
Deep Reinforcement Learning

with Skill Library: Exploring

with Temporal Abstractions and

coarse approximate Dynamics

Models

Arpit Agarwal
CMU-RI-TR-18-31

Submitted in partial fulfillment of the requirements for the

degree of Masters in Robotics Research

The Robotics Institute

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Thesis Committee:

Katerina Fragkiadaki(Co-chair)

Katharina Muelling(Co-chair)

Oliver Kroemer

Devin Schwab

July 2018
Copyright c© 2018 Arpit Agarwal

arpita1@andrew.cmu.edu
arpita1@andrew.cmu.edu

Abstract

Reinforcement learning is a computational approach to learn from interaction.

However, learning from scratch using reinforcement learning requires exorbitant

number of interactions with the environment even for simple tasks. One way to

alleviate the problem is to reuse previously learned skills as done by humans. This

thesis provides frameworks and algorithms to build and reuse Skill Library. Firstly,

we extend the Parameterized Action Space formulation using our Skill Library to

multi-goal setting and show improvements in learning using hindsight at coarse

level. Secondly, we use our Skill Library for exploring at a coarser level to learn

the optimal policy for continuous control. We demonstrate the benefits, in terms

of speed and accuracy, of the proposed approaches for a set of real world complex

robotic manipulation tasks in which some state-of-the-art methods completely

fail.

Acknowledgements

I would like to thank my advisors, Katerina Fragkiadaki and Katharina Muelling

for their mentorship and constant guidance for the past two years. I am extremely

grateful for all the valuable insights and feedback which has helped me to learn

about research and robotics.

Prof. Manuela Veloso has provided me support and robot for fueling my research.

I am grateful to her for making me part of a wonderful CORAL lab. I would espe-

cially like to thank Devin and Anahita for providing inspiration, useful discussions

and incredible support throughout my stay at CMU. I would like to thank Rui,

Vittorio and Philip for being pillars of support academically and personally.

My roommate and lab-mate, Ashwin, has been a always provided his valuable time

in debugging, meta-robotic discussions and has been a source of inspiration. He

has been there through ups and downs of my stay at CMU. I can’t thank Ashwin

enough for being a constant into my CMU life.

I would also like to thank OpenAI for releasing high-quality implementations of

SOTA algorithms and benchmarking environment. We have built up over their

implementations. Finally, I would like to thank Dr. Oliver for reading my thesis

and providing useful insights to improve my work.

ii

Contents

Abstract i

Acknowledgements ii

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Contributions . 2

1.3 Thesis Outline . 2

2 Background and Related Work 3

2.1 Reinforcement Learning . 3

2.1.1 Basics and Notations . 3

2.2 Learning for Robotic Manipulation 4

2.3 Task Space Control . 4

2.4 Exploration using Intrinsic Motivation 5

2.5 Hierarchical Reinforcement Learning 6

2.6 Multi-task Learning and Transfer Learning 7

3 Building Manipulation Skill Library 8

3.1 Basic Skills Definition . 8

3.2 Skill Policy and Critic Learning . 9

3.3 Coarse-level Skill Dynamics and Success Probability Prediction . . 10

3.3.1 Data Collection . 10

3.3.2 Coarse Dynamics Model Learning 11

3.3.3 Success Probability Predictor 11

3.4 Results . 11

iii

Contents iv

3.4.1 Transit Skill . 12

3.4.2 Grasp Skill . 12

3.4.3 Transfer Skill . 13

4 Parameterized action space MDPs with skills library 14

4.1 Parameterized Action Space . 15

4.2 Multi-goal Parameterized Action Space DDPG 16

5 Using Skill Library for Exploration 18

5.1 Look-Ahead Search Tree . 18

5.1.1 Next State Extraction . 21

5.2 Exploration using Look-Ahead Search 22

6 Experimental Setup and Results 25

6.1 Manipulation Tasks . 25

6.1.1 Pick and move object to a target location in 3D 27

6.1.2 Put object A inside container B 27

6.1.3 Put object A on object B 27

6.1.4 Take object A out of container B 28

6.2 Implementation Details . 28

6.3 Results . 29

6.3.1 Reduced Skill Library . 31

6.3.2 Affect of Large Unmodelled Dynamics in Environment . . . 32

7 Conclusion and Future Work 34

7.1 Summary . 34

7.2 Future Work . 35

Bibliography 37

List of Figures

3.1 The skill trained for manipulation tasks are shown in this figure.
(A) Shows the environment in which the end-effector has to move
to target location shown in red. (B) Shows the environment in
which the object has to grasped and raised to the target shown in
green. (C) Shows the environment in which the object has to moved
close to the green target location. 12

4.1 Overview of Multi-goal PAS MDP. We learn a meta-controller
which predict the probability and continuous parameter over skills
in our skill library. 15

5.1 Overview of Learning with exploration using skill Library.
We use learned skill dynamics encoded in deep neural regressors
for lookahead tree search, in order to aid effective exploration in
reinforcement learning of complex manipulation tasks. 19

5.2 Look ahead Search: The approach uses skill library to build a
finite depth and branching factor look ahead tree from the current
environment state. We select the first skill and goal parameter of
the path with maximum utility. 20

6.1 Suite of robot manipulation tasks with baxter robot with end-
effector control and parallel jaw gripper. 26

6.2 Neural Network Structure:The actor network takes as input the
state and outputs actions between [-1,1] which is then remapped to
the range corresponding to each dimension in action space. The
critic predicts expected discounted future returns if action is exe-
cuted in state . 28

6.3 The success plot for each manipulation task in our suite. For eval-
uation, we freeze the current policy and sample 20 random starts
and goals at each epoch (1 epoch = 16 episodes of environment
interaction). 30

v

List of Figures vi

6.4 The success plot for Pick’n’move task and Put cube inside container
task. The plots show the effect of having different skills in the Skill
Library. Skill Library 1 = {transit, grasp, transfer}, Skill Library 2
= {grasp, transfer} and Skill Library 3 = {transit, transfer}. The
assertion is that if we have limited Skill Library, with some essential
skills missing, than the speed of convergence will be slower than
having all the essential skills. However it is still better than random
exploration.(1 epoch = 16 episodes of environment interaction). . . 32

6.5 This Figure is used to test the approach if the coarse dynamics
model of the skill is bad in the current test task to be learned. In
(A) we show the perturbed version of Put cube inside container in
which 1 wall is very high and can’t crossed by the agent. In (B) we
show that even with wrong coarse dynamics model our approach
works better than random exploration. (1 epoch = 16 episodes of
environment interaction). 33

List of Tables

5.1 Comparison between methods for next state prediction, namely,
memory based next-state retrieval and neural network coarse dy-
namics regression model . 21

6.1 Hyperparameters for experiments 29

vii

Dedicated to my parents

viii

Chapter 1

Introduction

1.1 Motivation

The introduction of general-purpose function approximators, such as neural net-

works, with general purpose model-free reinforcement learning algorithms that can

learn complex behavioral strategies holds the promise of automating a wide variety

of robotic tasks.

