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Abstract
This thesis explores learning-based methods in generating human-like lane fol-

lowing and changing behaviors in on-road autonomous driving. We summarize our
main contributions: 1) derive an efficient vision-based end-to-end learning system
for on-road driving; 2) propose a novel attention-based learning architecture with
hierarchical action space to obtain lane changing behavior using a deep reinforce-
ment learning algorithm; 3) use LSTM to make vehicle’s trajectory prediction with
the demonstration of human driving trajectories. We first propose an end-to-end
imitation learning algorithm to teach the car how to drive on-road with visual in-
put. The elementary principle is to construct a neural network that maps from image
input to steering angle and acceleration. To improve the maneuver’s stability and
boost the training efficiency, we apply transfer learning from other tasks, use LSTM
to add temporal information, supplement with segmentation results and add sensor
fusion. We evaluate our model in the Udacity simulator and obtain smooth driv-
ing performance on unseen curvy maps. Later, we extend learning lane following
task to the lane changing task by using deep reinforcement learning. This approach
avoids direct human supervision in a model-free fashion, easing the effort of ex-
tensive annotated training data. The contribution here is that we formulate the lane
change behavior as a hierarchical action and we propose a model to solve deep rein-
forcement learning in this high-dimensional, structured space. In the meantime, we
explore the attention mechanism in deep reinforcement learning, and the observed
behavior is improved after applying spatial and temporal attention. The overall al-
gorithm is tested and evaluated in the TORCS platform. Finally, we fulfill the task
of trajectory prediction in on-road driving. The aim is to discover when and how
people would make the decision of lane changing. We divide the task into predicting
the driver’s discrete intention and forecasting the subsequent continuous trajectory.
We solve this sequential prediction task with LSTM and further extend the model by
capturing the surrounding environment information. We compare and evaluate our
prediction results with real human driving trajectories in the NGSIM dataset.



vi



Acknowledgments
First and foremost, I would like to express my profound gratitude for my advi-

sors, Dr. John Dolan and Dr. Katharina Muelling. I’m truly thankful for their pa-
tience, continuous support and valuable guidance during my two-year master study
at Carnegie Mellon. It is a great honor to join the GM-CMU autonomous driving col-
laborative research project, which introduces me to the amazing field of autonomous
driving.

I would like to thank my collaborators at General Motors, Dr. Priyantha Mu-
dalige and Praveen Palanisamy. During our bi-week meeting, we have had lots of
meaningful discussions, which inspired lots of interesting ideas.

I would like to thank my committee members, Dr. David Held and Wenhao Luo,
who have given me lots of precious advice on my research and thesis writing.

I am also extremely thankful to my amazing fellow labmates for an enthusiastic
and cooperative lab environment. I would give special thanks to Chiyu Dong, who
have helped me grow both inside and outside research, Zhiqian Qiao, whom I have
gone through all the up and downs for the GM project with. I am also grateful for
Shuang Su and Shivam Gautam, whose work I built upon. It is a privilege to meet
you guys and I have learned so much from every one of you. I enjoyed and treasured
all the fun and precious time we have together.

Finally, I would like to thank my parents for their endless support and encour-
agement. I would not have accomplished any of these without your unconditional
love.



viii



Contents

1 Introduction 1
1.1 Autonomous Driving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Decision Making for Autonomous Driving . . . . . . . . . . . . . . . . . . . . . 2
1.3 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 7
2.1 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Long Short Term Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 End-to-end Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Lane Change Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Learning Lane Following Behavior with End-to-end Behavior Cloning 13
3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Proposed Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Auxiliary Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Transferring from Existing Tasks . . . . . . . . . . . . . . . . . . . . . . 15
3.2.3 Temporal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.4 Additional Vehicle Information . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Learning Lane Change Behavior with Deep Reinforcement Learning 23
4.1 Deep Reinforcement Learning for Self-driving . . . . . . . . . . . . . . . . . . . 23
4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.1 Hierarchical Action Space for Lane Change Behavior . . . . . . . . . . . 24
4.2.2 Actor-critic Based DRL Architecture . . . . . . . . . . . . . . . . . . . 25
4.2.3 Attention Mechanism for Deep Reinforcement Learning . . . . . . . . . 26
4.2.4 Reward Signal Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Evaluation and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

ix



5 LSTM-based Lane Change Behavior Prediction 37
5.1 Problem Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.2 Predicting Discrete Driver Intention . . . . . . . . . . . . . . . . . . . . 39
5.2.3 Predicting Continuous Vehicle Trajectory . . . . . . . . . . . . . . . . . 40

5.3 Experiment and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.1 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Conclusion and Future Work 47

x



List of Figures

1.1 Some well-known autonomous driving vehicles from academia and industry,
from left to right and top to bottom: CMU BOSS self-driving car for 2007 Darpa
Challenge [1], Uber self-driving car [2], Waymo self-driving car [3], Cruise self-
driving car [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Current decision making hiearchy for autonomous driving. . . . . . . . . . . . . 3

2.1 A decomposition illustration of LSTM unit. . . . . . . . . . . . . . . . . . . . . 9
2.2 Demonstration of (a) a lane change need for higher speed in highway driving [5],

and (b) Visualization of perception for considering a lane change behavior [6]. . . 11

3.1 The overall network structure of our proposed end-to-end learning architecture.
Compared to the original network structure proposed by [7], our network has
additional modules of segmentation network, LSTM and vehicle kinematic input. 14

3.2 Illustration of transfer learning from object recognition in Imagenet to learning
steering angle for the self-driving car. . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Sample screenshots of the environment in the Udacity autonomous driving sim-
ulator. The left one shows the training track in the desert, while the two on the
right show the test track in suburb and mountain. The test sets are different from
the training set regarding lighting conditions, curvature, inclination, road ge-
ometry and off-road scenery and thus are considered much more difficult. . . . 18

3.4 Example intermediate segmentation outputs obtained in the end-to-end learning
procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Illustration of the structure of our algorithm. Our algorithm is based on deep
reinforcement learning with actor and critic. We propose hierarchical actions
and attntion mechanism to tackle lane change behavior. . . . . . . . . . . . . . . 24

4.2 Illustration of the hierarchical action space for lane change behavior. . . . . . . . 25
4.3 The Actor-Critic architecture used in our algorithm, first introduced by [8]. On

the left is the data flow in the forward pass and on the right is the gradient flow
in the back-propagation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 The architecture of the critic network in DRDPG. DRDPG convolves over
an image of the input screen. The resulting feature maps are processed through
time by an LSTM layer. The final Q value is obtained by concatenating the action
vector with a fully connected layer. During training, the LSTM is trained with
an unrolling of T=8 frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

xi



4.5 Architecture of the critic network of the Temporal Attention DRDPG. An
additional context vector CT for computing Q values is derived as a linear com-
bination of T LSTM outputs concatenated with weighted action vector AT , with
comparison of the last frame LSTM output used in DRDPG. The weights can be
optimized through backpropagation during training. . . . . . . . . . . . . . . . . 28

4.6 Architecture of critic network of Spatial Attention DRDPG. Feature maps
extracted by CNN are interpreted as region vectors. An attention network will
learn the importance weight of each region vector and derive a weighted sum of
region vectors before feeding it to LSTM layer. . . . . . . . . . . . . . . . . . . 30

4.7 Illustration of the notation used in reward functions. . . . . . . . . . . . . . . . . 31
4.8 Track Street-1 used for training. From left to right: the map of the Street-1

course, image top view when starting a new episode, a screenshot of the front
view camera during training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.9 Final DRDPG model with hierarchical actions, Spatial and Temporal attention
tested on different trials in TORCS game. We obtain the result of each map by
running 100 episodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.10 Comparison of different models on average speed, number of lane changes, total
reward during an episode and percentage of successful episodes. . . . . . . . . . 34

4.11 Qualitative results of Temporal Attention DRDPG The number in the upper-
left corner of each image is the weight assigned to that frame (higher weight
indicates more importance). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.12 Qualitative results of Spatial Attention DRDPG A mask over the input domain
is learned by the attention mechanism. Brighter colors indicate higher weights.
The weights are smoothed with a Gaussian kernel in the visualization. . . . . . . 35

5.1 A systematic overview of the lane change behavior prediction algorithm. . . . . . 38
5.2 Notation for vehicles in consideration on road. Orange vehicle is the target vehi-

cle; the blue vehicles are the 6 vehicle that are incorporated into the surrounding
information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Network architecture for predicting discrete driver’s intention. . . . . . . . . . . 40
5.4 Network architecture for predicting continuous vehicle trajectory. . . . . . . . . 41
5.5 Illustrations of how lane change frames are selected. The augmented lane change

frames can be 0.5, 1, 1,5, 2, 2.5 and 3.0 seconds before the lane change point,
but we only show 1 second beforehand as an example. . . . . . . . . . . . . . . 42

5.6 Illustration of lateral distance prediction result with different prediction times.
The red line corresponds to the lane marking. The four figures show the result of
our algorithm predicting at 0 or 1, 2 and 3 seconds before the lane change point. . 43

5.7 Prediction error v.s length of prediction. Left: lateral distance prediction. Right:
Longitudinal distance prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.8 Comparison of trajectory prediction results using linear fit, polynomial fit, sig-
moid fit and LSTM (ours). The left half of the trajectory represents seen obser-
vations and the right half represents predictions. The two plots show a typical
left and right lane change scenario respectively. . . . . . . . . . . . . . . . . . . 45

xii



List of Tables

3.1 Camparison between different benchmark datasets on autonomous driving. . . . . 18
3.2 Comparison between different network structures for vision-based end-to-end

learning of steering angle. Our proposed method has the lowest RMSE and MCE
both in the Udacity simulation and on the Comma.ai dataset compared to the
baseline method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1 Recall and precision for discrete driver’s intention prediction for different times
before the lane change point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Comparison of mean square error (meters) for 50 timesteps of trajectory between
curve fitting methods and our LSTM-based method with/without surrounding state. 45

xiii



xiv



Chapter 1

Introduction

1.1 Autonomous Driving

Fully autonomous driving vehicles have been widely researched in academia for decades. One
of the first successful demonstrations of an autonomous driving vehicle goes back to 1986 [9].
At that time, simulated road images were used to train a three-layer neural network and produce
as output the direction the car should follow on-road. Since then, a wide variety of aspects of
autonomous driving have been investigated and applied including perception, localization, plan-
ning, and control. People gradually began to focus on more realistic urban settings with uncertain
traffic environment, which is currently still an important goal. One of the most influential and
important milestones that have been reached was the 2007 DARPA Urban Challenge [10]. In this
challenge, teams from across the world designed both hardware and software for autonomous ve-
hicles that could handle dynamic obstacles, merging scenarios and intersections. Six robots out
of 50 completed the race, after driving on a closed route for an entire day.

The rapid global urbanization in the recent past has led to severe road congestion, a rise in
pollution levels and an increase in road accidents. Private automobiles are always the first to
blame because of its unsustainable feature on personal urban mobility. Fortunately, great strides
have been made in the development of autonomous driving technologies. As the autonomous
agent takes over the driving task, the human driver becomes a passenger during the autonomous
journey, can take his/her hands off the steering wheel and pedals and is free to pursue other
activities. The reason that autonomous driving is widely and continuously researched and in-
vestigated is that it has the potential to reduce accidents and be economically beneficial and
environmentally friendly. While providing an opportunity to develop safe and sustainable solu-
tions to personal mobility [11], autonomous vehicles also may allow transportation sharing as
Autonomous Vehicles-on-Demand [12].

