
What Can This Robot Do?

Learning Capability Models from

Appearance and Experiments

Ashwin Khadke

CMU-RI-TR-18-33

July 2, 2018

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Professor Manuela Veloso, chair

Professor Jean Oh
Devin Schwab

Submitted in partial fulfillment of the requirements
for the degree of Masters in Robotics.

Copyright c© 2018 Ashwin Khadke. All rights reserved.





Abstract

As autonomous robots become increasingly multifunctional and adaptive,
it becomes difficult to determine the extent of their capabilities, i.e. the
tasks they can perform and their strengths and limitations at these tasks.
A robot’s appearance can provide cues to its physical as well as cognitive
capabilities. We present an algorithm that builds on these cues and
learns models of a robot’s ability to perform different tasks through active
experimentation. These models not only capture the robot’s inherent
abilities but also incorporate the effect of relevant extrinsic factors on a
robot’s performance. Our algorithm would find use as a tool for humans
in determining ”What can this robot do?”.

We applied our algorithm in modelling a NAO and a Pepper robot at two
different tasks. We first illustrate the advantages of our active experimen-
tation approach over building models through passive observations. Next,
we show the utility of such models in identifying scenarios a robot is well
suited for in performing a task. Finally, we demonstrate the use of such
models in a collaborative human-robot task.

iii



iv



Acknowledgments

First, I would like to thank my advisor, Manuela Veloso. When I started
off as a Masters student, I had little knowledge about the areas of interest
of the CORAL group. Manuela gave me an opportunity to be a part
of the group with the only expectation that I work hard. Throughout
my time at CMU I have tried to live up to this expectation. Manuela’s
ideas greatly shaped this thesis. She provided me with the freedom to
determine the best possible approach to tackle the problems I addressed
in this work all the while ensuring that I did not digress.

I am grateful to Devin Schwab for his patience with me in the early
stages of my Masters. He helped me a lot in getting familiar with the
NAO robots. Devin has a lot of experience in programming and handling
robotic systems. I learned a great deal from him on both fronts.

Anahita Mohseni Kabir became a close friend over my time here at CMU.
Anahita provided the much needed moral support during my Masters for
which I am incredibly thankful. She believed in me at times when I didn’t
believe in myself and motivated me to do my best.

It was a fun filled experience sharing an apartment with Arpit Agarwal
during my stay in Pittsburgh. I could always share my personal and
work-related concerns with him. Life in Pittsburgh would have been very
dull without his company and the useful (at times useless) discussions we
had.

I am thankful to Vittorio Perera for his help with preparing my thesis
defense talk. He provided useful feedback and spent a lot of time rehearsing
the talk with me.

Finally, I would like to thank my parents and my grandmother for their
unwavering support and encouragement. I owe all my accomplishments
to them.

v



vi



Contents

1 Introduction 1
1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Related Work 5

3 Capability Models 7
3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Building Capability Models . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.1 Active Learning for Bayesian Networks . . . . . . . . . . . . . 10
3.2.2 Model Refinement . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.3 Incorporating Continuous Variables . . . . . . . . . . . . . . . 13

3.3 Quantifying Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Role Of Appearance 21
4.1 Which tasks to test? . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Initialize Capability Models . . . . . . . . . . . . . . . . . . . . . . . 25

5 Experiments 31
5.1 Active vs Passive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Model Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.1 BallKick Task . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.2 PickUp Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Putting It All Together . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4 Quantifying Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Conclusions and Future Work 43

7 Appendix 45
7.1 CutValue Maximization . . . . . . . . . . . . . . . . . . . . . . . . . 45

8 Bibliography 49

When this dissertation is viewed as a PDF, the page header is a link to this Table of Contents.

vii



List of Figures

3.1 Capability Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Capability Model for the BallKick task. (a) depicts the Bayesian

Network, (b) shows the type of each variable in the model and, (c)
describes the values each variable can take. . . . . . . . . . . . . . . . 8

4.1 Reference Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Overview of the image-similarity model. . . . . . . . . . . . . . . . . 23
4.3 Dataset of robot images. It consists of 4 categories of robots namely

Drones, Humanoids, Service Robots and Manipulator Arms. . . . . . 24
4.4 Approach to train the Neural Network and extract features from images. 25
4.5 Examples of matches found by the trained image-similarity model.

Green boxes indicate a correct match where as the red ones indicate
an incorrect match. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.6 Robots for experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.7 (a) and (b) show the number of participants that voted for a factor

affecting a robot’s performance at the BallKick and PickUp tasks
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 Initial guess of the Capability Model for the BallKick task. (a) depicts
the Bayesian Network, (b) shows the type of each variable in the model
and, (c) describes the values each variable can take. . . . . . . . . . . 32

5.2 (a), (b) and (c) depict the Bayesian Networks for the predefined models.
Nodes are as defined in Fig. 5.1c . . . . . . . . . . . . . . . . . . . . 33

5.3 (a), (b) and (c) depict the trend inDKL(Pθpredefined
(KDo)||PθBallKick

(KDo)).
(a) compares the trends when learned actively vs passively. In (b) and
(c), blue curves depict trend for the learned models as the algorithm
identifies relevant factors to include, red points mark the instances
when a new variable is added and green curves depict the trend if the
model were initialized with the right variables. . . . . . . . . . . . . . 34

5.4 Initial guess of the Capability Model for the Pickup task. (a) depicts
the Bayesian Network, (b) shows the type of each variable in the model
and, (c) describes the values each variable can take. . . . . . . . . . . 35

5.5 Bayesian Network of the predefined model for the PickUp task. Nodes
are as defined in Fig 5.4c. . . . . . . . . . . . . . . . . . . . . . . . . 35

viii



5.6 Trend in DKL

(
Pθpredefined

(Pick)||PθPickUp
(Pick)

)
. The blue curves depict

the trend for the learned models as the algorithm identifies relevant
factors to include and the redundant ones to discard, red points mark
the instances when a new variable is added, yellow points mark the
instances when a variable is removed and the green curves depict the
trend if the model were initialized with the right set of variables. . . . 36

5.7 Capability Model of the simulated robot for the PickUp task. (a)
depicts the Bayesian Network, (b) shows the type of each variable in
the model and, (c) describes the values each variable can take. . . . . 37

5.8 Initial guess of the Capability Model for the PickUp task. (a) depicts
the Bayesian Network, (b) shows the type of each variable in the model
and, (c) describes the values each variable can take. . . . . . . . . . . 38

5.9 (a) and (b) depict the trend in DKL(Pθpredefined
(KDo)||PθPickUp

(KDo)).
The curves in blue depict the trends for the learner’s model as it
identifies the relevant factors, red points mark instances when a new
variable is added, yellow points mark instances when a variable is
removed from the model and purple points mark instances when a
cutpoint is chosen for a continuous variable. The curves in green depict
the trend if the model were initialized with the right variables. . . . 38

5.10 Capability Model for the Pickup task. (a) depicts the Bayesian Net-
work, (b) shows the type of each variable in the model and, (c) describes
the values each variable can take. . . . . . . . . . . . . . . . . . . . . 39

7.1 Example Bayesian Network. X is continuous and O is discrete. . . . . 45
7.2 Trend in CutValue(UX, UX) for two different UX. The dotted lines

indicate u?Xi , U?X = (0.3, 0.6, 0.9) . . . . . . . . . . . . . . . . . . . . 47

ix



List of Tables

4.1 List of tasks that each robot in Fig. 4.1 can perform. BallKick is
defined in Section 3.1. The PickUp task entails picking up different
objects off a table. The Catch task involves catching an object thrown
towards a robot. The Throw task involves throwing different objects
in a specified direction and Fly involves performing flying maneuvers
at different speeds and wind conditions. . . . . . . . . . . . . . . . . . 22

4.2 Survey questions for the BallKick task. Fig. 4.7a depicts the number
of participants that responded with ’No’. . . . . . . . . . . . . . . . 28

4.3 Survey questions for the PickUp task. Fig. 4.7b depicts the number of
participants that responded with ’No’. . . . . . . . . . . . . . . . . . 28

5.1 Results of the clear-the-table task (µ ± σ) after 5 experiments per
setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

x



Chapter 1

Introduction

Suppose we get a multipurpose robot but are not familiar with all of its functionali-

ties. How do we identify the different tasks that it can perform? Appearance and

specifications of a robot can convey information about its physical as well as cognitive

capabilities. Seeing a legged robot equipped with a camera and a microphone could

make one wonder if it can climb stairs, recognize faces, detect hand gestures or

interpret voice commands. How do we identify which of these appearance-deduced

tasks it can actually perform?

Although physical appearances can provide rich cues about a robot’s capabilities

they are not sufficient to identify the scenarios in which it can function well. The

robots Roomba and Braava appear similar and are both used for cleaning floors. But

the Roomba can clean carpets and not wet floors, which is exactly the opposite of

what Braava can do. For a human working collaboratively with a robot, knowing

the robot’s strengths and shortcomings is especially useful. A robot’s spec sheet

provides information about various sensors and actuators it is equipped with. But

inevitably how well a robot performs a task depends on the way it is programmed

and, for a naive user, this is difficult to determine simply based on appearance and

specifications.