There have been recent advances in developing better model-free reinforcement

learning algorithms [1–3]. Still the amount of data required for simple tasks remain

quite high. Moreover as seen in animals, skill composition greatly increases the

efficiency to solve new problems [4]. The skills act as the building blocks out of

which an agent can form solutions to new problem configurations as well as entirely

new problems.

Learning and operating over different levels of temporal abstraction is a key chal-

lenge in tasks involving long-range planning. The two key advantages are explo-

ration at coarse temporal level and using short-range policies to achieve subgoals.

We take advantage of both the points and develop approaches which help us solve

complex manipulation tasks.

1

Chapter 1 Introduction 2

1.2 Thesis Contributions

We look at following questions in this thesis

1. Can we come up with a set of manipulation skills which could be used to

perform a variety of challenging real-world manipulation tasks?

2. Can learning parameterized-action space DDPG at a coarser level with pre-

trained multi-goal skill library be extended to multi-goal environments with

hindsight experience replay? 0

3. Can exploration with look-ahead search at a coarser level using our pre-

learned skill library lead to success in multi-goal complex manipulation

tasks?

1.3 Thesis Outline

We first introduce and review the most important concepts of reinforcement learn-

ing and deep reinforcement learning works for manipulation in Chapter 2. In this

section we also provide rational of the design choices made to make the work useful

and reproducible on the real robot. Next, in Chapter 3 we introduce our Skill Li-

brary and discuss methods used to learn different skills for manipulation. Chapter

4 introduces multi-goal formulation for parameterized action space reinforcement

learning. Chapter 5 uses skills to develop new exploration method and describe

look-ahead search in continuous state and action space domains. Next, in Chapter

6 we show the benefits of the introduced Skill Library and approaches on suite

of benchmark robotic manipulation tasks. The results show that the introduce

can tackle complex manipulation tasks and can get attain 100% success in tasks

in which previous methods completely fail. Finally, we summarize our work in

Chapter 7 and point out interesting promising directions for future work.

Chapter 2

Background and Related Work

In this chapter, we will introduce notations which will used throughout the thesis

work. We also discuss related works and some of the choices we have made for our

system to made it reproducible on a physical system.

2.1 Reinforcement Learning

The simplest definition of reinforcement learning is the problem of learning by

interacting in an environment with the goal of maximizing numerical reward.

2.1.1 Basics and Notations

We consider the problem of RL in Markov Decision Processes(MDP) [5]. A Markov

decision process consists of tuple (S,A, r, T , ρ0). The state space S and action

space A are continuous in our case. In each interaction, the agent starts in a

state s ∼ ρ0(starting state distribution), chooses an action a ∈ A in a state

s ∈ S and transitions into a new state s′ with unknown probability distribution

3

Chapter 2 Background and Related Work 4

T (s′|s, a).The environment gives bounded reward r(s, a), using r : S × A → R

after each interaction.

The goal of the agent is to maximize the sum of discounted expected returns,

Eπ[
∑∞

t=0 γ
tr(st, at)], where s0 ∼ ρ0, at ∼ π(st), st+1 ∼ T (.|st, at)

2.2 Learning for Robotic Manipulation

In recent years, we have seen tremendous success in continuous control using Deep

Reinforcement Learning [6], [7], [2] and [8]. Dexterous manipulation is one of

the fundamental challenge in robotics. Researchers have been long seeking ways

to enable robots to robustly interact with the environment with varied shapes,

sizes and physical properties. However it is hard to achieve generalization with

manually designed controllers. If the agent can interact with the environment

and adapt the controller with variation in the environment, it can achieve greater

generalization. The application of deep RL in complex manipulation tasks has

shown good promise in dealing with contacts [9], grasping [10] and reduction in

manual engineering for individual tasks [1], [11].

2.3 Task Space Control

Most of the Reinforcement learning methods which obtain the best performance

are model-free algorithms. However, the model-free algorithms have high sample

complexity [6]. Therefore generally it is required to train for the task in simula-

tion and transfer to real world with small amounts of real data. There are some

works [11] which have successfully shown the transfer to real world robotic tasks.

Transferring the joint states policy learned in simulation is difficult to transfer to

real world due to differences in simulation and real world dynamics. However in

Chapter 2 Background and Related Work 5

most of the real world manipulators, we have end-effector controller implemented

by the manufacturer, which works with high-fidelity (upto to a mm in our baxter

robot). Therefore policies learned in end-effector space offers direct transfer from

simulation to real world.

The end-effector space allows to specify constraints in the workspace which can

be used to setup safe experiments on the real robot. There is no direct method to

transfer constraints in workspace to constraints in joint space for high DoF robotic

arm.

The end-effector space is more intuitive to visualize and specify the goal location

as all the object locations are specified in 3D space. Therefore policies learned in

end-effector are easy to generalize to multiple target object locations, as compared

to joint space policies.

Since we have end-effector controller for different robots given by manufacturers,

we can easily transfer the end-effector policies to multiple robots without the need

to learn the mapping from joint space to end-effector space for individual robots.

Note the actual performance of the policy depends on the end-effector controller

implementation on the robot. For example, robot arm may hit objects in the

workspace due to overshoot.

Due to above reasons, we learn all the policies in task space rather than joint

space.

2.4 Exploration using Intrinsic Motivation

Effective exploration in MDPs is an unsolved challenge in learning good control

policies. Methods such as ε−greedy, that either follow the current found policy

or sample a random action with a ε probability, are useful for local exploration

but fail to provide impetus for the agent to explore different areas of the state

Chapter 2 Background and Related Work 6

space. Exploring by maximizing the agent’s curiosity as measured by the error of

predictive dynamics [12, 13] or expected improvement of predictive dynamics [14],

exploration guided by information maximization [15], state visitation density [16],

uncertainty of the value function estimates [17], all have been found to outperform

ε−greedy, but are limited due to the underlying models operating at the level of

basic actions. However, all the above methods force the agent to explore the whole

state space even if the information is unnecessary for the current task. In MDPs

with large state and action spaces, it is often times hard to explore the full state

space to obtain meaningful policies without an intent.

