij
−
µnewj µnewj

T∑
i γij

(3.14)

This shows us that the following quantities constitute the sufficient statistics for our segmen-
tation:

1.
∑

i γijziz
T
i , for all j = 1..J (6J numbers)

2.
∑

i γijzi, for all j = 1..J (3J numbers)

3.
∑

i γij , for all j = 1..J (J numbers)

The calculation of the above three quantities requires:

1. Calculation of each γij .

2. A weighted sum over all first and second moments.

The former requires information about all J mixtures but no shared information among points.
The latter requires sharing data over all N points but no data is needed from the J surfaces once
γij are calculated. Thus, we can use point level parallelism in calculating γij and mixture level
parallelism to calculate the weighted moment sums.

Past work from the machine learning community has looked at data parallel algorithms for
EM to find GMM parameters, but were tailored toward specific high dimensional machine learn-
ing applications [70] [83]. Our application of point cloud data segmentation differs in scope in
that we deal strictly with 3D geometric point data. Our application therefore operates under a
different set of design considerations:

1. We can afford a certain representational richness that would otherwise be computationally
intractable in high dimensional scenarios.

2. We can devote our parallelization efforts toward point-level parallelism as this is where the
bulk of the work lies.

Given the former consideration, unlike other work, we do not restrict our covariances to be
spherical or axis-aligned elliptical, allowing non-zeros on the non-diagonal. In our particular ap-
plication we need the set of Gaussians to correspond with real 3D objects, and these objects will
often not align nicely along the principle axes. Thus, we calculate the full 3D covariance matrix
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for our application, where in previous work it was assumed that inverting a high dimensional ma-
trix for the expectation calculation would be prohibitively expensive if the matrix is non-sparse.
For the latter consideration, we can tailor our algorithms solely toward point-level parallelism
given that the feature space is so small. Any optimization toward removing point-level data in-
teractions will thus have large consequences in terms of speed, and so this is something we focus
on when implementing these algorithms on the GPU.
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Chapter 4

Registration

The first application we will show can be accelerated by our proposed model is point cloud
registration. Registration of point cloud data, or estimation of the relative pose between two point
clouds, forms the basis of many algorithms in 3D vision applications such as object matching,
SLAM, body/head pose estimation, medical imaging, and environment reconstruction.

In this Chapter, we establish several techniques to quickly and robustly register point clouds
together using the mixture model formulated in Chapter 3. The mixture representation sidesteps
the costly problem of matching points to points since incoming data only need to be compared
with the mixtures. The chosen parametrization of the mixtures (as Gaussians) leads to a smooth
data likelihood function with a well-defined gradient as well as a closed form MLE approxi-
mation under latent correspondences. This representation thus forms the basis for three novel
registration algorithms:

1. REM-Seg (Robust EM Segmentation): Parallelized gradient descent combined with an an-
nealing method to find the 6-DOF rigid transformation between the incoming point cloud
and an augmented Gaussian Mixture Model. Of the three, most robust to large displace-
ments, but relatively slow.

2. MLMD (Maximum Likelihood Mixture Decoupling): Uses the same augmented mixture
model as REM-Seg but instead solves the registration problem as an approximate Expec-
tation Maximization algorithm. Fast and robust to large displacements.

3. MDME (Mixture Decoupled Mahalanobis Estimation): Uses the same approximate EM
algorithm of MLMD, but instead uses covariance eigendecomposition to reframe its opti-
mization as an efficient weighted point-to-plane minimization. Fastest and most accurate,
but only if initial displacement is not too large.

All three variants are novel statistical algorithms enabled by generative point cloud modeling
that provide fast, compact, and accurate solutions for 3D PCD registration.

We build on the idea of using Gaussian Mixtures to represent point clouds and provide sev-
eral methods to find our registration solution. However, in contrast to previous work connecting
Gaussian Mixtures to point cloud registration, we position the model construction as an addi-
tional optimization step before the actual registration occurs to decouple the mixtures from the
points (“mixture decoupling”). This reduces the computational and representational cost of our
methods.
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At the same time, we estimate non-uniform mixture weights and anisotropic covariances,
according to the principle of maximum data likelihood. This is also in contrast to previous tech-
niques that utilize per-point Gaussians, uniformly weight each mixture, and restrict covariances
to be the same isotropic value per point, which we show to be ill-posed in the case of range data
exhibiting high degrees of anisotropic uncertainty.

We show how producing compact mixture model facilitates both faster and more robust reg-
istration by first optimizing over the mixture parameters (decoupling the mixture weights, means,
and covariances from the points) before optimizing over the 6DOF registration parameters. We
test these algorithms against other GPU-accelerated registration algorithms on simulated and
real data and show that the described methods scale well to large numbers of points, have a wide
range of convergence, and are suitably accurate for 3D registration.

4.1 Previous Approaches
Two broad categories of point cloud registration algorithms exist: those that do direct point-to-
point or point-to-local-surface matching, and those that utilize some type of statistical model.
The former category includes the widely used Iterative Closest Point (ICP) algorithm [3, 11],
and the latter includes registration algorithms based on Gaussian Mixture Models (GMM) [59]
or Normal Distance Transforms (NDT) [134].

4.1.1 Iterative Closest Point
Iterative Closest Point is an iterative procedure that cycles between trying to find correspon-
dences from one cloud (or mesh) to the other, and minimizing the summed distance between all
previously established correspondences under a set of transformation parameters. Since the cor-
respondences may not be correct, the algorithm iterates between matching and minimizing, with
the hope that successive iterations will provide more and more accurate correspondences and
therefore the minimization of the summed distance will provide the correct pose displacement.

The basic steps of ICP are as follows, which are repeated until convergence:

1. Sample points from each cloud (or use entire cloud)

2. For each point in a given cloud, find a corresponding point (e.g. via minimum Euclidean
distance)

3. Assign weights to the correspondences

4. Reject outlier pairs

5. Apply an error metric to the current transform (e.g. sum of squared error)

6. Use an optimization technique to minimize the error metric (e.g. SVD, gradient descent,
Newton’s method, etc.)

ICP is the de facto standard for many registration applications, but can easily succumb to
misalignment when point matching between clouds is inappropriate, for example, if two surfaces
are sampled very differently or there is a large transformation between clouds. ICP is somewhat
ill-posed given the fact that each point cloud consists of non-uniform point samples and thus
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a given point is very unlikely to have an exact corresponding point in the other point cloud.
Furthermore, if outliers are not properly caught and discarded, then trying to minimize outliers
using the squared distance will not be robust and can cause the algorithm to diverge. Thus, the
original ICP algorithms tend to converge poorly when subjected to severe noise and large pose
displacements without a good initial estimate.

Since the advent of ICP in 1992, there have been hundreds of papers published on the topic
of point cloud registration. To make the ICP algorithm robust to noise, outliers, and sampling
differences, many variants of the classic ICP algorithm have been introduced over the last decade
to boost both its robustness and computational characteristics [116] [92]. For computational
improvement, most modifications focus on circumventing the expensive nearest neighbor step
during the matching step. Some effective advancements toward this goal include the use of
Octrees for approximate nearest neighbor calculations or fast projections [116].

For improvements in robustness, many approaches have tried to eschew point-to-point squared-
distance metrics matching in favor of methods that offer robust estimators or perform projective
or point-to-plane matching. Some notable works include point to quadratic surface approxi-
mations [92] and robust M-Estimators for Euclidean distance solved by Levenberg-Marquadt
optimization [35].

All these enhancements can add to the complexity of the original method, and often offer
severe tradeoffs between robustness and speed. Whereas the original point-to-point formulation
is guaranteed to converge, correspondence weighting and projective or point-to-plane matching
can cause divergence, especially in cases of large pose displacement. Extensions to the mini-
mization step as an M-Estimator are often very expensive to calculate, as opposed to the least
squares Euclidean distance, which can be solved in closed form for rigid transformations using
Horn’s method [52]. Furthermore, there are many cases where range images are not available
(unstructured LIDAR output), making techniques like projective matching and neighborhood-
based normal calculations very expensive.

4.1.2 Statistical Algorithms
The Softassign algorithm [40] was the first in a new class of methods that framed ICP into a
statistical framework. Developed as an effort to replace the ad hoc procedure of correspondence
matching and distance minimization with a theoretical footing in statistics, algorithms in this
class are derived from general assumptions about the nature of point clouds, their underlying
noise properties, and how the minimization step relates to some type of energy function or prob-
abilistic estimate. Thus, these methods facilitate robust outlier rejection, proofs of convergence,
and various continuous optimization procedures with differentiable objective functions.

Under a statistical framework, the iteration of correspondences and minimization of summed
distances can be seen as a type of Expectation Maximization (EM) procedure [18]. By establish-
ing the connection between ICP’s point matching step with calculating expectations over latent
correspondence variables (E Step), and ICP’s distance minimization step with the maximization
of some bound on the data likelihood (M Step), many of the EM-based formulations actually
generalize back to ICP under various basic statistical assumptions about the input data [43, 130].
Additionally, if each point is given a Gaussian noise parameter, the total point cloud can be inter-
preted as a type of Gaussian Mixture Model (GMM). Thus, most robust registration techniques
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explicitly utilize a GMM representation for point cloud data (PCD) to derive claims and proofs
about robustness and convergence [14, 33, 43, 51, 98]. Unfortunately, these algorithms tend to
be much more complex than ICP, and their robustness often comes at a high computational and
representational cost.

Softassign used a simulated annealing scheme borrowed from statistical physics to add ad-
ditional robustness. Shortly afterwards Mixture Points Matching (MPM) [14] and EM-ICP [43]
derived multiple links from Gaussian noise assumptions. Both authors noted how point sets with
Gaussian noise were equivalent to a Gaussian Mixtures if each point was interpreted as being
generated by some Gaussian with a set isotropic covariance. Thus, the probability measure of
another point cloud having been generated by the same Gaussian Mixture set is well-defined and
its rigid transformation can be solved in closed form for isotropic covariances. Also, using an-
nealing for robustness, these methods established the process of interpreting PCD as a Gaussian
Mixture with each point representing a mixture mean with an associated (isotropic) covariance.
It should be noted that, similar to our work, EM-ICP also recognized the inherent scalability
problems of point-level GMMs and thus devised a very primitive form of mixture decoupling
using a sphere decimation technique.

Tsin and Kanade derived a correlation-based approach called Kernel Correlation (KC) [142],
followed by Jian and Vemuri with GMMReg [57, 59]. The latter method minimizes GMM-
to-GMM L2 distance, a metric that is heavily related to Tsin and Kanade’s correlation-based
approach. Instead of utilizing an EM-based framework, however, these methods directly opti-
mize over a cost function containing all N2 point pairs. Since there is no explicit correspondence
step (as in EM), these methods have difficulty scaling. Tsin and Kanade attempted to get around
the scalability problems by numerical differentiation over grids, while GMMReg is restricted to
small or subsampled point sets. Maintaining all point-point correspondences, however, results in
a very robust algorithm since Gaussian point-pair “distances” act as robust loss functions.

Later, the Coherent Point Drift (CPD) [98, 99] algorithm was introduced as a method similar
to EM-ICP, having both explicit E and M Steps, but with the addition of isotropic covariance
estimation into the M Step in lieu of the annealing technique used by SoftAssign, MPM, EM-ICP,
and GMMReg. ECMPR [51] would later extend CPD’s covariance estimation to fully anisotropic
covariances, solving the optimization via Expectation Conditional Maximization or ECM [90],
an EM-like framework that performs several M-Steps in succession after each E Step, holding
all parameters but the variable to be optimized constant.

Like CPD and ECMPR, Generalized ICP (G-ICP) [130] extended ICP to include covariance
estimation. Functioning as a bridge between methods like ICP and EM-ICP, G-ICP uses the
nearest neighbor criterion of ICP along with a generalized M Step that, depending on the choice
of the type of covariance estimation, behaves like point-to-point ICP, point-to-plane ICP, or a
plane-to-plane ICP. However, instead of incorporating covariance estimation into their M Step,
they estimated it separately by looking at local (20-nn) neighborhoods around each point.

Building off the work of [4, 6] for Normal Distance Transforms (NDT), a 3D-NDT method
for registration was introduced, and later further refined in [133, 134]. Similar to G-ICP’s data-
driven covariance estimation apart from the registration optimization itself, the NDT is a way to
produce a smaller set of means and covariances through voxelization. Instead of neighborhoods
around each point producing a covariance estimate, as in G-ICP, NDT methods simply voxelize
and then record the mean and covariance of points that fall within that voxel. As opposed to point-
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based GMM constructions, the NDT is a voxel-based GMM construction and thus can provide
large time savings, which is especially important for many time-critical applications. The 3D-
NDT shares similarities to our proposed work in that it first establishes a compact model from the
data that is then operated over for the purpose of registration. In contrast to our work, however,
they do not employ EM, but instead use the voxel occupation of the projected scene or Euclidean
distance to voxels to establish correspondence (most versions therefore are singly linked, though
[134] uses the 4-nearest neighbors), and then the implicit M-Step is solved through Newton’s
method over a modified GMM-to-GMM L2 distance. Thus, one can then interpret the 3D-NDT
methods in terms of a GMMReg variant that first performs a type of mixture decoupling through
voxelization.

More recently, JRMPC [33] decouples the means from the points and does so without resort-
ing to voxelization like the NDT methods. However, it uses a much larger number of isotropic
mixtures (J=0.6N). JRMPC finds the GMM jointly from all available data in batch, interleav-
ing the optimization of the model with the calculation of the transformation parameters under
an ECM framework. In contrast, we perform the optimization of the model to completion first
before recovering the pose transformation. We view our construction to be more robust since,
before the geometry has been fully defined, the transformation calculation could be ill-posed.
Furthermore, JRMPC’s lack of anisotropy precludes compactness, a necessary component for
scalability.

Refer to Table 4.1 for a short breakdown of the differences between these related works and
the registration algorithms detailed in this Chapter (REM-Seg, MLMD, MDME).

4.2 Gaussian Mixture-Based Approaches
Our approach distinctly differs from previous approaches in that we first build a rich and com-
pact point cloud model upon which we perform our optimization. To explain this difference in
detail, we will first explain how previous work has approached the modeling problem, and then
introduce our contrasting approach (“Mixture Decoupling”).

4.2.1 Traditional Approaches
For most traditional GMM-based methods, given a point cloud with N points zi ∈ R3, the
probability of an arbitrary point in space x ∈ R3 is defined to be,

p(x) =
1

N

N∑
i=1

N (x|zi, σ2I) (4.1)

where N (x|zi, σ2I) is the multivariate Gaussian with mean and covariance {zi, σ2I}. Thus, the
means are the point locations of the modeled point cloud, and all covariances are controlled
by a single isotropic bandwidth parameter, σ2. Implicit in this construction is that the mixture
vector, πi is uniformly constant for every point (πi = 1

N
). In other words, if each point has

Gaussian uncertainty, then the collection of these points as a PDF (the linear combination of
their individual Gaussian PDF’s) forms a GMM. The GMM, being a continuous and valid PDF,
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Method Year
Multiply
Linked

Probabilistic
Correspondences

Covariance
Estimation Anistropic Compact

ICP [3] 1992
SoftAssign [40] 1998 X X
MPM [14] 2000 X X
EM-ICP [43] 2002 X X
KC [142] 2004 X
GMMReg [57] 2005 X
CPD [99] 2006 X X X
3D-NDT [85] 2007 X X X
G-ICP [130] 2009 X X
ECMPR [51] 2011 X X X X
NDT-D2D [133] 2012 X X X X
JRMPC [33] 2014 X X X
REM-Seg [24] - X X X X
MLMD [22] - X X X X X
MDME - X X X X X

Table 4.1: A Comparison of Probabilistic Registration Methods.
Multiply Linked: many-to-one or many-to-many correspondences (robustness under non-uniform
sampling)
Probabilistic Correspondences: fully probabilistic correspondences or not (as opposed to kernel-
based or nearest neighbor approaches). Allows for application of EM, GEM, or ECM.
Covariance Estimation: Improves convergence as opposed to statically set covariances or simu-
lated annealing methods.
Anisotropic: non-spherically shaped mixture covariance. Most earlier methods restrict covari-
ances to be uniformly isotropic across all mixtures. This improves robustness through better
local shape alignment.
Compactness: Given PCD of size N , compact models are those that have a number of mixtures
J � N . This addresses scalability problems with point-based GMM representations.
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thus forms the foundation for robust probability estimates, noise handling, and EM-based energy
minimization or likelihood maximization methods for registration.

Though registration algorithms designed around the GMM/EM concept have been estab-
lished in the literature to be much more robust than ICP [43], ICP still remains the industry stan-
dard for 3D PCD alignment in vision algorithms due to its simplicity and speed. One problem-
atic aspect of existing GMM/EM registration methods stems from the choice of representation.
Though it is theoretically desirable to assign a covariance around each point, this representation
is now much more complex than the original point cloud and now has a number of means equal
to the number of points. Furthermore, point-based GMM approaches operate under the assump-
tion that each point should have a corresponding point (match) in the other cloud, when, in fact,
sampling differences make this unlikely. The fundamental assumption that a point is generated
by a single Gaussian source doesn’t actually correspond to the reality of non-uniformly scanned
geometry, which is that points belong to surfaces, not other points.

Intuitively, it should be noted that point samples representing pieces of the same local ge-
ometry could be compressed into smaller clusters, with the local geometry encoded inside the
covariance of that cluster. Thus, if the point cloud is of size N , it is possible to adequately
describe it by a smaller set of J means and covariances.

4.2.2 Our Approach: Mixture Decoupling
The former discussion motivates the need to add a preprocessing step by first finding a com-
pact but representative model before attempting to establish correspondences or minimize log-
likelihood. This is because, in terms of computation, the complexity of EM is dependent on the
size of the model. Furthermore, the accuracy and descriptive power of the model directly affects
the convergence rate and robustness of the algorithm. Therefore, we propose to optimize with
respect to the representation first for the express purpose of aiding registration.

We do this by modifying the normal EM procedure to first maximize the model data over the
set of all possible GMMs of a given size J , denoted as Θ, without restriction to the structure
of the covariance, the placement of the means, and the mixture weighting. Given point clouds
Z1,Z2 and some unknown transformation T (·) representing the spatial relationship between
them, this forms a two-step optimization problem for the form,

Step 1: Θ̂ = argmax
Θ

p(Z1|Θ) (4.2)

Step 2: T̂ = argmax
T

p(T (Z2)|Θ̂) (4.3)

After mixture decoupling (Eq. 4.2-Step 1), we end up with a more descriptive, compact repre-
sentation of the original data. Though this preprocessing step does not come for free (unlike the
traditional approaches described in Section 4.2), as long as the model is sufficiently compact and
well-suited to the data, the entire process can actually be sped up considerably. Fig. 4.1 shows
this situation pictorially. If each point cloud is of size N , a typical GMM/EM registration algo-
rithm will contain N2 potential connections and thus scale poorly. If we first compress our cloud
to size J , where J � N , then we have two different optimization procedures of size NJ . Given
that J � N , we will be able to produce a method that is much more efficient overall (O(N2) to
O(N)).
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Figure 4.1: Mixture Decoupling Left: Given two similarly sized point clouds of size N , point-
based GMMs produce N2 potential matches. Right: Decoupling points from mixtures into a
smaller, more descriptive set of latent Θ produces two separate procedures of size O(JN). If
J � N , this effectively linearizes the registration process with respect to N .