Thanks to recent advances in artificial intelligence technology, Automotive Driver Assistance
Systems (ADAS) have been making rapid progress over the past few years. More and more vehi-
cles are equipped with increasingly sophisticated ADAS systems. Currently, numerous research
groups and companies are working hard on bringing this technology to market. Some of them are
shown in Figure 1.1. Google’s driverless car project, now called Waymo, is one of the leaders,
with a history of developing self-driving technology since 2009. With a total test driving distance
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of over 4 million miles on public roads, Waymo has already set up an early public riders program
in Phoenix. At the same time, Uber has done extensive road tests in Pittsburgh and plans to equip
30,000 more autonomous cars on the road. Tesla launched its Autopilot in 2014 and is working
towards a full self-driving demonstration by the end of 2019. Other major car companies like
GM, Ford, Toyota, and Honda have also set up their autonomous driving departments and are
making continuous progress on that.

Figure 1.1: Some well-known autonomous driving vehicles from academia and industry, from
left to right and top to bottom: CMU BOSS self-driving car for 2007 Darpa Challenge [1], Uber
self-driving car [2], Waymo self-driving car [3], Cruise self-driving car [4].

A typical autonomous driving vehicle is a complex system consisting of several subsystems
[13]. The perception subsystem fuses data collected from multiple sensors like camera, Lidar,
Radar, GPS and IMU to obtain a semantic understanding of the world. The perception subsystem
should be able to provide locations of obstacles/vehicles on the road as well as ego vehicle’s
position relative to the road. The prediction subsystem makes predictions of the surrounding
objects in a short period of time. This inference helps our ego vehicle to better understand the
future environment we may encounter. Finally, the decision-making subsytem judges all the
information and inference given by perception and prediction subsytem, and decide on the exact
trajectory the car should next follow. The overall software system should be able to ensure
coordination of different subsystems and be robust for real-time processing.

1.2 Decision Making for Autonomous Driving
In this section, we describe the decision making architecture often used in an autonomous car.
The decision-making system of a self-driving car can be hierarchically decomposed into four
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components [14] as shown in Figure 1.2: The highest level is a route/mission planner that
navigates and plans the route to the destination through the road network. The next level is
the behavior planner, which decides on a local driving task while obeying the traffic rules and
progressing towards the final destination. The motion planner then follows the strategy given
by the behavior planner and generates a continuous path/trajectory. Finally, the control planner
will use the trajectory to generate the execution commands like acceleration, throttle, and steering
angle.

Figure 1.2: Current decision making hiearchy for autonomous driving.

1. Route planner: As the highest level of the decision-making system, the route planner
selects the best route from the starting position to the destination. Since the road network
can be seen as a connected graph, selecting the optimal route is equivalent to finding the
lowest-cost path under certain restrictions given by traffic rules. People have done intensive
investigations in finding proper routes in large-scale maps: see [15] for details.

2. Behavior planner: As an intermediate level between route and trajectory, behavior-level
planning needs to interact with surrounding traffic and environment according to driving
rules on the road. The selected behavior must be a safe yet efficient driving behavior
with consideration of all other traffic participants. For example, if a car wants to exit
the highway, it needs to navigate from its lane to the rightmost lane without interfering
with the normal driving of all other vehicles on the road. The behavior can be high-level
instructions like cruise-in-lane, change-lane, turn-left.
Previous methods mostly focused on designing the behaviors as a finite set and coupled
different driving scenarios with different heuristic behaviors. Then a finite state machine is
used to transition between each behavior, like most teams in the DARPA Urban Challenge
[10]. However, real-world driving is full of uncertainty. To solve this problem, machine
learning-based techniques and probabilistic planning formalisms, like Markov Decision
Processes (MDP) and its generalization have recently been used to deal with this ambiguity
[16].

3. Motion planner: The motion planning module follows the strategy given by the behavior
planner and derives a continuous trajectory that will be executed by the low-level con-
troller. The motion planner needs to generate a trajectory physically feasible for the vehi-
cle, safe for the traffic and comfortable for the passenger. The trajectory should avoid any
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possible collisions with any obstacle or other traffic participants on the road.
The problem of motion planning is to search for a feasible solution in the vast configura-
tion space, which is computationally intractable in most cases. Thus, most popular motion
planning methods use a numerical approximation. The two most common approaches
are graph-based planning and sample-based planning. The graph-based planner [17] dis-
cretizes the vehicle’s drivable path into a connected graph and searches for the shortest
path using graph search. The sample-based planner [18] searches for a collision-free path
by sampling points on the feasible path until a viable trajectory is found.

4. Control planner: The control planner is used to select appropriate actuation to execute
the planned trajectory and correct tracking errors. The inaccuracy of the tracking is ac-
cumulated during the execution due to the inaccuracy of the actual vehicle model. The
control module should be able to correct this deviation and act as we command. A good
control planner ensures robustness and stability in the closed-loop decision-making. Popu-
lar control planner includes pure pursuit method [19] and MPC (Model Predictive Control)
methods [20].

In this thesis, we will focus mostly on the behavior planning module and motion planning
module. We will also break the boundary of the traditional division of the decision-making
hierarchy and use a more end-to-end approach for the autonomous car decision making.

1.3 Approaches

In this thesis, we first propose a vision-based end-to-end approach to learn a maneuver controller
for autonomous vehicles. The basic idea is to learn a complicated mapping that can go directly
from sensor input, images, to the control output, steering angle. This is done by using a deep
neural network and leveraging the availability of a significant amount of human driving data
as supervision. Based on the architecture described in [7], we propose several novel ideas to
improve the data efficiency and stability of the end-to-end learning approach. We first use transfer
learning to incorporate prior knowledge into the driving task. We add temporal information with
LSTM to make predictions based on current and past states. Image segmentation information
is also used as an auxiliary task for learning the driving behavior. Finally, we also apply sensor
fusion with vehicle kinematics to better represent vehicle state. The resulting model can learn
the driving policy with much fewer data and higher accuracy in imitating the driving supervision
data. Finally, we apply this model to several unseen environments and see it can quickly adapt
to new unseen environments.

Secondly, we extend the imitation learning-based method to a deep reinforcement learning-
based method applied to the task of learning to drive, which can avoid a significant amount of
human driving data that are both hard to collect and expensive in reality. Previously, there is
already literature using DRL for driving [21]. In this thesis, we make two major improvements.
First, most previous work focuses on the lane-keeping task in autonomous driving, whereas here
we focus on lane changing behavior. To accomplish this, we divide the behavior of driving into
a hierarchy. We first choose high-level decisions of the left lane change, right lane change or
lane following and then execute low-level direct control parameters. The resulting system can be
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seen as having subpolicies instead of an overall policy. Second, we try to explore the attention
mechanism of driving. As human drivers pay attention to only part of the road configuration
when driving, we want to extract the portion from features that are most valuable for making the
decision. This is done by designing a new layer in a neural network that can automatically select
the parts that have a more substantial impact on training. Our results show better lane changing
behavior and faster and smoother overall training.

Finally, we investigate the task of predicting lane change behavior for on-road driving. For
our ego autonomous car, it is essential to understand and forecast other on-road vehicles’ be-
havior to obey traffic rules and drive safely alongside. Then this problem can be formulated as
follows: given the past environment states in a time window, can we predict the future actions
of other vehicles? Encouraged by the promising result of recurrent networks for integrating past
information, we construct an LSTM (long-short-term-memory)-based method for lane change
prediction. We further subdivide the problem into a discrete prediction for the lane change cat-
egory and then a continuous prediction for the whole trajectory. To make the prediction more
accurate, besides its own past states, we also consider the past states of its surrounding vehicles
to know their influence on the car’s behavior. The experiment is done on the NGSIM dataset,
from which we can obtain hundreds of real lane change scenarios with the vehicle’s trajectory.
The method’s prediction results are compared with the true human driving trajectories to see how
well it can recover humans’ behavior.

The thesis is organized as follows: In Chapter 2 we briefly go through the preliminary back-
ground, including the formal definition of deep reinforcement learning, End-to-end learning and
the basics of Long Short Term Memory. In Chapter 3, we introduce our End-to-end learning
of driving policy, the novel methods we used and the experiment results. In Chapter 4, we
present the deep reinforcement learning perspective of learning driving behavior. In Chapter 5,
we investigate the trajectory prediction problem, show our LSTM-based approach, and repeat
our experimental results with a comparison of human driving statistics in the NGSIM dataset.
Finally, we conclude our work in Chapter 6 and address some of the interesting directions of
future work.
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Chapter 2

Background

2.1 Deep Reinforcement Learning

Basics of Reinforcement Learning

Consider a typical Reinforcement Learning setup, where our agent acts in an environment E. At
every discrete time step t, the agent observes a statest ∈ S, picks an action at ∈ A and receives
a scalar reward r(st, at) ∈ R. This is formally known as a Markov Decision Process (MDP)
defined by a tuple {S,A,P ,R, γ} of set of states, actions, transitional probabilities, rewards and
a discount factor to keep the expectations finite in the case of an MDP without terminal states.
The policy is defined as a distribution of actions given the state s

π(a|s) = P (At = a|St = s).

The total return is defined as total discounted reward at time step t with discount factor γ

Gt =
T∑
i=t

γ(i−t)r(si, ai).

The goal of RL is to find a policy that maximizes this discounted expected return. So following
a policy π the objective function can then be formulated as

J = Eri,si∼E,ai∼π[G1].

The value function V π and action-value functionQπ describe the expected sum of future rewards
following the policy π and can be expressed recursively with the Bellman equation.

V π(s) = Eπ[rt+1 + γV π(St+1)|St = s]

Qπ(s, a) = Eπ[rt+1 + γQπ(St+1, At+1)|St = s, At = a]

Deep reinforcement learning uses deep neural networks to represent value function, policy or
the model. It optimizes the objective function by stochastic gradient descent.
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Deep Q-Network

Deep Q-Network[22] (DQN) is a recent reinforcement learning algorithm based on the popular
Q-learning algorithm. Q-learning is an off-policy model-free algorithm, where an agent learns
an approximated Q function and follows a greedy policy at each time step. The Q-learning
algorithm is based on the Bellman equation:

Qt+1(s, a)← Qt(s, a) + α[r + γ argmax
a′

Qt(s
′, a′)−Qt(s, a)]

. The Q-learning algorithm starts from an initial state and explores the state space until the
episode ends. In every time step, the agent tries to optimize the current loss function Lt and
updates the Q function parameterized by θt.

Lt(θt) = Es,a,r,s′(yt −Qθt(st, at))
2

The algorithm continues until the convergence of the Q function.
Deep Q-Network extends the Q-Learning algorithm by estimating the Q function with a deep

neural network. The algorithm has been shown to be able to match human performance in the
game of Atari by using just image pixels as input state [23]. In order to overcome the problem
that using nonlinear function approximators for the Q function would lead to unstable learning in
practice, DQN applies two novel modifications called replay memory and target network. Replay
memory will break the correlations in the training data and make sampling much more efficient.
The target network freezes updates to a certain frequency, which can stablize training in practice.