Experimenting with a robot can help identify the tasks it can perform and the

scenarios it is well suited for. But experimentation is tedious and intelligent robots

are capable of learning new skills and adapting to new scenarios over time. This

motivates the need for an algorithm which could be used to intelligently experiment

1



CHAPTER 1. INTRODUCTION

with robots, identify their skills and quantify their applicability in different scenarios.

Humans can use such an algorithm in identifying the range of functionalities of a

robot and, its strengths and limitations at the same.

In this thesis, we tackle the problem of inferring capabilities of a new unknown

robot through systematic experimentation. We present an approach to identify from

a robot’s appearance the tasks it can potentially perform. Furthermore, we provide

an algorithm for building models of a robot’s ability to carry out these tasks through

experimentation. We call these models as Capability Models. The outcomes of

experiments with a robot can be non-deterministic. Moreover, apart from a robot’s

inherent capabilities, certain extrinsic factors may affect its performance at a task.

Assuming some of these factors are controllable, our algorithm systematically tests

the robot at different settings of controllable factors. Capability Models quantify the

robot’s ability to carry out a task as a function of these factors while incorporating

the non-determinism in the experiments. However, knowing the set of extrinsic factors

relevant to a particular robot and a task a priori is not feasible. Assuming we have

a list of possibilities, our algorithm identifies factors that are pertinent to a robot’s

ability to perform a task. Lastly, we introduce a metric to quantify a robots ability

to carry out a task in different scenarios.

1.1 Outline

The thesis is outlined as follows.

Chapter 2 illustrates the pertinent related work.

In Chapter 3, we introduce Capability Models. We present our algorithm for

building a Capability Model for a task. Moreover, we introduce a metric to quantify

the robot’s performance in different scenarios. This metric allows us to identify

situations in which a robot can reliably carry out the task.

Chapter 4 discusses our method to incorporate a robot’s appearance in identifying

tasks it can potentially perform. Additionally, we present results of a survey we

conducted for identifying relevant factors to include in a Capability Model for a task.

Chapter 5 describes our experiments with a Pepper and a NAO robot. We show

that active experimentation learns better models than those learned by passively

observing a robot. Furthermore, we use Capability Models to identify favorable

2



CHAPTER 1. INTRODUCTION

scenarios for a robot to carry out the task. We demonstrate that familiarity with a

robot’s strengths and shortcomings is helpful for a human working in collaboration

with the robot.

3



CHAPTER 1. INTRODUCTION

4



Chapter 2

Related Work

Earlier works on learning from experimentation either address domains that are

inherently deterministic [14, 19] or assume that the experiments they conduct are

deterministic [8]. Owing to noisy actuation and sensing, outcomes of experiments

with robotic systems are nondeterministic and, hence the problem of deducing a

robot’s capabilities through experimentation is challenging.

Affordance [11] is a relation between a certain effect, a class of objects and certain

robot action. Learning affordances is similar to learning the physical capabilities of a

robot. For example, learning to identify traversable terrains for a mobile robot from

images and laser data [18] or building a probabilistic model to capture the effect of

motor commands on a particular object [3]. These models capture a mapping from

raw sensor data and commands to effects. It is difficult for a human to use such models

in identifying scenarios a robot is well suited for. Some works [15, 16] characterize

objects with visual features (Size, Shape, Color etc.) and learn Bayesian Networks

that capture the effects (Object displacement, Contact type etc.) of a robot’s actions

(Tap, Grasp, Push). However, these works emphasize on building models that can

be used for immitaion [16] or predicting actions that generate the observed effects

[15]. They provide no concrete method to quantify a robot’s capability. Furthermore,

all of these works [3, 15, 16, 18] use passive methods to learn and do not explicitly

consider their existing models to reason about what to explore next.

Learning forward models [12] for robots is another relevant line of work. Such

models predict the effects of a robot’s action in different scenarios. Active approaches

5



CHAPTER 2. RELATED WORK

for learning forward models exist. A common strategy is to use the prediction error

from the foward model to guide exploration in the sensorimotor space [1, 5, 21]. Some

works attempt to jointly learn policies for different tasks and use forward models

to deicde which tasks to attempt [2, 6]. However, forward models only predict the

immediate effects of an action from the raw state i.e. predict the next state given

the current state and action. Moreover, the emphasis in these works is on learning a

policy. They provide no approach to identify from the forward model, the likelihood

of successful task execution in different scenarios. Some works [10, 17] learn abstract

states and actions and build predictive models of the environment over these higher

level states and actions. However, these approaches learn from scratch and do not

use the learned models in guiding exploration. They are quite data intensive and

unrealistic for modelling physical systems.

6



Chapter 3

Capability Models

3.1 Definition

Suppose we decide to build a model of an anthropomorphic robot at the task of

kicking a ball. Relevant extrinsic factors for this task could be, the size of the ball and

turf on which the robot is playing. Among these factors, the size of the ball is likely

to be controllable. An experiment for this task would constitute commanding the

robot to kick a ball in certain direction from a particular position and observing the

outcome. A robot’s perception and actuation are noisy and, therefore the outcome is

not deterministic. To capture this non-determinism, we use a Bayesian Network.

Figure 3.1: Capability Model

We introduce Capability Model (Fig. 3.1), a Bayesian Network which consists of

the following types of nodes:

7



CHAPTER 3. CAPABILITY MODELS

KDcPosition BallSize

KDo

Turf

BallColor

(a)

SIT = {KDc, Position, Turf, BallSize},
CNTX = {Turf, BallSize},
COMM = {Position, KDc},
OUT = {KDo}, ATTKDo = {BallColor}

(b)

Position ∈ {LeftSide, Middle, RightSide},
Turf ∈ {Grass, Synthetic, Sand},
BallSize ∈ {Small, Large},
BallColor ∈ {Yellow, Orange},
KDc ∈ {Left, Mid, Right},
KDo ∈ {Left, Mid, Right, None}

(c)

Figure 3.2: Capability Model for the BallKick task. (a) depicts the Bayesian Network,
(b) shows the type of each variable in the model and, (c) describes the values each
variable can take.

• SIT = CNTX ∪ COMM, is the set of variables that describe the situation in

which the robot is performing the task.

CNTX is the set of extrinsic factors (context) for the task.

COMM is the set of commands given to the robot.

• OUT is the set of variables denoting the outcomes of the task.

• ATTO is the set of attributes for variable O ∈ OUT. These variables are not

explicitly accounted in the model. Section 3.2.2 addresses their need and utility.

We capture the robot’s ability to perform a task in the conditional probability tables

associated with this Bayesian Network.

Fig. 3.2 presents a Capability Model for the BallKick task discussed before using

the notation we just introduced. Position represents the location of the ball with

respect to the robot before it kicks. BallSize is the size of the ball and Turf is the

type of turf in the experiment. KDc and KDo denote the commanded and observed

kick direction respectively. KDo is None if the robot attempts but fails to kick the

ball or does not attempt to kick. The former may be because of its inability to kick in

certain positions. The latter may mean it does not detect the ball or does not know

8



CHAPTER 3. CAPABILITY MODELS

how to perform a kick. The set OUT is singleton here. In general this may not be the

case. How far a robot kicks a ball could be another outcome for the BallKick task.

3.2 Building Capability Models

To build a Capability Model, we need to identify the right set of extrinsic factors

(CNTX) and learn the conditional probabilities that quantify a robot’s ability. We

assume we have a set CNTX when we start experimenting with a robot. Some factors

in this set may be redundant while there may be a few missing. First, we present

a method to learn conditional probability tables of a Capability Model keeping the

set CNTX fixed. Later, we describe our approach for updating this set as we learn

the probability tables. We assume all variables in a model are discrete and have a

Multinomial distribution. Extrinsic factors may be continuous and, we explain later

how we accommodate them in our models. First, we introduce some notation.

• A Bayesian Network is a tuple (G,θ)

G ≡ (V,E) is a graph, V is the set of nodes and E is the set of edges

V = SIT ∪OUT are random variables with Multinomial distribution

E capture the conditional dependencies amongst the nodes V

θ parameterize the conditional probability distributions

• Domain(X) where X ∈ V, is the set of all possible values of variable X

• Instantiation of a set X ⊆ V, is a mapping from variables X ∈ X to values in

Domain(X)

• Domain(X) where X ⊆ V, is the set of all possible instantiations of the set X

• P (X) where X ⊆ V, denotes the joint probability distribution of variables in X

• P (X|Y = y) where X, Y ⊆ V, denotes the joint probability distribution of

variables in X given the instantiation y of the set Y

• Pθ denote the probabilities parametrized by θ

• DKL(P1||P2)=
∑
i

P1(i)log
P1(i)

P2(i)
is the KL-Divergence from distribution P2 to P1

• Q ⊂ SIT is the set of controllable variables. All command variables are

9



CHAPTER 3. CAPABILITY MODELS

controllable, i.e. COMM ⊂ Q

• Variables in SIT \Q either have a fixed value or are assigned some value by the

environment in each experiment

• Instantiations of CNTX, COMM, OUT and Q are called Context, Command,

Outcome and Query1respectively. Situation = Context ∪ Command

3.2.1 Active Learning for Bayesian Networks

We adopt a Bayesian approach to learn parameters θ assuming the structure of

the Bayesian Network is fixed. We use the algorithm presented in [20] to build a

distribution over θ. Here we give an overview of the approach.