Chapter 3 discussed in detail a highly efficient way to perform mixture decoupling by lever-
aging data parallelism. We can utilize these algorithms to quickly transform a point cloud into
a set of parametric probabilistic functions so that the spatial representation of surfaces can be
continuous and parametrically sparse.

Thus, registration as a two-step optimization problem (Eq. 4.2 and 4.3) then involves tak-
ing the representation described in Chapter 3 and using it to find the most likely rigid spatial
transformation given a new set of range data representing the same scene.

In the rest of this chapter, we will detail three different methods that utilize the models of
Chapter 3 to efficiently and robustly register together new sets of point cloud data. Each of the
three methods uses the model described in Chapter 3 to solve Step 1 (Eq. 4.2), but vary widely
in their approach for how Step 2 (Eq. 4.3) is solved.

We briefly discuss the differences in how Step 2 is solved below:

1. REM-Seg [24] relies on parallelized gradient descent, bounded expectations, line search,
and simulated annealing. It is the most robust to large displacements, but is the hardest to
scale to real-time speeds.

2. MLMD [22] unifies model creation and registration using an augmented two-step EM
procedure. MLMD approximates isotropic covariances in its M-Step, giving an efficient
closed form minimizer.

3. MDME also uses an EM unification procedure similar to MLMD, but approximates Maha-
lanobis distance minimization in its M-Step as a set of weighted point-to-plane distances
using covariance eigendecompositions. Given a linear approximation of rotation along
with the small-angle assumption, this formulation results in the most efficient and robust
minimizer of the three methods so long as the relative angles between point clouds are
small enough. MDME forms the base algorithm for the techniques introduced in Chapter
7.

4.3 REM-Seg and Gradient Descent
Our given GMM formulation serves as the basis for our scene. Given a new set of N 3D points,
we can look at the probability of our scene having generated those points according to our gen-
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erative model. For maximum likelihood registration, we wish to optimize over some spatial
transformation in 3D space. Thus, we can minimize over the negative log-likelihood of the data
with respect to the transformation parameters to find the most likely pose difference. One natural
idea is to try gradient descent to find this minimum. Our registration algorithm utilizing gradient
descent is called REM-Seg (Robust EM Segmentation) [24].

Because the particular problem of point cloud registration involves a vast amount of points,
we can parallelize the computation of the gradient by computing as much of it as possible inde-
pendently and in parallel (e.g. with CUDA threads on a GPU) and then doing a logarithmic num-
ber of reductions to obtain the final gradient step. Minimizing over the negative log-likelihood
will provide the MLE spatial transformation of the data to the scene, and will allow us to register
together successive 3D measurements and recover the motion of the sensor.

Given that we have a world model parameter set Θ, we can describe the registration problem
as follows: Given a set of 3D points, we can look at the probability of a scene having generated
those points according to some surface model. If the probability of a point is p(zi|Θ), where Θ
is the set of parameters describing the scene, then the total probability of an entire scan of data
is p(Z|Θ) =

∏
i p(zi|Θ). In our problem, we wish to optimize over some spatial transformation

in 3D space. Parametrizing our rigid transformation by a 3D vector t = (tx, ty, tz)
T and a unit

quaternion q = (u, v, w, s)T , we can minimize over the negative log-likelihood of the data with
respect to the transformation parameters,

min
q,t
− ln p(T (Z|q, t)|Θ) = −

∑
i

ln p(T (zi|q, t)|Θ) (4.4)

Using the EM algorithm, our surface model is just the collection of Gaussians and their
respective mixing parameters, Θ = {Θj = (πj, µj,Σj)}, so our data log-likelihood becomes

ln p(T (Z|q, t)|Θ) =
∑
i

ln{
∑
j

πjN (z̃i|Θj)} (4.5)

where z̃i = R(q)zi + t and R(q) is the 3x3 rotation matrix derived from the unit quaternion
q. Note the similarity to the likelihood function given by Equation 3.4 maximized during model
creation. In this step, however, we have a fixed Θ and we optimize over q and t. As before, we
cannot find a closed form solution due to the sum inside the logarithm, but we can easily take the
gradient of the negative log likelihood with respect to each transformation parameter,

∇t =
1

N

∑
i

∑
j γ̂j(z̃i)(z̃i − µj)TΣ−1

j∑
j γ̂j(z̃i)

(4.6)

∇q =
1

N

∑
i

∑
j γ̂j(z̃i)(z̃i − µj)TΣ−1

j Ξz̃i∑
j γ̂j(z̃i)

(4.7)

where Ξz̃i is the skew symmetric matrix of z̃i, the transformed point,

Ξz̃i =

 0 −z̃i ỹi
z̃i 0 −x̃i
−ỹi x̃i 0

 (4.8)
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The gradient with respect to the quaternion only gives updates to (u, v, w), with s fixed to 1.
For more details, see [150]. Finally, we note that, like the E step of the segmentation algorithm,
the γ̂j values can be calculated in parallel and then summed as a reduction.

4.3.1 Extensions
As the algorithm has been presented thus far, we have a few free parameters such as the number
of clusters, the step size to take along the gradient, and possible singularities when inverting the
covariance matrix of a cluster. For noisy data, outliers should also be handled. We give our
extensions to solve these problems in the next few sections.

Oversegmentation

One important parameter to consider when segmenting is J , the amount of clusters to use. To
obviate the need for model selection or some other type of parameter search, we simply over-
segment and then drop clusters without a lack of adequate support. This process also prevents
singularities when doing EM for the GMM parameters, since clusters with low support produce
low-rank covariance matrices. Since the final generative model is the linear superposition of
Gaussians, it is perfectly acceptable in terms of the gradient calculation, for example, to have
overlapping Gaussians describe the same piece of real geometry.

Robust Boundaries

Unfortunately, range data is often corrupted by several sources of noise, from spurious readings
or discretization errors in the sensor. Similarly, operations on point cloud data are often burdened
by occlusion and sampling sparsity when the objects are far away or at bad grazing angles to the
sensor. These aspects make the task of finding and filtering outliers very important, as they may
adversely affect the performance of the point cloud segmentation and registration algorithm.

To reduce computational costs and enforce hard boundaries, some past work has used non-
overlapping labels when doing EM for purely planar decomposition [86]. To achieve this, during
the EM algorithm, all correspondence variables are set zero if they do not have the maximal
expectation over all clusters. This method closely resembles the elliptical k-means algorithm,
where the Mahalanobis distance from the center of the cluster is used instead of the Euclidean
distance.

We adopt a similar approach, but make some important modifications to filter out outliers.
Instead of a hard boundary, or a purely soft boundary as the normal EM approach makes, we em-
ploy robust thresholding, where a correspondence is zero if its expectation is less than or equal
to ξ times the maximum expected correspondence, where ξ ∈ [0, 1]. Our approach is a general-
ization of hard and soft boundaries. When ξ = 0, this algorithm reduces to soft boundaries, and
when ξ = 1, this corresponds to the hard boundaries of [86].

Annealing and Line Search

The EM algorithm, although it is guaranteed to converge, will often converge to a local optimum
instead of the global optimum. One problem with running the gradient descent algorithm over
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a GMM without annealing is that extremely planar surfaces will be described by nearly 2D
Gaussians. In other words, the minimum eigenvalue of the covariance matrix will approach
zero. In terms of surface reconstruction, this effect is desirable, since the surface will be very
well-described by a degenerate Gaussian. In terms of gradient descent, however, a nearly 2D
Gaussian will produce very steep peaks on the likelihood surface that do not give very useful
gradient information when the current iterated solution is far away. As a solution gets close to
a peak, the gradient will be nearly zero up until when the solution is near the mean, where the
gradient will be an extremely high value and possibly cause overshooting or instability.

We adopt an annealing function to smooth out local minima and steep peaks formed by
planar Gaussians. In our case, we add a decaying exponential function that adds a multiple of
the identity matrix to the covariance matrix for each cluster,

Σ∗j := Σj + λ(T )I (4.9)

where, if T is our current iteration

λ(T ) = ε+ k1e
−T/k2 (4.10)

This provides a “fattening” or regularization of the mixtures so as to have shallower gradients
in an attempt to not oscillate between local minima. In our experiments, we found a wide array of
values for k1, k2 to be acceptable. In the following experiments, we use k1 = 0.01 and k2 = 20,
with ε = 1e− 5.

As an additional protection against taking steps that may cause oscillations or jumps to non-
optimal solutions, we do a line search over our step size. Note that this search requires repeated
computation of the log likelihood of a given rigid transformation parameter set, which can be
done fully in parallel for each (zi,Θj) tuple and then summed as a reduction.

4.3.2 Implementation and Algorithm

We refer to our gradient descent-based algorithm as REM-Seg, or Robust Expectation Maxi-
mization Segmentation.

At a high level, starting from a raw point cloud, the REM-Seg algorithm does the following:
E step: We measure the probability of each point having been generated by each cluster,

given its current mean and covariance. We then assign the correspondence for each point as its
expectation or as zero, according to the highest probability cluster and ξ. At the end of the E
step, we have a new set of correspondence values for each point.

M step: We gather each point weighted by its expectation and calculate the most likely mean
and covariance given all the points that were assigned to the cluster. At the end of the M step, we
end up with a new set of parameters for the Gaussians.

Gradient step: We transform each point according to our current transformation guess and
then calculate the annealed gradient with respect to the unit quaternion and translation vector rep-
resenting the 6-DOF spatial transformation. We then line search to find the step size to increase
the overall data log likelihood.
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Figure 4.2: Pseudocode for REM-Seg.

The EM algorithm therefore achieves our goal of “mixture decoupling” and allows us to
operate over a descriptive yet very compact model for the gradient step. See Figure 4.2 for
pseudocode.

4.3.3 Experimental Design and Metrics Used

We will briefly discuss our experimental design for our registration experiments in this and sub-
sequent chapters.

It can be difficult to properly convey an algorithm’s registration accuracy through a single num-
ber. There are several reasons for this:

1. When algorithms diverge, they may produce high levels of error that are not well-captured
by a single average. Thus, a highly accurate algorithm that occasionally diverges may look
“better” through average error than an inaccurate method that never completely diverges.

2. Rotation causes non-linear point displacement as one deviates from the coordinate system
origin. Thus, the shape of the point cloud can have non-linear effects on how error is
distributed.

3. The scale of point clouds for different types of environments and sensors may be radically
different. Thus, error metrics with different scales of datasets will often not be comparable.

4. Translation is linear while rotation is non-linear, and so there is no clear way to fairly
combine these errors into one metric.
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Figure 4.3: Example surface patches with each point colored by its most likely cluster. Note that
since the GMM formulation is additive with respect to each cluster, over-segmenting serves to
more accurately construct a PDF of scene.

5. Given different registration applications, we may care about different error metrics. For ex-
ample, for a visualization or mapping application, we may be more interested in geometric
error. For state estimation, we might be most interested in pose error.

To address these problems, we use several tactics:

1. If actual point-pairs exist (as in the case of some of our synthetic tests), we use the average
squared Euclidean error between point pairs since this intuitively captures both rotation
and translation error.

2. When running multiple tests, we try to show a distribution of errors when possible instead
of a single average. If we calculate an average error, we also show the standard deviation.

3. We resize all our experimental data to fit within the unit cube to mitigate non-linear rota-
tional effects.

4. We typically focus on rotation error over translation error, since this is typically where the
most interesting differences are exhibited among competing registration algorithms.

5. We focus on pose error metrics (instead of geometric error) given that most of our ap-
plications revolve around state estimation rather than visualization/mapping. However, in
Chapter 6.1, which is explicitly about visualization, we utilize a geometric error metric
(PSNR) for our comparative results.

Even given the strategies listed above, we acknowlege that these choices consitute a set of
trade-offs. For example, we choose nonintuitive error metrics (e.g. Frobenius norm error) that
can only weight error uniformly across the scene, even though in some applications this may
hide important sources of error. However, the quantitative metrics used in thesis conform well to
our qualitative results, and so we feel that these trade-offs are warranted.

4.3.4 Experiments
For the following experiments, we use two datasets: a cross-section of the Stanford Bunny [17]
and a point cloud generated from a Kinect of a table-top scene with various geometric shapes on
top. A depiction of the table-top scene is given by the left image in Figure 4.3. Both datasets are
scaled to fit within the unit cube for the following experiments.
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We compare our algorithm, REM-Seg, with ICP, EM-ICP [44] [75], Softassign [39], and
GMM-Reg [58]. Additionally, we test our method against GPU-accelerated versions of EM-ICP
and Softassign [136]. The CPU versions of EM-ICP and ICP are accelerated with OpenMP. The
algorithms to which we compared REM-Seg are all freely available to download. In particular,
our implementation of ICP was taken from work described in [136]. All experiments were done
on a quad-core CPU (Intel Q6600) and Nvidia GPU (GTX 680).

Segmentation

The Kinect table-top scene is shown in Figure 4.3. The colorized point cloud is shown on the left
and the segmentation is shown on the right. The full scene contains over 50,000 points. We color
the points according to the maximal expected cluster membership. Note that the GMM algorithm
represents an “over-segmentation” in that some homogenous surfaces are broken up into separate
clusters. For purposes of segmentation for perception tasks, one could trivially join together like
clusters. For instance, clusters representing the ground plane will all have a very similar normal,
and so a normal space clustering could be used in conjunction with Euclidean distance to join
them. For purposes of registration, over-segmentation does not have any adverse effects since the
GMM model adds individual cluster probabilities. In fact, in the limit of one cluster per point,
the REM-Seg algorithm reduces to an algorithm somewhat similar to EM-ICP [43].

We can see that the sample segmentation of Figure 4.3 has some nice properties compared
with similar planar decompositions. When a facet is large enough, it is described by a mostly
flat Gaussian. Examples of this effect can be seen in the cube shape and the top of the larger
cylinder. However, when the shape does not have as many supporting points, it is described by a
single 3D Gaussian, as shown by the smaller shapes, such as the sphere. Describing the sphere
by a 3D Gaussian provides a much better gradient than a planar segmentation of the same object.

Registration Quality

To test the convergence or “goodness-of-fit” properties of the various algorithms, using the Stan-
ford Bunny, we randomly and uniformly sampled 100 rigid transformations from the space of
transformations bounded by rotations of less than 15 degrees around any single axis, and transla-
tions bounded by 2 times the extent of the dataset in each dimension. Each algorithm was given
the same randomly transformed and subsampled cloud and run until convergence. The squared
error (SE) was then calculated. Figure 4.4 shows the distribution of the SE for each algorithm.
The x-axis is the SE and the y-axis represents the number of trials that fell into the particular bin.
We also repeated these experiments with the Kinect table-top scene with similar results, so for
space reasons we have omitted them.

We found that our convergence was much more robust to random rigid transformations than
ICP, Softassign, and EM-ICP. Even with potentially large transformations, our algorithm found
a solution close to zero SE, whereas the other algorithms diverged. ICP, especially, succumbed
to many local optima that represented globally non-optimal solutions. Our method most closely
resembles GMM-Reg in terms of convergence, though 15 of the 100 GMM-Reg trials diverged to
a wildly wrong registration result, while Rem-Seg fell into local minima that were closer to zero.
Figure 3 shows example cases for various squared errors. Note that Figure 3a and 3b represent
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Figure 4.4: Goodness of fit using the Bunny dataset. These convergence results are from 100
random rigid transformations. REM-Seg consistently converges to near-zero error while the
other algorithms tend to get stuck at local minima. The bottom right subfigure shows the two
best algorithms with a zoomed x-axis.

(a) Sq. Error ≈ 0.16 (b) Sq. Error ≈ 0.13 (c) Sq. Error ≈ 7.5e-3

Figure 4.5: Example Registration Results

cases that are less than 0.20, compared to the local minima encountered by EM-ICP, ICP, and
Softassign, which often were 3.0 or more. Figure 3c represents a correctly converged case.

Scaling and Speed

Using the Kinect tabletop dataset, we randomly subsampled from its points and ran our regis-
tration algorithm over varying amounts of points. For each data point, we averaged the time to
convergence over 10 random rigid transformations of the scene.

The timing results can be seen in Figure 4.6. The figure on the top shows the y-axis as
a log scale, giving the time to convergence. As the number of points increases, we can see
that the scaling of all algorithms but EM-ICP and REM-Seg are poor. Note that regular ICP
is the fastest of all algorithms when the number of points is very small, but the convergence is
typically poorer. The bottom plot is the same data but on a linear y-axis to show more clearly
the difference between the two best algorithms. We can clearly see that the scaling difference
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Figure 4.6: Timing results as the number of points in the cloud to be matched to the scene
increases for the Kinect dataset. The top plot shows the time to convergence on a log scale, while
the bottom plot shows the same data on a linear y-axis among ICP, EM-ICP-GPU, and REM-Seg.

grows superlinearly, favoring REM-Seg. Since the GPU-accelerated EM-ICP relies mainly on
accelerated linear algebra routines, REM-Seg is faster since it presents a naturally data parallel
solution for the GMM problem. Though not shown in the Figure, we can run REM-Seg over
much larger point clouds, achieving sub-second registrations up to just under one million points.
In general, the execution times scale roughly logarithmically until the parallelism limit is reached
on the GPU, after which the scaling is mostly linear. With our current hardware, this limit is
reached at around 100,000 points.

Though GMM-Reg was comparable to REM-Seg in terms of the goodness-of-fit of the final
registration, the fact that it does not currently run on parallel hardware is a severe limitation
when processing many points. Furthermore, the related methods rely on Gaussians around every
point in the cloud, while REM-Seg efficiently compresses the clouds into a sparse amount of
parameters.

4.4 MLMD and Expectation Maximization
In this Section, we frame both the decoupling and registration process inside a unified, two-
mode Expectation Maximization (EM) framework, for which we derive a Maximum Likelihood

36



Estimation (MLE) solution along with a parallel implementation on the GPU. We evaluate our
MLE-based mixture decoupling registration method (MLMD) over both synthetic and real data,
showing better convergence for a wider range of initial conditions and higher speeds than previ-
ous state of the art methods.

Finally, we show how the dual-mode optimizations (mixture decoupling and registration) can
be unified under a common EM framework and how exploiting this relation can both improve
robustness and drive a highly parallel implementation on the GPU.