2.5 Hierarchical Reinforcement Learning

Learning and operating over different levels of temporal abstraction is a key chal-

lenge in tasks involving long-range planning. In the context of reinforcement learn-

ing, Sutton et al. [5] proposed the options framework, which involves abstractions

over the space of actions. At each step, the agent chooses either a one-step primi-

tive action or a multi-step action policy (option). Each option defines a policy over

actions (either primitive or other options) and can be terminated according to a

stochastic function. The MAXQ framework [18] decomposes the value function of

an MDP into combinations of value functions of smaller constituent MDPs. Work

of [19] learns a policy for scheduling semantically meaningful goals using deep Q

networks. Singh et al. [20] also explored agents with intrinsic reward structures in

order to learn generic options that can apply to a wide variety of tasks. Using a

notion of salient events as sub-goals, the agent learns options to get to such events.

Other works have proposed parametrized actions of discrete and continuous values

as a form of macro (temporally extended) actions to choose from [21, 22]. We com-

pare with the model from [21] in the experimental section. Other related work for

hierarchical formulations include Feudal RL [23, 24] which consists of “managers”

Chapter 2 Background and Related Work 7

taking decisions at various levels of granularity, percolating all the way down to

atomic actions made by the agent.

2.6 Multi-task Learning and Transfer Learning

In [25], authors use simple intrinsic perceptual rewards to learn subtasks and their

scheduling for helping learning of extrinsic motivated (non-hierarchical) policies.

However our works relaxes an assumption, that state space and action space being

same for intentions and tasks, made in this approach. In [26] authors propose to

train multiple related tasks and then use the training agents as teachers for the

current tasks to obtain the policy. This approach limits the agent to be only as

good as the teacher agents, which could be arbitrarily bad. In [27], Y. Bengio

propose to create common representation which could used across tasks. However

these representations has to be learned for the whole state space which doesn’t

allow to modularize the problem. In our work we are able to learn the skills

independent of the main task to be performed.

Chapter 3

Building Manipulation Skill

Library

In this chapter, we will introduce our Skill Library and various components of a

Skill. We will also show some results regarding the skills which we have learned

and their components.

3.1 Basic Skills Definition

We endow our agent with an initial library of manipulation skills. We define a skill

as a short-horizon behavior policy that achieves a set of related goals (as opposed

to a single goal). The goal sets (Gi) of individual skills are not related to the goals

of our final complex manipulation task. The proposed framework can handle any

set of skills independent of their length, complexity, state and action spaces. The

skills may not share the state and action space with the main task. This allows

us to easily learn the skill in simpler environment as opposed to more complicated

main task to solve as done in [28].

8

Chapter 3 Building Manipulation Skill Library 9

A skill consist of policy πi, state-action value function Qπi, success probability

prediction pπi and coarse dynamics model T πicoarse. Formally, we define a skill Ωi =

(πi, Qπi, pπi, T πicoarse), where

πi : S i × Gi → Ai (3.1)

Qπi : S i × Gi ×Ai → R (3.2)

pπi : S i × Gi → [0, 1] (3.3)

T πicoarse : S i × Gi → S iterminal (3.4)

The state space S i, goal space Gi, action space Ai and terminal state space S iterminal

are continuous and skill-specific.

Our skill library is a collection of individual skills L = {Ω1,Ω2, . . .ΩN}. In the

Section 3.2 we describe the algorithm used to learn actor πi and critic Qi for skills.

In the following Section 3.3, we describe the data collection and learning process

for learning coarse skill dynamics T icoarse and success probability pi.

3.2 Skill Policy and Critic Learning

Each skill policy and critic is trained using Deep Deterministic policy gradient

[6] and Hindsight Experience Replay [1] (HER). In HER, the basic formulation of

MDP Section 2.1.1 is modified to take goal as a parameter in π, ρ0, r along with

usual inputs. This formulation is particularly useful in binary or sparse reward

environment in which the agent obtains useful learning signals only if the agents

manages to reach the current episode goal. The basic idea of HER is to use a goal

different than the goal sampled at the start of the episode to evaluate transitions

obtained in the current episode.

Chapter 3 Building Manipulation Skill Library 10

Training is carried out with off-policy deep deterministic policy gradients (DDPG)

[6]. This allows us to decouple exploration and policy learning. The agent main-

tains actor π and action value (critic) Q : S × G × A → R function approx-

imators. The actor is learned by taking gradients with loss function Lactor =

−EsQ(s, g, π(s, g)) and the critic minimizes TD-error using TD-target yt = rt +

γQ(st+1, g, π(st+1, g)), where γ is the reward discount factor. Exploration is car-

ried out choosing random action with ε probability and adding Gaussian noise to

the action predicted by current policy.

Note we use open-source implementations from OpenAI [29] for training DDPG

agent. We build up everything done in this thesis over basic DDPG implementa-

tion from OpenAI.

3.3 Coarse-level Skill Dynamics and Success Prob-

ability Prediction

After learning the policy (π) for common skills, we build coarse dynamics model

(T πicoarse) which maps starting state s0 and goal g to the resulting terminal state

sterminal for each skill. We also learn success probability predictor pπi to predict

the probability of success of a given skill Ωi in starting state s0 ∼ S and given

goal parameters g ∼ G. In the following sections we describe the method for data

collection and learning methods used to train the 2 components. Later in Section

5.1, we use these components for exploration to solve complex tasks.

3.3.1 Data Collection

For each skill, we sampled 100,000 different starting state and goal locations from

the environment in which skills were learned and ran the current learned policy

Chapter 3 Building Manipulation Skill Library 11

to obtain the terminal states which led to successful completion of the task. We

saved the data is 2 formats - (s0, g, sterminal) and (s0, g, 1). We used the first data

format for learning course dynamics model and second format as the positive

data for learning success probability. For extracting the negative data for learning

success probability, we sampled 100000 starting state and goals from environments

in which skill doesn’t succeed. We saved the data as (s0, g, 0) and combined with

positive data (s0, g, 1) to train a neural network classifier as described in Section

3.3.3.

3.3.2 Coarse Dynamics Model Learning

We represent the T πicoarse with 3-layer fully connected neural network with 1000

neurons in each dense layer and layer normalization [30] after hidden layer. The

neural network is trained with l2 loss and Adam optimizer with learning rate of

1e-5 for each skill.

3.3.3 Success Probability Predictor

We represent the pπi with a 2 layer fully connected neural network with 50 and

10 neurons in dense layers followed by layer normalization. The output activation

was sigmoid to predict the probability of success. The neural network is trained

with binary cross-entropy loss and Adam optimizer with learning rate of 1e-4 for

each skill.

3.4 Results

We learned 3 basic skills - transit, grasping and transfer to perform manipulation

tasks. Next we describe the skill objectives and their goal parameters.

Chapter 3 Building Manipulation Skill Library 12

(a) Transit Skill (b) Grasping Skill (c) Transfer Skill

Figure 3.1: The skill trained for manipulation tasks are shown in this figure.
(A) Shows the environment in which the end-effector has to move to target
location shown in red. (B) Shows the environment in which the object has to
grasped and raised to the target shown in green. (C) Shows the environment in

which the object has to moved close to the green target location.