Starting with a prior p(θ), we build a posterior p′(θ) by actively experimenting

with the subject. In each experiment, we pick a Query and request the robot to

perform the task. A standard Bayesian update on the prior p, for the parameters of

the conditional distributions identified by the Situation (P (O|Situation)∀O ∈ OUT)

based on the Outcome, yields the posterior p′. The posterior becomes the prior for

the next experiment.

To generate a Query from the current estimate of the distribution p, we need a

metric to evaluate how good an estimate the distribution p is. We can then quantify

the improvement in p brought about by different Querys and pick the one which leads

to the biggest improvement. Let θ? be the true parameters of the model and θ′ be

a point estimate.
∑

O∈OUTDKL

(
Pθ?(O)||Pθ′(O)

)
denotes the error in point estimate

θ′. θ? is not known, but we do have p which is our belief over values of θ? given the

prior and observations. Error in point estimate θ′ with respect to p can be quantified

as in Eq. (3.1).

Errorp(θ
′) =

∑
O∈OUT

∫
θ

DKL(Pθ(O)||Pθ′(O))p(θ)dθ (3.1)

ModelError(p) = min
θ′

Errorp(θ
′) (3.2)

We use ModelError(p), defined in Eq. (3.2), as the measure of quality for the estimate

1Query ∈ Domain(Q), Context ∈ Domain(CNTX), Command ∈ Domain(COMM) and
Outcome ∈ Domain(OUT).

10



CHAPTER 3. CAPABILITY MODELS

Algorithm 1 BestQuery(p(θ), Q)

1: δmin ←∞
2: for Query ∈ Domain(Q) do
3: if EPE(p(θ),Query) < δmin then
4: δmin ← EPE(p(θ),Query)
5: Querybest ← Query

6: return Querybest

p(θ). Lower the ModelError, better the estimate. We would want to see observations

that reduce the ModelError associated with p. But we can only control the Query.

For a particular Query, we take an expectation over possible observations to evaluate

the Expected Posterior Error (EPE). In every experiment the algorithm picks the

Query with the lowest EPE.

EPE(p(θ),Query) = EΘ∼p(θ)

(
EOutcome∼PΘ(OUT|Q=Query)

(
ModelError(p′)

))
(3.3)

In Eq. (3.3), p′ represents the posterior obtained after updating prior p with sample

drawn from PΘ(OUT|Q = Query). Algorithm 1 outlines the method. For further

details, please refer [20]. We use θT as defined in Eq. (3.4) to parameterize the

conditional probabilities of the Capability Model for task T . We compute θT using

the learned distribution p(θ).

θT =

∫
θ

θp(θ)dθ (3.4)

3.2.2 Model Refinement

Every robot may have a different set of extrinsic factors relevant for a task. Consider

the BallKick task (Section 3.1), if the robot only detects balls of a certain color, a

variable BallColor should be included in the model. The initial guess of the model

could be wrong and, the set CNTX may have certain relevant factors missing and

might include some redundant ones. In Section 3.1 we defined ATTO to be attributes

of the variable O ∈ OUT not explicitly accounted in the model. We assume that

the missing variables, if any, belong to this set. Including all of them makes the

11



CHAPTER 3. CAPABILITY MODELS

model unnecessarily large and difficult to learn. We need a metric to quantify the

dependence of variables in the set OUT on those in CNTX and ATTO∀O ∈ OUT to

identify the relevant ones.

A variable is relevant if an the task outcome depends on it, more formally if the

distribution of some O ∈ OUT conditioned on the variable is drastically different for

different values of the variable in at least one of the observed Situations. We define a

metric, Coefficient of Mutual Information R(O; X|Situation) (Eq. (3.5)), to quantify

the variation in distributions of O conditioned over different values of variable X

in a particular Situation. In Eq. (3.5) and Eq. (3.6), H(P ) returns the entropy

of distribution P . I(O; X|Situation) (Eq. (3.6)) denotes the Mutual Information

between O and X given the Situation and R(O; X|Situation) is a normalized form of

Mutual Information. R(O; X|Situation) ∈ [0, 1].

R(O; X|Situation) =
I(O; X|Situation)

min(H(P (O|Situation)), H(P (X)))
(3.5)

I(O; X|Situation) = H(P (O|Situation))−∑
x

H(P (O|X = x, Situation))P (X = x|Situation)
(3.6)

We use the same metric, the Coefficient of Mutual Information, to decide which

variables in the model to discard and for determining the attributes to include.

However, the methodology for computing the probability distributions required to

evaluate this metric is slightly different in the two scenarios. We describe here in

detail how we compute and use the Coefficient of Mutual Information. Algorithm 2

summarizes the approach.

Which attributes to include?

In every experiment, we randomy pick values for attributes that are controllable. If

R(O; AO
j |Situation) is greater than a threshold RThIn in at least one of the observed

Situations then, we incorporate AO
j as a dependency to variable O (Algorithm 2, Lines

8 - 17). While evaluating the Coefficient of Mutual Information, we need to ensure

that P (O|AO
j , Situation) is well defined. Therefore, we only consider values of AO

j in

Domainvalid(AO
j |Situation), which is the set of values of AO

j that have been observed

sufficiently in a particular Situation (Line 12-13). We compute P (AO
j |Situation) from

12



CHAPTER 3. CAPABILITY MODELS

observations in the past experiments.

Which variables to exclude?

To determine if a variable CNi ∈ CNTX should be excluded from the model, we

consider a Capability Model without this variable. If R(O; CNi|Situation) is less

than the threshold RThEx in every Situation corresponding to this reduced model, we

remove CNi from the dependencies of variable O (Algorithm 2, Lines 18 - 28). If CNi

is removed from the dependencies of every O ∈ OUT, we exclude it from the model.

All variables in SIT (CNTX ∪ COMM) are independent, hence P (CNi|Situation) =

P (CNi) (Algorithm 2, Lines 21-23). In our experiments, values for controllable

variables Q are chosen and never sampled. Therefore, if CNi ∈ Q, we assign the same

probability to every c ∈ Domain(CNi). If CNi /∈ Q, we compute the probabilities

using observations from the past experiments. We use θT , as defined in Eq. (3.4), to

compute P (O|CNi, Situation) (Algorithm 2, Line 21). As we start with a prior over

the values of θ, PθT (O|CNi, Situation) is always well defined.

3.2.3 Incorporating Continuous Variables

We assumed all variables in our model to be discrete. This assumption is quite

limiting, especially when we are modelling physical systems. How far can a robot

perceive? How heavy a load can it lift? How far can a robotic arm reach? These

factors may affect a robot’s ability to perform different tasks. Capability Model of a

robot should have the capacity to incorporate such factors. Discretizing continuous

variables and treating them similar to the discrete ones, can be a possible approach.

However, arbitrary discretization can lead to an unnecessarily complicated model or

an oversimplified one. We assume every continuous variable can be discretized into

ranges, such that a robot’s performance (distribution of the outcome) is invariant

for values in a range. However, the number of such ranges and the bounds for each

range are unknown. Consider a robot equipped with a camera, an arm, and a gripper.

Suppose it can detect and pick up objects of a particular shape. Such a robot would

have certain limitations on the size and weight of the objects it can pick up. We

assume that the robot’s ability to pick up is invariant for sizes and weights that lie

within these limits. However, knowing these limits for a particular robot a priori, is

13



CHAPTER 3. CAPABILITY MODELS

Algorithm 2 Refine(CNTX, COMM, OUT, E, p(θ), ATT, Q, Observations, RThEx,
RThIn)

1: ATTIn← {}
2: CNTXEx← {}
3: SIT← CNTX ∪ COMM
4: θT ←

∫
θ
θp(θ)dθ

5: for O ∈ OUT do
6: ATTIn[O]← [ ]
7: CNTXEx[O]← [ ]
8: for AO

j ∈ ATT[O] do . ATT[O] ≡ ATTO

9: for S ∈ Domain(SIT) do
10: from Observations
11: compute Domainvalid(AO

j |S), P (AO
j |S) and P (O|AO

j , S)

12: P (O|S)←
∑

a∈Domainvalid (AO
j |S)

P (o|AO
j = a, S)P (AO

j = a|S)

13: I(O; AO
j |S)← H(P (O|S))−

∑
a∈Domainvalid (AO

j |S)

H(P (O|AO
j = a, S))P (AO

j = a|S)

14: R(O; AO
j |S)← I(O;AO

j |S)

min
(
H(P (O|S)),H(P (AO

j |S))
)

15: if R(O; AO
j |S) > RThIn then

16: ATTIn[O].append(AO
j )

17: break
18: for CNi ∈ CNTX such that (CNi,O) ∈ E do
19: count ← 0
20: for S ∈ Domain(SIT \ CNi) do

21: P (O|S)←
∑

c∈Domain(CNi)

PθT (O|CNi = c, S)P (CNi = c)

22: I(O; CNi)← H(P (O|S))−
∑

c∈Domain(CNi)

H(PθT (O|CNi = c, S))P (CNi = c)

23: R(O; CNi|S)← I(O;CNi|S)

min
(
H(P (O|S)),H(P (CNi))

)
24: if R(O; CNi|S) > RThEx then
25: break
26: count ← count + 1

27: if count == |Domain(SIT \ CNi)| then
28: CNTXEx[O].append(CNi)

29:

30: ATT, CNTX, Q, E, p(θ), Observations ← UpdateDependence(ATTIn, CN-
TXEx, ATT, CNTX, Q, E, p(θ), Observations)

31:

32: return ATT, CNTX, Q, E, p(θ), Observations
14



CHAPTER 3. CAPABILITY MODELS

very difficult. We present a method to incorporate continuous variables in Capability

Models by finding the appropriate discretization through experiments.