Compared to MLMD, REM-Seg from the previous section follows a similar preprocessing
structure, using EM to derive a small set of anisotropic mixtures, but unlike MLMD, does not
utilize the EM framework for registration, instead minimizing the cost function directly using
gradient descent (similar to NDT [134], GMMReg [59], and KC [142]). Though MLMD is
much more efficient than REM-Seg, we include both algorithms in this thesis as a demonstration
of the different ways in which these data parallel generative models may be utilized for a given
perception task.

4.4.1 Approach

The GMM/EM formulation allows one to recast the correspondence problem of ICP into prob-
abilistic terms, opening the door to soft correspondences based on relative likelihoods, as well
as maximum likelihood optimization procedures or minimum energy functions. By explicitly
introducing latent correspondences, the EM framework factorizes the joint likelihood so that the
log likelihood has no exponentials in it at all, thus greatly simplifying the optimization procedure
over methods that do not operate under the EM framework [24, 57, 133, 142].

Our method builds on the GMM/EM concept, and through mixture decoupling, offers large
reductions in computational expense for both representation and registration. Furthermore, as we
later show in Section 4.4.6, the added descriptive power of using general anisotropic covariances,
mean-point decoupling, and floating mixture weights adds robustness to pose displacements,
noise, and offers a more compact description of point cloud geometry.

In this Section, we discuss how mixture decoupling and registration can be unified under a
dual-mode EM framework. Then, we derive several accurate MLE approximation techniques
for models with general anisotropic covariance parameters since the exact MLE equation with
anisotropic covariances has no closed form solution. These approximations along with our tech-
nique of mixture decoupling form a highly efficient Generalized EM (GEM) procedure [18] for
maximum likelihood point cloud registration.

4.4.2 Overview

In general, directly optimizing over the GMM parameters, Θ, and the registration parameters, T
is intractable. To solve this problem we introduce latent correspondence variables, enabling the
EM algorithm as a means to iteratively produce estimates of these parameters. The E Step finds
the maximum likelihood estimate of points-to-cluster correspondences. The correspondences
are then used to drive a tractable optimization procedure over the both the model and registration
parameters in succession. We denote the M Step over GMM parameters Θ as MΘ and the M
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Figure 4.7: Algorithm Flow The algorithm first iterates over E and MΘ until convergence, a
condition denoted by the binary variable CΘ. Once MΘ converges under Z1, the algorithm then
switches to the second point cloud for input (shown through the one-bit multiplexer). In order
to produce an optimization criterion of size J , the MΘ Step result then feeds into the MT Step
along with the last Θ̂ from Z1 as Θfinal. The algorithm then iterates accordingly, finding new
transformation updates T̂ , which are applied to Θfinal.

Step over registration parameters T as MT . Fig. 4.7 shows the diagrammatic depiction of the
proposed algorithm.

The process of decoupling cluster means from the points is intimately related to the process of
finding the pose transformation for registration. Fig. 4.7 shows our dual-step process: we perform
the same E Step during both model optimization and registration, but utilize two different M
Steps according to the state of convergence of the algorithm. We first iterate over Θ̂ using MΘ.
Once this process has converged, we introduce the second point cloud, but now we iterate over
jointly coupled M Step that solves an MLE approximation for the registration parameters. For 3D
PCD, we have shown that MΘ can be solved efficiently in parallel and in closed form (Chapter
3). Since MT is jointly coupled to MΘ, as we will show, it too can be efficiently computed in
parallel. Note that for additional computational efficiency, we transform Θ and not Z . Upon
convergence, the concatenation of all T̂ produce the correct relative transformation between the
two point clouds, Z1 and Z2.

4.4.3 E and MΘ Steps

Our E andMΘ Steps for MLMD follow the formulation presented in Chapter 3, but with a special
noise cluster for added robustness. For convenience, we will briefly review these steps below:

The first E and MΘ Steps iterate over a point cloud Z = {zi}, ∀i ∈ {1..N} in order
to solve the maximum data likelihood problem over a set of Gaussian Mixture parameters,
Θ = {πj,µj,Σj},∀j ∈ {1..J}. Since we cannot maximize this probability in closed form,
we introduce latent binary correspondences C = {cij} for each point, cluster tuple {zi,Θj}.

In the E Step, we calculate in parallel the posterior for all cij ∈ C given Θ:

E[cij] =
πjN (zi|Θj)∑J

j′=1 πj′p(zi|Θj′) + πJ+1

η

(4.11)

where η and πJ+1 control a special “noise cluster” to filter outliers.
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In theMΘ Step, we maximize the expected log-likelihood with respect to Θ, using our current
E[cij]

def
= γij:

max
Θ

∑
ij

γij{ln πj + ln p(zi|Θj)} (4.12)

Given a fixed set of expectations, one can solve for the optimal parameters in parallel in
closed form at iteration k:

µ̂j =

∑
i γijzi∑
i γij

(4.13)

Σ̂j =

∑
i γijziz

T
i∑

i γij
− µ̂jµ̂Tj (4.14)

π̂j =
∑
i

γij
N

(4.15)

Thus, given a set number of mixtures, J , we can iterate these two steps until convergence,
leaving us with a compact set of mixtures representing the original PCD, decoupled from the
original points.

4.4.4 MT Step
In this section we show how the relationship between MΘ and MT can provide an efficient
technique for recovering the registration parameters. As in the E-MΘ stage (Sec. 4.4.3), we
introduce correspondences to allow the optimization problem to factorize. For shorthand, we
denote our moving point cloud as Z̃ def

= T (Z). The full joint probability is then,

ln p(Z̃, C|Θ) =
N∑
i=1

J∑
j=1

cij{ln πj + lnN (z̃i|Θj)} (4.16)

We transform the problem into an iterative algorithm, alternating between finding probabilistic
point-to-cluster correspondences of the new points to the old mixtures and then maximizing the
expected likelihood,

T̂ = argmax
T

Ep(C|Z̃,Θ)[ln p(Z̃, C|Θ)] (4.17)

= argmax
T

∑
ij

γij{ln πj + lnN (z̃i|Θj)} (4.18)

= arg min
T

∑
ij

γij||z̃i − µj||2Σj
(4.19)

These equations show that the most likely estimate of T is the one that minimizes the weighted
squared Mahalanobis distance between points and clusters, where the weights are determined by
calculating the expectation of the correspondence with respect to the current guess T̂ .

Note that due to the double sum, this equation has NJ terms. However, we can reduce this
problem to an optimization procedure of size J by deriving an explicit relation between MΘ and
MT .
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To see how we can do this, we first make the simplification that Σj = I, ∀j ∈ {1...J}. Now
the Mahalanobis distance reduces to the L2 norm,

T̂ = arg min
T

∑
ij

γij||z̃i − µj||2 (4.20)

Note that in the MΘ step, the solution for the mixing parameters is π∗j =
∑

i γij
N

, which we
can rewrite as

∑
i γij = Nπ∗j . Similarly, in the MΘ step, the optimal mean is µ∗j =

∑
i γijzi∑
i γij

,

which we can also rewrite as
∑

i γijzi = (
∑

i γij)µ
∗
j = Nπ∗jµ

∗
j . Finally, let µ̃j

def
= T (µ∗j). Given

these equations, we can reduce the original quantity to be minimized by first expanding it and
then completing the square for only those parts that are vary with T . We first expand,∑

i

∑
j

γij||z̃i − µj||2 (4.21)

=
∑
j

{
∑
i

γij z̃
T
i z̃i − 2µTj

∑
i

γij z̃i + µTj µj
∑
i

γij}

=
∑
j

{
∑
i

γij z̃
T
i z̃i − 2Nπ∗jµ

T
j µ̃j +Nπ∗jµ

T
j µj}

We can further break down the first term in order to complete the square,∑
i

γij z̃
T
i z̃i =

∑
i

γij||z̃i − µ̃j||2 −Nπ∗j µ̃Tj µ̃j (4.22)

We then place this result back into Eq. 4.21:∑
j

{
∑
i

γij(z̃i − µ̃j)T (z̃i − µ̃j)+

Nπ∗j µ̃
T
j µ̃j − 2Nπ∗jµ

T
j µ̃j +Nπ∗jµ

T
j µj}

= N
∑
j

{ 1

N

∑
i

γij(z̃i − µ̃j)T (z̃i − µ̃j)+

π∗j ||µ̃j − µj||2} (4.23)

The first term inside the summation over j represents the weighted average of the squared dis-
tance of each point to its (weighted) centroid, and is thus invariant under rigid transformations so
it can be dropped. Dropping this term then transforms the problem into a weighted optimization
criterion of size J .

T̂ = arg min
T

∑
j

π∗j ||µ̃j − µj||2 (4.24)

In contrast with Eq. 4.20, we now have J virtualized point correspondences between the de-
coupled model means and the maximum likelihood means of the new points with respect to the
model. Additionally, each pair is weighted by its expected relative contribution among all J mix-
tures. Finally, it should be stressed that the calculations of π∗j and µ∗j are exactly the same as in
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MΘ, and this property allows us utilize the same optimized parallel computation for registration
as for mixture decoupling.

Other GMM/EM methods have used similar transformations for reducing the problem size
to a single sum over points to virtualized points [33, 43, 51]. These constructions can be viewed
as transformations from a one-to-one point-based criterion into a many-to-one or point-to-model
criterion. In contrast, our reduction can be viewed as a many-to-many or model-to-model opti-
mization criterion.

4.4.5 Closed Form Approximations
If we restrict T to include only the set of 6DOF rigid transformations, parameterized by the set
of all R ∈ SO(3) and t ∈ R3, such that Z1 = RZ2 + t, then the minimization of Eq. 4.24 can
be solved by using a weighted version of Horn’s method [52]:

aj = µj −
∑

j π
∗
jµj∑

j π
∗
j

, and bj = µ∗j −
∑

j π
∗
jµ
∗
j∑

j π
∗
j

(4.25)

and
K =

∑
j

π∗jajb
T
j (4.26)

where K is a 3x3 matrix containing all the elements required to construct a special 4x4 matrix,
from which the SVD solution gives the optimal rotation as a unit quaternion. See [52] for details.

The optimal translation is then,

t̂ =
∑
j

π∗j (aj −Rbj) (4.27)

However, in the preceding derivation we omitted the covariances by setting Σj = I, ∀j ∈
{1...J}. If we want to retain a closed form solution in MT but do not want to force our GMM in
E andMΘ to have isotropic covariances, one simple approximation strategy is to use the “closest”
isotropic inverse covariance in a Frobenius sense for the MT Step. Note that we are still letting
the covariance be fully anisotropic for both the E Step and the MΘ Step. We can solve this trivial
approximation for MT by inspection,

σ̂j = arg min
σj

||Σ−1
j − σ2

j I||F =

√
Tr(Σ−1

j )

d
(4.28)

Thus, the new MT criterion is, ∑
j

π∗j σ̂
2
j ||µj − µ̃j||2 (4.29)

We denote the collection of σ̂j as shape weights. To differentiate the shape weighting from
isotropic weighting, we define MT -points and MT -shape. MT -points is the M step that does
not have shape weights, and the MT -shape is the one with shape weights. Note that the shape
weights correspond to the average inverse eigenvalue for each covariance, thus scaling point
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Figure 4.8: Datasets Left: Bunny [143], Right: Lounge [156]

distances inversely by the average “spread” of the cluster covariance. This formulation marks
a significant departure to previous works that use just one sigma for all J clusters. We use full
anisotropy in both the E steps for segmentation and registration, as well as for the MΘ step. The
only step that does not use full anisotropy is the MT step, where it is approximated.

4.4.6 Results
For our experimental results, we use both synthetic data (Stanford Bunny [143]) and real-world
data from the Stanford Scene Datasets [156] (Fig. 5.4). The bunny contains around 40k points,
while the lounge data is taken from a Kinect, and thus consists of 640x480 depth frames taken at
30 Hz. Our hardware testbed is a desktop computer with an i5-3500 CPU and GTX660 GPU.

We compare our method versus other popular publicly available open-source methods. For
fairness, we use other parallelized registration methods when available, including optimized mul-
ticore implementations of ICP and EM-ICP (using OpenMP), and GPU-accelerated versions of
Softassign and EM-ICP [136]. We also test using GMMReg [59], a popular open source package.

Robustness to Large/Random
Rigid Transformations and Noise

To obtain a comparative measure of the convergence properties between our proposed method
and the state of the art, we ran each registration algorithm 100 times while varying the amount
of rotation (overlap). Using two differently subsampled cross-sections of the Stanford bunny
(N=2000), we applied pitch axis transformations from -180 to 180 degrees. Additionally, we
added noise in the form of 500 outliers sampled uniformly inside a region twice the extent of
the original data. Fig. 4.10 shows the results. We used the Frobenius norm error between the
recovered and real rotation matrices as our measure of rotational error. Both SoftAssign and
our method were the only two algorithms that did not diverge over the entire range of pitch
transformations, though SoftAssign’s error is an order of magnitude higher than our method. As
expected, ICP produced the worst convergence, recovering angles of < 45 degrees only. EM-
ICP and GMMReg produced high quality results when the angle was less than 90 degrees (about
double the range of ICP), but diverged to a local minimum for larger transformations.

To obtain a more general result of robustness to transformations on all axes, we randomly
sampled 100 6DOF transformations and applied them to the Stanford Bunny. To sample from
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Recall Recall Avg. Std.
Method (≤ 0.01) (≤ 0.025) Time (s) Time (s)

ICP 0.00 0.00 0.196 0.050
SoftAssign 0.00 0.00 1.832 0.203
GMMReg 0.36 0.91 1.819 1.020

EM-ICP (CPU) 0.14 0.72 1.953 0.353
EM-ICP (GPU) 0.14 0.72 1.136 0.912

MT -points 0.53 0.92 0.107 0.034
MT -shape 0.61 0.92 0.121 0.037

Table 4.2: Accuracy of random rigid transformations 100 random 6DOF transformations were
applied to a downsampled Stanford bunny corrupted with 5% outliers. The random rotations
were bounded by 90 degrees in absolute sum over each axis angle, and the random translations
were bounded by the extent of the dataset on each axis. Given two different error levels, the per-
centage of “successful” registration results is shown, where the error is defined by the Frobenius
norm distance of the rotation matrix. To see a qualitative representation of Frobenius norm error,
refer to Figure 4.9.

(a) Error = 0.005 (b) Error = 0.016 (c) Error = 0.268

Figure 4.9: Registration quality for varying Frobenius norm errors Three sample results from
the random transformation test detailed in Section 4.4.6 and Table 4.2. The results depicted are
the final converged results between both point clouds (red and blue points). (a) shows an error
level that falls within both chosen bounds as given by Table 4.2. (b) shows a level of registration
error that is within the 0.025 error threshold but not 0.01. (c) shows a high level of Frobenius
norm error that is outside of both the chosen bounds.

the space of rotations in SO(3) uniformly and without bias, we used the method outlined in [69].
The random rotations were bounded by 90 degrees in absolute sum over each axis angle, and the
random translations were bounded by the extent of the dataset on each axis. As before, the bunny
for both model and scene were randomly subsampled without replacement down to 2000 points
and corrupted with 5% noise. In order to derive a simple accuracy measure, we looked at the
percentage of solutions (% recall) for which the Frobenius error between the real and calculated
rotation was acceptably small. To see a qualitative representation of what Frobenius norm error
looks like at various levels under this test, refer to Figure 4.9. For our method, we set J = 16.
The quantitative results are summarized in Table 4.2, along with average execution times.

Due to the random subsampling and noise, ICP and SoftAssign could not obtain accurate
solutions over the random transformations tested. The GPU optimized EM-ICP was the fastest
previous method tested, though ours is roughly an order of magnitude faster. GMMReg produced
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Figure 4.10: Robustness to Large Transformations Pitch axis transformations from -180 to 180
degrees were performed over randomly sampled Stanford Bunnies (N=2000). ICP has the small-
est convergence radius, handling transformations of -45 to 45 degrees. EM-ICP and GMMReg
approximately double the convergence region. Due to sampling nonuniformity, SoftAssign often
produced poor registration accuracy though its worst-case solution was the best of all algorithms
besides our proposed algorithm.

good results at an error threshold of 0.025, with a recall accuracy of 91%, but generated about
a third of the solutions with error under 0.01. In contrast, our methods fared better, recovering
over half of the transformations at the 0.01 error level, for both point-based and shape-based
approximations. TheMT -shape method is about 10% slower in our current GPU implementation
than MT -points due to the need to calculate the shape parameters.

Fig. 4.11 shows how the proposed approach can handle the point cloud data with additional
noises. Notice that our approach outperforms the other methods that can handles noisy inputs.

4.4.7 Scalability

Many modern sensors generate many thousands to millions of 3D points per second. In general,
the registration methods reviewed in this paper greatly benefit from the addition of extra data
in terms of accuracy and robustness. Unfortunately, the construction of point-based GMMs
provide scaling challenges. When scaling to large numbers of points, even methods that have
been optimized to be parallel [136] fail to approach real-time speeds for large point clouds.
See Fig. 4.12 for details. We applied the same random transformations as in Section 4.4.6,
but increased the amount of points sampled from the Stanford Bunny on every iteration. Due
to our process of mixture decoupling inside a unified parallelized EM framework, Fig. 4.12
demonstrates orders of magnitude improvement on large point clouds.
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Figure 4.11: Robustness to Noise We injected both outliers and point-level Gaussian noise into
two subsampled Bunny point clouds (N=2000) separated by 15 degrees on all roll, pitch, and
yaw axes. Each iteration included both more outliers (shown as a percentage on the x-axis) and
more point noise (shown as a Signal-to-Noise dB value). We did not include ICP or SoftAssign
since any amount of noise and outliers tested corrupted the result significantly.
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Figure 4.12: Computation Times Scaling the number of points subsampled from each point
cloud for registration. Note that the scale is logarithmic on both x and y axes.

Real-World Data

To test our algorithm over real-world data, we chose to use the Lounge scene from the Stanford
Scene dataset (Fig 5.4). For ground truth, we used the authors’ pose calculations. Below is a
table summarizing the frame-to-frame rotation error:

We subsampled down to 2000 points for each frame to produce tractable running times. ICP
fared somewhat better on this real data since the rigid transformations remain small due to the

45



Method Avg. Err Std Dev
EM-ICP 0.890 1.109

SoftAssign 0.413 0.753
ICP 0.032 0.110

GMMReg 0.022 0.025
MT -shape (N=2k) 0.017 0.018
MT -shape (N=10k) 0.010 0.005

Table 4.3: Frame-to-frame rotation error over a stream of Kinect frames from the Stanford Scene
dataset (Lounge)

fast framerate of the Kinect and the small amount of interframe motion. Suprisingly, EM-ICP
often diverged, which we attribute to a failure of the multilevel registration process. We ran two
versions of our algorithm, one using the same number of points as the others (2k), and the other
using a much larger subsampling (10k). As shown in Section 4.4.7, the parallel nature of our
algorithm along with the process of mixture decoupling allows us to incorporate much more data
while still keeping running times better than the state of the art. Thus, the 10k subsampled PCD
produces a better model and drives down the overall average frame to frame registration error
significantly.