Deep Deterministic Policy Gradient

The DQN algorithm can only solve applications that have a discrete action space. Later on, the
Deep Deterministic Policy Gradient (DDPG) algorithm was proposed to operate on continuous
actions. DDPG is an off-policy actor-critic method that originates from Deterministic Policy
Gradient [24].

In the previous method, we approximate the action-value function using parameter θ. Here
we directly parametrize the policy: πθ(s, a) = P [a|s, θ]. Policy gradient methods perform gradi-
ent ascent on the policy objective function J with respect to the parameters θ of policy π:

∇θJ(θ) = Eπθ [∇θ log πθ(s, a)Q
πtθ(s, a)].

The Actor-Critic architecture uses two parts to optimize the objective function J . We define
θµ, θQ as the parameters for approximating the Actor model function µ and the Critic model
function Q respectively. The Actor and Critic work together and are trained together in the
algorithm.

The Critic estimates the value of the current policy given the current state and action. It tries
to optimize the following loss function in a single update

L(θQ) = (r(st, at) + γQ(st+1, µ(st+1)|θQ)−Q(st, at|θQ))2.
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The Actor defines the current policy and learns a mapping from state space to actions. The
Actor updates the policy in a direction that improves Q:

∇θµJ = ∇aQ(s, a|θQ)∇θµµ(s|θµ).

The Deterministic Policy Gradient methods uses policy gradients on the actor-critic architec-
ture. The weight updates for actor and critic are as follows:

θµt+1 = θµt + αµ∇θµµ(st)∇aQ(st, a
t)|a=µ(s)

θQt+1 = θQt + αQδt∇θQQ(st, at).

2.2 Long Short Term Memory
Traditional neural network only considers state space in one time step. In order to incorporate
temporal information, the notion of recurrent neural network is introduced. The expectation is
to let the network have a memory module so that it can store historical information. RNN is
designed to connect and combine history information with current state, so that the prediction
can be based on both.

However, one of the main issue of vanilla recurrent neural network is that RNN suffers from
gradient vanishing when we want to look far back into the history. Experiments shows the
memory capacity is only limited to remember a few steps before. To resolve the problem, the
Long Short Term Memory(LSTM) network is proposed by [25]. LSTM is a specially designed
series of networks based on recurrent module that interacts in a way to control the information
flow passed by the network. Note that there are many modified version of LSTM, but in this
section, we only introduce the standard one. An unfolded decomposition of the LSTM unit is
shown in Figure 2.1.

Figure 2.1: A decomposition illustration of LSTM unit.

The LSTM consists of two variables that are passed by through time, the hidden state h and
the cell state C. Several interaction functions are commonly regarded as gates.

9



The forget gate combines the information passed by hidden states at previous time step ht−1
and the current input xt. It decides which part of the information should be thrown away.

ft = σ(wf [ht−1, xt]
T + bf )

The input gate adds new information to the cell. It contains two streams it and C̃t. The first
sigmoid layer it decides how much each element should contribute to the new cell state. The
second tanh layer proposes new candidates values for the cell state.

it = σ(wi[ht−1,xt ]
T + bi)

C̃t = tanh(wc[ht−1, xt]
T + bc)

The cell state Ct is updated by combining the old cell and the new information scaled by the
forget gate and input gate.

Ct = ft × Ct−1 + it × C̃t (2.1)

The hidden state ht is updated by a point-wise multiply of the tanh clipped Ct and output
vector ot. The output vector ot is obtained through a sigmoid function.

ot = σ(wo[ht−1, xt]
T + bo)

ht = ot ∗ tanh(Ct)

It should be mentioned that all the parameters in the LSTM unit are derivable and can be
updated through training. Thus the LSTM automatically fits in the neural network training with
backpropogation.

2.3 End-to-end Learning
With the rapid growth of deep learning technology, end-to-end learning machines have appeared
as a common solution to solve complex practical robotic systems. In robotics literature, end-to-
end process refers to a robot or an agent consisting of only one network without modularization
from sensors to motors.

The definition of end-to-end learning is in comparison with traditional methods that divide a
task into several modules. Traditional methods would break the system into several fundamental
building blocks, solve each one separately and then optimize the pipeline jointly. However, end-
to-end learning machines enable a direct mapping from raw sensor input to the desired output
only using one network. In an end-to-end system, all parameters are trained at one time jointly,
with a comparison of step-by-step in traditional methods.

End-to-end learning has shown great success in many fields. Mnih [22] has surpassed human-
level performance in Atari game by training an end-to-end deep reinforcement learning agent.
Sergey [26] trained an end-to-end policy for a PR2 robot to learning grasp from the pure visual
input. Deep Speech [27] replaces the entire speech recognition pipeline using hand-designed
features with neural networks and results in a more robust model in environments with different
noise, accents, and languages.
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End-to-end learning has also emerged as a new approach for self-driving cars [7]. In order
to learn driving on the road, a traditional approach would involve object and lane detection in an
image, path planning to calculate trajectory and PID control for final control output. However,
an end-to-end approach would learn a single network to map from sensor perception to steering
angles. Despite the less effort on engineering hand-crafted features, the end-to-end approach
relies on large amounts of data but gets better performance than traditional methods.

2.4 Lane Change Behavior
Learning the maneuver of a lane change behavior can be seen as a subproblem of the overall
decision making for an autonomous vehicle. The reason to consider a lane change can be either
to reach the desired speed or to move to the correct lane for the planned destination. For lane
change behavior, the autonomous car has to choose the best position and time to perform the
action of lane change while ensuring the passenger’s safety and comfort. A typical lane change
behavior can be seen as three steps: have the intention of lane change, check the feasibility of
lane change and finally execute lane change. A critical issue is to consider the surrounding traffic
participants’ intentions when making our own decision. The decision making of lane change
should be seen as an interactive process of negotiation with other vehicles on the road.

Figure 2.2: Demonstration of (a) a lane change need for higher speed in highway driving [5], and
(b) Visualization of perception for considering a lane change behavior [6].

Currently, it does not exist a universal framework to represent and tackle lane changing prob-
lem. Several popular categories of approaches and methodologies are summarized as follow:
• The rule-based methods check empty slots on the road according to kinematic informa-

tion. Dolan [28] developed CMU Boss’s self-driving vehicle using this slot-based method,
which won the first place in 2007 Darpa Urban Challenge. These methods follow certain
deterministic predefined rules and are straightforward and simple to implement. However,
they do not consider the uncertainty of the environment and the vehicles on the road.

• The MPC-based methods formulate the lane changing problem as an optimization prob-
lem and solve by minimizing some predefined cost function. These methods mainly use
Model Predictive Control(MPC) to tackle lane change behavior [29, 30]. However, these
methods lacks global awareness and can get stuck in local minimum. It has no determinis-
tic termination time guarantee.
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• The MDP-based methods use MDP or POMDP to represent the lane changing behavior
on the road. Sadigh [31] uses POMDP to model the interaction between ego vehicle and
target vehicles on the road and then solve the POMDP using reinforcement learning algo-
rithms. The theory framework of these works is promising, but currently, it is limited to
simulation and cannot scale up to real, complex driving scenarios.

• The sample-based methods predefine a pool of possible lane change maneuvers and se-
lect behavior by matching the most similar one with the current scenario. Lee [32] uses
Gaussian processes to generate a series of candidate trajectories and applies inverse rein-
forcement learning to select the trajectory with the highest reward. Yoshida [33] predefines
several maneuver templates and does matching and selection at the testing time to select
the right behavior pattern. This approach is limited by the number of predefined driving
styles and can be computationally too expensive.

• The learning-based methods learn driving behavior from real human driving data. Learn-
ing through the demonstration of other vehicles’ trajectories on the NGSIM dataset, Jian-
qiang [34] uses an SVM with hand-designed features, and Tobias [35] uses a graphical
model, to predict the discrete intentions of lane change behavior. This approach can gen-
erate human-like behavior but may suffer from overfitting. Also, a significant amount of
labeled data are required, which may not always be possible.
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Chapter 3

Learning Lane Following Behavior with
End-to-end Behavior Cloning

3.1 System Overview

In this chapter, we present an end-to-end learning approach to produce steering angles from
raw image input and make the car remain in the targeted lane. Instead of dividing the problem
into two separate problems, a perception and a steering angle prediction problem, we follow the
principle of end-to-end learning and learn directly to control the car from the image input. More
specifically, we are interested in training a deep neural network and using a supervised learning
method to teach a vehicle how to follow the lane of the road.

This approach has been suggested and successfully demonstrated by [7]. However, the ap-
proach in its original form still suffers from a few drawbacks: (1) the actions chosen are not
completely consistent in subsequent frames, which makes the car sometimes have small oscilla-
tion on road. (2) the method needs a large amount of training data and the whole training time is
long. Here, we address these shortcomings and propose and investigate alternative architectures
to greatly boost both the performance and stability of the algorithm.

Our proposed network structure is shown in Figure 3.1. We get raw RGB images from the
camera mounted in the front of the autonomous vehicle. First, we do some data preprocessing to
increase the diversity of data. Then the preprocessed data are fed into a pre-trained segmentation
network. From the segmentation network, we get the segmentation map of the particular image.
Then a traditional convolutional network is used to extract necessary features for learning the
proper control parameters. After the convolutional layer, we have an LSTM network to incorpo-
rate temporal dynamics of the system. The LSTM network here is designed to remember past
states of the road configuration. Then finally, we add additional vehicle information, to concate-
nate the learned features with necessary vehicle kinematics. This concatenated vector is then fed
into a fully connected layer to finally learn the continuous steering angle.

Our system differs from the original network structure in four aspects: (1) the overall sys-
tem take advantage of additional information by first obtaining a segmentation map instead of
directly use the implicit raw image; (2) our learning system transfers knowledge from other task
and hence speeds up training; (3) we consider the temporal information by adding recurrent
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Figure 3.1: The overall network structure of our proposed end-to-end learning architecture. Com-
pared to the original network structure proposed by [7], our network has additional modules of
segmentation network, LSTM and vehicle kinematic input.

module into the network; (4) we use vehicle kinematics information additional to image input.
The finalized network improves the baseline pure convolutional network by incorporating more
information, both from human knowledge and history states.

3.2 Proposed Methods

In this section, we will introduce our proposed methods upon the original network in detail. The
methods we discuss here includes using auxiliary segmentation, transferring from existing tasks,
utilizing temporal information and incorporating vehicle information.

3.2.1 Auxiliary Segmentation

Image segmentation has been widely researched for decades. Image segmentation is the process
of partitioning an image into multiple sets of pixels to simplify its representation and derive
something more meaningful and easier to analyze. Image segmentation is often used to recognize
and locate certain categories of objects by assigning a label to each pixel.

In autonomous driving, image segmentation is often performed to understand the surrounding
environment of the ego vehicle, for example, to recognize surrounding vehicles, pedestrians, road
boundaries, buildings, etc. This information is crucial for determining the next actions. However,
the result of the segmentation process is often used ambiguously and hard to apply directly to
drive the car.

Here, we incorporate image segmentation directly into the task of learning to control a car in
an end-to-end fashion. We believe the learned segmentation map contains auxiliary information
for controlling the car’s behavior. So we add a segmentation map as an extra input to the system.
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The auxiliary information will explicitly tell the network, for example, where the road boundary
is and where the opponent vehicles on the road are. This will decrease the difficulty of learning
everything implicitly from the original raw image.