We assume continuous variables in a Capability Model, if any, belong to the set SIT.

All the attribute variables ATTO∀O ∈ OUT are discrete. For a continuous variable X

in the model, Domain(X) is an interval (Xmin,Xmax) where Xmin and Xmax are finite

and are known a priori. An increasing sequence of cutpoints2 UX = (uX
1 , · · · , uX

n ),

demarcates the ranges of X. Discretization of X is a function DUX : Domain(X)→ Z

(Eq. (3.7)), which maps values of X to an integer label corresponding to the appropriate

range. For accommodating X in a Capability Model, we treat it as a discrete variable

that can take values in the image of DUX . We further assume the robot’s performance

(distribution of outcome) can be captured using an optimal discretization DU?X as in

Eq. (3.8), where Pi are Multinomial distributions. Our objective is to find sequence

U?X for every continuous variable X, while learning the conditional probabilities.

DUX(x) =



0 if Xmin < x ≤ uX
1

...
...

i if uX
i < x ≤ uX

i+1
...

...

n if uX
n < x < Xmax

(3.7)

P (OUT|X) =



P0 if DU?X(X) = 0
...

...

Pi if DU?X(X) = i
...

...

Pm if DU?X(X) = m

where Pi 6= Pi+1 (3.8)

We start with a single range for every continuous variable X in the model, i.e.

UX is empty and DUX(x) = 0 ∀x ∈ Domain(X). In each experiment, Algorithm

1 (Section 3.2.1) returns a Query, then we sample values for continuous variables

from the respective ranges chosen in the Query. For each X, we maintain a list

of observations LX = [· · · , (xj,Outcomej, Situationj), · · · ], where xj ∈ Domain(X)

and, Outcomej and Situationj are as defined in Section 3.2. LX is a sorted list in

2We call uX
i ∈ Domain(X) as cutpoints because they cut Domain(X) into several ranges.

15



CHAPTER 3. CAPABILITY MODELS

increasing order of xj. Once we have sufficient observations in LX, we use these

xjs in determining the appropriate cutpoints to include in UX. We adopt a greedy

approach to incrementally build UX. We consider points mid-way3 between xj and

xj+1 as candidate cutpoints to add to UX. We add a candidate to UX to generate

the sequence UX. CutValue(UX,UX), as defined in Eq. (3.9), determines how good

a candidate cutpoint is. In Eq. (3.10), Domain(SIT|UX) is the set of all possible

Situations when variable X ∈ SIT is discretized using the sequence UX. If the highest

CutValue is greater than a threshold CutValueTh, we add the cutpoint corresponding

to this value to UX (Algorithm 3, Lines 11-25).

CutValue(UX,UX) =
∑

O∈OUT

(
I(O; SIT|UX)− I(O; SIT|UX)

)
(3.9)

I(O; SIT|UX) = H(P (O))−∑
Situation∈Domain(SIT|UX)

H(P (O|Situation,UX))P (Situation|UX) (3.10)

The principle of Minimum Description Length is often used for determining suitable

discretizations in classification problems [4] and while learning Bayesian Networks

[7]. These approaches use the information gain, similar to the CutValue defined in

Eq. (3.9), to compute discretizations that generate the most compact representation

for the observed data. Our objective was to identify a discretization that induces

conditional distributions as described in Eq. (3.8). Appendix 7.1 discusses how

CutValue is a suitable metric for identifying such a discretization.

Algorithm 4 combines the active experimentation approach (Algorithm 1), the

model refinement method (Algorithm 2) and the discretization routine (Algorithm 3)

to learn a Capability Model. It takes as input an initial guess of the model (CNTX,

COMM, OUT, ATT, the set of edges E and prior p(θ)) and returns a learned model.

Attributes (Algorithm 4, Line 9) is an instantiation of ∪O∈OUTATTO. CONT is the

set of continuous variables and Continous (Algorithm 4, Line 10) is an instantiation

for this set.

3Any point in the interval (xj , xj+1) is an equally valid candidate. We choose to use the midpoint.

16



CHAPTER 3. CAPABILITY MODELS

Algorithm 3 Discretize(U, CONT, CNTX, COMM, OUT, p(θ), Observations,
CutValueTh)

1: SIT← CNTX ∪ COMM
2: for X ∈ CONT do . CONT is the set of continuous variables.
3: UX ← U[X] . U← ∪X∈CONT{X : UX}
4: θT ←

∫
θ
θp(θ)dθ

5: CutValuemax ← −∞
6: for O ∈ OUT do
7: I(O; SIT|UX)← H(PθT (O))−

∑
S∈Domain(SIT|UX)

H(PθT (O|S,UX))PθT (S|UX)

8: from Observations
9: compute LX

10: for j ∈ {0, · · · , length(LX)− 2} do
11: u← (LX[j][0] + LX[j + 1][0])/2 . LX[j] = (xj,Outcomej, Situationj)
12: UX ← AddToSequence(UX, u)
13: from LX and UX

14: compute P (O|S,UX) ∀O ∈ OUT,∀S ∈ Domain(SIT|UX)
15: compute P (S|UX), ∀S ∈ Domain(SIT|UX)
16: for O ∈ OUT do
17: I(O; SIT|UX)← H(PθT (O))−

∑
S∈Domain(SIT|UX)

H(P (O|S,UX))P (S|UX)

18: CutValue(UX,UX)←
∑

O∈OUT

(
I(O; SIT|UX)− I(O; SIT|UX)

)
19: if CutValue(UX,UX) > CutValuemax then
20: CutValuemax ← CutValue(UX,UX)
21: umax ← u

22:

23: if CutValuemax > CutValueTh then
24: UX ← AddToSequence(UX, umax)
25: U, p(θ),Observations← UpdateDiscretization(UX,U, p(θ),Observations)

26:

27: return U, p(θ),Observations

17



CHAPTER 3. CAPABILITY MODELS

Algorithm 4 LearnModel (CNTX, COMM, OUT, E, p(θ), ATT, Q, CONT,
maxIter, RThIn, RThEx, CutValueTh)

1: Observations← [ ]
2: U← { }
3: for X ∈ CONT do . CONT is the set of continuous variables.
4: U[X]← () . U← ∪X∈CONT{X : UX}
5: i← 0
6: while i < maxIter do
7: i← i+ 1
8: Query ← BestQuery(p(θ), Q)
9: Attributes ← SampleAttributes(ATT) . ATT← ∪o∈OUT{o : ATTo}

10: Continuous ← SampleContinuous(CONT, U, Query)
11: Outcome, Situation ← Experiment(Query, Continous, Attributes)
12: p(θ)← UpdateDistribution(p(θ), Situation, Outcome)
13: Observations.append((Continuous,Outcome, Situation,Attributes))
14:

15: ATT, CNTX, Q, E, p(θ), Observations ← Refine(CNTX, COMM, OUT, E,
p(θ), ATT, Q, Observations, RThEx, RThIn)

16:

17: U, p(θ), Observations ← Discretize(U, CONT, CNTX, COMM, OUT, p(θ),
Observations, CutValueTh)

18:

19: V← CNTX ∪ COMM ∪OUT
20: G← (V,E)
21: return (G,U, p(θ))

18



CHAPTER 3. CAPABILITY MODELS

3.3 Quantifying Capabilities

To determine how well a robot performs a task in different scenarios, we need a

reference that indicates the expected performance and, a metric that quantifies how the

robot fares against this standard. We assume the reference for task T is a distribution

of the outcome variables conditioned on the commands i.e. P T
ref(OUT|COMM). Eq.

(3.11) shows a possible reference for the BallKick task (Section 3.1).

PBallKick
ref (KDo|KDc,Position) =

{
1 if KDo = KDc

0 otherwise
(3.11)

This reference implies that a robot is expected to always kick in the commanded

direction. Score(Context), defined in Eq. (3.13), denotes how well a robot fares at

a task T in certain Context. Lower values indicate poor performance. We use the

Score to identify favourable Contexts for the robot to perform a task.