4.5 Mixture Decoupled Mahalanobis Estimation
In this section, we will derive another EM-based algorithm for finding the optimal transformation
T between a point set Z2 and an arbitrary GMM Θ̂Z1 that statistically describes the point set Z1.
We produce Θ̂Z1 from Z1 on the GPU using the same method described in Section 4.4.3.

As with MLMD (Section 4.4.1), given N points zi and J clusters Θj , we introduce a NxJ
set of point-cluster correspondences C = {cij}, so that the full joint probability becomes

ln p(T (Z), C|Θ) =
N∑
i=1

J∑
j=1

cij{ln πj + lnN (T (zi)|Θj)} (4.30)

We iterate between E and M Steps. On the E Step, we calculate γij = E[cij] under the current
posterior. On the M Step, we maximize the expected data log likelihood with respect to T while
keeping all γij fixed,

T̂ = argmax
T

Ep(C|T (Z),Θ)[ln p(T (Z), C|Θ)] (4.31)

= argmax
T

∑
ij

γij{ln πj + lnN (T (zi)|Θj)} (4.32)

= arg min
T

∑
ij

γij(T (zi)− µj)TΣ−1
j (T (zi)− µj) (4.33)

= arg min
T

∑
ij

γij||T (zi)− µj||2Σj
(4.34)
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Thus, as before, the most likely transformation T between the point sets is the one that mini-
mizes the weighted sum of squared Mahalanobis distances between points of Z2 and individual
clusters of ΘZ1 , with weights determined by calculating expected correspondences given the
current best guess for T̂ .

As we showed in Section 4.4.4, if we restrict T solely to the set of all rigid transformations
(T = {R ∈ SO(3), t3x1}) we can further reduce the double sum over both points and clusters
into a single sum over clusters. This leaves us with a simplified MLE optimization criterion,

T̂ = arg min
T

∑
j

π∗j (T (µ∗j)− µj)TΣ−1
j (T (µ∗j)− µj) (4.35)

where, as in MΘ, π∗j =
∑

i γij
N

and µ∗j =
∑

i γijzi∑
i γij

In the case of GMM-based registration, each affine transformation is determined by the co-
variance, or shape, of the cluster to which points are being registered. For example, clusters that
are mostly planar in shape (two similar eigenvalues and one near zero) will tend to aggressively
pull points toward it along its normal direction while permitting free movement in the plane. This
observation should match one’s intuition: given that we have chosen a probabilistic model that
accurately estimates local geometry, a MLE framework will utilize this information to pull like
geometry together as a type of probabilistic shape matching.

By using generalized anisotropic covariances, complex probabilistic point-to-geometry inter-
actions can be well-handled. Intuitively, optimization of Eq. 4.35 should produce highly sensitive
and robust registration performance. Unfortunately, however, previous algorithms in the litera-
ture have yet to fully leverage this general MLE construction. Simplifications are made either
by 1) placing a priori restrictions on the complexity of the Gaussian covariance structure (e.g.
isotropic only [33] or a single global bandwidth term [43]), or by 2) using approximations to
the MLE criterion that remove or degrade this information [21]. The reasons behind both model
simplification and MLE approximation are the same: Eq. 4.35 has no closed form solution.
However, we will show how simply reinterpreting the Mahalanobis distance calculation can lead
to a highly accurate, novel method for registration.

To arrive at our solution, we first need to re-interpret the Mahalanobis distance as a gen-
eralization of point-to-point distance where the coordinate system has undergone some affine
transformation. To see this, one can use the Cholesky decomposition of the inverse covariance,
for example, to reduce the Mahalanobis distance into a Euclidean distance where the points have
undergone an affine transformation,

||µj − µ̃j||2Σj
= (µj − µ̃j)TΣ−1

j (µj − µ̃j) (4.36)

= (µj − µ̃j)TUT
j Uj(µj − µ̃j) (4.37)

= ‖Ujµj −Ujµ̃j‖2 (4.38)

Unfortunately, we cannot use this reduction directly due to the non-commutative nature of
matrix multiplication. We can, however, use this as insight into how the Mahalanobis distance
may be approximated. Note that in most cases, range data is produced through rays intersecting
with solid surfaces. Due to this phenomenon, range data can never “see inside” objects, and thus
3D point cloud data represents a sampling of a set of 2D manifolds in 3D space.
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Since the manifolds are 2D, given a fine enough resolution, they will be locally planar. As
noted in [130], we can see how this is true intuitively given that real-world surfaces are piece-wise
differentiable. Thus, at a sufficiently fine resolution, the Mahalanobis distance will be dominated
by the distance along the axis of least variance.

We first rewrite the inner Mahalanobis distance inside the MLE criterion of Eq. 4.35 by
decomposing each covariance Σj into its associated eigenvalues λ and eigenvectors n using
PCA, thereby producing the following equivalence,

||T (µ∗j)− µj||2Σj
=

3∑
l=1

1

λl
(nTl (T (µ∗j)− µj))2 (4.39)

Thus, we can reinterpret each cluster’s Mahalanobis distance term inside the MLE criterion
as a weighted sum of three separate point-to-plane distances. The weights are inversely deter-
mined by the eigenvalues, with their associated eigenvectors constituting each plane’s normal
vector. Going back to the example of a nearly planar Gaussian, its covariance will have two large
eigenvalues and one near-zero eigenvalue, with the property that the eigenvectors associated with
the larger eigenvalues will lie in the plane and the eigenvector associated with the smallest eigen-
value will point in the direction of its normal vector. Since the weights are inversely related to
the eigenvalues, we can easily see that the MLE criterion will mostly disregard any point-to-µj
distance inside its plane (that is, along the two dominant PCA axes) and instead disproportion-
ately focus on minimizing out-of-plane distances by pulling nearby points along the normal to
the plane.

With a GMM of size J , we can see that by plugging in this equivalence back into Eq. 4.35,
we arrive at the following MLE criterion,

T̂ = arg min
T

J∑
j=1

3∑
l=1

π∗j
λjl

(nTjl(T (µ∗j)− µj))2 (4.40)

where the set of njl , l = 1..3 represent the 3 eigenvectors for the jth Gaussian (anisotropic)
covariance, and λjl the associated eigenvalues.

We have transformed the optimization from the minimization of a weighted sum of J squared
Mahalanobis distances to an equivalent minimization of a weighted sum of 3J squared point-to-
plane distances. In doing so, we arrive at a form that be leveraged by any number of minimiza-
tion techniques previously developed for point-to-plane ICP [11]. Note that unlike traditional
point-to-plane methods, which usually involve the computationally difficult task of finding pla-
nar approximations over local neighborhoods at every point and sometimes also for multiple
scales [72, 145], the normals in Eq. 4.40 are found through a very small number of 3x3 eigende-
compositions (typically J ≤ 1000 for even complex geometric models) over the model covari-
ances.

We propose an approximate solution to Equation 4.40 based on the point-to-plane ICP op-
timization technique described by Low [80], which we adapt into a weighted form in order to
optimize in a linear least squares sense. The only approximation required is a linearization of R
using the small-angle assumption. In practice, this is a fair assumption to use since GMM-based
registration methods are local and thus tend to diverge for large pose displacements anyway.
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4.5.1 Mahalanobis Estimation Least Squares Derivation
To set up the weighted linear least squares solution to Equation 4.40, we first define three vectors
of weights,

w1 =



√
π∗1
λ11√
π∗2
λ21√
π∗3
λ31
...√
π∗J
λJ1


,w2 =



√
π∗1
λ12√
π∗2
λ22√
π∗3
λ32
...√
π∗J
λJ2


,w3 =



√
π∗1
λ13√
π∗2
λ23√
π∗3
λ33
...√
π∗J
λJ3


(4.41)

Next we define the following three vectors,

b1 =


nT11(µ

∗
1 − µ1)

nT21(µ
∗
2 − µ2)

nT31(µ
∗
3 − µ3)
...

nTJ1(µ
∗
J − µJ)

 ,b2 =


nT12(µ

∗
1 − µ1)

nT22(µ
∗
2 − µ2)

nT32(µ
∗
3 − µ3)
...

nTJ2(µ
∗
J − µJ)

 ,b3 =


nT13(µ

∗
1 − µ1)

nT23(µ
∗
2 − µ2)

nT33(µ
∗
3 − µ3)
...

nTJ3(µ
∗
J − µJ)

 (4.42)

We denote the set of J eigenvectors associated with each covariance’s lth eigenvalue as nλl .
Note that � is the elementwise product. We weight the normals and vertically stack µ∗j as
follows,

n =


[
w1 w1 w1

]
� nλ1[

w2 w2 w2

]
� nλ2[

w3 w3 w3

]
� nλ3

 , µ̂∗ =

µ∗jµ∗j
µ∗j

 (4.43)

If we use the small angle assumption to linearize rotation, we are left with the following
overconstrained linear system, where {α, β, γ} are the rotation angles and {tx, ty, tz} are the
optimal translation parameters.

[
µ̂∗ × n n

]

α
β
γ
tx
ty
tz

 =

w1 � b1

w2 � b2

w3 � b3

 (4.44)

Equation 4.44 can then be solved using any standard linear least squares algorithm.

4.6 Summary
In this Chapter, we presented three different methods for utilizing the models of Chapter 3 to
create novel, robust registration methods. For each algorithm (REM-Seg, MLMD, and MDME)
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we first represent the input 3D PCD with a GMM, and then decouple the optimization of the
model parameters and registration (pose transformation) parameters. This two-step optimization
provides more efficient and accurate registration performance even over large rigid transforma-
tions with poor initialization, as well as in conditions of high noise. Through experimentation,
we showed that the proposed approaches can provide a more efficient and scalable solutions
compared to other state-of-the-art registration algorithms.

In the next chapter, we will augment the base modeling scheme to be hierarchical, providing
more efficiency and flexibility over the simple models described in Chapter 3, and we will use this
as our platform for the more advanced techniques described in Chapters 6 and 7. Specifically as
it pertains to the registration algorithms detailed in this chapter, in Chapter 7 we combine MDME
with an augmentation that incorporates known sensor properties (Expected Overlap Estimation)
in order to successfully register data in challenging real-world scenarios where data may not fully
overlap.
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Chapter 5

Hierarchical Mixture Construction

The generative models introduced in Chapters 3 and 4 assume the number of mixtures can be stat-
ically set a priori. The number of mixtures directly controls the fidelity of the model produced;
the more mixtures, J , the greater the model’s ability to reconstruct the original data. Statically
setting J works well in many situations: where extremely fine detail is not needed, where the
scene is bounded, or when we roughly understand the scene’s geometric complexity a priori.

Ideally, however, we would like to be able to remove J as a hand-tuned parameter and let the
scene itself decide the appropriate amount of mixtures to use. One difficulty of this approach is
that, in the normal case, we want to constrain J to be much smaller than N in order to preserve
the good computational properties of the model. Unfortunately, the algorithms presented thus far
scale linearly with J , putting a hard constraint, regardless of the application’s demands, on the
number of mixtures that can be used effectively. Furthermore, the same application may call for
several levels of fidelity (and therefore a dynamic number of mixtures) depending on its intended
function. This situation suggests some type of multi-scale or hierarchical approach is needed.

A multi-scale or hierarchical approach provides an economical way to provide dynamic levels
of geometric complexity of different parts of the same scene. When a single number of mixtures
J drives the segmentation and model building process, roughly all parts of the scene are modeled
with the same fidelity due to the MLE process. It is often the case, however, that different parts
of the scene demand different levels of modeling fidelity. This is especially true in cases where
we may want to visualize the data, where complex geometric surfaces (e.g. chandeliers) may
need a finer level of resolution than simpler entities (e.g. walls).

To achieve a model with dynamic resolution, we have developed a hierarchical recursive
version of the “flat” model introduced in Chapter 3 that subdivides clusters of high complexity
in a top-down fashion. The subdivision process allows the model to be able to capture arbitrary
amounts of detail, dynamically adjusting its complexity according to the complexity of the scene.
The final output then is a tree of overlapping Gaussian mixtures that can be traversed much like
an Octree, and where every node is itself a valid Gaussian Mixture describing some part of the
original data at some particular level of detail.

We call the construction technique for such a model Expectation Sparsification due to its
ability to exploit the limited spatial extent of surfaces, thereby allowing logarithmic scaling with
respect to J (instead of linear scaling in the case of the model described in Chapter 3).
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Figure 5.1: Probabilistic Modeling using a Tree of Gaussian Mixtures: Four Stanford bunny
models reconstructed from different levels of detail in our GMM hierarchy. Each color denotes
the area of support of a single Gaussian, and the ellipsoids indicate their 1 sigma extent. For
better visualization, the ellipsoids are not drawn on the two rightmost figures to avoid cluttering
due to the high level of detail.
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5.1 Expectation Sparsification
Finding meaningful, structured representations of 3D point cloud data (PCD) has become a core
task for spatial perception applications. In this chapter we introduce a method for constructing
compact generative representations of PCD at multiple levels of detail. As opposed to determin-
istic structures such as voxel grids or octrees, we propose probabilistic subdivisions of the data
through local mixture modeling, and show how these subdivisions can provide a maximum likeli-
hood segmentation of the data. The final representation is hierarchical, compact, parametric, and
statistically derived, and as we later show in Chapter 6, facilitates run-time occupancy calcula-
tions through stochastic sampling. Unlike traditional deterministic spatial subdivision methods,
our technique enables dynamic creation of voxel grids according the application’s best needs. In
contrast to other generative models for PCD, we explicitly enforce sparsity among points and
mixtures, a technique which we call expectation sparsification. This leads to a highly parallel
hierarchical Expectation Maximization (EM) algorithm well-suited for parallel architectures and
real-time execution. In this chapter, we explore the trade-offs between model fidelity and model
size at various levels of detail, our tests showing favorable performance when compared to Octree
and NDT-based methods.

5.2 Introduction
Given the recent commoditization of different types of active range sensors (e.g., TOF, Lidar,
structured light), spatial processing and visualization of large collections of 3D point clouds has
become one of the most important stages in 3D imaging/vision pipelines [117]. 3D point cloud
processing introduces several new challenging problems such as (1) uneven sampling density, (2)
unstructured organization of the incoming data, (3) level-of-detail processing given varying speed
and memory requirements, and (4) measurement uncertainty from sensor noise. Additionally,
modern depth sensors generate millions of data points per second, making it difficult to utilize
all incoming data effectively in real-time for devices with limited computational resources.

Many current techniques for processing large amounts of point cloud data (PCD) either sim-
ply subsample the data or apply some sort of discretization, either through dense, sparse [122]
or hierarchical [30] voxelization techniques. Representing continuous geometry through voxels
creates discretization artifacts and offers no clear way of handling noise or data uncertainty. Fur-
thermore, the discrete nature of voxels and sub-sampled point clouds greatly complicate spatial
processing procedures that require continuous derivatives or high quality normal estimates.

We address these challenges with a hierarchical and probabilistic representation of 3D point
cloud data (PCD) in the form of a hierarchy of Gaussian Mixture Models (GMMs). As a repre-
sentation of 3D space, a GMM model has several advantages. First, being a continuous proba-
bility density function (PDF), the GMM does not require the discretization of 3D space. Second,
the uncertainties of data measurements are embedded in the covariance matrices of the GMM,
which combined with a special cluster to handle outliers, provide an effective way of handling
noisy measurements. Finally, the storage requirements for a GMM are much lower than for the
original PCD.

Though GMMs have been used before for PCD representation [23, 32], we introduce a novel
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(a) (b) (c)

(d) (e) (f)

Figure 5.2: Processing PCD with a Hierarchy of Gaussian Mixtures: (a) Raw PCD from
Stanford Bunny (35k vertices), (b) and (c) Two levels of detail extracted from the proposed
model. Each color denotes the area of support of a single Gaussian and the ellipsoids indicate
their one σ extent. Finer grained color patches therefore indicate higher statistical fidelity but
larger model size, (d) a log-scale heat-map of a PDF from a high fidelity model. (e) stochastically
re-sampled PCD from the model (5k points), (f) occupancy grid map also derived directly from
the model. See Chapter 6 for technical details regarding (e) and (f).
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Data Structure Hierarchical Generative

Voxel

Free
Construction
Complexity

Voxel Hash List [121] N
Octree [53] X N logN
3D-NDT [5] X N
3D-NDT-Octree [84] X X N logN
GMM [23] X X NJ
Hierarchical GMM [41] X X X N2

Proposed Method X X X N log J

Table 5.1: A Comparison of 3D Point Cloud Data Structures Hierarchical: Hierarchical
methods compress free space and are therefore more compact than dense grids. Generative:
Generative models add parametric structure to PCD, facilitating statistical inference, maximum
likelihood, or continuous optimization methods. Voxel Free: The lack of voxelization present in
the model avoids discretization errors, allowing higher fidelity at smaller model sizes. Construc-
tion complexity: N is the number of points in the PCD, and J the number of mixtures in a GMM,
with J � N for most typical applications.

top-down hierarchical model which confers the following benefits: (1) dynamic allocation of
the number of mixtures, with new clusters being added in areas of high-frequency detail, (2)
efficient parallel coarse-to-fine construction by recursively partitioning the points in the PCD
into their most influential mixture/s, and (3) multiple levels of detail for point cloud re-sampling
and occupancy map creation.

In this chapter, we demonstrate a highly efficient and parallelizable method for hierarchical
top-down GMM clustering that, as opposed to previous GMM-based techniques, applies sparse
constraints on point to cluster assignments, thus enabling construction time logarithmic with
respect to the overall model size.

5.3 Related Work
In most spatial processing applications that rely on point cloud data, using the raw points directly
can be nearly intractable. Thus, most common operations one might want to perform: nearest
neighbor queries, denoising, geometric or semantic inference, etc., stand to benefit from impos-
ing some type of structure to the raw data. Table 5.1 summarizes typical data structures used for
point cloud data.

Voxelization and occupancy grids [26, 138] have been established as a popular method to
discretize raw PCD over a dense grid, but memory problems emerge when needing fine resolution
or large grids. Especially in cases of 3D points, many voxels may be unoccupied, leading to
inefficient memory usage. Octrees and kd-trees can be much more space efficient [53], as the
construction of a regularly subdivided hierarchy effectively compresses empty space. These
structures incur additional overhead compared to dense grids, however, requiring superlinear
construction time with respect to the size of the PCD.
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Whereas voxels and octrees rely on discretization to obtain structure from PCD, another
class of algorithms instead model the data as a set of independent samples from some unknown
distribution. These algorithms use the principle of maximum data likelihood to optimize a set of
latent parameters that describe the original PCD. Known as generative models, these models can
by construction provide robust probabilistic inference. Their trade-off, however, is the potentially
high construction or inference cost and need for a priori knowledge.