We integrate the image segmentation into our architecture by using the segmentation network
proposed by [36].

3.2.2 Transferring from Existing Tasks

CNN has been applied recently to a significant number of practical and essential tasks. The
training results have shown that this approach is very successful in jobs like object recognition.
This motivates us to leverage the power of a pre-trained network and apply the concept of transfer
learning [37]. Currently, numerous famous network structures in the literature have been proven
to be powerful. The most popular task is to learn object recognition on the Imagenet dataset
that contains 1.2 million images of approximately 1000 different classes. The resulting trained
model can generalize a generic set of features, and recognize a large variety of objects with high
accuracy. The intermediate features learned are found to have universal expressiveness across
multiple domains. We hence want to utilize this point and transfer the pre-trained network from
a vast field to the specific task of learning the driving policy.

In this thesis, we compare three models: Resnet, the Vgg16 network and our baseline CNN
for the CNN module in our overall network. The Resnet and Vgg16 network are pre-trained on
Imagenet. For feature extraction purposes, we only use the convolutional layers. The detailed
configuration of our CNN network is illustrated in Section 3.3. The three networks differ in depth
and number of total parameters. To make the comparison fair and even, we froze some of the
parameters in Resnet and Vgg16 net, so that only parts of the Resnet and Vgg16 net are tunable.
This makes the total number of adjustable parameters approximately the same for each model
tested.

Figure 3.2: Illustration of transfer learning from object recognition in Imagenet to learning steer-
ing angle for the self-driving car.
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3.2.3 Temporal Information

Decision making for an autonomous vehicle is not an independent choice at every time step. A
human would consider past environment information and previous actions taken and then make
a consistent decision of driving behavior. This requires our system not only to be based on the
current state but also incorporate past states. So, apart from the convolutional neural network to
capture the spatial information, we introduce recurrent modules into our network architecture.

After getting the spatial features from the CNN layer, we added an LSTM layer to pass in
previous information of the environment. The LSTM processes a feature vector v from the CNN
in a sliding window of size w. This means the steering action prediction result is dependent on
w past input observations Xt−w+1−Xt. By changing the parameter of w, we can alter how long
the system considers to make the decision. Small w leads to shorter-term memory, so it has faster
reaction time but is prone to sudden sensor failure. Larger w, on the contrary, will lead to a much
smoother and stable behavior. The problem of larger w is that it requires longer training and test
time for choosing actions.

With the visual states at each time step, the LSTM fuses all past states and current state into
a single state. So the state here is complete, and the autonomous car is theoretically given all the
historical information to make the necessary action choice.

3.2.4 Additional Vehicle Information

We further hypothesis that visual input alone is not good enough to make a good steering angle
decision. The vehicle’s behavior is better estimated by adding the vehicle’s kinematic informa-
tion. The kinematic information ensures that the car does not follow some driving behavior that
is against any physical rules.

It can be speculated that making a U-turn at 10mph and 30 mph is different regarding turning
angle and the strategy used. However, the visual observations given are almost the same. Al-
though we can infer the speed of the vehicle by the scene change speed, it remains ambiguous and
is not easy to learn from images. That’s the reason why we need vehicle kinematic information
like vehicle speed.

Limited to the simulation environment and real-world dataset, we select the following kine-
matic parameters as an extra input to the fully connected layer:

• vehicle acceleration rate
• vehicle speed
• vehicle heading
• vehicle lateral distance to road boundary
• vehicle previous steering angle
• vehicle steering torque
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3.3 Experiment

In this section, we discuss our experimental environment selection both in simulation and real
dataset. We show how we do data preparation and explain the details of our experimental design
and implementation.

Environment Selection

Lately more and more public datasets and simulation platforms for on-road driving have become
available. These datasets contain diverse driving scenarios including cities, highways, towns
and rural areas in the US and across the world. Here, we give a comprehensive overview and
comparison of available datasets.

Datasets collected in the real world:
• The Kitti dataset contains sensor information captured with a car driving around the city

of Karlsruhe, Germany in rural areas and on highways. Image data were collected using
two high-resolution color and grayscale video cameras. The ground truth is provided by
a Velodyne laser scanner and a GPS localization system. The Kitti dataset is suitable for
investigating the task of stereo, optical flow, visual odometry, 3D object detection and 3D
tracking.

• The CityScape dataset is a diverse set of stereo video sequences recorded in street scenes
from 50 different cities across the world. It has high-quality pixel-level annotations of
5000 frames in addition to a larger set of 20,000 weakly annotated frames. It can be best
used for semantic urban scene understanding.

• The Comma.ai dataset contains 7.5 hours of highway driving. The sensor input is recorded
at 20 Hz with a camera mounted on the windshield of an Acura ILX 2016. Together with
the images, the dataset contains information such as the car’s speed, acceleration, steering
angle, GPS coordinates and gyroscope angles.

• The Oxford Robocar dataset contains 100 repetitions of consistent routes through Ox-
ford, UK, captured over a period of over a year. The dataset captures a combination of
weather, illumination, dynamic objects, traffic, and pedestrians information, along with
seasonal changes, construction, and roadworks.

Simulation environments:
• The Torcs simulator is an open-source racing car simulator written in C++. It is a pop-

ular video game as well as a common research platform for studying AI agent. In Torcs,
many trials with various environment settings and car models with different behaviors are
available to users’ usage.

• The Udacity simulator is an open-source simulator developed based on Unity. The simu-
lation gives a realistic 3D visualization of the vehicle driving on three given tracks in the
desert, mountain and forest.

A comparison of the different datasets regarding settings, type, time length, scenario and
weather diversity is given in Table 3.1.

For the experiment parts, we used simulation environment Udacity simulator and the Comma.ai
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dataset as evaluation platforms for our algorithms. The selected datasets have access to driver’s
control actions together with sensor perception information, which could fit the need of our task.

datasets settings type time length weather diversity day/night driving
Kitti city, rural, highway real world less than 2 hours clear weather day time

CityScape city real world less than 100 hours multiple weather condition day time
Comma.ai highway real world 7.5 hours clear weather day time and night time

Oxford Robocar city real world 214 hours multiple weather condition day time and night time
Torcs highway simulation - clear weather day time

Udacity rural simulation - clear weather day time

Table 3.1: Camparison between different benchmark datasets on autonomous driving.

Data Preparation
In the Udacity simulation environment, we use three tracks. The three tracks respectively depict
a highway in desert, suburb, and mountain. Example screenshots of the different trials are shown
in Figure 3.3. The desert track is used for training purposes, and the suburb and mountain tracks
are used for testing.

We collected image data for training by driving the car in the simulation environment. To
introduce various driving styles from multiple people, we collected data from six people each
driving the desert track twice. We recorded the steering angle, speed, acceleration rate and
braking rate paired with the corresponding images while driving with keyboard input. The system
operates at a 10-hertz frequency. Altogether we collected 6245 images which are about 1 hour
of driving data. We sampled images at 2 Hz to prevent redundant pictures. The images captured
are simulated the front view from the vehicle via a camera mounted on top of the car.

Figure 3.3: Sample screenshots of the environment in the Udacity autonomous driving simu-
lator. The left one shows the training track in the desert, while the two on the right show the
test track in suburb and mountain. The test sets are different from the training set regarding
lighting conditions, curvature, inclination, road geometry and off-road scenery and thus are
considered much more difficult.

The images obtained are not directly used for training purposes. Before training, we pre-
process and augment the data similar to the techniques described in [7]. Data augmentation is
used here to increase the size of the training set and also the diversity of training samples. The
following operations were performed.
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• Cropping: The images are cropped to remove extraneous elements. We removed the top
of an image which includes a large area of sky or mountain tops and the bottom of the
image which contains the car hood.

• Upsampling: In the original training set, most scenarios are going straight along the road.
Images with a steering angle larger than 15 degrees are scarce compared to a significant
number of training samples with a steering angle less than 5 degrees, which means the
steering angle distribution is strongly biased towards zero. To overcome the problem of
imbalanced data, we manually upsample images with steering angle greater than 10 de-
grees by ten times and steering angle greater than 5 degrees by five times. The data are
then randomly shuffled before training.

• Brightness changes: Each frame is first converted to HSV space and the value channel is
then multiplied by a random value from 0 to 10. This changes the lighting situation and
makes the model adaptive to all kinds of weather.

• Flipping: We flip all frames to obtain their mirror in the horizontal direction. This helps
to make sure we have exactly the same amount of left and right turning samples. The
algorithm won’t suffer from any bias in the left or right direction.

For the real data from the Comma.ai driving dataset, there is no need for cropping and bright-
ness preprocessing. We use the same upsampling and flipping techniques to deal with the data
balance problem. The dataset includes 11 video clips of 7.5 hours of highway driving at 20 Hz.
Here we only want to consider stable highway driving at normal speed in daylight. We further
exclude the driving videos at night or in traffic jams with speed under 10mph. The finally se-
lected footage has a length of about 2 hours of driving. We split it by using 130K frames for
training and 20K frames for testing.

Implementation Detail

As a baseline to compare our algorithms against we use a variation of the CNN network structure
proposed in [7]. The difference here is that we add batch normalization and dropout layers after
each convolutional layer for better convergence and performance.

The CNN network consists of 5 convolutional layers. The first three layers have a kernel size
of 5× 5, and the last two layers have a kernel size of 3× 3. The depth of each feature map is 24,
36, 48, 64, 64. The activation function we use here is ReLu.

Our model has an additional LSTM layer apart from convolutional layers, as shown in Figure
3.1. The LSTM has 128 hidden units. The output of LSTM and the vehicle kinematic dynamics
are concatenated before fed into the FCN module. The FCN module consists of 3 fully connected
layers with 256, 128 and 64 units followed by a Tanh activation function.

We use Adam optimization to train all networks. The learning rate is fixed to 0.001 with
a momentum decay of 0.9. The batch normalization and dropout layers are used to prevent
overfitting.
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3.4 Evaluation and Results
We report our experimental results on the Udacity simulation and the Comma.ai dataset. For the
steering angle prediction task, we use Root Mean Square Error (RMSE) as the evaluation metric.
RMSE can express average system prediction error on the dataset. The RMSE metric is defined
as

RMSE =

√√√√ 1

|D|

|D|∑
i=1

(âi − ai)2,

where âi and ai are the ground-truth and predicted steering angle for frame i and |D| is the total
number of frames in the test set. The angles are measured in angular degrees.

The RMSE can estimate the precision of the system but can neglect the stability of the system.
So we also define a stability metric based on the deviation of our prediction. The intuition behind
it is that we want our predictions to change smoothly without any sudden bump in the steering
angle. We call this metric Mean Continuity Error (MCE).

MCE =

√√√√ 1

|D| − 1

|D|−1∑
i=1

(ai+1 − ai)2

We evaluate the influence of the different methods suggested with the baseline method (see
Table 3.2). We first compare the baseline CNN structure with two popular networks Vgg [38] and
Resnet [39] for the image recognition tasks. To maintain roughly the same number of weights for
training in different models, we only train the last five layers of Vggnet and Resnet. Here transfer
learning shows that the pre-knowledge from the image recognition task is beneficial for the job
of predicting steering angles. It should be noted that the performance boost in the Comma.ai
dataset is much more substantial that Udacity simulation. This is most likely due to the fact
that the Comma.ai dataset contains real imagery which has a higher resemblance with Imagenet
dataset than the simulation environment.