Mismatch(Context) =

∑
Command

DKL

(
P T

ref(OUT|Command)||PθT (OUT|Situation)
)

4,5

|Domain(COMM)|
(3.12)

Score(Context) =
1

1 + Mismatch(Context)
(3.13)

4 Situation = Context ∪ Command (Section 3.2). Thus Mismatch is a function of the Context.
|Domain(COMM)| is the number of possible Commands.

5PθT
is the distribution parameterized by θT . For a task T , θT is defined in Eq. (3.4)

19



CHAPTER 3. CAPABILITY MODELS

20



Chapter 4

Role Of Appearance

We set out to develop an algorithm that can be used by humans as a tool for

determining a robot’s capabilities, i.e., the tasks the robot can perform and its

strengths and limitations at these tasks. In Chapter 3, we introduced an algorithm

for building a model of a robot’s ability to carry out a particular task. However, our

algorithm requires a guess of the model to initiate the learning process. How do we

generate this guess? Moreover, for a new unknown robot, how do we identify the

different tasks that it can perform?

We address these issues in this chapter.

4.1 Which tasks to test?

Robots are usually designed based on the functions they are required to perform.

Therefore, a robot’s appearance can provide rich cues about its capabilities. Asking a

human for suggestions can be a possible approach to identify candidate tasks to test.

However, for a naive user this may be quite difficult. Moreover, humans some times

have unrealistic expectations from a robot [13]. Instead of relying on human input, we

assume we have a database of reference robots whose capabilities are known. These

may be robots that we have tested in the past. Furthermore, we assume that visually

similar robots have similar capabilities. For a new robot, known capabilities of the

visually closest reference robot can provide candidate tasks to test. We identified four

visually distinct robots (Fig. 4.1) with known capabilities (Table 4.1) as reference

21



CHAPTER 4. ROLE OF APPEARANCE

(a) Pepper (b) Parrot AR (c) FANUC R-2000iB (d) NAO

Figure 4.1: Reference Robots

robots.

Robot Capabilities

Pepper PickUp

Parrot AR Fly

FANUC R-2000iB PickUp, Catch, Throw

NAO BallKick, PickUp

Table 4.1: List of tasks that each robot in Fig. 4.1 can perform. BallKick is defined
in Section 3.1. The PickUp task entails picking up different objects off a table. The
Catch task involves catching an object thrown towards a robot. The Throw task
involves throwing different objects in a specified direction and Fly involves performing
flying maneuvers at different speeds and wind conditions.

For identifying the visually closest reference robot, we learned an image-similarity

model (Fig. 4.2) which returns a similarity score for a pair of robot images. The

model consists of two components, a neural network which extracts features from

a pair of input images and a Support Vector Machine (SVM) which computes the

similarity score using these features. We created a database of 150 robot images of 4

different categories (Drones, Humanoids, Service Robots and Manipulator Arms) for

training this model, Fig. 4.3. We train the neural network and the SVM separately.

22



CHAPTER 4. ROLE OF APPEARANCE

We first describe our approach to train the neural network and then illustrate the

training method for the SVM.

Figure 4.2: Overview of the image-similarity model.

• Training the Neural Network

We use the same neural network architecture as ResNet-18 [9] and initialize

the weights with the ResNet-18 pre-trained weights. For finetuning, we train

the neural network to classify images from our dataset into the appropriate

category. We use the normalized output of the penultimate layer of our network

as features for an input image. Fig. 4.4 depicts the process. We train the SVM

over the space of these features.

• Training the SVM

We train the SVM to classify pairs of images as positive or negative. A pair

of images is labeled positive if both the images belong to the same category

(Drone, Humanoid, Service Robot or Manipulator Arm), negative otherwise. We

paired images of reference robots with other robots in our dataset to generate

data for training the SVM. We pose the training problem as presented in Eq.

(4.1), where ui and vi are the features of images, and yi ∈ {−1, 1} is the label

for the pair. The formulation is similar to learning a linear SVM for vectors

xi = (ui−vi)� (ui−vi)1 with labels yi. The weights w and bias b in Eq. (4.1)

1a� b denotes elementwise product of a and b. Resultant vector has same dimension as a and b.

23



CHAPTER 4. ROLE OF APPEARANCE

Figure 4.3: Dataset of robot images. It consists of 4 categories of robots namely
Drones, Humanoids, Service Robots and Manipulator Arms.

can be computed using any standard technique to learn an SVM.

Given an image of a new robot, we use the neural network to generate features. We

then use the trained SVM weights (w and b) to measure visual similarity (Eq. (4.2))

with the reference robots. The reference robot that returns the highest similarity

score (Eq. (4.2)) is visually closest to the new robot.

minw,b,ξi(|w|2 + C
∑

i ξi) (4.1)

s.t.
(∑

jw(j)
(
ui(j)− vi(j)

)2
+ b
)
yi ≥ 1− ξi

Similarity(u,v) =
(∑

j

w(j)
(
u(j)− v(j)

)2
+ b
)

(4.2)

We tested our image-similarity model on the images in the dataset not used for

training. If the visually closest reference robot has the same category as the robot

in the test image, we call it a correct match. The trained image-similarity model

achieved an accuracy of 86% on the test set. Fig. 4.5 shows examples of correct

(enclosed in green) and incorrect (enclosed in red) matches.

24



CHAPTER 4. ROLE OF APPEARANCE

Figure 4.4: Approach to train the Neural Network and extract features from images.

4.2 Initialize Capability Models

In Chapter 3, we defined a Capability Model to be a Bayesian Network. The outcomes

of a task (OUT), the commands for a task (COMM) and the extrinsic factors that

affect (CNTX) or may affect (ATTO∀O ∈ OUT) a robot’s ability, constituted the

nodes of this Bayesian Network. The outcomes and commands are part of a task’s

definition. However, we need a set of extrinsic factors for initializing a model. Our

earlier approach of using visually similar reference robots to draw inferences would not

work because even for the same robot the relevant extrinsic factors may be different

if the robot is programmed differently. Consider the BallKick task introduced in

Section 3.1. A robot’s ability would be affected by the size of the ball if it detected a

ball based on size and shape. If the same robot instead used color and shape, the

size of the ball would not make a difference.

We assume a human suggests extrinsic factors for initializing the model. A person’s

suggestions could be based on their prior knowledge about the robot and the task or

from a few preliminary experiments with the robot. We conducted a survey to assess

if people can identify the appropriate factors from a few experiments. In this survey,

we showed participants videos of the NAO and Pepper robots (Fig. 4.6) performing

the BallKick (Section 3.1) and the PickUp tasks respectively.

25



CHAPTER 4. ROLE OF APPEARANCE

(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Examples of matches found by the trained image-similarity model. Green
boxes indicate a correct match where as the red ones indicate an incorrect match.

26



CHAPTER 4. ROLE OF APPEARANCE

As part of the PickUp task, the Pepper picked up different objects off a table.

The different objects can be seen in Fig. 4.6b. The participants were then asked to

answer a few yes/no questions (Tables 4.3 and 4.2). Fig. 4.7 shows a summary of

their responses.

The videos in the survey depicted 2-3 instances of the robot executing a task.

Thy were not informative about how the robot fares at the task in all the different

scenarios. The participant’s responses to the questions were partly based on their

intuition. These intuitions are correct in some cases. The NAO robots have difficulty

in walking over softer terrains and, a lot of participants indicated that the NAO

robot would not be able to kick reliably on different Turfs (Fig. 4.7a). Sometimes

these intuitions are wrong, and thus the model refinement (Section 3.2.2) part of

our algorithm is necessary. In the video for the PickUp task the robot only used its

right arm. As can be seen in Fig. 4.7b, a lot of participants answered that the robot

would not be able to reliably pick up objects with either of its arms, when in fact

it can. Moreover, many participants perceived that the Pepper robot could lift an

object that weighed less than a pound. In reality, the robot has difficulty even lifting

objects that weigh half a pound.

(a) NAO (b) Pepper

Figure 4.6: Robots for experiments

27



CHAPTER 4. ROLE OF APPEARANCE

Factors Question

Color Would the robot be able to kick a ball of any color?

Size Would the robot be able to kick a ball of any size, ranging

from a ping-pong ball to a football?

Turf Would the robot be able to kick reliably on any turf, sand,

grass or synthetic?

Weight Would the robot be able to kick balls of different weights,

ranging from a ping-pong ball to a football?

Position Would the robot be able to kick a ball from different posi-

tions (of the ball with respect to the robot)?

Table 4.2: Survey questions for the BallKick task. Fig. 4.7a depicts the number of
participants that responded with ’No’.

Factors Question

Color Would the robot be able to pick up objects of any color?

Shape Would the robot be able to pick up objects of any shape,

cylindrical, cubical, spherical or prism?

Weight Would the robot be able to pick up any object with weight

less than a pound?

Size Would the robot be able to pick up objects of different

sizes2?

Pose Would the robot be able to pick up objects placed in different

orientations (Horizontal/Vertical)?