3.4.1 Transit Skill

The state space of the skill is the 3D location of the end-effector and goal of the

skill was 3D target where the end-effector should transit to. The actions were

∆x,∆y,∆z of the end-effector in task space due to benefits mentioned in Section

2.3 The objective of this skill is to move the end-effector of the 7 DoF baxter

robot arm from random start location in the workspace to random goal location

in the workspace. The reward function is binary, i.e. the agent obtains reward

0 when the end-effector is within the tolerance 3cm of the target location and -1

otherwise. Figure 3.1a shows the environment.

3.4.2 Grasp Skill

The state space of this skill includes the Cartesian position of the end-effector,

its velocities, position and velocity of gripper, objects pose and its velocities. We

use a single starting state in which object is grasped. The state space includes

the relative position of object which has to be transported in the environment.

actions are 4-dimensional with first 3-dimension as the Cartesian motion of the

end-effector and last dimension controls the opening and closing of the gripper.

The goal location is given as a 3D Cartesian location above the object with height

Chapter 3 Building Manipulation Skill Library 13

varying from 5cm to 8cm. The objective of the skill is to move the end-effector

of baxter arm from random start location close to (5cm) object, grasp the object

and raise it to the desired height. The reward function is binary, i.e. the agent

obtains reward 0 when the object is within the tolerance 3cm and -1 otherwise.

Figure 3.1b shows the environment.

3.4.3 Transfer Skill

The state space and action space of this skill is same as the grasp skill. The goal

location is given as a 3D Cartesian location in the workspace of the baxter arm.

The objective of the skill is to move the object, grasped between the gripper, from

random location in workspace to random 3D target location in workspace. Figure

3.1c shows the environment.

Chapter 4

Parameterized action space

MDPs with skills library

In Chapter 3, we built a skill library which has a policy to perform meaningful

operation in the environment. In this chapter, we explore the use of skill library as

primitive actions and learning meta-controller over those primitive actions. This

allows us to learn with temporal abstraction which is essential for long range

planning and control.

Some of the prior works [19], [31] in deep RL, learned a 2-level hierarchy, in which

the top level predicts Q-value over discrete choices or directly predicts the goal

parameters as a state which are then used by the low level. However discretization

in robotic controller leads to loss in precision of control or explosion in the number

of discrete actions for the manager and prediction of goal doesn’t allow to group the

controllers with similar capabilities with multiple goal locations into a simple skill.

Therefore to take advantage of temporal abstraction without incorporating the

above problems, we formalize the problem of learning meta-controller as a Markov

Decision Process with parameterized action space [22]. Note that parameterized

action space formulation has been used in [21] and [32] with deep neural network

14

Chapter 4 Parameterized action space MDPs with skills library 15

function approximators. We investigate the advantages of various improvements

made in original DDPG [6] formulation with continuous actions to parameterized

action space DDPG with off-policy learning algorithm[21]. We show that benefits

carry over directly without much modification.

The overview of the approach is shown in Figure 4.1. We briefly describe the

original formulation in Section 4.1 and the modification in Section 4.2

Figure 4.1: Overview of Multi-goal PAS MDP. We learn a meta-
controller which predict the probability and continuous parameter over skills

in our skill library.

4.1 Parameterized Action Space

The formulation of the MDP remains the same as defined in Section 2.1.1 with

action space being hybrid combination of discrete and continuous parameters.

There are finite set of discrete actions Ad = {a1, a2, . . . , an}, and each a ∈ Ad has

Chapter 4 Parameterized action space MDPs with skills library 16

a set of continuous parameters Xa ⊂ Rma . An action is a tuple (a,x) where a is

a discrete action and x are the parameters for that action. The action space is

defined as follows.

A =
⋃
a∈Ad

{(a, x)|x ∈ Xa}

4.2 Multi-goal Parameterized Action Space DDPG

In the earlier formulation, the authors [21] used the skill with an implicit global

location encoded in reward function for ex: the fixed location where object should

be placed. However, as done in [1], we extend the original parameterized action

space formulation to multi-goal parameterized action space formulation (MPAS

MDP) in which we learn generalized policy and critic for multiple goal locations.

This extension leads to faster and higher success than origin formulation single

goal formulation. The modifications from the original formulations introduced in

Section 2.1.1 are as follows:

S ⊂ RS (4.1)

A =
⋃
a∈Ad

{(a, x)|x ∈ Xa},where Xa ⊂ Rma (4.2)

T : S ×A → S (4.3)

r : S × G ×A → R (4.4)

We call our method Multi-goal parameterized action space MDP or MPAS MDP.

We show results using the introduced approach in Chapter 6 for which we use

3 skills, namely transit, grasping and transfer. Transit skill has 3 continuous

parameters denoting the target location of the end-effector. Grasping skill has 1

continuous parameters denoting the height up to which the object has to raised.

Chapter 4 Parameterized action space MDPs with skills library 17

Transfer skill has 3 continuous parameters denoting the location where object has

to be transported.

Chapter 5

Using Skill Library for

Exploration

In the last chapter, we used the temporal abstraction for learning the policy for

the task. However learning over fixed set of goal-parameterized skills restrict the

meta-controller to a subset of all the possible policies which can be learned as

noted in [18] and may lead to sub-optimal performance. Therefore in this chapter

we introduce another method for using skill library and add short horizon search

at coarse level to explore a high dimensional complex continuous control problem.

The Figure 5.1 gives the overview of our approach. In the following sections

describe how we build our look ahead search tree and use it for exploration.

5.1 Look-Ahead Search Tree

During lookahead search, we use the current state-goal pair and sample skills Ωi

from the library L and goal parameters of the skill. We built a tree with root node

as current real state sr0 and add an edge to next node with imagined state simag
1 =

T icoarse(sr0, g1sampled), g1sampled ∈ Gi, total reward r1 = Qi(sr0, g
1
sampled, π

i((sr0, g
1
sampled))

18

Chapter 5 Using Skill Library for Exploration 19

Figure 5.1: Overview of Learning with exploration using skill Library.
We use learned skill dynamics encoded in deep neural regressors for lookahead
tree search, in order to aid effective exploration in reinforcement learning of

complex manipulation tasks.

and probability of success p1 = pi(sr0, g
1
sampled). We repeat addition of edges with

this imagined state simag
1 if the p1 > 0.5 or maximum height of the tree is not

reached. The pictorial representation of building look ahead search tree is shown in

Figure 5.2. We describe the skill sampling, tree pruning and next state extraction

using skill library below.

Sampling skills and goals: At each node we sample K=5 goals and parameters.