Proposed Network
Structure

Udacity Simulation Comma.ai Dataset
RMSE/degrees MCE/degrees RMSE/degrees MCE/degrees

baseline CNN 7.68 2.32 19.84 7.26
Vgg CNN 7.45 2.12 15.86 5.73

Resnet CNN 7.34 2.09 15.23 5.35
Resnet CNN + SegMap 5.23 1.57 12.33 4.21

Resnet CNN + SegMap + LSTM 4.50 1.33 10.72 3.78
Resnet CNN + SegMap + LSTM + vehicle kinematics 4.23 1.32 10.23 3.66

Table 3.2: Comparison between different network structures for vision-based end-to-end learning
of steering angle. Our proposed method has the lowest RMSE and MCE both in the Udacity
simulation and on the Comma.ai dataset compared to the baseline method.

To evaluate the effect of the segmentation map augmentation, we compare the result of adding
the segmentation map as an extra feature map for input to the convolutional layers. We use
the segmentation map output categories of the sky, road marking, road, tree, pavement, and
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vehicle. We construct a binary map for each group and stack them together with the original
three channels of the image. As can be seen in the fourth row of Table 3.2, the precision and
stability boost is massive compared to the raw image input. Example segmentation map outputs
are shown in Figure 3.4.

Figure 3.4: Example intermediate segmentation outputs obtained in the end-to-end learning pro-
cedure.

Next, we evaluated the effect of adding temporal information by using the layer of LSTM.
The results are shown in the firth and sixth rows of Table 3.2. The performance is increased
both in the Comma.ai dataset and in the Udacity simulation. We conducted grid-search for the
optimal window size w for the LSTM and found that w = 3 generates the best result, which
means we look back for 1.5 seconds. We compare the main difference of the prediction with the
baseline model and discover that after using temporal information, absurd outlier predictions are
significantly reduced. The cases where two sequential frames make dramatically different steer-
ing angle predictions almost disappear. This dramatically improves the stability of the algorithm
and also improves the prediction accuracy.

Adding the vehicle kinematics also slightly improves the performance, by about 3%. The
ablation test shows the vehicle previous steering angle is the most useful, followed by vehicle
speed and vehicle heading. We observe no performance boost in using the vehicle acceleration
rate, vehicle lateral distance to road boundary and vehicle steering angle.

Our overall proposed architecture has reduced prediction RMSE error by 44.92% in the Udac-
ity simulation and 48.44% in the Comma.ai dataset. The prediction MCE error was reduced by
41.81% in the Udacity simulation and 49.58% in the Comma.ai dataset.

We also do an empirical test on the Udacity simulation environment to see if the car can
successfully drive in a new scenario. The result shows good driving performance on an unseen
map with various sceneries in suburb and mountain. A video clip of our trained model is available
at https://youtu.be/reqAHtXtnrI.
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3.5 Conclusion
We suggested a network architecture that improves the baseline vision-based end-to-end learning
of steering angle. The suggested network architecture uses four distinct methods: adding auxil-
iary segmentation, transferring from existing tasks, utilizing temporal information and incorpo-
rating vehicle information. We found that using transfer learning from the Imagenet recognition
task can be helpful in learning the task of steering for on-road driving. Using the pre-trained seg-
mentation mask to categorize the image at the pixel level can empower the network with more
information and thus result in better prediction accuracy. The incorporation of temporal infor-
mation of history states indeed helps to make better current decisions, which again proves the
concept that driving policy is a long-term decision-making process. Finally, the proper addition
of some vehicle kinematics makes the state representation more concrete.
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Chapter 4

Learning Lane Change Behavior with Deep
Reinforcement Learning

In the previous chapter, we investigated the use of an end-to-end neural network to mimic human
behaviors in both simulation and real-world datasets directly. However, this approach is limited
in the following respects. First, it requires a significant amount of human driving data, which
is not available in many cases. The system cannot adapt to entirely different and unseen envi-
ronments. Second, it is limited to the driving behavior of human drivers. If the human driver
shows terrible driving habits, it will reproduce the good as well as the bad behavior as it is not
able to distinguish between them. Finally and most importantly, the driving data are all from
successful driving scenarios, so when the error accumulates in the system, and the car is facing
danger, the system cannot formulate by itself what driving policy to use under this circumstance.
To overcome these problems, we apply deep reinforcement learning.

4.1 Deep Reinforcement Learning for Self-driving

Deep reinforcement learning allows the autonomous agent to surpass the limitations of human
supervision by learning from trial and error. Previous work mostly focused on applying DQN or
DDPG to learn to drive the car [39, 40, 41]. They were able to successfully demonstrate that a
car can learn to drive itself in the simulation without leaving the road boundary. However, most
of these works focus on the simple task of following the lane but fail to consider the interaction
with the surrounding vehicles and more complex behaviors such as overtaking or lane changing.

In this work, we propose to use a deep reinforcement learning-based method that can learn
sub-policies for lane changing behavior. Lane change is a fundamental behavior for on-road
driving that is commonly executed for overtaking or navigation purposes. It requires high-level
reasoning about other surrounding vehicles’ intentions and behavior as well as forming an effec-
tive strategy for our driving purpose under the safety requirement. At the same time, it requires
low-level reasoning to plan what exact path to follow, generally known as the path planning
problem. Each of these parts has been researched separately in previous literature. However,
the internal connections between them makes it hard to treat them separately for the problem at
hand. Many integrated systems suffer from the problem of continuous unnecessary replanning
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because of the separation of these two modules [42]. In our work, we combine these two levels
of reasoning into a hierarchical structure, while maintaining it in one system that can be trained
together. Our network structure is capable of learning when and how to do lane change using a
unified network.

At the same time, we also explore the concept of attention used in autonomous driving. We
notice that among human drivers, people do not usually pay equal attention to the information
given. People select the information that is helpful for determining the current maneuver and
ignore the unrelated information. Here we pick up and incorporate the concept of attention
from recent advances in deep neural networks [43]. We show that during the training of deep
reinforcement learning, our attention mechanism will automatically focus on the end of the road
or related on-road vehicles that may influence our driving behavior. The resulting network can
better use the information and thus results in shorter convergence time and better performance.

A structural overview of our method is shown in Figure 4.1.

Figure 4.1: Illustration of the structure of our algorithm. Our algorithm is based on deep rein-
forcement learning with actor and critic. We propose hierarchical actions and attntion mechanism
to tackle lane change behavior.

4.2 Methodology
In this section, we discuss the details of our method and introduce hierachical action and attention
mechanism approaches for deep reinforcement learning in learning lane change behaviors of
autonomous driving.

4.2.1 Hierarchical Action Space for Lane Change Behavior

Referring to the parameterized action space introduced by Hausknecht [44], we create a hierar-
chical action space for autonomous driving as follows. There are three mutually exclusive dis-
crete high-level actions: Left Lane Change, Lane Following, Right Lane Change. At each time
step, the agent must choose one of the three high-level actions to execute. Each action requires
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Figure 4.2: Illustration of the hierarchical action space for lane change behavior.

2-3 continuous-valued parameters that must be specified. The choice of hiearchical actions is
shown in Figure 4.2 and details of each action are listed as follows:

• Left Lane Change (steering angle, acceleration): do left lane change in the direction of
the steering angle with acceleration applied for the control module.

• Lane Following (steering angle, acceleration, brake): go straight in the direction of the
steering angle with acceleration and brake applied for the control module.

• Left Lane Change (steering angle, acceleration): do right lane change in the direction
of the steering angle with acceleration applied for the control module.

The steering angle is continuous limited to the range of [−60, 60] degrees. Large steering angles
are prevented for safety reasons. Acceleration and brake are double variables in the range of
[0, 100]. Formally, the high-level discrete actions are defined as Ad = {astraight, aleft, aright}.
Each discrete action a ∈ Ad contains a set of continuous parameters Pa = {pa1, ..., pan}. The
overall hierarchical action space we utilize here can be defined as

A = (straight, pstraightangle , pstraightaccelerate, p
straight
brake )∪(left, pleftangle, p

left
accelerate)∪(right, p

right
angle, p

right
accelerate)

Here, we assume that when people perform lane changes, they do not brake to stop. So the lane
change behavior does not have the parameter of braking. The three actions represent three types
of driving policy respectively. The system should be able to learn how each policy would behave
and when to apply which policy after training.

4.2.2 Actor-critic Based DRL Architecture

We develop our algorithm based on the popular deep reinforcement learning algorithm DDPG
(Deep Deterministic Policy Gradient) [8]. To incorporate hierarchical actions, we use here the
actor-critic architecture suggested by [8]. This architecture decouples the action evaluation and
the action selection process into two separate deep neural networks: actor-network and critic-
network, as shown in Figure 4.3. The actor-network µ, parameterized by θµ, takes as input state
s and outputs action a along with its parameter pa. The critic-network Q, parameterized by
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Figure 4.3: The Actor-Critic architecture used in our algorithm, first introduced by [8]. On
the left is the data flow in the forward pass and on the right is the gradient flow in the back-
propagation.

θQ, takes as input state s and action a along with its parameter pa and outputs a scalar Q-Value
Q(s, a).

The action a is represented as the probability of action choice and the parameters pa are
coupled to each discrete action. The discrete action is chosen to be the output with maximum
value among the choices of actions. Then it is coupled with the corresponding parameters from
the parameter outputs. Though the parameters of all actions are output, only the parameters
of the chosen action are used. In this way, the actor-network simultaneously outputs which
discrete action to execute and how to choose parameters for that action. The critic-network
receives as input all the values in the output layer in the actor. We do not indicate which exact
action is applied for execution or which parameters are associated with which action. In the
back-propagation stage, the critic-network only provides gradients for the selected action and
the corresponding parameters. This assures we update the policy only in the direction where we
explore.

For stability reasons, we use the standard target network for the critic-network and the actor-
network, which updates at a slower rate for a more stable iterative step in the Bellman equation.
We also use replay memory to store experiences, which can significantly break the dependency
between experiences. The exploration strategy now has to deal with both discrete action choice
and continuous parameters. We use ε−greedy exploration to randomly explore among the given
set of discrete actions. Then we sample uniformly for the continuous parameters. That means
we choose a random discrete action a ∈ Ad with probability ε and associate it with continuous
parameters {pa1, pa2, ...}, each sampled uniformly over the range of its possible values.

4.2.3 Attention Mechanism for Deep Reinforcement Learning
The attention model we developed for the deep reinforcement learning algorithm originates from
the DRQN algorithm [44]. In this section, we first briefly introduce how to add recurrence to the
DDPG algorithm, which we call Deep Recurrent Deterministic Policy Gradient (DRDPG). Next,
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we illustrate our novel architecture of bringing attention to DRDPG. This includes two kinds of
models: one considers spatial attention and another considers temporal attention. Note that the
architecture we proposed applies to other sequential prediction problems using a neural network,
not just to learning for driving behaviors of self-driving cars. It can be used as an auxiliary task
to enhance the performance of the original algorithm since the new information needed is limited
in our method.