SurfaceFinish Would the robot be able to pick up objects with a smooth

surface finish?

Arm Would the robot reliably pick up objects with either of its

arms?

Table 4.3: Survey questions for the PickUp task. Fig. 4.7b depicts the number of
participants that responded with ’No’.

2Not greater than the size of the robot’s palm.

28



CHAPTER 4. ROLE OF APPEARANCE

(a) (b)

Figure 4.7: (a) and (b) show the number of participants that voted for a factor
affecting a robot’s performance at the BallKick and PickUp tasks respectively.

29



CHAPTER 4. ROLE OF APPEARANCE

30



Chapter 5

Experiments

We present results of applying our algorithm in building Capability Models of a NAO

robot (Fig. 4.6a) performing the task of kicking a ball and a Pepper robot (Fig. 4.6b)

picking up different types of objects and clearing them off a table.

5.1 Active vs Passive

We demonstrate the advantages of the active experimentation algorithm through

experiments with the NAO robot. In every experiment the robot was commanded

to kick a ball from a particular position in certain direction. We built a model of

the robot’s ability to kick a ball in the commanded direction through experiments.

However, without knowing the ground truth we cannot say how good the learned

model is. Therefore, we created our own ground truth, i.e. we programmed the

robot to behave according to a predefined model with parameters θpredefined. We

use DKL(Pθpredefined
(OUT)||PθBallKick

(OUT)) to determine how close the learned and

predefined models are. θBallKick is as defined in Eq. (3.4) for the BallKick task. Fig.

5.1 shows the initial guess of the Capability Model.

Passively observing a robot, where you do not control the scenarios in which you

witness it perform a task, is equivalent to randomly picking Situations to test. We

learned a model using our approach and another one by randomly picking Situations.

Fig. 5.2a depicts the Bayesian Network for the predefined model. We experimented

with a single ball on a synthetic turf and thus variables Turf, BallColor and BallSize

31



CHAPTER 5. EXPERIMENTS

KDcPosition BallSize

KDo

Turf

BallColor

(a)

SIT = {KDc, Position},
CNTX = {Turf, BallSize},
COMM = {Position, KDc},
OUT = {KDo},
ATTKDo = {BallSize, Turf, BallColor}

(b)

Position ∈ {LeftSide, Middle, RightSide},
Turf ∈ {Grass, Synthetic, Sand},
BallSize ∈ {Small, Large},
BallColor ∈ {Yellow, Orange},
KDc ∈ {Left, Mid, Right},
KDo ∈ {Left, Mid, Right, None}

(c)

Figure 5.1: Initial guess of the Capability Model for the BallKick task. (a) depicts
the Bayesian Network, (b) shows the type of each variable in the model and, (c)
describes the values each variable can take.

were excluded from the predefined model. A point to note, the experiments were

noisy. In every experiment we picked a Situation to test, sampled a direction from

Pθpredefined
(KDo|Situation) and commanded the robot to kick in this direction. However,

owing to noisy perception and actuation, sometimes the robot kicked in directions

it wasn’t commanded to. Despite noisy experiments the active approach converged

faster, Fig. 5.3a.

5.2 Model Refinement

Here we present results of the model refinement approach applied in conjunction

with the active experimentation algorithm. As before, the robot was programmed

to behave according to a predefined model. Moreover, we initialized the Capability

Model such that the CNTX set included some redundant factors and had a few

relevant ones missing.

32



CHAPTER 5. EXPERIMENTS

KDc

KDo

Position

(a)

KDc

KDo

Position BallSize

(b)

KDcPosition BallSize

KDo

Turf

(c)

Figure 5.2: (a), (b) and (c) depict the Bayesian Networks for the predefined models.
Nodes are as defined in Fig. 5.1c

5.2.1 BallKick Task

We programmed the NAO robot to detect balls of any color but only of a specific

size. KDo would be None if the robot were asked to kick a ball of different size.

On detecting a ball, the robot behaved according to the predefined model described

earlier. Fig. 5.2b depicts the Bayesian Network for the predefined model for this

set of experiments. Fig. 5.1 shows the initial guess of the Capability Model. The

blue curve in Fig. 5.3b illustrates the learning trend for this model. The algorithm

correctly identified the missing variable to be BallSize. Once identified it resets the

conditional probabilities (hence the jump in the trend) and restarts the learning

process with the updated model. To demonstrate that including relevant attributes

yields a model better representative of the robot’s abilities we learned another model

which included BallSize from the start. The green curve in Fig. 5.3b depicts that this

model converged to a lower KL Divergence. Moreover, post refinement the trends for

both models are almost same.

We tested in simulation, how our approach fares as the number of missing attributes

increase. In these experiments, the robot could only detect balls of a certain size and,

33



CHAPTER 5. EXPERIMENTS

(a) (b)

(c)

Figure 5.3: (a), (b) and (c) depict the trend in DKL(Pθpredefined
(KDo)||PθBallKick

(KDo)).
(a) compares the trends when learned actively vs passively. In (b) and (c), blue curves
depict trend for the learned models as the algorithm identifies relevant factors to
include, red points mark the instances when a new variable is added and green curves
depict the trend if the model were initialized with the right variables.

it’s ability to kick differed on different turfs, i.e., BallSize and Turf were the missing

relevant variables. Fig. 5.2c depicts the Bayesian Network for the predefined model.

To simulate noisy experiments we sampled KDo uniform randomly 10% of the time.

We performed multiple runs and, the results in Fig. 5.3c demonstrate that including

all the relevant variables gives a better model. More the number of missing variables,

more the number of experiments needed to identify them all. Moreover, it becomes

progressively harder. As a variable gets included in the model, possible Situations

increase. We only consider the distributions of O conditioned over values of AO
j

that have been observed more than a certain number of times in a Situation while

34



CHAPTER 5. EXPERIMENTS

evaluating R(O; AO
j |Situation) (Eq. (3.5)). The active learning algorithm avoids

repeating Situations and, thus it becomes incrementally harder to identify relevant

variables.

Size

Pick

Shape Weight

Arm

Surface

Finish

Object

Pose

Object

Color

(a)

SIT = {ObjectPose, SurfaceFinish, Arm}
CNTX = {ObjectPose, SurfaceFinish},
COMM = {Arm}
OUT = {Pick},
ATTPick = {Shape, Size, Weight}

(b)

Arm ∈ {Left, Right},
Shape ∈ {Sphere, Cuboid, Cylinder, Pyramid},
Size ∈ {Small, Large},
ObjectPose ∈ {Horizontal, Vertical},
ObjectColor ∈ {Red, Green, Blue},
SurfaceFinish ∈ {Smooth, Rough},
Weight ∈ {Light, Heavy},
Pick ∈ {Success, Failure},

(c)

Figure 5.4: Initial guess of the Capability Model for the Pickup task. (a) depicts the
Bayesian Network, (b) shows the type of each variable in the model and, (c) describes
the values each variable can take.

Size

Pick

Shape Weight

Arm

Figure 5.5: Bayesian Network of the predefined model for the PickUp task. Nodes
are as defined in Fig 5.4c.

35



CHAPTER 5. EXPERIMENTS

5.2.2 PickUp Task

We conducted additional experiments in simulation at the PickUp task. In each

experiment, the robot was commanded to pick up an object with one of its arms.

Objects could have one of four different shapes, namely spherical, cuboidal, cylindrical

and pyramidal. We experimented with two sets of weights and two sizes for each

shape. The robot could reliably pick up spherical and cuboidal objects of the smaller

size and lighter weight. Fig. 5.4 depicts the initial guess of the Capability Model and

Fig. 5.5 presents the Bayesian Network corresponding to the predefined model.

Figure 5.6: Trend in DKL

(
Pθpredefined

(Pick)||PθPickUp
(Pick)

)
. The blue curves depict the

trend for the learned models as the algorithm identifies relevant factors to include and
the redundant ones to discard, red points mark the instances when a new variable is
added, yellow points mark the instances when a variable is removed and the green
curves depict the trend if the model were initialized with the right set of variables.

The algorithm correctly identified the relevant missing variables (Weight, Shape

and Size) and discarded the redundant ones (ObjectPose and SurfaceFinish). The

green curves depict the learning trends when the model was initialized with the right

set of variables. Sometimes the algorithm spuriously incorporated redundant variables

and thus we see spikes in some of the green curves. We conducted 60 runs and about

93% of the time the algorithm converged to the right model.

36



CHAPTER 5. EXPERIMENTS

5.3 Putting It All Together

We tested in simulation how the model refinement approach, the discretization routine

and the active learning algorithm perform together. We performed experiments at the

PickUp task. The robot was skilled at picking up objects of spherical and cuboidal

shapes. It could lift objects of the smaller size and those that weighed less than half

a pound. Fig. 5.7 represents the true Capability Model for this simulated robot.