Since we are learning in task space, we could bias sampling of goal parameters of

transit and grasp skill in the vicinity (3cm) of the object (g ∼ object location +

Uniform(−0.03, 0.03)). Note that the information related to object can be grounded

in terms of sparse rewards based on sensory input as done [28]. We also tried to

Chapter 5 Using Skill Library for Exploration 20

Figure 5.2: Look ahead Search: The approach uses skill library to build a
finite depth and branching factor look ahead tree from the current environment
state. We select the first skill and goal parameter of the path with maximum

utility.

use mental meta-critic (without any environment interaction of the test environ-

ment) to rank the sampled skill and expand only if the value is above a threshold.

However the results weren’t promising. Therefore we stuck with random sampling

of skills and biased goal sampling.

Pruning tree based on skill success predictor As defined in the definition of

skills Equation 3.4, for each skill we are given pπi which gives us the probability

of success of the skill using the learned skill policy πi. We evaluated sampled skill

and goal parameters according to above sampling process and stopped expansion

if the success of the skill in achieving the sampled goal was less than the threshold

(0.5 in our experiments).

Chapter 5 Using Skill Library for Exploration 21

5.1.1 Next State Extraction

Here, we describe the process of getting the next coarse level state with the sampled

skill and goal parameter to extend the look-ahead tree.

Using skill memories: We collected the dataset (memories) for each skill as

described in Section 3.3.1. An example tuple in the dataset is represented as

(s,g,sterminal). Then we choose the skill memory tuple(t̂ = (ŝ, ĝ, ŝterminal)) which is

closest to the current state st and the sampled goal parameter in terms of euclidean

distance. We designated the next state as the terminal state (ŝterminal) of closest

tuple. Note the state space of different skills are not of same dimension. We took

euclidean distance of the dimension which were relevant only for the skill. We kept

all the other state variables to be same as the starting state.

Using skill coarse dynamics model: The above approach for next state pre-

diction is useful when we have small state space. Therefore to make our approach

more generalizable, we used skill coarse level dynamics function T πicoarse to predict

the next state. Given the sampled skill i and goal parameters g, the coarse level

dynamics model prediction st+1 = T πicoarse(st, g)

Skill Memory based retrieval Neural network based prediction
Transit 1.9cm 1.6cm
Grasping 2.8cm 1.2cm
Transfer 4.6cm 2cm

Table 5.1: Comparison between methods for next state prediction, namely,
memory based next-state retrieval and neural network coarse dynamics regres-

sion model

Formally our approach is described in Algorithm 1. We choose the utility of the

path as sum of critic values of each individual skill and leaf state euclidean distance

from the global goal location. More formally,

Upath =
∑

(simag
t ,i,gi,c)∈path nodes

γcQπi(simag
t , gi) + γCr(simag

T , gi)

Chapter 5 Using Skill Library for Exploration 22

Algorithm 1 LookAheadSearch(srealt , g)

Given: maxHeight, branchingFactor
Initialize

root ← (srealt ,0, 0)
openlist ← addRoot
leafNodelist ← {}

while all path explored do
s, currHeight = getTopLeafNode(openlist)
sampled Set = sample skills and goal parameters
for Ωi, gi ∈ sampled Set do

(πi, Qπi, pπi, T πicoarse)← Ωi

prob ← pi(s, gi)
if prob > 0.5 then

nextState ← T icoarse(s, gi)
ai ← πi(s, gi)
totalReward ← Qi(s, gi, ai)

if currHeight+1 < maxHeight then
addToLeafNodelist(nextState, totalReward, currHeight+1)

else
AddNodeToOpenlist(nextState, totalReward, currHeight+1)

end if
end if

end for
end while
bestPath = getBestPath(leafNodeList)
Return first skill and goal parameter of bestPath

5.2 Exploration using Look-Ahead Search

In this section we describe how we used look ahead search we built in Section 5.1 to

explore at a coarse level and perform complex manipulation tasks. The Figure 5.1

gives an overview of our algorithm. We used the formulation of multi-goal MDP

as used in [1] to learn the manipulation tasks with exploration from look-ahead

search. The full approach is defined formally in Algorithm 2.

We start with a given skill library L, binary reward function and ε = 1. The

training loop consists of generating experience using behavior policy and training

the current policy using off-policy deterministic gradients. With our look-ahead

Chapter 5 Using Skill Library for Exploration 23

Algorithm 2 HER with lookahead search exploration

1: Given:
2: skill library L
3: reward function r : −1[fg(s) = 0]
4: ε← 1
5: skill terminated ← true
6: Initialize π,Q, Replay buffer B
7: for episode = 1, M do
8: Sample a goal g and starting state s0
9: while episode not done do

10: if random(0,1) > ε then
11: if skill terminated then
12: Ωi, gi ← LookAheadSearch(st, g)
13: end if
14: at = πi(st)
15: else
16: at = π(st) + Gaussian noise
17: end if
18: st+1, rt, terminal = execution(at)
19: skill terminated ← checkSkillTermination(st+1)
20: end while
21: Create hindsight experience with g′ = sT
22: end for

exploration, the behavior policy builds a look ahead search tree from the current

state st with probability ε and chooses the current policy plus Gaussian noise with

probability 1 − ε. The look-ahead search returns the suggested skill Ωi and its

goal parameters gi. If the skill is used generating experience, we choose the action

using πi and check if the skill goal is reached or skill has been executed w (=10 in

our experiments) times for exploration. We built hindsight experience at the end

of each episode and store it our replay buffer B as usual.

Note the key differences with the approach described in [33] are as follows:

• We don’t assume a fixed hierarchy at the start of learning a task MDP

• We do fixed height look-ahead search and only take 1st skill and its corre-

sponding goal of the best path. We then execute this skill to achieve sampled

skill goal or finite number of time-steps, after which we re-plan.

Chapter 5 Using Skill Library for Exploration 24

• With 1 − ε we sample using the current low level learned policy instead of

sampling a skill and its goal using look-ahead search.

Chapter 6

Experimental Setup and Results

In this chapter, we evaluate the approaches proposed in Chapter 4 and Chapter 5

for a variety of complex robotic manipulation tasks. In Section 6.1, we describe the

details about the suite of manipulation tasks we built with baxter robot containing

7 DoF arm and parallel jaw gripper to test our approach. We used MuJoCo [34]

simulation software for all our experiments.

6.1 Manipulation Tasks

The environments are similar to multi-goal environments proposed in [25]. We

made this environment to make the results comparable with other works who use

more famous OpenAI environments. Another reason for choosing baxter as our

robot is due to its availability of platform in our lab for performing transfer to real

world experiments which is left as a future work.