Deep Recurrent Deterministic Policy Gradient (DRDPG)

Figure 4.4: The architecture of the critic network in DRDPG. DRDPG convolves over an
image of the input screen. The resulting feature maps are processed through time by an LSTM
layer. The final Q value is obtained by concatenating the action vector with a fully connected
layer. During training, the LSTM is trained with an unrolling of T=8 frames.

The concept of deep recurrent Q-network (DRQN) was recently introduced by Hausknecht
et al. [44] as a combination of the recurrent neural network (RNN) and the deep Q-network.
The main contribution is to use an RNN module to process the temporal inputs of observations
instead of just stacking historical observations as input. With a recurrent module in the original
DQN architecture, a longer sequence of history information can be incorporated, which helps
with more complex strategies. We refer to the structure of DRQN and introduce the recurrent
module using LSTM in the critic network of the DDPG algorithm, as shown in Figure 4.4. We
call this new methodology Deep Recurrent Deterministic Policy Gradient (DRDPG).

As compared with traditional DDPG, DRDPG offers several advantages, including the ability
to handle longer input sequences and exploration of temporal dependencies, as well as better
performance in case of partially observable experiences.

27



Attention Mechanism

We are also interested in exploring the effectiveness of an attention mechanism for DRDPG.
Attention models [45] have recently been applied in the areas of image caption generation [43]
and object tracking [46]. They show effectiveness in compressing the input information to enable
training speedups, and also offering an interpretable visualization about “where” and “what” the
agent chooses to focus on.

In this work, attention models are explored in two streams: a temporal attention model and a
spatial one. We combined both streams in DRDPG with some adaptation. The spatial attention
will detect the most important and relevant regions in the image for driving; temporal attention
will weigh the last few frames to decide the current driving policy.

DRDPG with Temporal Attention

Temporal attention has recently been shown to boost performance in sequence-to-sequence learn-
ing for classification tasks [47]. However, there is no current literature showing whether it can
learn more accurate q-values in the context of reinforcement learning.

Figure 4.5: Architecture of the critic network of the Temporal Attention DRDPG. An addi-
tional context vector CT for computing Q values is derived as a linear combination of T LSTM
outputs concatenated with weighted action vector AT , with comparison of the last frame LSTM
output used in DRDPG. The weights can be optimized through backpropagation during training.

Inspired by [48], we apply temporal attention over the output of the LSTM layer in DRDPG
model, as shown in Figure 4.5. The temporal attention mechanism learns scalar weights for
LSTM outputs in different time steps. The weight of each LSTM output wi is defined as an inner
product of the feature vector vi and LSTM hidden vector hi, followed by a softmax function to
normalize the sum of weights to 1. By this definition, each learned weight is dependent on the
previous timestep’s information and current state information.

28



wT+1−i = Softmax(vT+1−i · hT+1−i) i = 1, ..., T (4.1)

Then we compute the combined context vector CT . The context vector CT is a weighted sum of
LSTM outputs through T timesteps, concatenated with weighted action vector output AT from
the actor-network.

CT =
T∑
i=1

(wT+1−ihT+1−i) + AtwA (4.2)

The derived context vector CT is passed by a fully connected layer FC before obtaining the final
Q value of the critic network. The learned weights {wT+1−i}Ti=1 here can be interpreted as the
importance of the LSTM output at a given frame. Therefore, the optimizing process can be seen
as learning to choose which observations are relatively more important for learning the Q values.

Temporal attention DRDPG is superior to DRDPG in the sense that it explicitly considers
the past T frames LSTM output features for computing the Q value, while this information is
only passed implicitly through LSTM in the original DRDPG. By increasing the value of T , the
model can consider a longer sequence of history frames and thus can make a better action choice.

DRDPG with Spatial Attention

Spatial attention models [43] learn weights for different areas in an image, and the context feature
used for decision making is a combination of spatial features according to the learned weights.
According to how the “combination” is modeled, spatial attention models are divided into “hard”
attention and “soft” attention [43]. Similar to the ideas presented in [49], we use a “soft” version
attention for DRDPG, which means learning a deterministic weighted context in the system.

The Spatial attention DRDPG architecture, as shown in Figure 4.6, contains three types of
network: convolution, attention and recurrent. At time step t, suppose the convolutional layers
produce a set of d feature maps with size m× n. These feature maps can also be seen as a set of
region vectors with length d : {vit}Li=1, v

i
t ∈ <D, L = m× n. Each region vector corresponds to

the features extracted by the CNN at a different image region. In soft attention mechanism, we
assume the context vector zt is represented by a weighted sum of all-region vectors {vit}Li=1.

zt =
L∑
i=1

git · vit (4.3)

The weights in this sum are chosen in proportion to the importance of this vector (aka the ex-
tracted feature in this image region), which is learned by the attention network g. The attention
network git has region vector vit and hidden state ht−1 produced by LSTM layer as input and
outputs the corresponding importance weight for the region vector vit. The attention network git
here is represented as a fully connected layer followed by a softmax function.

git = Softmax(wv · vit + wh · ht−1) i = 1, ..., T (4.4)

The context vector zt is fed into the LSTM layer. The output of the LSTM layer is concatenated
with action vector AT and then used to compute the Q values.

29



Figure 4.6: Architecture of critic network of Spatial Attention DRDPG. Feature maps ex-
tracted by CNN are interpreted as region vectors. An attention network will learn the importance
weight of each region vector and derive a weighted sum of region vectors before feeding it to
LSTM layer.

The attention network can be interpreted as a mask over the CNN feature maps, where it
reweights the region features to get the most informative features for computing the Q-values.
Thus the Spatial attention DRDPG acquires the ability to select and focus on the essential regions
when making the action choice. This also helps to reduce the total number of parameters in the
network for more efficient training and testing.

4.2.4 Reward Signal Design

In reinforcement learning algorithms, an important part is to design a good task-specific reward
to guide the learning. A simple and straightforward reward in self-driving can be the distance
that the car can go before crashing. However, such a reward signal is too uninformative for the
learning agent to collect any information. So we define reward functions to encourage the car
to stay in the lane and also to perform a lane change when the situation allows. We introduce
a hand-crafted reward signal that assures both driving comfortability and efficiency. The final
reward contains five components as follows, illustrated in Figure 4.7.

• We want the speed of the vehicle to align with the direction of the road. We reward the
speed in the road direction and punish the speed deviating from the road direction. Here
θ > 0 represents the angle of deviation from the road direction.

r1 = cos θ − sinθ
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Figure 4.7: Illustration of the notation used in reward functions.

• We wish the car to remain in the center of the lane while driving, so we punish any lateral
distance from the center of the lane. d represents the current distance to the center of the
lane.

r2 = −|d|

• We give a large negative penalty when the car goes outside the road boundary. The game
also ends and restarts if a car enters this state.

r3 = −1{OutofBoundary}

• We encourage the car to have larger speed, but not to exceed 35m/s.

r4 =

{
v v ≤ 35m/s

70− v v > 35m/s

• For lane change purposes, we encourage the car to overtake if the front vehicle is within a
distance of 100 meters. Here x means the distance to the front vehicle in the same lane. If
no vehicle is found, then x has a default value of 100.

r5 = −max(0, 100− x)

The overall reward function is a linear combination of terms above with assigned weights w:
R =

∑5
i=1wiri. Here we first normalize the rewards to the range (0, 1) and then search for a

weight vector w that generates a good result. A more powerful model would test on the different
weighting coefficients to find the best combination.

A possible future direction for improvement is to use inverse reinforcement learning to extract
the parameters for the reward function automatically.

4.3 Evaluation and Analysis
In this section, we will show how we setup the experimental environment and implement the
algorithms. The quantitive evaluation of different methodologies applied will also be given and
compared. Finally, we give illustrative visualizations to help understand the insights of attention
mechanism.
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4.3.1 Experiment Setup
We test our algorithm in the open source racing car simulation environment TORCS. To generate
a universal model that is not limited to a particular road configuration or car type, we select
five tracks in Torcs and ten types of cars to generate our training set. Each track is customized
to have two to three lanes with various brightness levels of the sky. The selected tracks have
a different surrounding environment and route shape so that our training agent can confront all
circumstances of driving, which ensures the difficulty of the driving scenarios. For example,
in the Corkscrew scenario, the road has many curves and few straight sections, and there is a
tricky high-speed corner. To successfully traverse the selected tracks, the car has to learn various
skills like U-turn, hill climbing, overtaking and throttling before a large-angle turn. All these
challenges are posed to the training agent with no human supervision.

We add 20 traffic cars in different locations on every track in each trial of the training. The
traffic cars’ behavior is controlled by the internal AI of the TORCS environment. We add di-
versity to the traffic cars’ behavior by changing the internal parameters in the car AI simulation.
This will change the car’s driving style, e.g., being more aggressive when turning. In this way,
we would like to mimic the real traffic patterns on the road. We set the speed limit of traffic
cars to 30m/s and set the speed limit of our ego vehicle to 35m/s. We do this to encourage the
overtaking and lane changing behavior of our vehicle.

Figure 4.8: Track Street-1 used for training. From left to right: the map of the Street-1 course,
image top view when starting a new episode, a screenshot of the front view camera during train-
ing.

For the sensor input, our method is based on image input. The images are down-sampled
to 320 × 240 for faster training. For stable and safe lane changing behavior, the front view
camera alone is not enough. We also tried to add some additional LIDAR-based information
and the ego car’s physical information apart from pure image input to the network to facilitate
the training. This is applied as a comparison with the architecture having image input alone
which we described before. A vector of 30 range finder sensor spanning a 360◦ field-of-view is
appended to the input of the LSTM layer. Each sensor returns the distance between the road edge
and the ego car with a maximum of 150 meters. This sensor input explicitly includes distance to
other traffic particpants on the road, which can help the system to learn to avoid collision.

The training starts by automatically selecting one of the five tracks. Every time the car goes
outside of the road boundary, the episode will end, and the program will restart to generate a
new episode. The CNN network we use is the standard AlexNet architecture. There are five
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convolutional layers followed by an LSTM layer with 256 hidden units. The final hidden layer
is a fully connected layer with output dimension of 128. For training comparison, we restrict
each training model to 200,000 iterations before stopping the process, which takes about 18− 30
hours on an Nvidia Titan X GPU.

4.3.2 Results
We first evaluate our final model on the five maps in TORCS, as shown in Figure 4.9. We test
the model by letting the agent drive through the map and see if it can successfully finish a loop.
The final model with hierarchical actions, spatial and temporal attention, and range finder sensor
shows overall excellent performance in all five trials with a success rate between 60 and 80
percent to complete a runway circle on the map. The failure cases mainly come from collision or
out-of-bounds cases, about half of each. For example, some sharp turns need rapid deceleratino
for safe traversal. That is the most common circumstance where the car goes out of bounds. For
the collision issue, the reasons are mixed. Some collisions happen when trying to pass a vehicle
while turning. Some happen when the front car slows down and our ego vehicle tries to pass it.

Figure 4.9: Final DRDPG model with hierarchical actions, Spatial and Temporal attention tested
on different trials in TORCS game. We obtain the result of each map by running 100 episodes.

We compare our model with the original baseline models. Typically we compare five models:
Deep Deterministic Policy Gradient (DDPG), DDPG with Hierarchical Actions (H-DDPG), H-
DDPG with Recurrent Module (H-DRDPG), H-DRDPG with Spatial Attention (SpatialAtt) and
H-DRDPG with Temporal Attention (TemporalAtt). We train each model to 200,000 iterations
before a stop. We test each model with 20 games on each trial and calculate the average speed,
the number of lane changes, the total reward received during each episode and the percentage of
successful episodes, as shown in Figure 4.10.