Size

Pick

Shape Weight

Arm

(a)

SIT = {Size, Shape, Weight, Arm}
CNTX = {Size, Shape, Weight},
COMM = {Arm}
OUT = {Pick}, ATT = {}

(b)

Arm ε {Left, Right},
Shape ∈ {Sphere, Cuboid, Cylinder, Pyramid},
Size ∈ {Small, Large},
Weight ∈ {Light :[0,0.5], Heavy :[0.5,1]},
Pick ∈ {Success, Failure},

(c)

Figure 5.7: Capability Model of the simulated robot for the PickUp task. (a) depicts
the Bayesian Network, (b) shows the type of each variable in the model and, (c)
describes the values each variable can take.

We performed multiple runs of our algorithm with two different initial model

guesses. Fig. 5.9a and 5.9b illustrate the results. Curves in blue show the learning

trends when initialized with the model shown in Fig. 5.8. The curves in green depict

the learning trends when the initial guess of the model includes the right set of

variables with the appropriate discretization. Almost 80% of the time the algorithm

correctly identifies all the relevant variables to include, the redundant variables to

discard and the appropriate discretization for the variables in the model. However,

20% of the times, the algorithm either misses to discard a redundant variable, or is

unable to identify a missing relevant variable, or fails to find the right discretization.

37



CHAPTER 5. EXPERIMENTS

Size

Pick

Shape

Weight

Object

Color

Surface

Finish

Arm

Object

Pose

(a)

SIT = {ObjectPose, SurfaceFinish, Weight, Arm}
CNTX = {ObjectPose, SurfaceFinish, Weight},
COMM = {Arm}
OUT = {Pick}, ATT = {Size, Shape, ObjectColor}

(b)

Arm ∈ {Left,Right},
Shape ∈ {Sphere, Cuboid, Cylinder, Pyramid},
Size ∈ {Small, Large},
ObjectPose ∈ {Horizontal, Vertical},
ObjectColor ∈ {Red, Green, Blue},
SurfaceFinish ∈ {Smooth, Rough},
Weight ∈ {W:[0,1]},
Pick ∈ {Success, Failure},

(c)

Figure 5.8: Initial guess of the Capability Model for the PickUp task. (a) depicts the
Bayesian Network, (b) shows the type of each variable in the model and, (c) describes
the values each variable can take.

(a) Learning trends for runs that converged
to the correct model

(b) Learning trends for runs that converged
to an incorrect model

Figure 5.9: (a) and (b) depict the trend in DKL(Pθpredefined
(KDo)||PθPickUp

(KDo)). The
curves in blue depict the trends for the learner’s model as it identifies the relevant
factors, red points mark instances when a new variable is added, yellow points mark
instances when a variable is removed from the model and purple points mark instances
when a cutpoint is chosen for a continuous variable. The curves in green depict the
trend if the model were initialized with the right variables.

38



CHAPTER 5. EXPERIMENTS

5.4 Quantifying Capabilities

We programmed a Pepper robot (Fig. 4.6b) to detect and pickup objects of three

shapes viz. spherical, cuboidal and cylindrical. We experimented with two sets of

weights and two sizes for each shape (in total 12 types of objects). Fig. 5.10 depicts

the Capability Model of Pepper at the PickUp task. A Context (Size, Shape and

Weight) denotes an object type. In every experiment Pepper was asked to pick up a

particular type of object with one of its arms.

Size

Pick

Shape Weight

Arm

(a)

SIT = {Shape, Size, Weight, Arm}
CNTX = {Shape, Size, Weight},
COMM = {Arm}
OUT = {Pick}, ATTPick = {}

(b)

Arm ∈ {Left, Right},
Shape ∈ {Sphere, Cuboid, Cylinder},
Size ∈ {Small, Large},
Weight ∈ {Light, Heavy},
Pick ∈ {Success, Failure},

(c)

Figure 5.10: Capability Model for the Pickup task. (a) depicts the Bayesian Network,
(b) shows the type of each variable in the model and, (c) describes the values each
variable can take.

We performed 2 trials with 70 experiments each to learn the conditional probability

tables associated with the Capability Model. We computed Score, as defined in Eq.

(3.13), for each object type using the reference PPickUp
ref defined in Eq. (5.1). We

identified object types with score higher than a threshold at the end of both trials, as

favourable for Pepper to pickup.

PPickUp
ref (Pick |Arm) =

{
1 if Pick = Success

0 otherwise
(5.1)

39



CHAPTER 5. EXPERIMENTS

Having knowledge of the scenarios a robot is well suited for could help in a collaborative

task. To demonstrate this, we employed the robot along with a human to clear a

cluttered table. In every experiment, the human cleared all but 4 objects off the

table and, the robot had to clear the rest. The robot was allowed 3 tries per object

(12 in total). We performed such experiments in two settings. In the first setting,

the human randomly selected objects for the robot to pick up and in the second, the

human only selected objects of favourable types. We conducted 5 experiments in

each setting. Table 5.1 summarizes the results.

Settings Number of objects cleared Number of tries

Objects of any type 1.8 ± 0.98 8.8 ± 1.7

Objects of favourable types 3.4 ± 0.49 6.6 ± 1.2

Table 5.1: Results of the clear-the-table task (µ± σ) after 5 experiments per setting.

Performance at the task is better in terms of number of tries as well as number of

objects cleared, when the robot is employed in a favourable scenario.

5.5 Summary

The contributions of this thesis can be summarized as follows

• We presented Capability Model, a framework to capture a robot’s ability to

perform a task. This framework incorporates uncertainity inherent to physical

systems (robots) as well as the effect of extrinsic factors on a robot’s capability.

• We developed an algorithm to build Capability Models from active experi-

mentation. Our algorithm identifies relevant extrinsic factors from a list of

possibilities. Moreover, it quantifies the robot’s ability to accomplish the task

in different settings of these factors.

• We introduced a metric to identify favourable scenarios for deploying a robot

to carry out a particular task.

• We illustrated a method for drawing inferences from a robot’s appearance

about the different tasks it can potentially perform. Our algorithm for building

Capability Model for a task requires a list of possibly relevant extrinsic factors.

We proposed requesting a human to provide this list. We discussed results of a

40



CHAPTER 5. EXPERIMENTS

survey we conducted to evaluate how accurately people identify extrinsic factors

that affect a robot’s capability at a task.

A video describing our work can be found here.

41

https://youtu.be/_9fm3U80vHE


CHAPTER 5. EXPERIMENTS

42



Chapter 6

Conclusions and Future Work

As robots become increasingly multifunctional, it becomes difficult to ascertain what

tasks they can perform and how good they are at those tasks. To the best of our

knowledge, inferring capabilities from appearance and active experimentation is a

novel problem. We proposed a method to build models of a robot’s capabilities and

presented experiments with a NAO and a Pepper robot performing two different tasks.

We demonstrated the utility of such models in working collaboratively with a robot.

Some interesting future directions are as follows,

• Robots are capable of learning new skills and adapting to new scenarios over

time. However, there are certain limitations a robot can never learn to overcome.

For example, a robot can learn new ways to grasp enabling it to pick up a wider

range of objects but, it can never lift anything that weighs beyond its physical

limitations. How do we incorporate this knowledge into our learning routine or

learn to identify factors that are intrinsically limiting?

• A robot’s spec sheet presents information about the sensors and actuators used

to build the robot. This information can be useful in determining the tasks a

robot can perform and its physical limitations (Field of view, sensing range,

actuation limits, etc.). How do we utilize this information in building models?

• We assumed that experimenting with a robot in any Situation has the same

cost. Depending on the task, this may be quite far from reality. How do we

learn models in such scenarios?

43



CHAPTER 6. CONCLUSIONS AND FUTURE WORK

44



Chapter 7

Appendix

7.1 CutValue Maximization

Consider a simple network as shown in Fig. 7.1. Without loss of generality as-

sume Domain(X) = (0,1). Furthermore, U?X = (u?X1 , · · · , u?Xm ) and, P (O|X) =

Pi if DU?X(X) = i such that Pi 6= Pi+1. We show that cutpoints in U?X are local

maximas of CutValue (Section 3.2.3, Eq. (3.9)). Therefore, the sequnce UX built by

greedily picking cutpoints based on their CutValue is infact U?X.

X

O

Figure 7.1: Example Bayesian Network. X is continuous and O is discrete.

Assume UX = (). Consider a cutpoint u ∈ (u?Xj , u?Xj+1) and the subsequent sequence

UX obtained after adding u to UX.