In all the environment, actions are 4-dimensional with first 3-dimension as the

Cartesian motion of the end-effector and last dimension controls the opening and

closing of the gripper. We apply the same action 75 simulation steps(with ∆t =

25

Chapter 6 Experimental Setup and Results 26

(a) Pick and move task (b) Put cube inside container

(c) Put red cube over purple cube (d) Take cube out of container

Figure 6.1: Suite of robot manipulation tasks with baxter robot with end-
effector control and parallel jaw gripper.

0.002). The state space includes the Cartesian position of the end-effector, its

velocities, position and velocity of gripper, objects pose and its velocities.

We use a single starting state in which object is grasped. The state space includes

the relative position of object which has to be transported in then environment.

The goal location is given as a 3D Cartesian location where the object has to be

transported to.

Chapter 6 Experimental Setup and Results 27

6.1.1 Pick and move object to a target location in 3D

This environment is a close replica of [25] FetchPickAndPlace environment made

for baxter robot. The objective to move the object from arbitrary location in

the workspace to the 3D target location in the workspace. The starting location

of the gripper and object are sampled randomly in the workspace of the robot.

The reward function is binary, i.e. the agent obtains reward 0 when the object is

within the tolerance 3cm and -1 otherwise. The pictorial representation of then

environment is shown in Figure 6.1a

6.1.2 Put object A inside container B

The objective is to go, grab the object from any arbitrary location in the workspace

and move it inside the container. The goal is specified as the center of the container

which is kept fixed across all the episodes. The binary reward function gives the

agent 0 if the object is within 5cm of the target location and z of the object is

less 2cm from the ground and -1 otherwise. The pictorial representation of then

environment is shown in Figure 6.1b

6.1.3 Put object A on object B

The objective is to go, grab the object from random location and put it over

another object B, whose location is fixed. The goal is specified as the center of

the top surface of the object B. The binary reward function gives the agent 0 if

the object is within 3cm of the target location and object A is in contact of object

B and -1 otherwise. The pictorial representation of then environment is shown in

Figure 6.1c

Chapter 6 Experimental Setup and Results 28

6.1.4 Take object A out of container B

The objective is to take reach to the object (random starting location inside the

container), grab it and move it out of the container B. The goal is specified as

a 3D location (randomly sampled) on the top of the container. The agent gets

reward 0 if the object is within 3cm of the target location and -1 otherwise. The

pictorial representation of then environment is shown in Figure 6.1d

6.2 Implementation Details

Figure 6.2: Neural Network Structure:The actor network takes as input
the state and outputs actions between [-1,1] which is then remapped to the range
corresponding to each dimension in action space. The critic predicts expected

discounted future returns if action is executed in state

Chapter 6 Experimental Setup and Results 29

For representing all the actor and critic we used a neural network with 3 fully

connected layers with 64 neurons each. For our methods and baselines we trained

DDPG and build over [29]. The complete architecture is shown in Figure 6.2.

Hyperparameter Value
Soft target network update parameter τ 10−3

Optimizer Adam [35]
Batch Size 128
Actor Learning rate 10−4

Critic Learning rate 10−3

Replay buffer size 106

Discount factor γ 0.98
Uncorrelated noise σ 0.2

Table 6.1: Hyperparameters for experiments

We tried variation in learning rate and neural network based on related works on

DDPG. However it doesn’t lead to faster or better performance.

6.3 Results

Baseline 1 (DDPG+HER): In this baseline, we trained a single DDPG agent from

scratch as was done in previous work in [1].

Baseline 2 (PAS MDP): In this baseline, we trained a parameterized action space

DDPG agent over our fixed skill set as was done in previous work in [21].

Approach 1 (MPAS MDP): This is the approach described in Section 4 which is

an extension of parameterized action to multi-goal setting.

Approach 2 (DDPG+HER+SL): This is the approach described in Section 5 in

which we used our look-ahead search exploration using Skill Library and learned

DDPG with lower-level actions.

The success percentage plot for all the environments in our test suite are shown in

Figure 6.3. As expected for all the environments learning using normal DDPG +

Chapter 6 Experimental Setup and Results 30

(a) Pick and move task (b) Put cube inside container

(c) Put red cube over purple cube (d) Take cube out of container

Figure 6.3: The success plot for each manipulation task in our suite. For
evaluation, we freeze the current policy and sample 20 random starts and goals

at each epoch (1 epoch = 16 episodes of environment interaction).

HER (baseline 1) succeeds only for simple tasks like take cube out of container and

is slower to show improvements than any other method. Learning with temporal

abstractions using parameterized action space without hindsight experience replay

[21] is able to learn complex tasks like Picking and moving object to a target

location (Figure 6.3a) and Picking object & placing it inside container (Figure

6.3b). With improvements proposed in Chapter 4 over parameterized action space

we are able learn faster as multi-goal setting provides automatic curriculum and

learning signals even when the agent is not able to desired goal. As shown in

Figure 6.3d, approach 1 outperforms baseline 2.

However as we can see from Figure 6.3c, even when all the methods can learn the

policies trained using parameterized action space converge to sub-optimal policy

Chapter 6 Experimental Setup and Results 31

and leads to success only about 80% of the time during evaluation. This brings

us to our approach 2, as proposed in Chapter 5, in which we let the possible

policy set to be defined over low level actions and use look-ahead search to explore

efficiently in the large state space. As shown in Figure 6.3a and Figure 6.3b, the

exploring at coarse level and doing look-ahead leads to success. While exploring

randomly doesn’t succeed at all for complex manipulation tasks. Similar results

are shown for Picking and putting object inside container tasks in which approach

2 learns and converges to optimal policy as compared to DDPG+HER which fails

completely to achieve any success.

6.3.1 Reduced Skill Library

There might be situations in which we might not have the complete set of skills in

our skill library. Therefore we did experiments with skill library which consists of

fewer skills. We call Skill Library 1 consisting of transit, grasp and transfer. We

also construct two other libraries, Skill Library 2 consisting of {grasp, transfer}

and Skill Library 3 consisting of {transit, transfer}.

In the first experiment we used Skill Library 2 which consists of grasping and

transfer skill only and tested on 2 environments Pick’n’move and Put cube inside

container tasks. As shown in Figure 6.4a, exploration with all the skills (Skill

Library 1) shows faster convergence than Skill Library 2. This is due not having

transit skill causes agent to spend sometime learning the transit skill using inter-

actions generated by other skills and current policy. However we didn’t see the

slower convergence for Put cube inside container task, as seen in Figure 6.4b

We also tried with another Skill Library 3 for Put cube inside container task in

which we don’t have grasping skill. The results are shown in Figure 6.4c. Conver-

gence with Skill Library 3 is slower than Skill Library 1 showing that grasping is

necessary for this tasks.