We observe a boost in average speed and number of lane change after we apply our hierarchi-
cal action space. The results show the original DDPG algorithm tends to drive more conserva-
tively and stays behind other vehicles more often without trying to overtake. In comparison, our
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Figure 4.10: Comparison of different models on average speed, number of lane changes, total
reward during an episode and percentage of successful episodes.

model is designed to learn separate policies for left lane change and right lane change, so it tends
to act more aggressively for lane changes and finish one episode with less time. The resulting
higher rewards show our method of hierarchical actions, temporal and spatial attention contribute
to better training efficiency and stability. It should be clarified that although our method encour-
ages overtake behavior, it still guarantees safety at the same time. Since overtake behavior could
avoid getting too close to the front vehicle and hitting the rear-end, our method actually has fewer
collisions with other vehicles, thus resulting in higher success rate for a complete episode than
the original DDPG algorithm.

To better understand how the attention mechanism helps in terms of learning the driving
behavior, we give the visualization of a turning and lane changing situation. In the scenario
given by Figure 4.11, increasing weights are assigned to the input sequence when the car is
making a sharp turn at lane corner. In this case, a single last frame does less help than a sequence
of frames in that. By looking back into the past (by looking at the weighted sum of features of
several frames before), the agent can determine the best trajectory for turning at the corner.

Figure 4.11: Qualitative results of Temporal Attention DRDPG The number in the upper-
left corner of each image is the weight assigned to that frame (higher weight indicates more
importance).
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In the scenario given by Figure 4.12, the regions of lane end and front vehicle are targeted
by the spatial attention model. For this overtaking behavior, we can see that the attention model
focuses on the front vehicle and figures out when and how to launch the proper lane change
behavior. By learning a mask over the input domain (more specifically, the CNN features with
correspondence to the input image), the agent can grab the context relevant to the task and learns
the proper behavior more efficiently.

Figure 4.12: Qualitative results of Spatial Attention DRDPG A mask over the input domain
is learned by the attention mechanism. Brighter colors indicate higher weights. The weights are
smoothed with a Gaussian kernel in the visualization.

4.4 Discussion
The overall performance boost compared to the original DDPG-based method validates our
methodology of introducing a hierarchical action space and shows that the attention mechanism
is meaningful for learning proper driving behaviors.

The proposed hierarchical action space for learning driving behaviors establishes sub-policies
for lane change behaviors. This subdivided policy ensures our model can have specialized poli-
cies for different driving styles on the road, while still maintaining an end-to-end learning proce-
dure without manually designing submodules for a lane change. The final model, as shown in the
results section, can encourage lane change behavior, which results in more stable and efficient
driving with higher average speed. This hierarchical action space for DDPG gives us another
way to think about how to incorporate a hierarchy of behavior in learning an end-to-end pol-
icy. Although during the whole process, we do not give direct instructions on when and how a
lane change should be performed, the system still learns to separate different patterns in driving,
which results in a performance boost of the overall driving in the end.

We also introduce an attention mechanism which is prevalent in traditional computer vision
tasks (e.g., video/image captioning) into recurrent DDPG in an attempt to speed up training by
learning from filtered features and prioritizing history states. We demonstrate our attention model
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indeed learns meaningful content in the task of driving. The output of the learned attention layers
gives us a chance to explain what is learned in the black box of the neural network.

The drawbacks and probable future work directions are: (1) we introduced more weights into
the network which might potentially slow down the training speed per iteration; (2) the LSTM
is often unstable in training: a possible solution is to stabilize LSTM and expand its capacity by
introducing bidirectional LSTM or using layers of LSTM instead of just one layer; (3) we have
not used any predefined physical knowledge to help reduce the exploration and search space in
the DDPG algorithm. For example, we could leverage the fact that when we are in the leftmost
lane, there is no chance we can do a left lane change.
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Chapter 5

LSTM-based Lane Change Behavior
Prediction

5.1 Problem Overview

In the previous two chapters, we investigated using supervised learning and deep reinforcement
learning to directly learn a driving model for autonomously driving on-road both in simulation
and in a real-world dataset. In this chapter, we focus on a more specific aspect of on-road driving:
predicting lane change behavior. It is essential to understand other drivers’ lane-change behavior
so that we can better plan our driving trajectories on the road. Predicting other drivers’ behavior
before their real action can be observed will leave us more time to plan how we should react.

We intend to discover the common characteristics of lane change behavior performed by
human drivers. By using real human driving data, we intend to construct a system that can
answer the following question: when will a car near us do a lane change and what trajectory will
the car follow when it performs the lane change action?

Instead of assuming that surrounding vehicles follow some unified pre-defined lane change
maneuver, we adopt an approach that directly derives the model from real human driving data.
The advantage of a learning-based model lies in the fact that it does not make assumptions about
human behavior and can directly mimic it . Here, we use an LSTM as the learning structure.
LSTM has shown its potential to learn objectives evolving through time in tasks like machine
translation, video recognition and image captioning. We intend to incorporate temporal environ-
ment state information through the LSTM model to make better decisions in the current state.

We separate the lane change behavior into two high-level stages: decision and execution.
The decision stage can also be viewed as the intention of a human driver. In this stage, the driver
observes the environment and decides according to the traffic flow whether it is a proper time to
do a lane change. This decision is a discrete choice: the agent can make the choice between a left
lane change, a lane following and a right lane change. After this high-level decision, we intend to
learn a trajectory generator that can directly perform the lane change action. This action depends
on its current ego state and can vary according to factors distance to surrounding vehicles.

Here, we present an LSTM-based method that can predict other cars’ intentions as well as
trajectories based on observation from the environment. A systematic overview of our lane
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change prediction is shown in Figure 5.1.

Figure 5.1: A systematic overview of the lane change behavior prediction algorithm.

5.2 Methodology

5.2.1 Problem Formulation
We formulate our lane change prediction problem as two stages. The discrete intention prediction
is defined as : at given time t, our goal is to determine a particular vehicle’s intention given our
sensor observation of the vehicle’s state as well as the surrounding environment information
in the past Tp timesteps. Tp can vary according to how long we would like to consider the
history. The intention can be one of the following three discrete decisions: left lane change, lane
following, and right lane change. It can be formally represented as:

It = {left_turn, right_turn, go_straight}

. The continuous trajectory prediction is defined as: we also predict the future position coordi-
nates of the target vehicle up to Tf timesteps in the future according to the predicted intention.
Tf varies according to how long we would like to predict the future. The model we plan to derive
is deterministic. The future trajectory is represented by a discrete sequence of lane coordinates.
The trajectory prediction is based on the classification result of intention prediction and we have
a separate model to predict the trajectory for each category of intention. The predicted trajectory
can be represented as:

Ot = {(xt+i, yt+i)}Tpi=1

We make predictions based on the target vehicle’s information and observation of the target
vehicle’s surrounding environment, which we summarize as the state space:

st = [stt, s
t
s]

The target state stt contains basic vehicle information including global coordinates of the agent
and its absolute speeds in the horizontal and vertical directions:

stt = [pttx , p
t
ty , v

t
tx , v

t
ty ]
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Here y corresponds to the direction of the lane and x corresponds to the direction perpendicular
to the lane. The origin of the coordinates starts from the leftmost lane mark, as shown in Figure
5.2.

The surrounding state sts contains the relative vehicle information of 6 surrounding vehicles
and two binary indicator variables:

sts = [stv1, s
t
v2, s

t
v3, s

t
v4, s

t
v5, s

t
v6, bl, br]

The binary variables bl and br indicate whether the target vehicle’s current lane has a lane to its
left or right. v1− v6 correspond to the six vehicles we take into consideration. They are vehicles
in front of and behind the target vehicle in left lane, target lane and right lane, as shown in Figure
5.2. The relative vehicle information also contains location and speed information but is relative
to the target vehicle.

stv = [ptvx − p
t
tx , p

t
vy − p

t
ty , v

t
vx − v

t
tx , v

t
vy − v

t
ty ]

If any of these vehicles don’t exist or the target vehicle doesn’t have a left or right lane, we set a
default value for the vehicle information. By default, we assume the vehicle of interest have the
same speed of the target vehicle at infinity position to the direction of the lane.

Figure 5.2: Notation for vehicles in consideration on road. Orange vehicle is the target vehicle;
the blue vehicles are the 6 vehicle that are incorporated into the surrounding information.

In summary, our model makes discrete intention prediction It and future continuous trajectory
prediction Ot of up to Tf seconds in the future at timestep t, based on our observation of the past
states (st−Tp , ..., st−1) in Tp timesteps.

5.2.2 Predicting Discrete Driver Intention
Our intention prediction algorithm is based on a deep neural network structure that use LSTM
units. The overall network architecture is shown in Figure 5.3. The state at each timestep is first
passed through a fully connected layer of 256 hidden units. Then the LSTM receives as input the
concatenation of the vehicle states in the past Tp timesteps. The choice of Tp is set to 5 seconds
in our experiment for best performance after comparison with Tp = 1s and Tp = 3s. It has been
shown that deep LSTMs significantly outperform shallow LSTMs [50], so we use a stack of 4
LSTM layers, each with 128 hidden units. Note that we only unroll LSTM to Tp timesteps for
training convenience and speed. Each LSTM unit has a recurrent context vector ct as output and
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a hidden embedding ht that is passed through time. Here the initial state h0 is set to zero during
training. After unrolling, the recurrent context vector output of the last LSTM stack is passed to
another fully connected layer to decide the current discrete maneuver choice. A softmax layer is
used to calculate the possibilities of a left lane change, lane following, and right lane change. The
overall model is trained end-to-end as a multi-class classification problem using cross-entropy as
the loss function.

Figure 5.3: Network architecture for predicting discrete driver’s intention.

5.2.3 Predicting Continuous Vehicle Trajectory

Our continuous vehicle trajectory prediction is based on preliminary result of discrete intention
prediction. We choose the trajectory generator with the maximum likelihood and make condi-
tional predictions. Models of a left lane change, lane following, and a right lane change are
derived separately from driving scenarios falling into these categories.

The network architecture for this sequence-to-sequence trajectory prediction task is shown
in Figure 5.4. The goal of using LSTM here is to estimate the conditional probability of the
trajectory p((xT+1, yT+1), ..., (xT+Tf , yT+Tf )|sT−Tp , ..., sT−1). Our model can be seen as first
extracting a context representation v of input states sT−Tp , ..., sT−1, which is given by the hidden
state of LSTM hT at timestep T. This part can be regarded as processing past information into
v. Later the predictions xt and yt are made sequentially using previous state st−1 and previous
LSTM hidden state ht−1, which starts with v. Note, we have two separate networks with the
same structure but different parameters for predicting xt and yt. We find out that xt and yt
are not strongly correlated and it harms the convergence if we train them together. The LSTM
prediction formulation can be represented as

p((xT+1, yT+1), ..., (xT+Tf , yT+Tf )|sT−Tp , ..., sT−1) =
T+Tf∏
t=T+1

p(xt, yt|v, sT+1, ..., st−1)

The structure of the FC layers and LSTM cells is the same as in the network for predicting
discrete driver’s intention. The loss function we adopt here is a simple regression loss over Tf
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timesteps into the future

Lx(θ) =

T+Tf∑
t=T+1

(xt − x̂t)2 ++λ
k∑
i=1

θ2i

Ly(β) =

T+Tf∑
t=T+1

(yt − ŷt)2 + λ
k∑
i=1

β2
i

where xt, yt are ground truth for the vehicle’s coordinates and x̂t, ŷt are our predictions. A L2
regularization term is added to prevent overfitting.