For modeling 3D PCD, the most common generative model used in the literature is the Gaus-
sian Mixture Model (GMM). Typically, GMMs are used to facilitate robust point cloud registra-
tion techniques [5, 21, 23, 32, 60]. The work of Jian and Vemuri [60], for example, convert a
point cloud into a GMM by placing a covariance around each point. Though this minimizes the
setup cost, inference then becomes very slow as the GMM is larger than the original raw points.
In contrast to these methods, our proposed technique is exponentially faster with respect to the
size of the model. A “flat” version must iterate linearly O(J) through all J mixtures, whereas
our method isO(log J). Furthermore, we do not need to specify the number of mixtures a priori.
Our coarse-to-fine construction allows us to both filter out low-frequency details quickly (floors
and walls) and drill down to deeper levels for high-frequency details.

The Normal Distributions Transform (NDT) [5, 123] is a widely used and elegant technique
that attempts to merge the concepts of a voxel grid or octree with a GMM by simply recording the
mean and covariance of all points that fall into each voxel. The GMM can then be constructed as
a weighted sum of the voxel’s respective Gaussian parameters. Though the construction of such
a data structure is very efficient, the requirement to voxelize at the beginning can cause a loss of
fidelity.

Other work has experimented with hierarchical forms of GMMs for applications like 2D
image segmentation [36]. Typically, these methods operate bottom-up, repeatedly grouping to-
gether like clusters of points using divergence measures to split and merge the data. For example,
Goldberger et al [41] construct an iterative EM-like algorithm using KL-Divergence in order to
repeatedly merge candidate clusters. In contrast, we adopt a top-down hierarchical approach,
motivated by the need to keep the calculation of point-mixture correspondences sparse for 3D
point clustering. As such, our approach is more amenable to parallel hardware and is much
more computationally efficient (see Table 5.1). Another similar top-down construction is that of
Kalaiah et al [63], though this method is not generative.

5.4 Method Overview

Our model uses overlapping basis functions (anisotropic Gaussian mixtures) for representing 3D
geometry. These functions are recursively applied in a top-down fashion to create a hierarchy
of overlapping patches that approximate the original 3D PCD. The creation of this model is cast
as the solution to a Maximum Likelihood Estimation (MLE) hierarchical Gaussian Mixture seg-
mentation problem that can be solved by recursively employing the Expectation Maximization
(EM) algorithm over increasingly smaller partitions of the point data.
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5.4.1 Model Definition

As in Chapter 4, our world model is composed of J overlapping probabilistic mixtures Θj plus a
(J+1)th noise distribution. We choose our subsurface models to be weighted 3-dimensional mul-
tivariate Gaussians, Θj = {πj,µj,Σj}, and our noise distribution to be a uniform distribution
over the bounding box of the point data. Together, these basis distributions produce a mixture
model, which is itself a valid probability distribution.

Given a point cloud Z of size N , its probability of being generated by our model, given that
each point is an iid sample of the world, is:

p(Z|Θ) =
N∏
i=1

p(zi|Θ) =
N∏
i=1

J+1∑
j=1

πjp(zi|Θj), (5.1)

p(zi|Θj) =

{
N (zi|Θj), for 1 ≤ j ≤ J,
1
η
, for j = J + 1,

(5.2)

where η is the size of the volume for which the noise cluster is active.
To find the basis functions to best fit the point cloud data we employ the EM algorithm [7],

which has been established as a way to iteratively maximize data likelihood when there is no
closed form solution to the maximizer, yet there is a way of finding a maximum of joint data
likelihood of the data and a set of associated latent variables. We define a set C of latent variables
cij that represents the binary associations between points zi ∈ Z and mixtures Θj . In the E-Step,
we calculate the posterior for all cij ∈ C given Θ:

E[cij] =
πjp(zi|Θj)∑J+1

j′=1 πj′p(zi|Θj′)
(5.3)

In the M-Step, we maximize the expected log-likelihood with respect to Θ, using our current
E[cij]

def
= γij:

max
Θ

∑
ij

γij{ln πj + ln p(zi|Θj)} (5.4)

Given a fixed set of expectations, one can solve for the optimal parameters in closed form at
iteration k:

µk+1
j =

∑
i γijzi∑
i γij

(5.5)

Σk+1
j =

∑
i γijziz

T
i∑

i γij
− µk+1

j µk+1
j

T
(5.6)

πk+1
j =

∑
i

γij
N

(5.7)
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5.4.2 Expectation Sparsity

Given the above definitions and a sufficiently high number of mixtures J , the posterior over
correspondences will be sparse due to the nature of 3D geometry. We can see this fact intuitively:
Consider that in an indoor scene, for example, the geometric structure of a light fixture will not
be statistically informative to a point sampled on a couch beneath it. Thus, given a point cloud
of size N , if we naively try to calculate all NJ point-subsurface expectations (γij), most will
be zero or near-zero and not contribute meaningfully to the calculation. Therefore, one could
save vast amounts of computation when trying to calculate γij by restricting the summation to
only those {zi,Θj} tuples that are known to have sufficiently non-zero conditional probability.
We show in the next section how to solve this problem by constructing a top-down hierarchy of
GMMs.

5.4.3 A Top-Down Hierarchy of Mixtures

We can formally define our hierarchical Gaussian Mixture Model recursively by looking at the
probabilistic form for a point zi ∈ R3. At the root of our tree, level 1 (l = 1), our model consists
of a Gaussian Mixture of size Ĵ , with a Ĵ + 1th noise cluster:

p(zi|Θl=1) =
Ĵ+1∑
j=1

πl=1
j p(zi|Θl=1

j ) (5.8)

Each p(zi|Θl=1
j ) can then be refined as another Gaussian Mixture:

p(zi|Θl=1
j ) =

Ĵ+1∑
k=1

π
l=2|1
k p(zi|Θl=2|1

k ), (5.9)

where the superscript indicates the selection of Gaussian parameters at level 2 given the parent
node at level 1. The above is a proper Gaussian Mixture that satisfies

∑Ĵ+1
k=1 π

l=2|1
k = 1. Our

model is then fully defined by the set of all Θl
k and πlk.

If we begin with a coarse decomposition into Ĵ � J mixtures, after convergence, the pos-
terior over correspondences gives us a natural maximum likelihood partitioning of data into Ĵ
coherent geometric regions. We can then use this posterior as a partitioning function over our
data, and reduce our problem into Ĵ subproblems of roughly 1/Ĵ th the size. Recursing this pro-
cess multiple times generates a tree of GMMs, requiring many small EM algorithms of size Ĵ .
The number of levels in the hierarchy would be l = logĴ(J), where each level produces Ĵ l−1

EM problems of size Ĵ . Thus, we would need O(J−1

Ĵ−1
) EM algorithms of size O(NlĴ), where

Nl ≈ N
J∗l−1 . The entire procedure will be logarithmic in the number of mixtures and linear in the

number of points, O(N logĴ(J)).
In order to maintain a valid global GMM, however, we need to share context between parents

and children. Mathematically, we can derive this relation by assigning causal relationships to
a set of l latent correspondence variables, Cl, as depicted in Fig. 5.3. Using the model, we can
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calculate the probability of our observed variable by marginalizing over the latent variables. In
the two layer case,

p(zi|Θl=2) =
∑
Cl=1

∑
Cl=2

p(zi, c
l=1
i , cl=2

i |Θl=2)

=
∑
Cl=1

∑
Cl=2

p(zi|Θl=2, cl=2
i )p(cl=2

i |cl=1
i )p(cl=1

i )

=
Ĵ+1∑
j′=1

Ĵ+1∑
j=1

πl=1
j′ π

l=2|1
j p(zi|Θl=2|1

j ) (5.10)

We can clearly see that for multiple levels, the correct mixing value must be propagated down
the tree to the leaf node, forming a multiplicative chain.

5.4.4 Sparsification: Hard and Soft Partitioning
When we recurse into a new tree level, we utilize the set of posteriors γij of the parent level
to obtain a partition of our PCD. We call this process expectation sparsification. One possible
partitioning strategy is to simply assign a point to the mixture for which its parent expectation
was the highest. We will refer to this as hard partitioning. However, though this method retains
mixture overlap inside every group of Ĵ children, we will have no such overlap among groups of
children from different parents.

We can use a soft partitioning scheme to constrain the amount of geometric context sharing
among children of different parents while still maintaining logarithmic efficiency with respect
to the number of mixtures. To do this, we introduce a parameter, λp, that relaxes the hard par-
titioning constraint but still keeps γij sparse. Alg.1 describes the procedure in detail. To avoid
double-counting observed points in the final GMM, we introduce a per-point weighting factor
into the E-Step, called pi. The total collection of all weights is denoted P . ξ is a normalization
constant such that pi

ξ
over all active partitions sums to 1.0.

Algorithm 1 Expectation Sparsification Algorithm

1: procedure PARTITION(Z , P , Θ, Ĵ , λp)
2: for zi, pi ∈ {Z,P} in parallel do
3: calculate γij , ∀j ∈ Ĵ
4: for γij ≥ λp do
5: add zi to partition j as {zi, piγijξ }
6: end for
7: end for
8: return partitionsj , ∀j ∈ Ĵ
9: end procedure

In this formulation, a point can now contribute to multiple partitions, but an additional piece
of information, pi, needs to be recorded such that the observed point in a given partition con-
tributes exactly

∑
Ĵ γij = pi. In this way, we can use λp to control the amount of context sharing
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Figure 5.3: Graphical model of hierarchical GMM An example of a three-level hierarchy,
where a series of causally linked latent variables are used to identify salient geometric regions of
influence for each observed point zi.

among children of different parents. Given that λp is sufficiently small, the algorithm will remain
both highly efficient and parallelizable as only a small amount of “border points” will need to be
counted multiple times in different partitions.

Note that this efficiency depends on the value of lambda being small but nonzero. If we were
to set λp = 0, we would then be required to visit every point, cluster tuple in the entire tree, thus
eradicating our logarithmic time efficiency with respect to J .

5.4.5 Parallel Construction
Additionally, we can further accelerate the calculation of expectations by parallelization as de-
scribed in Chapter 3. Inspecting Equations 5.5-5.7 reveals that one only needs to keep track of J
zeroth, first and second moments, weighted by their expectations,

{T 0
j , T

1
j , T

2
j }

def
= {
∑
i

γij,
∑
i

γijzi,
∑
i

γijziz
T
i } (5.11)

These constitute sufficient statistics for the GMM. For the purposes of parallelization, the
calculation of the above three quantities can be done in two steps: (1) Calculation of each γij and
(2) a weighted sum over all zeroth, first, and second moments. The former requires information
about all J clusters but no information needs to be shared among points. The latter requires
information about all N points but no information is needed from the J clusters once γij are
calculated. This allows for point-level parallelism in calculating γij and an efficient point-level
reduction sum when calculating the weighted moments.

5.5 Implementation Details
We first review the implementation of our hierarchical EM algorithm using hard partitions, and
then in Sec. 5.5.1 discuss a generalization to soft partitioning.

Algorithm 2 shows the pseudocode for implementing the hard partitioned variant.
HIERARCHICAL EM: The algorithm takes as an input a point cloud Z , the maximum number
of levels of recursion, L, and two convergence parameters λs, λd. The first convergence param-
eter controls the stopping condition for a given set of EM steps, and the second convergence
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Algorithm 2 Hierarchical EM with Hard Partitions
1: procedure HIERARCHICAL EM(Z, L, λs, λd)
2: Init: parentIdx← {−1}N ; Θ← Θinit

3: for l = 0 . . . L− 1 do
4: while !Converged(λs) do
5: {T 0, T 1, T 2, currIdx} ← E step(Z , Θ, parentIdx)
6: Θ←M step(T 0, T 1, T 2, l, λd)
7: end while
8: parentIdx← currIdx
9: end for

10: end procedure
11: procedure E STEP(Z , Θ, parentIdx)
12: for i ∈ size(Z) in parallel do
13: for j ∈ Children(parentIdx[i]) do
14: γij ∝ πjN (zi|Θj)
15: {T 0

j , T
1
j , T

2
j } ←Accumulate(T 0

j , T
1
j , T

2
j , γij, zi)

16: end for
17: currIdx[i]← j s.t. max(γi) = γij
18: end for
19: return {T 0, T 1, T 2, currIdx}
20: end procedure
21: procedure M STEP(T 0, T 1, T 2, l)
22: for j ∈ Level(l) in parallel do
23: Θj ←ML Estimator(T 0

j , T
1
j , T

2
j )

24: if !Supported(T 0
j , λd) then πj ← 0

25: end for
26: return Θ
27: end procedure
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parameter controls the degree of geometric complexity of the final output by dropping clusters
with insufficient support. To initialize Θ, we set our means to be the corners of the unit cube cen-
tered around zero. Note that during the execution of our algorithm we implicitly and recursively
scale and offset the data to fit within the unit cube. The mixing weights are initially equal. Since
these values are the same regardless of the recursion level for every new set of Ĵ subsurfaces,
we only need to set these once at the very beginning of the algorithm. Likewise, we need to
initialize an integer array parentIdx of size N to the value of −1, which will give us the correct
child indices when l = 0 ([0 . . . 7]) to iterate over inside the first level’s E step. After initial-
ization is complete, we then iterate through L levels of the EM algorithm. After a given level
has converged, we update our parentIdx array to point to the Maximum Likelihood estimates of
subsurface expectation, recorded in currIdx during each iteration of the E step.

E STEP: The E step calculates expectations over the child mixtures given the ML expectation of
every point to the set of parent mixtures. The weighted moments {T 0, T 1, T 2} (Eq. 5.11) can be
calculated efficiently and in parallel using sum reductions or CUDA’s atomicAdd functionality.

M STEP: While the E step parallelizes over points, the M step parallelizes over subsurfaces (see
Section 5.4.5). The ML Estimator updates the model according to the standard MLE equations
for GMM-based EM (cf. Eq. 5.5-5.7). Tikhonov regularization is done on the covariances to
prevent numerical instability. Finally, clusters are dropped with insufficient support.

Note that if we implicitly encode the Gaussian Mixture tree in a large flat statically al-
located array, the indexing functions Children and Level can be calculated in constant time:
Children(i) = [(i+ 1)Ĵ . . . (i+ 2)Ĵ − 1] and Level(l) = [ Ĵ(Ĵ l−1)

Ĵ−1
. . . Ĵ(Ĵ l+1−1)

Ĵ−1
− 1].

Algorithm 3 E Step with Soft Partitions

1: procedure E STEP({Z , P}K , Θ)
2: for zi, pik ∈ {Z , P}k,∀k = 1 . . . K in parallel do
3: for j ∈ Children(k) do
4: γij ∝ πjN (zi|Θj)
5: {T 0

j , T
1
j , T

2
j } ←Accumulate(T 0

j , T
1
j , T

2
j , pikγij, zi)

6: end for
7: end for
8: return {T 0, T 1, T 2}
9: end procedure

By looking at the construction of the algorithm and noting that L = logĴ(J) and J � N , we
can see that the algorithm will run inO(k logĴ(J)(ĴN)), where k is the number of EM iterations
until convergence. The normal “flat” EM algorithm would execute in O(kNJ). Thus, we have
produced an algorithm that speeds up model creation exponentially with respect to J , the total
number of mixtures in the model. Furthermore, we have liberated J as a parameter that must be
set a priori, instead letting the convergence criterion λs and low support threshold λd determine
when the point cloud has been sufficiently segmented.
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Figure 5.4: Data set used for our evaluation: (Top left): Bunny - 35,947 points, (Top right):
Burghers - 3.47M points, (Bottom left): Cactus - 1.9M points, (Bottom right): Lounge - 1.62M
points

5.5.1 Soft Partitioning

For hard partitions, updating the pointer parentIdx after EM convergence is all that is necessary
for hierarchical construction since in the subsequent level we can then use the updated parentIdx
in conjunction with the Children function as our index array into the tree.

To generalize the algorithm presented in Alg.2 to soft partitions, however, we need to record
a few more pieces of data. Instead of a single parentIdx array, we need to record all expectations
that fall above λp, as per the partitioning function outlined in Alg.1. Thus, we need to store both
the index of partitioned points and their respective soft partitioning weights, piγij

ξ
. To do this,

we modify line 8 of Alg.2 to instead call the Partition function from Alg. 1. The E step is then
modified according to Alg.3. The only other change is that now inside ML Estimator of the M
Step: the new mix value must now be normalized using

∑N
i pi and not the normal N (cf. Eq.5.5-

5.7). With the modifications, a point in multiple subsurfaces will get distributed recursively
throughout the hierarchy to all branches containing those subsurfaces in such a way that its
expected contribution still sums to one among them. This important bookkeeping operation
keeps consistency among the different paths down the tree.
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L2: 45.7 PSNR, 2.5kB
170x less data

L3: 48.7 PSNR, 20kB
21x less data

L4: 50.7 PSNR, 159kB
2.6x less data

Figure 5.5: Levels of Fidelity: The colors in each heatmap shows the accumulated PDF values
projected onto the screen space. PSNR, model size, and the reduced storage size are shown for
each level. We vary the level of detail (L2 to L4) to show the trade-off between storage size and
fidelity. The original PCD is 421 kB.

5.6 Model Evaluation
We evaluate our model with respect to reconstruction fidelity and construction execution time.
We used for testing the Stanford Bunny (∼36k points) and the Stanford 3D scene dataset, con-
taining scenes with approximately ∼1-3 million points [144, 156]. See Figure 5.4 for more
details. On all these experiments, we statically set Ĵ = 8 and our sparsity constraint, λp = 0.1.

5.6.1 Reconstruction Fidelity
The reconstruction fidelity provides a measure of how well our model can re-create the original
point cloud. For this purpose, we use a PSNR (Peak Signal to Noise Ratio) metric derived from
the Hausdorff distance as suggested by [15]. Specifically, given a reference a point cloud of size
N , we stochastically generate an equivalent N amount of points from our model (This method is
later described in detail in Chapter 6). Then, for every point in the original point cloud, we find
the nearest neighbor in the reconstructed cloud. The logarithm of the inverse root mean squared
error for all points relative to the bounding box size around the point cloud gives our PSNR
metric. Note that the PSNR is on a logarithmic scale. Thus, linear increases in PSNR correspond
to exponential reductions in average point-to-point recreation error. By computing the PSNR at
different levels of details of our model we can provide an insight on the trade-off between model
size and fidelity and fairly compare these trade-offs against other generative techniques.