Chapter 6 Experimental Setup and Results 32

(a) Pick and move task (b) Put cube inside container

(c) Put cube inside container

Figure 6.4: The success plot for Pick’n’move task and Put cube inside con-
tainer task. The plots show the effect of having different skills in the Skill
Library. Skill Library 1 = {transit, grasp, transfer}, Skill Library 2 = {grasp,
transfer} and Skill Library 3 = {transit, transfer}. The assertion is that if we
have limited Skill Library, with some essential skills missing, than the speed
of convergence will be slower than having all the essential skills. However it
is still better than random exploration.(1 epoch = 16 episodes of environment

interaction).

6.3.2 Affect of Large Unmodelled Dynamics in Environ-

ment

One other question is related to the coarse dynamics model learned for each skill.

What if that model is wrong? We do not assume anything the test task while

learning skills. Therefore skill coarse dynamics model could be wrong. To test

this we created a perturbation in our Put cube inside container task by making

1 wall insurmountable by the robot arm. The environment is shown in Figure

Chapter 6 Experimental Setup and Results 33

(a) Put cube inside container
with 1 insurmountable wall (b) Success Curve

Figure 6.5: This Figure is used to test the approach if the coarse dynamics
model of the skill is bad in the current test task to be learned. In (A) we show
the perturbed version of Put cube inside container in which 1 wall is very high
and can’t crossed by the agent. In (B) we show that even with wrong coarse
dynamics model our approach works better than random exploration. (1 epoch

= 16 episodes of environment interaction).

6.5a. Therefore the skill dynamics involving end-effector states through the large

wall would be completely wrong. However using Skill Library is still beneficial as

seen in Figure 6.5b and shows to perform the task in which DDPG+HER with

random exploration completely fails. We used Skill Library with all the learned

skills namely, transit, transfer and grasping.

Chapter 7

Conclusion and Future Work

7.1 Summary

Leveraging prior experience and long range planning are some of the hottest open

problems in today’s reinforcement learning. In this thesis, we explore the problem

of learning using previously learned low-level skills. We give framework for learning

skill library and show its benefit in learning in 2 proposed approaches. Given the

Skill library, we explore the learning multi-goal parameterized action space meta-

controller and exploration with low level policies.

In this thesis, we first formalize the necessary skill library framework and dis-

cuss how various components could be put together for robotic manipulation. We

show the generalization of the skill library framework and learned skill library for

manipulation to perform multiple long-horizon complex real-world manipulation

tasks. The second question tackled is that learning with goal-parameterized skills

library as primitive action can be more efficient than learning low-level controller

and could be used solve tasks which were not possible before. We then developed a

new approach for exploration which uses the benefits of temporal abstraction and

34

Chapter 7 Conclusion and Future Work 35

achieves optimal performance. The third part used skill library and coarse dynam-

ics model to perform look-ahead search at skill level and used the suggested skill

to perform exploration in the environment to achieve meaningful experience in the

environment. Again using this approach, we are able to outperform state-of-the-

art methods in model-free learning on our suite of real-world robotic manipulation

environments. The last method is particularly interesting as it allows to change

the skill library arbitrarily while learning which is not possible in parameterized

action space learning. Our exploration method is orthogonal learning algorithm

and thus could easily be combined with advances in off-policy model-free pol-

icy learning algorithms. Finally, we believe that with reuse of previously learned

skills and potential look-ahead search benefits could lead to adaptation of rein-

forcement learning in robotics for tasks which require long-horizon sequences of

action to achieve success.

7.2 Future Work

There are multiple interesting directions for extending the currently proposed ap-

proaches: multi-goal parameterized action space and exploration using look-ahead

search. It would be interesting to explore the combination of the approaches. One

of the most interesting direction, in terms of parameterized action space, could

be to explicitly introduce a soft action selection step in the actor and then feed

it into the critic for calculating the gradients for learning. Other interesting di-

rections could be different architectural choices like feeding actions into first layer

with state to critic as done in [36] and/or predicting Q values for each action and

propagating gradients back only for the action which was chosen[37].

Other useful direction connected to our second approach is to unfold the search

tree based more informed sampling using concepts of entities [38] present in the

environment. Another interesting direction could be reuse of previously built

Chapter 7 Conclusion and Future Work 36

search tree either by bootstrapping Q-value to allow longer unfolding [39] or by

keeping statistics of actions at each node in the search tree [40].

Bibliography

[1] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,

Peter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Woj-

ciech Zaremba. Hindsight experience replay. In Advances in Neural Informa-

tion Processing Systems, pages 5048–5058, 2017.

[2] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp

Moritz. Trust region policy optimization. In International Conference on

Machine Learning, pages 1889–1897, 2015.

[3] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep re-

inforcement learning for robotic manipulation with asynchronous off-policy

updates. In Robotics and Automation (ICRA), 2017 IEEE International Con-

ference on, pages 3389–3396. IEEE, 2017.

[4] Robert W White. Motivation reconsidered: The concept of competence. Psy-

chological review, 66(5):297, 1959.

[5] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-

duction, volume 1. MIT press Cambridge, 1998.

[6] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom

Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with

deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

37

Bibliography 38

[7] Zhaoming Xie, Glen Berseth, Patrick Clary, Jonathan Hurst, and Michiel

van de Panne. Feedback control for cassie with deep reinforcement learning.

arXiv preprint arXiv:1803.05580, 2018.

[8] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen,

Yan Duan, John Schulman, Filip DeTurck, and Pieter Abbeel. # exploration:

A study of count-based exploration for deep reinforcement learning. In Ad-

vances in Neural Information Processing Systems, pages 2750–2759, 2017.

[9] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-

end training of deep visuomotor policies. The Journal of Machine Learning

Research, 17(1):1334–1373, 2016.

[10] Sergey Levine, Peter Pastor, Alex Krizhevsky, and Deirdre Quillen. Learning

hand-eye coordination for robotic grasping with large-scale data collection. In

International Symposium on Experimental Robotics, pages 173–184. Springer,

2016.

[11] Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wojciech Zaremba, and

Pieter Abbeel. Asymmetric actor critic for image-based robot learning. arXiv

preprint arXiv:1710.06542, 2017.

[12] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell.

Curiosity-driven exploration by self-supervised prediction. In International

Conference on Machine Learning (ICML), volume 2017, 2017.

[13] Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing explo-

ration in reinforcement learning with deep predictive models. arXiv preprint

arXiv:1507.00814, 2015.

[14] Jürgen Schmidhuber. A possibility for implementing curiosity and boredom

in model-building neural controllers. In Proc. of the international conference

on simulation of adaptive behavior: From animals to animats, pages 222–227,

1991.