Figure 5.4: Network architecture for predicting continuous vehicle trajectory.

5.3 Experiment and Analysis

5.3.1 Data Preparation
We use the NGSIM dataset as our test benchmark. The NGSIM dataset [51] was collected by US
Department of Transportation in Los Angeles, the USA in 2007. We use US-101 and I-80 data
from NGSIM to study detailed vehicle trajectories on US highways. The two datasets contain
vehicle trajectories in an area of 640 meters and 503 meters of a six-lane highway on US-101 and
I-80 respectively. The dataset contains six 15-minute periods of vehicle trajectories on a busy
highway. The dataset provides the location and speed of each vehicle in the study area with a
frequency of 10 Hz.

We extract trajectories of all vehicles in the dataset. To define the trajectory sections involving
lane change, we consider the frame where the vehicle’s lane ID changes and take it as the timestep
that a lane change behavior happens. This way, we detect 490 right lane change and 978 left lane
change scenarios. As can be seen, the dataset is unbalanced towards the left lane changes. One
possible reason may be that people prefer to go to the leftmost lane for higher speed. We also
collect lane following scenarios with the criteria of not containing any lane change frames in the
time span. To prevent biasing through an unbalanced dataset, we select 490 scenarios for each
of the three actions for training and testing.
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For each maneuver scenario, we extract a time period of 10 seconds centered at the lane
change frame and use the first 5 seconds as history data and the second 5 seconds as future data
we would like to predict. To predict lane change behavior before the actual lane change point, we
augment the data with a time period of 10 seconds centered at 0.5, 1, 1,5, 2, 2.5 and 3.0 seconds
before the lane change point. An illustration of how lane change frames is selected is shown in
Figure 5.5. For the trajectory prediction task, we mix all these samples for training.

Figure 5.5: Illustrations of how lane change frames are selected. The augmented lane change
frames can be 0.5, 1, 1,5, 2, 2.5 and 3.0 seconds before the lane change point, but we only show
1 second beforehand as an example.

5.3.2 Experimental Results
For the discrete driver intention prediction, we compare our results with logistic regression. For
the logistic regression implementation, we use all the states from Tp past frames as input and
directly map to maneuver types. We compare the prediction precision and recall at different
times before the lane change point, as shown in Table 5.1.

Time before Lane Change Point
Recall

Precision
3s 2.5s 2s 1.5s 1s 0.5s 0s

Left Lane Change 50.3% 56.5% 62.3% 73.3% 82.2% 89.4% 91.2% 77.3%
Lane Following 82.6% 81.3%

Right Lane Change 51.1% 57.2% 64.2% 74.4% 83.6% 91.0% 92.2% 75.6%

Table 5.1: Recall and precision for discrete driver’s intention prediction for different times before
the lane change point.

Here recall means the percentage of recognizing the behavior in all observation scenarios.
Precision means the percentage that our prediction is correct. Our model can achieve above 90%
recall of driver’s intention when the car of interest approaches the lane change point, while the
recall decays to nearly 50% about 3 seconds before the lane change point. The results show that
our model can detect lane change behaviors with at least 80% accuracy when a car is approaching
lane mark 1 second before and at least 60% 2 seconds before. The precision here is counted on
all scenarios, and all three categories achieve nearly 80% accuracy, which means our model is
quite reliable in its prediction.
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Figure 5.6: Illustration of lateral distance prediction result with different prediction times. The
red line corresponds to the lane marking. The four figures show the result of our algorithm
predicting at 0 or 1, 2 and 3 seconds before the lane change point.

After categorizing the driver’s intention, the appropriate model among the 3 types of ma-
neuver to predict the continuous trajectory is applied. We train our model using RMSProp opti-
mization with learning rate 0.0005, decay 0.9 and momentum 0.0001. We set the limit to 15,000
iterations in total, which takes 12 hours in training. Figure 5.6 shows examples of the quality
of our model in predicting 0 or 1, 2 and 3 seconds before approaching the lane change point.
Regardless of the trajectory’s previous shape, our model can generate robust, human-like future
trajectories. For example, about 3 seconds before the lane change point, the previous trajectory
contains little information, but our model can still successfully forecast the future lane change
behavior.

We calculate the prediction error against the length of the prediction, as shown in Figure 5.7.
The error is defined as the average absolute difference between prediction and ground truth at
a given prediction time. We observe that the error accumulates as uncertainty increases in the
future for both the lateral and longitudinal direction. However, the lateral prediction error drops
for both left lane change and right lane change after 4.5 seconds. We believe this phenomenon
occurs because the model captures the behavior that vehicles will tend to follow the center of the
lane after their lane change behavior.

We make a comparison of our model with curve-fitting based methods for extrapolation as
suggested by [52, 53]. Curve fitting methods minimize the total deviation between a predefined
shaped curve with the existing data by looking for the optimal parameters of the curve. The
resulting curve can have the best fit to a series of seen data points and can predict future trajectory
beyond the original observation range, though subject to greater uncertainty. The three curves
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Figure 5.7: Prediction error v.s length of prediction. Left: lateral distance prediction. Right:
Longitudinal distance prediction.

we define are linear, quadratic and sigmoid fit with the following representations.

flinear = ax+ b

fquadratic = ax2 + bx+ c

fsigmoid = a± 4/(1 + e−bx+c)

Linear and quadratic are widely used polynomial curves for fitting, while sigmoid is less com-
monly used. We select sigmoid here mainly for the reason that the shape of a lane change
strongly resembles a sigmoid function. We further set the height of the sigmoid function to 4
meters, which is the typical width of a lane. We solve the curve fitting problem using least
square loss with gradient descent.

The quantitative results comparing different methods are shown in Table 5.2. We use 80% of
the trajectories in each category for training and 20% of the trajectories for testing. We calculate
the average total square error for a prediction horizon of 5 seconds for all test trajectories. The
error metric is defined as

Error =
1

T

T∑
t=1

√∑D
i=1 [(ŷ

i
t − yit)2 + (x̂it − xit)2]

D

Here, T stands for the number of timesteps in the prediction, D is the the number of test tra-
jectory samples and xit, y

i
t represent the x, y in sample i at timestep t in the prediction. We can

observe that our LSTM-based method has the lowest error for predictions compared to the lin-
ear, quadratic and sigmoid curve fitting methods. We also compare the prediction result with and
without the surrounding environmental information. The result show that the surrounding vehi-
cles indeed positively help to increase the prediction precision. By incorporating the surrounding
states, the social interaction between the vehicles is implicitly considered on the road.

A typical sample result of the different methods applied to two different lane change scenarios
is shown in Figure 5.8. We can see that our LSTM model works best in predicting the future
trajectory. The linear and quadratic polynomial curves work fine over short distances but tend to
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Linear Quadratic Sigmoid LSTM w/ LSTM w/o
Left Lane Change 6.01 7.13 4.84 4.00 4.55
Lane Following 3.46 4.91 - 3.21 3.41

Right Lane Change 5.78 6.96 4.89 4.15 4.49

Table 5.2: Comparison of mean square error (meters) for 50 timesteps of trajectory between
curve fitting methods and our LSTM-based method with/without surrounding state.

diverge significantly after about 50 meters. The sigmoid fit successfully recovers the shape of a
typical lane change but fails to adjust flexibly to lane changes case by case. Our model however,
has both stability and accuracy for predictions as far as 5 seconds in the future.

Figure 5.8: Comparison of trajectory prediction results using linear fit, polynomial fit, sigmoid
fit and LSTM (ours). The left half of the trajectory represents seen observations and the right
half represents predictions. The two plots show a typical left and right lane change scenario
respectively.
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5.4 Conclusion
In this chapter, we have demonstrated we can learn lane change behavior using LSTMs. We
have shown preliminary results for predicting both discrete driver intentions and continuous ve-
hicle trajectories. Our proposed models have shown improved results over logistic regression
for intention prediction as well as curve fitting methods in trajectory prediction. By combining
the two prediction subroutines, our system can predict possible positions of observed vehicles
surrounding the target vehicle in a short period of future time in highway settings.

Since we divide the task into first predicting intention and then the trajectory, our model is
interpretable and easy to train and fine-tune. While we only consider lane change maneuvers in
highway settings in this study, we can further extend our model to other maneuver types in more
complex settings. Thanks to the transparency of our composite model, we only need to define
a new maneuver type and then let the model learn to classify it and predict its trajectory shape.
The whole process will be smooth and won’t harm our learned maneuver prediction. A possible
next step may be to predict turning and lane crossing in intersection scenarios, which is common
in city driving.
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Chapter 6

Conclusion and Future Work

This work investigates the use of neural networks for behavior learning and prediction in au-
tonomous on-road driving, particularly for lane following and lane changing tasks. First, we
study learning a vision-based end-to-end maneuver controller for autonomous vehicles. The task
is to construct a deep neural network to map from sensor input to control output. We improve
the architecture described in [7] in four respects to enhance the performance. We use transfer
learning to incorporate prior knowledge, add temporal information with LSTM, include image
segmentation information as an auxiliary task and apply sensor fusion with vehicle kinematics.
We test our new model both in simulation and on a real-world dataset and compare with the
previous method. We observe a significant performance boost and see that the model can quickly
adapt to new unseen environments.

In the second work, for the reason of data efficiency, we switch to a deep reinforcement
learning (DRL) method for the same task with a focus on lane changing behavior. We propose
a learning structure with a hierarchy for the purpose of learning explicit sub-policies for lane
change behavior. We explore the attention mechanism when making decisions for on-road driv-
ing. We design a new layer that doesn’t need extra information but can learn the importance
of inputs through space and time. The test results in a racing car game TORCS demonstrate
successful lane change behavior and more stable driving experience with reduced training time
compared to the DDPG baseline.

Finally, we investigate the task of predicting lane change behavior for on-road driving. We
formulate and subdivide this problem into predicting discrete driver’s intention and predicting
continuous vehicle trajectories given the past environment states in a time window. Each problem
is solved separately, and the results are combined for overall evaluation. We construct the models
using LSTM to learn the temporal information through history states. The experiment is done
on the NGSIM dataset, which contains hundreds of real-world lane changing trajectories. The
prediction is compared with curve fitting methods, and the result shows our method can best
replicate human lane changing behavior.

For future work, some interesting directions can serve as a follow-up:
1. Use Inverse Reinforcement Learning (IRL) to recover the reward function for on-road

behavior learning instead of manually designing reward functions. The difficulty lies in
keeping the algorithm efficient and convergent when the state space is high-dimensional,
and the search space is vast.
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2. Use social LSTM [54] to consider the interaction of vehicles directly in the model con-
struction for prediction of vehicle’s intention and trajectory.

3. Currently, our algorithms are all trained and tuned to one or several specific simulations or
datasets. It would be meaningful to consider the problem of domain adaptation and try to
derive a universal model that can easily be used or fine-tuned in a new environment.
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