Figure 5.5 shows a visual representation of the PDF, PSNR, and model size for three dif-
ferent levels of the Bunny model. Though many different potential GMMs may be extracted
from the hierarchy, we restrict our comparisons to GMMs consisting of leaf nodes from differ-
ent maximum levels. For example, a “Level 3” GMM would be the GMM extracted from the
hierarchy by taking all the leaves of the GMM tree at a max depth of 3. As seen in Figure 5.5,
the PDF from Level 2 provides a fairly good approximation while at the same time using ∼170
less storage than the original PCD. By level 4, the fidelity is such that points generated from the
model are virtually indistinguishable from the original PCD. Because model construction using
the hierarchical GMM framework can be viewed as the sparse embedding of 3D points into a
higher dimensional 10D space, we can save on storage space with respect to the original size of
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Figure 5.6: A comparison of data structure size vs fidelity over several standard point cloud
datasets. The blue dashed line indicates the original point cloud size. Note the x-axis is on log
scale. The star markers indicate different levels in the GMM hierarchy. At similar size models,
the hierarchical GMM has much better PSNR (reconstruction performance) with respect to the
original data when compared against the 3D-NDT, 3D-NDT-Octree, and a simple subsampling
strategy for point cloud reduction.

the PCD, while still retaining a high level of geometric fidelity.
We compare our model against the 3D-NDT representation [5] and its Octree-based vari-

ant [84]. We chose the 3D-NDT as it is a widely used state-of-the-art generative model. To
generate the trendlines for 3D-NDT, we calculate models at increasingly finer voxel resolution,
and for the Octree variant, we use increasingly smaller splitting thresholds. As a baseline we
compute a subsampled version of the original point-cloud. Randomly subsampling of the PCD
can be seen as a basic way to reduce the data size and is a common preprocessing technique for
many 3D point algorithms. Fig. 5.6 shows the fidelity reconstruction vs storage size results. In
every case but the bunny, we find that our model performs favorably to both NDT variants. This
is because our optimization procedure yields a more compact representation without the need for
voxelization. In the case of the bunny, however, the original point cloud is small enough that at
higher model sizes we see diminishing returns over the Octree-based NDT. In terms of statisti-
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cal downsampling, both the hierarchical GMM and 3D-NDT are clearly much better choices to
downsize the data while still retaining high geometric fidelity: for example, the level 5 GMM for
Burghers achieves 72 PSNR with respect to the original point cloud, whereas a subsampled point
cloud of equivalent size only yields 60 PSNR. Similarly, the smallest GMM more than doubles
the PSNR over downsampling. To give another interpretation of this data: the level 3 GMM for
Burghers contains as much reconstruction fidelity as if the point cloud were subsampled to about
a fifth of its size, however, the level 3 GMM uses about 450x less memory.

In order to gain further intuition regarding the differences in fidelity shown in Figure 5.6,
Figures 5.7-5.10 show a highlighted point on each of the series of trendlines in Figure 5.6 for
which we show the actual point cloud resampling used to calculate the fidelity of the model (via
PSNR with respect to the reference PCD). It is perhaps easier to understand differences in fidelity
by visual inspection than just by looking at a numerical PSNR metric. As one can see from these
figures, our model is able to recreate the original data much more faithfully than competing
methods.
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Burghers (D) Bunny (D) Raw depth (M)
307k pts 44k pts 60k pts

L1 32.6ms (31Hz) 2.6ms (385Hz) 10.6ms (95Hz)
L2 57.8ms (17Hz) 4.3ms (233Hz) 15.3ms (65Hz)
L3 72.6ms (14Hz) 7.7ms (130Hz) 22.0ms (45Hz)
L4 92.2ms (11Hz) 11.7ms (85Hz) 31.5ms (32Hz)

Table 5.2: Hierarchy construction time. L1 to L4 refers to a level of the hierarchy (i.e., L3
denotes the the process including L1 to L3). D refers to a desktop computer (i5-3500/GTX660)
used for the computation, and M denotes a Mobile device (NVIDIA Shield tablet). Raw depth
refers the point cloud directly captured from Softkinetic DS325 depth camera.

#J Hierarchy Flat Speed-up
8 79.2 ms 61.6 ms 0.78×

64 145.6 ms 166.5 ms 1.14×
512 184.2 ms 1145.4 ms 6.22×

4096 213.8 ms 8750.8 ms 40.93×
32768 251.0 ms 71061.7 ms 283.11×

Table 5.3: Construction speed-up relative to a flat GMM model. The table compares the
E Step execution time of the hierarchical GMM compared with a flat GMM having the same
number of mixtures on the full Burghers model (∼4.5M pts). At higher detail levels, the proposed
hierarchical GMM is significantly faster to build than the flat GMM.

5.6.2 Computational Speed and Scalability

We now take a look at the execution time of the hierarchical model construction. We imple-
mented our algorithm in C++/CUDA and are able to run it on desktop and mobile platforms.
Table 5.2 shows the construction times for each level in the hierarchy over different data sets.
Note that, even on the mobile platform, the PCD from a depth camera can be processed at rates
higher than 60FPS for a level 2 decomposition. In addition, we compare the construction time
of our hierarchical model against the flat GMM model. We show in Table 5.3 that our hierarchi-
cal method becomes increasingly faster relative to a flat version with larger numbers of clusters,
making our method more suitable in applications where high fidelity is desired yet construction
times need to remain low.

5.7 Summary
In this chapter, we introduced a hierarchical data structure based on Gaussian mixture models
that comprises a compact and generative representation for 3D point cloud data. The creation
of the model is accelerated by producing bounds on spatial interactions between the points and
model. We have shown that our hierarchical model construction is orders of magnitude faster
than the equivalent flat model, which follows as a result of replacing a large EM problem into
multiple smaller ones. The model is also shown as a continuous PDF that effectively models the
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original data at different levels of detail, while requiring significantly less storage. Compared to
discrete methods or hybrid approaches such as the NDT, our model yields higher fidelity results
at smaller sizes, with modest construction times even on mobile hardware.

We introduced a novel compressed representation for 3D PCD using a hierarchy of GMMs.
We developed a technique of expectation sparsification to bound spatial interactions and thus
allow for more independent computation and faster convergence, accelerating model construc-
tion exponentially with respect to the number of mixtures. The representation is a continuous
PDF that compactly represents the input data, effectively serving both as a lossy compression
mechanism and as a method for obtaining a probabilistic spatial hierarchy.
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(a) 3D-NDT: 64.03 PSNR (b) 3D-NDT-Octree: 66.48 PSNR

(c) Proposed Model: 68.07 PSNR (d) Reference PCD

Figure 5.7: Burghers of Calais: Comparison of reconstruction fidelity for same-sized models.
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(a) 3D-NDT: 59.12 PSNR (b) 3D-NDT-Octree: 62.37 PSNR

(c) Proposed Model: 65.15 PSNR (d) Reference PCD

Figure 5.8: Lounge: Comparison of reconstruction fidelity for same-sized models.
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(a) 3D-NDT: 63.42 PSNR (b) 3D-NDT-Octree: 65.83 PSNR

(c) Proposed Model: 67.48 PSNR (d) Reference PCD

Figure 5.9: Cactus Garden: Comparison of reconstruction fidelity for same-sized models.
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(a) 3D-NDT: 43.02 PSNR (b) 3D-NDT-Octree: 44.47 PSNR

(c) Proposed Model: 45.79 PSNR (d) Reference PCD

Figure 5.10: Stanford Bunny: Comparison of reconstruction fidelity for same-sized models.
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Chapter 6

Inference and Visualization

6.1 Sampling and Integration

We have so far explained how one might efficiently construct a model (Chapter 5), but once
the model is obtained, it is not trivial to see how one might sample and integrate over it, two
operations that are fundamental for spatial processing applications. In this Chapter, we describe
several algorithms to efficiently perform sampling and integration, which we apply to the tasks of
point cloud reconstruction, occupancy grid generation, and isosurface meshing. In this chapter,
we present a novel importance sampling algorithm for GMMs that allows us to significantly
reduce the number of samples required during integration. Because these algorithms are not
specific to hierarchical GMMs, we simplify the notation to the model as defined in Chapter 3,
although the hierarchical models of Chapter 5 are used in our experiments.

6.1.1 Point Cloud Reconstruction

To regenerate a set of N points we sample the distribution defined by the GMM as shown in
algorithm 4. First we determine how many samples Hj to generate from each cluster j in [1, J ]
according to the mixture weights µj . Then we generate the Hj for each cluster according to the
normal distribution defined by Θj . Details on this technique, known as ancestral sampling, can
be found in Bishop et al [7]. We present it here for completeness as this is an important operation
on our model. Refer to Figure 7.1e for a graphical example of this result.

6.1.2 Occupancy Grid Generation

Many applications in 3D vision require grid-based occupancy estimates of space, including path
planning [138], semantic perception [26], and 3D modeling [53]. We show how our model may
augment these applications by allowing dynamic run-time estimates of occupancy over sparse
grids. Since the spatial extent and voxel resolution of these estimates can be determined dy-
namically at run-time, one can avoid many of the common problems with traditional techniques:
constraint extent in large scenes, discretization artifacts as a result of coarse voxel sizes, or mem-
ory bottlenecks resulting from dense high-resolution voxel grids.
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Algorithm 4 Point Cloud Reconstruction
1: procedure PCD RECONSTRUCT( Θ, J , N )
2: calculate Πj =

∑j
i=1 πi, ∀j ∈ J

3: S ← N random uniform samples in [0, 1)
4: H ← histogram(S, Π) , Π provides bins extents
5: for j = 1 . . . J do
6: Pj ← Hj points sampled from N (µj|Σj)
7: end for
8: return Pj , ∀j ∈ J
9: end procedure

To construct an occupancy grid we can stochastically sample points directly from the model
to perform a Monte Carlo estimation of the probability that a given region of space is occupied.
More formally, to build a discrete occupancy voxel grid we would like to spatially integrate our
PDF over each voxel to obtain its probability estimate,

p(Vk|Θ) =

∫
Vk

J+1∑
j=1

πjp(v|Θj)dv, (6.1)

where Vk is a particular indexed cube or voxel.
Since there is no analytical solution to this integral, we resort to Monte Carlo sampling. How-

ever, uniform sampling the PDF over the space of the voxel grid will likely yield estimates with
very high variance since the previously discussed sparsity will render many areas to essentially
zero probability. Thus, we employ the use of importance sampling. To see how importance sam-
pling is quite efficient in this context, we need to re-interpret the GMM as a weighted sum of
zero-mean isotropic Gaussians that have been skewed and shifted through 3D space. To do this,
we perform a Cholesky decomposition on the covariances, Σj = UT

j Uj . Then the multivariate
normal equation is,

N (xi|Θj) = ξ−1
j e−

1
2

(xi−µj)T UT
j Uj(xi−µj) (6.2)

= ξ−1
j e−

1
2
‖Ajxi−bj‖2 , (6.3)

where Aj = Uj and bj = Ujµj , and ξj is a normalization factor. Thus, we can interpret
each input xi as undergoing an affine transformation before being evaluated through a zero-mean
Gaussian function with identity covariance. To efficiently sample from the GMM therefore we
first sample uniformly over [0, 1] in 3 dimensions and then transform the values through the Φ−1

(probit) function. Our derived affine transformations of the samples X ∼ N (0|I) for each of
J subsurfaces place them in the GMM space. Furthermore, since the GMM is simply a linear
combination of many Gaussians, once we have a collection of transformed samples, one only
needs to keep track of what proportion of these samples, per cluster, fall into a particular voxel
and then multiply this ratio by the appropriate mixing parameter. Thus,

p(Vk|Θ) ≈
J+1∑
j=1

πj
N

i=N∑
i=1

IVk(xi) (6.4)
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where xi ∼ N (µj|Σj) and I is an indicator function for whether xi falls within the bounds
of Vk.

Since the sampling function matches the underlying PDF (up to a multiplicative constant),
these calculations yield unbiased estimates of the voxel probabilities and have low variance for
even a fairly small number of samples. Furthermore, we precalculate all the samples X before
reconstruction so that the entire process amounts to simply binning (voxelizing) the results of
J different affine transformations over a relatively small static set of random or pseudorandom
points. Since the model itself contains no voxels, as opposed to voxel-based or NDT methods,
we are free to dynamically choose the extent and resolution of the occupancy grid at run-time,
according to any number of application-specific constraints, arbitrarily defined axes, frustum
culling, or locus of attention.

Figure 6.1 demonstrates this process for a large scene. Once we create a model from the
points (in this case, a hierarchical GMM with a max depth of 5), we no longer need the raw
PCD, and instead can at runtime produce a high quality occupancy map using the model only
(Figure 6.1b).

6.2 Isosurface Extraction
The proposed model’s compact and parametric structure make it particularly well-suited for
many common 3D spatial processing applications. We demonstrate one such application in this
section, isosurface extraction, that uses stochastic sampling to accelerate fine-grained 3D mesh
generation from probabilistic occupancy estimates in an augmented Marching Cubes framework.
Being a statistical model based on data likelihood, one can derive an isovalue such that the iso-
contour forms a closed 3D surface representing a statistical guarantee of the presence of solid
matter. Note that this is fundamentally different in nature than surface extraction; instead, ex-
tracting an isosurface from a PCD-derived GMM can be seen as a probabilistic generalization of
a 3D occupancy grid, where the isocontour represents a probabilistic “bound” around the surface.
Thus, isosurface extraction is applicable for cases when a probabilistic guarantee is needed in the
presence of noise as to whether a given space is free or occupied. Fig. 6.2 shows an overview of
our method.

6.2.1 Marching Cubes
The Marching Cubes (MC) algorithm is one of the most popular methods for isosurface extrac-
tion from volumetric data [79], with applications in medical imaging and computer graphics. In
its original form, MC divides 3D space into discrete voxels and samples over the entire volume.
It is a sequential algorithm that traverses the volume in raster order, causing the algorithm to
scale O(V 3) with the number of voxels V per dimension. Unfortunately, this cubic scaling can
cause complete voxel traversal to be a slow process, in particular if a large percentage of the cells
in the volume are non-active. This fact is especially true when applying these methods to data
from range sensors, since the data typically inhabits only a small subset of the entire volume.
Roughly speaking, the occupied voxels from points observed by range sensors grow O(V 2) with
the number of voxels per side of a volume. The quadratic scaling of active voxels to cubic scal-
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(a) Input PCD (1.6 mil pts) [156]

(b) Occupancy grid map

Figure 6.1: Occupancy estimates: Top: Raw PCD. Bottom: an example high resolution occu-
pancy map obtained by sampling a hierarchical GMM (max depth 5) produced from the points.
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Figure 6.2: Overview of our approach. We first build a hierarchical GMM by recursively
applying EM (Chapter 5). Secondly, we run stochastic importance sampling on the highest
detail PDF to build a list of active voxels (Sec. 6.2) that we feed to marching cubes for the final
isosurface reconstruction (Sec. 6.2.2).

Figure 6.3: Sparsity of point cloud data Sparsity is a common scenario for many modern range
sensors. For a sample point cloud data captured from a depth sensor, the number of occupied
voxels in a sample grows close to O(V 2), where the total number of voxels grows as O(V 3).

ing of total voxels indicates that the sparsity with respect to the volume only increases as the
resolution gets smaller.

To see this visually, we conducted a simple occupancy test of voxelizing point cloud data
captured from a commodity depth sensor. Figure 6.3 shows the result of voxelizing point cloud
data over a volume and then computing occupancy statistics. Occupied voxels grow roughly
O(V 2) as the total voxels grow O(V 3).

To facilitate the discovery of active cells, most traversal acceleration algorithms pre-process
the data into some form of intermediate data structure: spatial data structures such as Octrees
[152], active lists [38] and span space-based representations [78], among others. These methods,
however, can have a high setup cost. For example, Octrees have a creation time that is superlinear
in the number of points (O(N lgN)), and so can accelerate the process only if there are multiple
isosurface extractions performed, since then one can reuse the data structure. Other methods

77



Reconstructed Isosurface Meshes

Original Meshes

Bunny Burghers Cactus Lounge

Figure 6.4: Qualitative comparison between our reconstruction and original meshes: Im-
ages in 1st row show isosurfaces generated from our L5 models (cropped to show detail) using
stochastic marching cubes. The images in the 2nd row show the original mesh [156].

reduce the number of cells visited by starting from a known active cell and propagating to nearby
active cells [131]; such an approach reduces the execution time, but picking the propagation
point is not trivial. For an extensive survey of methods related to MC, we refer to Newman and
Yi [101].

6.2.2 Sparse Augmentation of Marching Cubes

We would like utilize our Gaussian Mixture hierarchy to perform the isosurface extraction sparsely
over the volume. Given that the underlying structure is a PDF composed of many Gaussians, in
the context of point cloud data, each Gaussian has a certain spatial extent beyond which its in-
dividual contribution to the PDF is negligible. Isosurface extraction through Marching Cubes is
nothing but the process of finding voxels with isovalue crossings. If all corners are above the iso-
value or all corners are below the isovalue, then it is a wasted sample. By leveraging the GMM’s
PDF, we can we can quickly find candidates for active voxels.

Given the GMM model, we know the location and shape of areas of high probability. To
construct a sparse list of voxel probabilities, we can employ the sampling technique discussed
in Section 6.1.2. Because the GMM’s active region over the entire volume is sparse, the voxel
list of nonzero probabilities is sparse, allowing the sparse augmented MC method to be able to
operate very fast even for very small voxel sizes.
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Input PCDs Our Method Poisson Ball-Pivoting

Figure 6.5: Isosurface reconstruction under noise: (1st column): Stanford bunny with ran-
domly added noise (Normal distribution), (2nd column): our results, (3rd column): Poisson
reconstruction [65], (4th column): Ball-pivoting [2]. Note that even with more aggressive noise
(2nd row), our approach can provide better overall model quality.

6.2.3 Results on Datasets
Isosurface Reconstruction (Noise-Free): Note that in the case of noise-free data, any nonzero
positive isovalue along with a sufficiently detailed GMM-tree will produce an isocontour that
approximates the true surface of the model. Likewise, a sufficiently fine discretization of MC
will produce the correct meshification of surfaces of the scene. We show these results qualita-
tively in Fig. 6.8 for L5 models and a 256 resolution voxel grid. The isosurface reconstruction
from the point cloud data is virtually indistinguishable from the original mesh. Thus, when the
models have such high PSNR, as demonstrated in Chapter 5, very high quality fine meshes can
be procedurally generated from the regions of interest efficiently and accurately.
Robustness to noise: To qualitatively evaluate the robustness to noise in the point cloud data,
we created synthetic data sets with added noise to the Bunny model, and compared the recon-
structed isosurface meshes against other common surface reconstruction methods, as shown in
in Fig. 6.5. Due to the probabilistic nature of our isosurface extraction, our meshes approxi-
mate the true shape of the Bunny better, while others, (Poisson surface reconstruction [65] and
Ball-Pivoting [2]) can fail fairly dramatically under large amounts of noise.