45



CHAPTER 7. APPENDIX

CutValue(UX,UX) = I(O; X|UX)− I(O; X|UX) (7.1)

=

∫
X

H(P (O|X,UX))P (X|UX)−
∫
X

H(P (O|X,UX))P (X|UX)

=

∫
X

H(P (O|X,UX))P (X|UX)− F (u) (7.2)

F (u) =
∫

X
H(P (O|X,UX))P (X|UX) is the only term that depends on UX = (u),

F (u) = H(P (O|X ≤ u))P (X ≤ u) +H(P (O|X > u))P (X > u)

= H(P (O|X ≤ u))u+H(P (O|X > u))(1− u) (7.3)

From our assumption about the distribution of O, we can simplify H(P (O|X ≤ u))

and H(P (O|X > u)) as follows

P (O|X ≤ u) =

j−1∑
i=0

Pi
(u?Xi+1 − u?Xi )

u
+ Pj

(u− u?Xj )

u
(where u?X0 = 0) (7.4)

P (O|X > u) = Pj
(u?Xj+1 − u)

1− u
+

m∑
i=j+1

Pi
(u?Xi+1 − u?Xi )

1− u
(where u?Xm+1 = 1) (7.5)

Therefore,

F (u) =uH
(∑j−1

i=0 (u?Xi+1 − u?Xi )Pi + (u− u?Xj )Pj

u

)
+ (7.6)

(1− u)H
((u?Xj+1 − u)Pj +

∑m
i=j+1(u?Xi+1 − u?Xi )Pi

1− u

)
In the interval (u?Xj , u?Xj+1), F (u) is concave with the lowest value at either u?Xj or

u?Xj+1. We can show this by considering the following

46



CHAPTER 7. APPENDIX

dF (u)

du
=−

∑
o∈Domain(O)

Pj(o)
[
log
(∑j−1

i=0 (u?Xi+1 − u?Xi )Pi(o) + (u− u?Xj )Pj(o)

u

)
(7.7)

+ log
( 1− u

(u?Xj+1 − u)Pj(o) +
∑m

i=j+1(u?Xi+1 − u?Xi )Pi(o)

)]

dF (u)
du

keeps decreasing as u goes from u?Xj to u?Xj+1. Thus F (u) is minimum (and

the CutValue(UX,UX) maximum) at u = u?Xj or u = u?Xj+1. Here, we considered UX

to be empty however, the approach is exactly the same for a non-empty UX.

Fig. 7.2 shows the CutValue for different possible cutpoints for two different

UX. In this example, U?X = (0.3, 0.6, 0.9). As can be seen, u = 0.3 has the highest

CutValue when UX is empty. When u = 0.3 is incorporated, we still see local maximas

at the true cutpoints. This example demonstrates that greedily picking cutpoints

yields the true sequnce.

Figure 7.2: Trend in CutValue(UX, UX) for two different UX. The dotted lines
indicate u?Xi , U?X = (0.3, 0.6, 0.9)

When the set OUT is not singleton, the analysis is similar

47



CHAPTER 7. APPENDIX

CutValue(UX,UX) =
∑

O∈OUT

I(O; X|UX)− I(O; X|UX)

=
∑

O∈OUT

(∫
X

H(P (O|X,UX))P (X|UX)−∫
X

H(P (O|X,UX))P (X|UX)
)

(7.8)

As O ∈ OUT are independent given X, P (OUT|X) = ΠO∈OUTP (O|X). Therefore,

H(P (OUT|X,UX)) =
∑

O∈OUTH(P (O|X,UX)).

CutValue(UX,UX) =

∫
X

H(P (OUT|X,UX))P (X|UX)−
∫
X

H(P (OUT|X,UX))P (X|UX)

=

∫
X

H(P (OUT|X,UX))P (OUT|UX)− F (u) (7.9)

When the set OUT has additional dependencies, the analysis is not that simple.

48



Chapter 8

Bibliography

[1] Adrien Baranès and Pierre-Yves Oudeyer. R-iac: Robust intrinsically motivated
exploration and active learning. IEEE Transactions on Autonomous Mental
Development, 1(3):155–169, 2009. 2

[2] Adrien Baranes and Pierre-Yves Oudeyer. Active learning of inverse models with
intrinsically motivated goal exploration in robots. Robotics and Autonomous
Systems, 61(1):49–73, 2013. 2

[3] Anthony Dearden, Yiannis Demiris, LP Kaelbling, and A Saffotti. Learning
forward models for robots. IJCAI-INT JOINT CONF ARTIF INTELL. 2

[4] Usama Fayyad and Keki Irani. Multi-interval discretization of continuous-valued
attributes for classification learning. 1993. 3.2.3

[5] S. Forestier and P. Y. Oudeyer. Modular active curiosity-driven discovery of
tool use. In 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 3965–3972, Oct 2016. doi: 10.1109/IROS.2016.7759584.
2

[6] Sébastien Forestier, Yoan Mollard, and Pierre-Yves Oudeyer. Intrinsically mo-
tivated goal exploration processes with automatic curriculum learning. CoRR,
abs/1708.02190, 2017. URL http://arxiv.org/abs/1708.02190. 2

[7] Nir Friedman, Moises Goldszmidt, et al. Discretizing continuous attributes while
learning bayesian networks. 3.2.3

[8] Yolanda Gil. Learning by experimentation: Incremental refinement of incomplete
planning domains. In Proceedings of the Eleventh International Conference on
International Conference on Machine Learning, ICML’94, pages 87–95, San
Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc. ISBN 1-55860-
335-2. URL http://dl.acm.org/citation.cfm?id=3091574.3091586. 2

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

49

http://arxiv.org/abs/1708.02190
http://dl.acm.org/citation.cfm?id=3091574.3091586


Bibliography

In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, June 2016. doi: 10.1109/CVPR.2016.90. 4.1

[10] S. Hfer and O. Brock. Coupled learning of action parameters and forward models
for manipulation. In 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 3893–3899, Oct 2016. doi: 10.1109/IROS.
2016.7759573. 2

[11] James J. Gibson. The theory of affordances chapt. 8., 01 1977. 2

[12] Michael I Jordan and David E Rumelhart. Forward models: Supervised learning
with a distal teacher. Cognitive science, 16(3):307–354, 1992. 2

[13] Minae Kwon, Malte F Jung, and Ross A Knepper. Human expectations of social
robots. In The Eleventh ACM/IEEE International Conference on Human Robot
Interaction, pages 463–464. IEEE Press, 2016. 4.1

[14] Tom M Mitchell, Paul E Utgoff, and Ranan Banerji. Learning by experimentation:
Acquiring and refining problem-solving heuristics. In Machine Learning, Volume
I, pages 163–190. Elsevier, 1983. 2

[15] Bogdan Moldovan, Plinio Moreno, Martijn van Otterlo, José Santos-Victor,
and Luc De Raedt. Learning relational affordance models for robots in multi-
object manipulation tasks. In Robotics and Automation (ICRA), 2012 IEEE
International Conference on, pages 4373–4378. IEEE, 2012. 2

[16] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor. Learning object
affordances: From sensory–motor coordination to imitation. IEEE Transactions
on Robotics, 24(1):15–26, Feb 2008. ISSN 1552-3098. doi: 10.1109/TRO.2007.
914848. 2

[17] J. Mugan and B. Kuipers. Autonomous learning of high-level states and actions
in continuous environments. IEEE Transactions on Autonomous Mental Devel-
opment, 4(1):70–86, March 2012. ISSN 1943-0604. doi: 10.1109/TAMD.2011.
2160943. 2

[18] Erol Şahin, Maya Çakmak, Mehmet R Doğar, Emre Uğur, and Göktürk Üçoluk.
To afford or not to afford: A new formalization of affordances toward affordance-
based robot control. Adaptive Behavior, 15(4):447–472, 2007. 2

[19] Paul D. Scott and Shaul Markovitch. Experience selection and problem choice
in an exploratory learning system. Machine Learning, 12(1):49–67, Aug 1993.
ISSN 1573-0565. doi: 10.1007/BF00993060. URL https://doi.org/10.1007/

BF00993060. 2

[20] Simon Tong and Daphne Koller. Active learning for parameter estimation in
bayesian networks. In Proceedings of the 13th International Conference on
Neural Information Processing Systems, NIPS’00, pages 626–632, Cambridge,

50

https://doi.org/10.1007/BF00993060
https://doi.org/10.1007/BF00993060


Bibliography

MA, USA, 2000. MIT Press. URL http://dl.acm.org/citation.cfm?id=

3008751.3008842. 3.2.1, 3.2.1

[21] C. Wang, K. V. Hindriks, and R. Babuska. Active learning of affordances for
robot use of household objects. In 2014 IEEE-RAS International Conference on
Humanoid Robots, pages 566–572, Nov 2014. doi: 10.1109/HUMANOIDS.2014.
7041419. 2

51

http://dl.acm.org/citation.cfm?id=3008751.3008842
http://dl.acm.org/citation.cfm?id=3008751.3008842

	1 Introduction
	1.1 Outline

	2 Related Work
	3 Capability Models
	3.1 Definition
	3.2 Building Capability Models
	3.2.1 Active Learning for Bayesian Networks
	3.2.2 Model Refinement
	3.2.3 Incorporating Continuous Variables

	3.3 Quantifying Capabilities

	4 Role Of Appearance
	4.1 Which tasks to test?
	4.2 Initialize Capability Models

	5 Experiments
	5.1 Active vs Passive
	5.2 Model Refinement
	5.2.1 BallKick Task
	5.2.2 PickUp Task

	5.3 Putting It All Together
	5.4 Quantifying Capabilities
	5.5 Summary

	6 Conclusions and Future Work
	7 Appendix
	7.1 CutValue Maximization

	8 Bibliography