Bibliography 39

[15] Shakir Mohamed and Danilo Jimenez Rezende. Variational information max-

imisation for intrinsically motivated reinforcement learning. In Advances in

neural information processing systems, pages 2125–2133, 2015.

[16] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David

Saxton, and Remi Munos. Unifying count-based exploration and intrinsic

motivation. In Advances in Neural Information Processing Systems, pages

1471–1479, 2016.

[17] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy.

Deep exploration via bootstrapped dqn. In Advances in neural information

processing systems, pages 4026–4034, 2016.

[18] Thomas G Dietterich. Hierarchical reinforcement learning with the maxq

value function decomposition. Journal of Artificial Intelligence Research, 13:

227–303, 2000.

[19] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenen-

baum. Hierarchical deep reinforcement learning: Integrating temporal ab-

straction and intrinsic motivation. In Advances in neural information pro-

cessing systems, pages 3675–3683, 2016.

[20] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and

semi-mdps: A framework for temporal abstraction in reinforcement learning.

Artificial intelligence, 112(1-2):181–211, 1999.

[21] Matthew Hausknecht and Peter Stone. Deep reinforcement learning in pa-

rameterized action space. arXiv preprint arXiv:1511.04143, 2015.

[22] Warwick Masson, Pravesh Ranchod, and George Konidaris. Reinforcement

learning with parameterized actions. 2016.

[23] Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. In Ad-

vances in neural information processing systems, pages 271–278, 1993.

Bibliography 40

[24] Alexander Vezhnevets, Volodymyr Mnih, Simon Osindero, Alex Graves, Oriol

Vinyals, John Agapiou, et al. Strategic attentive writer for learning macro-

actions. In Advances in neural information processing systems, pages 3486–

3494, 2016.

[25] Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen

Baker, Glenn Powell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter

Welinder, et al. Multi-goal reinforcement learning: Challenging robotics en-

vironments and request for research. arXiv preprint arXiv:1802.09464, 2018.

[26] Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James Kirk-

patrick, Raia Hadsell, Nicolas Heess, and Razvan Pascanu. Distral: Robust

multitask reinforcement learning. In Advances in Neural Information Pro-

cessing Systems, pages 4496–4506, 2017.

[27] Yoshua Bengio. Deep learning of representations for unsupervised and transfer

learning. In Proceedings of ICML Workshop on Unsupervised and Transfer

Learning, pages 17–36, 2012.

[28] Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas

Degrave, Tom Van de Wiele, Volodymyr Mnih, Nicolas Heess, and Jost Tobias

Springenberg. Learning by playing-solving sparse reward tasks from scratch.

arXiv preprint arXiv:1802.10567, 2018.

[29] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias

Plappert, Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu.

Openai baselines. https://github.com/openai/baselines, 2017.

[30] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normaliza-

tion. arXiv preprint arXiv:1607.06450, 2016.

[31] Ofir Nachum, Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient

hierarchical reinforcement learning. arXiv preprint arXiv:1805.08296, 2018.

https://github.com/openai/baselines

Bibliography 41

[32] Maciej Klimek, Henryk Michalewski, Piotr Mi, et al. Hierarchical reinforce-

ment learning with parameters. In Conference on Robot Learning, pages

301–313, 2017.

[33] Devin Schwab and Soumya Ray. Offline reinforcement learning with task

hierarchies. Machine Learning, 106(9-10):1569–1598, 2017.

[34] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine

for model-based control. In Intelligent Robots and Systems (IROS), 2012

IEEE/RSJ International Conference on, pages 5026–5033. IEEE, 2012.

[35] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980, 2014.

[36] Scott Fujimoto, Herke van Hoof, and Dave Meger. Addressing function ap-

proximation error in actor-critic methods. arXiv preprint arXiv:1802.09477,

2018.

[37] Jiechao Xiong, Qing Wang, Zhuoran Yang, Peng Sun, Yang Zheng, Lei Han,

Haobo Fu, Xiangru Lian, Carson Eisenach, Haichuan Yang, Emmanuel Ek-

wedike, Bei Peng, Haoyue Gao, Tong Zhang, Ji Liu, and Han Liu. Parame-

terized deep q-networks learning: Playing online battle arena with discrete-

continuous hybrid action space, 2018. URL https://openreview.net/

forum?id=Sy_MK3lAZ.

[38] Ken Kansky, Tom Silver, David A Mély, Mohamed Eldawy, Miguel Lázaro-

Gredilla, Xinghua Lou, Nimrod Dorfman, Szymon Sidor, Scott Phoenix, and

Dileep George. Schema networks: Zero-shot transfer with a generative causal

model of intuitive physics. arXiv preprint arXiv:1706.04317, 2017.

[39] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja

Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian

Bolton, et al. Mastering the game of go without human knowledge. Nature,

550(7676):354, 2017.

https://openreview.net/forum?id=Sy_MK3lAZ
https://openreview.net/forum?id=Sy_MK3lAZ

Bibliography 42

[40] Timothy Yee, Viliam Lisỳ, and Michael H Bowling. Monte carlo tree search

in continuous action spaces with execution uncertainty. In IJCAI, pages 690–

697, 2016.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Thesis Contributions
	1.3 Thesis Outline

	2 Background and Related Work
	2.1 Reinforcement Learning
	2.1.1 Basics and Notations

	2.2 Learning for Robotic Manipulation
	2.3 Task Space Control
	2.4 Exploration using Intrinsic Motivation
	2.5 Hierarchical Reinforcement Learning
	2.6 Multi-task Learning and Transfer Learning

	3 Building Manipulation Skill Library
	3.1 Basic Skills Definition
	3.2 Skill Policy and Critic Learning
	3.3 Coarse-level Skill Dynamics and Success Probability Prediction
	3.3.1 Data Collection
	3.3.2 Coarse Dynamics Model Learning
	3.3.3 Success Probability Predictor

	3.4 Results
	3.4.1 Transit Skill
	3.4.2 Grasp Skill
	3.4.3 Transfer Skill

	4 Parameterized action space MDPs with skills library
	4.1 Parameterized Action Space
	4.2 Multi-goal Parameterized Action Space DDPG

	5 Using Skill Library for Exploration
	5.1 Look-Ahead Search Tree
	5.1.1 Next State Extraction

	5.2 Exploration using Look-Ahead Search

	6 Experimental Setup and Results
	6.1 Manipulation Tasks
	6.1.1 Pick and move object to a target location in 3D
	6.1.2 Put object A inside container B
	6.1.3 Put object A on object B
	6.1.4 Take object A out of container B

	6.2 Implementation Details
	6.3 Results
	6.3.1 Reduced Skill Library
	6.3.2 Affect of Large Unmodelled Dynamics in Environment

	7 Conclusion and Future Work
	7.1 Summary
	7.2 Future Work

	Bibliography