6.2.4 Adaptive Coarse-to-Fine Scene Sampling
Even when using a sparse voxel list to track the non-zero probability voxels, we still need to
define a voxel resolution and volume size for marching cubes. To produce high quality surfaces,

79



Figure 6.6: Adaptive scene sampling: Left : entire scene reconstruction, notice the coarseness
of the triangulation (originally 3.47M points), Right: a zoomed-in region (denoted as red rectan-
gles in Right) is finely triangulated. In both cases the sampling volume is fixed at 256x256x256.

the voxel size needs to be small enough to capture the fine detail in the underlying GMM model.
On mobile devices, for example, this can be problematic, since for large scenes the number of
active voxels could increase to the point of saturating system resources. One advantage of using
our GMM model is that we can decouple the surface representation from the volume size that
we use for surface reconstruction within MC. Therefore, we can fix the maximum MC volume
size to keep interactive rendering rates and adaptively change which region of the scene the
volume is sampling according to the current viewing frustum. Thus, when the user is viewing
the entire scene, the MC volume will sample the entire scene, which will result in a coarse
triangulation; on the other hand, when the user zooms into the scene, the MC volume will sample
the current zoomed-in region, resulting in a finer triangulation and higher level of detail. Our
current implementation handles a volume of 2563 voxels for real-time performance. Fig. 6.6
shows an example of this coarse-to-fine adaptive sampling strategy.

Note that the discretization of space into a voxel volume is only required when a discrete
surface is needed, and that our 3D model representation remains a continuous function. As such,
we can define the mapping of the discrete voxel volume to the 3D space dynamically, based on
need. This is different to existing methods that use discrete representations to model 3D space
which work with a fixed-resolution voxel space [10, 100]. A deterministic spatial decomposition
approach is much more rigid in this regard. By keeping a compact probabilistic model as our
main data structure, we are afforded the freedom to dynamically adjust our level of discretization
detail without needing to keep the original points in memory after the model is computed.

As an additional example, in Fig. 6.8, we enumerate the results from all our datasets, showing
a slice of the sparsely sampled volume, lower level meshes of entire scenes, and high quality
meshes generated from regions of interest.

6.2.5 Real-Time Operation on Mobile Device

One goal of these proposed methods is to enable 3D point cloud data processing on mobile and
embedded devices. These devices range from phones and tablets, with applications in augmented
reality and casual 3D model acquisition, to automobiles and mobile robots, where 3D point data
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Figure 6.7: Modeling on the Android platform We run our approach on a mobile platform at
interactive rates.
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is used for navigation and path planning.
To demonstrate our computational efficiency, we deployed this pipeline onto an NVIDIA

Shield Tablet. Our hierarchical segmentation is able to stream SoftKinetic data and segment in
greater than real-time (356 FPS for a coarse level 1 segmentation and 124 FPS for a high fidelity
level 5 segmentation). Our sparse sampling strategy for a 256x256x256 Marching Cubes grid
takes about 2.5 ms (400 FPS) for a level 4 segmentation in CUDA. Fig. 6.7 shows a screenshot
of our implementation running on the tablet at video rate.

Related methods for surface rendering on volumetric structures, such as KinectFusion [100]
and its variants [10], require ray casting over a signed distance field. In addition, while they
demonstrate video rate reconstruction on high-end CPU/GPUs, their computational complexity
and storage requirements do not allow execution on mobile or embedded platforms. In contrast,
our method builds a mesh from the continuous PDF, allowing us to define the discretization of
the surface dynamically.

Furthermore, compared to regular surface reconstruction problems, extracting an isosurface
does not require the solution of determining the “inside” or “outside” of an object. In our case, the
isocontour itself has the definition that inside the surface is all the space for which the likelihood
of occupation is above a certain statistical threshold. However, in the case of noise-free input,
for any probability threshold above zero, a sufficiently detailed GMM-tree, and a sufficiently fine
discretization of Marching Cubes will, in fact, produce the correct collection of surfaces of the
scene, since the isosurface shell will have near zero-variance.

6.3 Summary
In this chapter we discussed various techniques for sampling, integrating, and visualizing the
models. We demonstrated that the model’s PDF can be used to reconstruct point clouds of ar-
bitrary sizes, efficiently compute probabilistic occupancy estimates using stochastic importance
sampling, and augment a Marching Cubes procedure for fine-grained isosurface meshing. The
marching cubes volume is decoupled from the 3D surface representation, which allows us to set
the voxel and volume size dynamically based on the availability of computing resources. These
applications form fundamental components of many spatial perception and 3D modeling applica-
tions, particularly for cases like collision detection and user interface design, where high fidelity
meshification and visualization is desirable. Furthermore, we showed how, given the parallel and
recursive construction of our model, these techniques can be efficiently implemented in CUDA,
allowing for real-time rates on a mobile devices equipped with GPUs. Finally, note that the mod-
els used in this chapter are the exact same models we use for segmentation and registration; a
single model can therefore be used for all of these distinct perceptual tasks without incurring any
additional computational overhead during model creation.
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Figure 6.8: PDFs and reconstructed structures: (1st column): Heat maps represent the areas
of high data probability (PDFs) for each model, (2nd column): The reconstructed scenes with our
hierarchical GMM and stochastic marching cubes in low voxel resolution (2563). The red rect-
angle denotes the region of selection where we reconstruct with higher resolution. (3rd column):
Our reconstruction with higher quality. Note that the original meshes are from [156]
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Chapter 7

Context-Aware Registration, Fusion, and
Mapping

Point cloud registration and mapping sits at the core of many important and challenging 3D
perception problems including autonomous navigation, SLAM, object/scene recognition, and
augmented reality. In Chapter 4, we introduced several methods for registration that utilize
the generative models described in Chapter 3. In this chapter, we build on these techniques to
present a new statistical registration method that can achieve high performance even in extremely
difficult situations where large pose displacement, uneven sampling patterns, or non-overlapping
geometry would otherwise render traditional registration methods intractable.

Our proposed registration method combines two new techniques: 1) Mixture Decoupled
Mahalanobis Estimation (MDME) (see Chapter 4) and 2) Expected Overlap Estimation (EOE).
MDME calculates the most likely 6 DoF transformation between two point clouds using Gaus-
sian Mixture Models (GMM) and a generalization of the ICP point-to-plane minimization metric,
while EOE robustly estimates non-overlapping regions by using an iterative EM-like procedure
to directly encode the known sensor view dynamically into the registration process. Our ex-
periments indicate favorable performance both in speed and accuracy against the state-of-the-art,
with the largest benefit appearing in situations where the amount of overlap between point clouds
is very small.

7.1 Introduction

Point cloud registration is the task of aligning two or more point clouds by estimating the relative
poses between them, and it has been an essential part of many computer vision and graphics algo-
rithms such as 3D object matching [19], localization and mapping [104], dense 3D reconstruction
of a scene [100], and object pose estimation [106].

Over the last several decades, point set registration has remained a popular research topic,
though recently new methods [135] have been gaining more importance due to the growing
commercial interest of virtual and mixed reality [89], commercial robotics, and autonomous
driving applications [49, 74]. In most of these applications, massive amounts of 3D point cloud
data (PCD) are directly captured from various active sensors (i.e., LiDAR and depth cameras)
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Figure 7.1: Point Cloud Registration with Limited Overlap Leftmost: Two range sensors at
different poses capturing different slices of geometry. Note that the geometry is illustrated in 2D
contours for simpler visualization: Blue and red contours for the geometry captured from each
view, and magenta for overlapped region. During the registration process, the non-overlapping
pieces of geometry are problematic as they may be mistakenly matched. For generative model-
based methods, this situation manifests itself as a violation of the paradigm’s most fundamental
assumption that both point sets are iid samples of a single model. Rightmost: If overlap can be
directly estimated as part of the generative model, then non-overlapping regions could be pruned,
leading to a more well-formed registration problem both practically and theoretically.

but at different times under different poses or local coordinate systems. The task of point cloud
registration is then to try to find a common coordinate system, which is done by estimating some
type of geometric similarity in the point data that can be recovered through optimization over a
set of spatial transformations.

One of the oldest and most widely used registration algorithms, Iterative Closest Point (ICP) [3,
11], is based on an ad hoc iterative matching process where point proximity heuristically estab-
lishes candidate point pair sets. Given a set of point pairs, the rigid transformation that minimizes
the sum of squared point pair distances can be calculated efficiently in closed form. Given its
simplistic construction, ICP and its dozens of variants [116] often fail to produce correct results
in many common but challenging scenarios, where the presence of noise, uneven point cloud
density, occlusions, or large pose displacements can cause a large proportion of points to be
without valid matches.

Compared to traditional ICP-based approaches, much research has been done on the use of
statistical models for registration, which in principle can provide better estimates for outlier rejec-
tion, convergence, and geometric matching. [40, 98, 136]. In particular, many statistical methods
have been designed around the Expectation Maximization (EM) algorithm [18] as it has been
shown that EM generalizes the ICP algorithm under a few basic assumptions [43, 130]. Specif-
ically, if each point has a Gaussian noise parameter, the entire set of points can be interpreted
as Gaussian Mixture Model (GMM). Therefore, many statistical registration techniques have ex-
plicitly utilized a GMM along with EM to deliver better robustness and accuracy [14, 33, 43, 51].
Unfortunately, however, these algorithms tend to be much more complex than ICP, their robust-
ness coming at a high computational cost.

In addition to these problems, the model’s underlying assumptions can often be violated and
cause performance to degrade. In particular, any statistical registration method employing EM
and/or GMM’s as the basis for point cloud representation utilizes the following assumption: That
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there exists some probability distribution, characterized by a generative model, for which point
cloud data can be viewed as a set of independent and identically (iid) distributed samples.

The amount to which the iid assumption is true in practice has a direct effect on the accuracy
and robustness of these statistical models. As we show in this chapter, these GMM/EM algo-
rithms tend to break down in many common real-world scenarios due to their inability to adapt
to changing views.

These limitations motivate the need for a new type of generative approach that can preserve
the iid assumption, specifically in cases of non-overlapping point cloud regions (See Fig. 7.1).
Given these stated goals, our contributions in this Chapter are summarized as follows:
First, we establish a view-aware methodology for generative model-based registration that explic-
itly considers only overlapped regions of geometry. We then provide an EM-like iterative proce-
dure to dynamically estimate view overlap during registration, which we call Expected Overlap
Estimation (EOE) (Sec. 7.3.2). We deploy this method as part of a new, GPU-parallel registration
algorithm that uses a novel Mahalanobis distance generalization of ICP’s point-to-plane distance
minimization metric, called Mixture Decoupled Mahalanobis Estimation (MDME) (See Chap-
ter 4). We then demonstrate the types of scenarios where view-awareness is most useful, how
these methods compare against traditional robust outlier rejection techniques and they can be
augmented with EOE, and also how MDME+EOE performs alongside other state-of-the-art gen-
erative methods and robust ICP variants. We show that MDME should be preferred in most cases
to current state-of-the-art generative registration MLE metrics, and that EOE succeeds most in
situations where large portions of non-overlapping geometry or noise are present in one or both
point clouds.

7.2 Related Work
Our proposed technique of Expected Overlap Estimation is similar in spirit to previous work on
robust outlier detection and handling under ICP. For example, FICP [113], IRLS-ICP [50], and
Trimmed ICP (TrICP) [12, 13] utilize robust matching metrics in order to handle cases of partial
overlap in order to down-weight and/or avoid spurious point matches. We similarly seek to
detect points that have no geometry with which to match in the other point cloud, though we use
an iterative EM-like approach where a known sensor field-of-view is dynamically estimated and
updated. We will show experimentally that both approaches are complementary to one another.

Another related approach to exclude non-overlapping regions is to use projective association
for the matching step of ICP [116]. This efficient method first transforms a pair of 2D depth
maps into a single coordinate system and then pairs depth pixels sharing the same 2D index.
With projective association, this pairing method can be seen as a type of implicit ray casting
solution to remove data currently believed to be outside the region of overlap. Though projective
ICP has seen a lot of success with range cameras such as the Kinect [100], it is not particularly
well-suited for operation with sensors that do not produce a dense depth map (e.g. LIDAR),
which is our main focus in this Chapter.

A crucial difference between this work and the robust and projective ICP methods previ-
ously mentioned is that we employ a statistical model-based approach instead of ICP’s heuristic
approach. As explained in Chapter 4, our method builds on previous work in GMM-based meth-
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ods such as GMM-Reg [59][57], JRMPC [33]. By adopting a GMM-based paradigm, we gain
robustness in situations of large pose displacement, optimal solutions in the form of maximum
likelihood estimates, and an ability to more easily leverage point-level parallelism on the GPU
(Chapter 3).

The earliest statistical methods placed an isotropic covariance around every point in the
first set of points and then registered the second set of points to it under an MLE framework
(MPM [14], EM-ICP [43], CPD [98, 99]). More modern statistical approaches utilize a gener-
ative model framework, where a GMM is usually constructed from the points explicitly and
registration is solved in a MLE sense using an EM or ECM [90] algorithm (ECMPR [51],
JRMPC [33]), though some utilize a max correlation approach (Kernel Correlation [142], GMM-
Reg [59][57]). Since a statistical framework for point cloud registration tends to be more heavy-
weight than ICP, some have tried methods such as decimation (EM-ICP [43]) or voxelization
(NDT methods [4, 6, 133, 134]) to create smaller or more efficient models, while others have de-
vised ways to exploit point-level parallelism and GPU-computation for increased computational
tractability and speed [21, 136].

In all cases, these statistical techniques share the same underlying theoretical assumption that
points are iid samples of a probability distribution, and thus suffer from the same types of failure
cases when scenes being registered only partially overlap.

Though not the focus of this thesis, it is important to note the work done on global registra-
tion. Unlike ICP and generative methods, which are by definition local methods (meaning that
their performance degrades as a function of the amount of pose displacement), global methods try
to find a set of pose-invariant features in each point cloud upon which to perform globally invari-
ant matching [42, 82, 119, 157]. Similar to various common approaches using 2D image features
(e.g. SIFT [81]), if a feature can be matched regardless of the sensor pose with high sensitivity
and then combined with a highly specific pruning process (e.g. some type of RANSAC-based
approach) or robust matching scheme (e.g. histogram correlation), one could then feasibly reg-
ister point clouds under high amounts of occlusion. Ma et al. [82] address the problem of small
overlapping regions by performing correlative histogram matching on the set of normals between
two point clouds. Rusu et al. define point-angle features around k-neighborhoods and use sam-
ple consensus. Zhou et al. extend Rusu’s work using robust distance functions that discount
spurious matches instead of sample consensus [157].

Though global registration algorithms are promising, we choose to utilize a local, genera-
tive model approach in this work, as these global algorithms tend to be limited in applicability.
First, these algorithms rely on feature repeatability, which is highly dependent on an ability to
construct well-defined normals or point-angle properties. As past research has demonstrated, ac-
curately calculating normals can be difficult due to sparsity, noise, and varying support regions,
especially with LIDAR data [72, 145]. Me et al. further require scenes where occlusions or non-
overlapping regions still nevertheless share segments of the same planar surfaces (i.e. structured
indoor environments with minimal clutter). Third, feature computation tends to be very expen-
sive since many different point neighborhoods often need to be considered (and potentially at
multiple scales) and then pruned for saliency [157]. Other global techniques, like Go-ICP [154],
rely on expensive branch-and-bound techniques that make it impractical for real-time usage.
Thus, these algorithms are most suitable for highly rectilinear, structured environments where
point density is high and real-time operation is not required.
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7.3 Approach and Methodology
For standard GMM-based MLE registration methods, the probability distribution given by the
model predicts the likelihood of a point in space, and thus with an iid set of samples, the model
can estimate the likelihood of a set of points being included in a particular point cloud. In the
case of algorithms like REM-Seg (4.3), MLMD (4.4) and JRMPC [33], for example, the GMM
is produced by optimizing the data likelihood of the original set of points in the point cloud over
a set of possible GMMs at some fixed level of fidelity, so that it therefore is the most likely GMM
for describing the original PCD distribution.

Note then that the model parameters are coupled to the viewpoint at which the sensor data was
captured. That is, the generating probability of a point in space given a point cloud model is valid
only for the particular sensor view under which the model was first created. Thus, the registration
process itself directly breaks its own basic theoretical assumptions every time it optimizes for a
new sensor pose, and this degrades the accuracy and convergence of such methods.

7.3.1 Ω-Estimation
There are multiple ways in which the iid assumption behind GMM-based MLE registration meth-
ods are violated, but in this work we focus on one important source: non-overlapping geometry
resulting from field-of-view differences.

A moving sensor with limited field of view will scan a different slice of the world each
instant. Non-overlapping portions of geometry occur when a range sensor moves such that pre-
viously unseen geometry comes into view and/or previously seen geometry leaves the view. The
assumption violation for GMM-based MLE methods occurs in these situations because non-
overlapping portions of geometry produce point samples that occur in one point cloud but not
the other.

The basic Maximum Likelihood Estimation (MLE) criterion most used by GMM/EM meth-
ods assumes both point sets are iid samples of a single generative model, and that one point set
has undergone some latent spatial transformation. Thus, given two point sets Z1 and Z2, the
most likely estimate of the transformation T is the estimate that maximizes the data probability
that the samples of the transformed point cloud T (Z2) came from some probabilistic represen-
tation of spatial likelihood (generative model parameterized by Θ̂) and derived from the spatial
distribution of the first point cloud Z1,

T̂ = argmax
T

p(T (Z2)|Θ̂Z1) (7.1)

Since the points are assumed to be iid samples of Θ̂, the data likelihood further decomposes
into a product over all points in Z2 = {zi}, i = 1..N2,

T̂ = argmax
T

N2∏
i

p(T (zi)|Θ̂Z1) (7.2)

By adopting this framework, we assume that there is a latent probabilistic function con-
trolling the generation of points, and that the specific form of p(z|Θ̂) dictates individual point
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Figure 7.2: Expected Overlap Estimation. A range sensor from two different viewpoints (A and
B) has two different fields-of-view (Red and Blue). Building the sensor view into the registration
process allows robust estimation of overlapping regions.

probabilities of 3D space. The most common form for parametrizing this probability distribution
is through a GMM, whose data probability is defined as a convex combination of J Gaussians
weighted by the vector π,

p(zi|Θ) =
J∑
j=1

πjN (zi|Θj) (7.3)

Specifically, points from geometry present in non-overlapping view regions of each point
set make the current MLE construction ill-posed. Since a probability distribution describing
each point set will have fundamentally different spatial extents, these view differences make it
impossible to represent both point sets, Z1 and Z2, as the iid sampling of the same latent model.
This limits these algorithms’ applicability in cases where large transformations, limited field-of-
view, or occlusions between point sets cause large degrees of non-overlapping geometry.

See Fig 7.2 for a depiction of this violation. Let A and B be the views from which Z1

and Z2 are captured, respectively. Under the traditional maximum data likelihood paradigm,
interpreting Z2 as a set of rigidly transformed iid samples of the model constructed from Z1

(ΘZ1) is problematic since ΘZ1 only “knows” about the space within region A. If B ∩ ¬A 6= ∅,
then any zi ∈ Z2 inside this region will be unexplainable by (ΘZ1). Similarly, if A ∩ ¬B 6= ∅
and

∫
A∩¬B p(z|ΘZ1)dz > 0 then Z2 will become more and more unlikely to be considered an iid

sampling from the model described by ΘZ1 as the cardinality of Z2 increases, since there will
always be a portion of the model (A ∩ ¬B) from which samples never appear. Even in the case
of a symmetric global model where Θ is derived from both Z1 and Z2, as in JRMPC [33], it is
still the case that no single point cloud can be considered an iid sampling of the global model if
A 6= B, and thus non-overlapping point data may be erroneously matched during registration.

7.3.2 Expected Overlap Estimation
In order to begin to solve the problems discussed in the previous section, we start with a goal of
being able to incorporate and leverage known sensor view constraints into the registration pro-
cess. Since we usually know the field-of-view properties of the sensor a priori (i.e. minimum and
maximum range distance, field-of-view angles, etc), if we knew the relative pose change between
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A and B, we could also calculate where the overlapping regions occur. Figure 7.2 illustrates this
idea using a partially non-overlapping Stanford Bunny. Denoting Ω as our overlapping region,
we can then augment the registration problem as follows:

T̂ = argmax
T

Ω∗(T (Z2)|Θ1),∀Z2 ∈ Ω (7.4)

Where Ω∗(·) denotes the functional,

Ω∗(p) =

{
ηp(z), if z ∈ Ω

0, otherwise
(7.5)

where η is a normalization constant to enforce p(z) summing to 1 over all Ω.
This formulation better conforms to the iid assumption underlying statistical point cloud

models in that it defines registration to occur only over previously seen regions of space. Equa-
tion 7.4 maximizes the probability that the points in Z2 occurring in regions of previously seen
geometry were generated by a probabilistic model of that same region constructed from Z1. We
therefore avoid the iid violations resulting from the normal MLE construction, where new points
in Z2 from previously unseen regions must still be interpreted as iid samples from the existing
model, and where regions of ΘZ1 that are not in the current field-of-view of Z2 still contribute
to the spatial probability distribution function ΘZ1 from which Z2 is supposed to be a set of iid
samples.

Of course, the problem here is obvious: if we knew the overlapping region between A and B
(and thus the relative pose change between A and B), we wouldn’t need to be registering A and
B together in the first place: the relative pose change between A and B is exactly what we are
trying to find when we perform registration.

Fortunately, this formulation does present us with an iterative EM-like approach for imposing
a general view-awareness for any asymmetric registration algorithm. That is, if we impose a
probability function over the estimation of Ω using known sensor view properties Ψ and relative
transformation T , we can iteratively hold Ω fixed to estimate T and then hold T fixed to re-
estimate Ω (and also therefore the functional Ω∗).

Algorithm 5 Expected Overlap Estimation (EOE)

Step 1: Θ̂Z1 = argmax
Θ

p(Z1|Θ) (7.6)

Step 2: T̂ = argmax
T

Ω̂∗(T (Z2)|Θ̂Z1),∀Z2 ∈ Ω̂ (7.7)

Step 3: Ω̂ = argmax
Ω

p(Ω|T̂ ,Ψ) (7.8)

Step 4: If not converged, go to Step 2. (7.9)

Implementation

Algorithm 5 shows each step of EOE algorithm. Note that the first two steps can be replaced
with any standard registration algorithm. The details of each step are described as follows:
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Step 1: As in Chapter 4, we adapt the Mixture Decoupling algorithm from the model described in
Chapter 3. Note that for Step 1 we could have chosen to use an NDT construction [6, 133, 134]
for further gains in speed (though with a loss in model fidelity), or alternately by simply placing
covariances around every point (such a construction is O(1) but will produce a much slower Step
2).
Step 2: The basic optimization underlying Step 2 has been solved in many different ways, each
with their own trade-offs. Many methods rely on simplifications to the structure of Θ, including:
imposing the same covariance to every mixture, restricting covariances to be isotropic, or equal
mixture weighting so that a closed form solution may be applied (typically Horn’s method [52]).
ICP, EM-ICP, CPD, and JRMPC can be considered examples of this. Other approaches put
less restrictions on the structure of Θ, but using gradient descent [24] in lieu of a closed form
solution. Others have approximated the optimization criterion itself to a more tractable form,
for example, by using direct simplification [21] or SDP relaxation [51]. We follow the latter
strategy, introducing a highly accurate Mahalanobis distance approximation. To provide view-
awareness, we repeatedly apply Ω∗(p) and cull from Z2 those points that do not fall within the
current estimate of Ω.
Step 3: For Step 3, we adopt a simple binary likelihood approach. Given certain simple sensor
intrinsics Ψ that can be inspected a priori (e.g. min and max range distance and field-of-view
angle), we recalculate Ω as the intersection of both field-of-view regions using the current MLE
guess for T .
Step 4: Convergence is defined by a set number of max iterations, but with an early stopping
condition if ∆T falls below a threshold.

Remarks on Efficiency

Over traditional GMM-based registration algorithms, we use the functional Ω∗(·) instead of
p(z|Θ) and also cull points from Z2 that fall outside Ω. Note that ΘZ1 needs to be calculated
only once, however, since argmaxΘ p(Z1|Θ) does not depend on either T or Ω.

By representing Ω simply as the intersection of the field-of-view extents for the sensor (cf.
Figure 7.2), the additional operations in Steps 2 and 3 add insignificant overhead, as each point
requires only a single constant-time boundary check. In fact, in some implementations these
checks may speed up the base algorithm since points outside Ω need not be considered, resulting
in a smaller sized registration problem overall.

7.4 Evaluation

7.4.1 Robustness to Partially Overlapping Views

To measure robustness to non-overlapping regions, we created five partially overlapping point
clouds of the Stanford Bunny. These views were created by casting 512x512 rays outward with
a viewing angle of 60 degrees at five different poses. We registered together the point clouds
produced from these depth map outputs, frame-by-frame, in sequence. To visually compare the
results, we placed all five frames into a global coordinate system by compounding successive
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Figure 7.3: Partially Overlapping Bunnies Five partially overlapping depthmaps of the Stan-
ford Bunny were registered together in sequence and then placed into a global coordinate system.
Each color refers to points sets from different views. The top row consists of algorithms run nor-
mally, and the bottom row shows the performance of those same algorithms augmented with
EOE. Though MDME+EOE (bottom-left) has the lowest error, the addition of EOE generally
improves all algorithms.

Figure 7.4: Input depth stream used for bunny overlap experiments.

poses. Refer to Fig. 7.3 for the results of this test with comparisons against ICP [11], Trimmed
ICP (TrICP [12], MLMD [21], FICP [113], and Iteratively Reweighted Least Squares ICP (IRLS-
ICP) [50]. We chose ICP since it is still widely used in this domain, MLMD because it represents
a current state-of-the-art generative method, and TrICP, FICP, and IRLS-ICP as they represent
state-of-the-art methods for robust outlier handling. Note that for purposes of generality, we
have disincluded methods like projective ICP that require dense 2D depth maps [116], which
are not always available depending on the range sensor. All our tested algorithms operate over
unstructured point cloud data for all our experiments.

Shown in Figure 7.3, our proposed method with overlap estimation (MDME+EOE) works
well while other methods suffer from serious registration misalignment. Note that EOE should
be considered as a standard augmentation of previously existing registration methods to improve
their performance.

7.4.2 Kinect Data
In this test, we calculate the frame-to-frame accuracy on the Stanford Lounge dataset (depicted
in Figure 7.6), which consists of range data produced by moving a handheld Kinect around
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Figure 7.5: Lounge Error Distributions Histograms of frame-to-frame error as measured by
average Euler angular deviation from ground truth, for the Lounge dataset. The top row show the
results of algorithms without EOE and the bottom row includes EOE. EOE improves the overall
accuracy of all algorithms tested.

Table 7.1: Comparison to other methods.

Method Avg. Error (degrees) Avg. Time(s)
ICP [3] 5.9 1.32

MLMD [21] 5.3 0.49
FICP [113] 4.7 0.30

IRLS-ICP [50] 5.0 0.29
TrICP [12] 4.9 0.29

MDME 0.6 0.24
MDME+EOE 0.5 0.23

an indoor environment. We register together every 5th frame for the first 400 frames, each
downsampled to 5000 points. To measure the resulting error, we calculate the average Euler
angle deviation from ground truth. For EOE, we set the horizontal field-of-view to 56.5 and the
vertical field-of-view to 43.6 degrees. Our mixture model was statically set to 512 clusters. All
our experiments were run on a Intel Q6600 and NVIDIA GTX670. The average computation
time for each registration is given in Table 7.1. Note that EOE actually decreased the running
time: each iteration takes slightly longer but it takes fewer iterations to converge.

7.4.3 Velodyne LIDAR Data
Though the Velodyne VLP-16 LIDAR has a 360 degree horizontal field-of-view, it suffers from
a relatively narrow vertical field-of-view of 30 degrees. Similarly, the angular resolution of the
pitch and yaw axes vary dramatically. These properties lead to the formation of dense rings of
sampled geometry around the sensor, which often will degrade the accuracy of point-to-point
matching algorithms. Figure 7.7 shows a depiction of the view model used in conjunction with
EOE.

For our field tests, we placed a Velodyne VLP-16 on a moving platform and collected a
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Figure 7.6: Lounge data for additional experiments. Top: Sample depth map stream. Bottom:
Ground truth pose used for accuracy calculations.

single sweep of data (roughly 0.10 seconds worth) every 3 seconds inside a large factory-like
setting (NREC High Bay). We first compare MDME+EOE with Trimmed ICP. Registering each
sweep successively into a global frame gives us the results in Figure 7.9. Trimmed ICP, even
with robust outlier detection, mistakenly tries to align the circular sampling pattern on the floor
instead of real geometry. MDME with EOE enabled is able to excise spurious floor points by
using the Velodyne’s relatively narrow vertical field-of-view (30 degrees). Refer to Figure 7.8
for a close-up view of this situation.

The qualitative results of running the rest of the algorithms tested over the Velodyne can be
seen in Figures 7.10 and 7.11. Through visual inspection, one can see how most algorithms
when not using EOE tend to underestimate pose change. This again is due to the fact that these
extremely uneven LIDAR sampling patterns break the normal assumptions behind traditional
registration methods. Thus, without an understanding of the sensor sampling properties, these
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algorithms are unable to properly capture the sensor pose change. Although MDME performs
the best out of all algorithms tested, EOE is still necessary in order to produce an error-free
registration over all frames.

Figure 7.7: Velodyne View Model: Though the Velodyne VLP-16 LIDAR has a 360 degree
horizontal field-of-view, it suffers from a relatively narrow vertical field-of-view of 30 degrees.
Similarly, the angular resolution of the pitch and yaw axes vary dramatically. These properties
lead to the formation of dense rings of sampled geometry around the sensor, which often will de-
grade the accuracy of point-to-point matching algorithms. Expected Overlap Estimation (EOE)
utilizes the knowledge of this narrow vertical field-of-view by automatically culling points be-
longing to dense rings that can no longer be seen (shown in green).

7.5 GMM Fusion and Mapping: A Unified Pipeline
So far in this chapter, we have established a very efficient robust frame-to-frame modeling and
registration procedure (MDME+EOE) that operates well even under challenging real-world con-
ditions. To further demonstrate its effectiveness in real-world situations, we offer a complete
pipeline for large-scale mapping over time. We would like to note that the methods in this sec-
tion are not meant to compete with state-of-the-art SLAM systems, but rather provide a proof-
of-concept of how the statistical models presented in this thesis may naturally be leveraged in a
large-scale mapping system. That is, we offer these results as further validation of the efficacy
of the segmentation and registration techniques discussed in this and previous chapters and not
as a standalone SLAM system.
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Figure 7.8: Sample Problematic Registration: Here we show one problematic example of 2
frames of data (red and blue) being registered together. This is the final registered output of both
Trimmed ICP and our proposed method, MDME+EOE. The dense concentric rings of points
serve to degrade the robust ICP-based Trimmed ICP algorithm (top). Given that these rings of
points are returns from flat ground, their appearance will not change very dramatically with any
pose change on the x, y, or yaw axes. Thus, a point-to-point registration algorithm is likely to
produce a no-movement result as it will try to maximally overlap the rings of points. The result
on the bottom shows a correctly registered result: note that the rings are not overlapped.

Fusion and Mapping Pipeline: Given successive frames of LIDAR data, our mapping pipeline
operates as follows:

1. Perform frame-to-frame registrations for some N frames of data

2. Aggregate transforms to put each frame in a common global frame
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Figure 7.9: Top Left: Velodyne view model of 360 degrees horizontal and 30 degrees vertical
field-of-view. Top Right: A single registration result showing how TrICP tries to match the
circular sampling patterns, while MDME+EOE correctly matches real overlapping geometry.
Bottom: The LIDAR data in global frame. The smeared wall pattern on the right shows TrICP’s
inability to register this type of LIDAR data.

3. In a separate thread, randomly pick pairs of point clouds within some proximity to each
other in global coordinate space and try to register them

4. For each randomly picked pair, look at the log-likelihood of the MLE registration result
and if above a threshold (indicating a correctly registered result), denote as a loop closure

5. Add each loop closure as soft constraint to a pose graph

6. In a separate thread, optimize pose graph (we used the open source Toro software [45])

To test our pipeline, we used a large urban outdoor dataset of VLP-16 LIDAR data frames
covering roughly an area of 400x400 meters (2200 frames total). Our open-loop result is shown
in Figure 7.12. The ground truth is shown by the red dots. The above trajectory was calculated
faster than sensor rate using a Velodyne VLP-16 sensor (10 Hz) on a GTX 660. The registration
is performed in 3D, though the view is overhead, with ground points removed for clarity. As
a comparison, we also included the best result from a state-of-the-art robust point-to-plane ICP
algorithm (libpointmatcher), which runs over 5 times more slowly. The quantitative error shown
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in the figure is the average frame-to-frame rotation angle error measured against a highly accurate
INS+GPS system. Even without looking at the average error (0.152 for ICP vs 0.096 for our
method), one can see qualitatively that our system is much better able to provide long-term drift-
free estimates for mapping in a global frame.

Our loop closure detection system is a concurrent but asynchronous process to our frame-to-
frame segmentation and registration system. It loops by randomly testing pairs of point clouds
within a thresholded proximity. If the log-likelihood of the final registration result is above a
threshold, we add a weighted edge between the poses attached to this pair of point clouds. This
process thereby slowly builds up a weighted pose graph. A depiction of this pose graph on
our urban dataset can be see in Figure 7.13. We have highlighted certain areas of drift with
two red ellipses. The pose graph optimization library used is a Tree-Based Network Optimized
(toro [45]). After a few iterations of the graph optimizer, we can correctly recover from drift that
occurs over time.

7.6 Summary
In this chapter, we derived a new point cloud registration algorithm coupled with a general robust
outlier detection method by looking at how real-world conditions cause the underlying assump-
tions of the state-of-the-art generative model based registration algorithms to fail. We showed
that the concept of view-awareness can be applied to any registration process to mitigate these
common failure conditions and provide more robust performance under real-world conditions of
limited field-of-view, non-overlapping regions, and uneven sampling density. MDME and EOE
work well on both Kinect data and LIDAR data, and EOE is straightforward to add to any existing
registration algorithm. Finally, we applied these techniques along with hierarchical segmentation
to a mapping system. To detect loop closures, we utilized the point-to-model log likelihood reg-
istration result and then simply applied an off-the-shelf graph optimization package (Toro [45])
to refine our pose estimates over time. These experiments show that these statistical techniques
provide a natural fit for various complex tasks related to mapping and registration.
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Figure 7.10: FICP, ICP, MLMD: This is a top-down view of twelve frames of LIDAR data
that were registered frame-to-frame and then plotted in a global coordinate system. The ground
points have been removed for clarity. Look to the northern corridor for the clearest signs of
registration error. ICP+EOE and FICP+EOE produce the best results.
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Figure 7.11: IRLS-ICP, Trimmed ICP, MDME (our proposed method): This is a top-down
view of twelve frames of LIDAR data that were registered frame-to-frame and then plotted in a
global coordinate system. The ground points have been removed for clarity. Look to the northern
corridor for the clearest signs of registration error. Note the severe inadequacy of Trimmed ICP,
which produces too little movement. Our proposed method without EOE does fairly well, but
performs best with the addition of EOE.
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State-of-the-Art Robust Point-to-Plane ICP Algorithm (libpointmatcher)

Our algorithm (MDME+EOE)

Figure 7.12: Frame-to-frame mapping over many frames in an outdoor urban environment. Units
are in meters. The calculated path is the multicolor trajectory. The red dotted path is ground
truth. We compared the best performing algorithm in the libpointmatcher library without EOE
(a point-to-plane ICP with robust outlier rejection using a trimmed distance outlier filter) against
MDME+EOE (the best performing algorithm with EOE). Note the increased drift of point-to-
plane ICP when compared to our method, especially when turning around corners.102



Figure 7.13: Left Pose graph without yet performing optimization. Edges found during our
matching process are represented by red lines, and poses by blue dots. We have circled two areas
of accumulated drift with red ellipses. Right Graph optimization has provided pose corrections
to remove the small amount of drift that accumulated from driving around a city block.
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Chapter 8

Conclusion

The choice of sensor data representation has a direct consequence on the effectiveness of any
robotic perception application. A proper data representation functions as an intermediary be-
tween the often noisy and unorganized measurements of the world and a high-level scene under-
standing, aiding in such tasks as localization, tracking, and object recognition, which in turn are
necessary for other higher level perception and intelligence tasks such as planning and control.

In this thesis, we have established techniques for accelerated construction of a family of
hierarchical generative models for point cloud data. We discussed various registration methods
which closely tie model creation to an efficient registration algorithm, beating current state-of-
the-art. We then showed how to develop a hierarchical variant of the generative models used for
registration along with many experiments showing superior size/fidelity characteristics vs state-
of-the-art. We then introduced two methods for inference and visualization based on stochastic
sampling of the model: dynamic occupancy grid creation, and isocontour visualization with a
modified sparse marching cubes algorithm. We have implementations of these for both PC and
embedded systems. Finally, we augmented the model to include known sensor properties and
used this to form the basis of a new type of registration algorithm that can robustly register
together real-world LIDAR data even when sampling sparsity and non-overlapping geometry
would otherwise prevent existing algorithms from being applicable.

Compact generative models of point cloud data provide a new paradigm for low level 3D
point processing. As we’ve demonstrated in this thesis, through a robust yet compact statistical
modeling of point data, these models can not only facilitate existing spatial processing applica-
tions, but they also enable fundamentally new possibilities for the unification of many related
perception processes, included segmentation, sampling, inference, visualization, and 3D map-
ping. We hope our work finds widespread applicability as a general statistical point cloud pro-
cessing paradigm that could benefit many 3D point processing applications in the field of mobile
robotics and 3D perception.
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