
Foraging, Prospecting, and Falsification -
Improving Three Aspects of Autonomous

Science
P. Michael Furlong
CMU-RI-TR-18-30

May 27, 2018

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Dr. David Wettergreen, Chair

Dr. Jeff Schneider
Dr. Nathan Michael

Dr. David R. Thompson (JPL)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2018 P. Michael Furlong

This work was supported by NSERC, and the following NASA-funded projects: Robotic Investigation of Subsurface
Life in the Atacama Desert (NNX11AJ87G), Reliable Autonomous Surface Mobility (NNX10CF52P), The Mojave
Volatiles Prospector, Resource Prospector, ARADS, ICICLES

Opinions expressed in this document are solely those of the author.

Keywords: Science Autonomy, Exploration-Exploitation, Active Learning, Foraging, Prospect-
ing, Falsification

To my parents, Alice Prim and Michael Furlong

iv

Abstract
Robots exploring the subsurface ocean of Europa, for example, will not have

reliable communications with scientists on Earth. Robots exploring with unreliable
communications must conduct scientific exploration autonomously. Automation of
scientific exploration requires both opportunistic and deliberative decision-making
algorithms.

Opportunistic decision making chooses to investigate events or phenomena which
could not have been anticipated from prior knowledge but which may yield valuable
scientific data. Deliberative decision making uses prior knowledge to plan observa-
tions that increase information. Approaches to deliberative and opportunistic science
autonomy that work in the laboratory may not work in the field.

This thesis presents three algorithms designed to improve the performance of
robots conducting autonomous science investigations. The first algorithm, forag-
ing, improves opportunistic responses by deciding between sampling immediately
available objects or searching for better options. Foraging moves science autonomy
beyond simply responding to matched templates or anomalous data. The work rec-
ognizes that robots may not get to choose which objects they can to sample, but must
deal with what they encounter. Our approach has increased performance in selecting
objects to sample when sampling costs are high, without neglecting opportunities
when sampling costs are low.

The second algorithm addresses how to effectively conduct prospecting without
relying on either arbitrary thresholds or responding to anomalies. Threshold-based
algorithms cannot distinguish between anomalies and true changes in the distribution
driving sensor readings. We present an algorithm that directly poses the question of
whether or not a change has occurred. The change detection algorithm developed in
this thesis encodes a level of confidence that a change has occurred, based on data
collected by the robot. This can improve the efficiency of the investigation.

The third algorithm represents a new approach to information gathering based on
falsification. Recognizing scientists come to missions with hypotheses formulated,
the algorithm uses those hypotheses to choose sampling actions that help determine
which hypothesis is most credible. Prior information gathering approaches consider
one or fewer hypotheses, and focus mainly on sampling the hypotheses’ domain.
We show that our approach biases the belief in hypotheses towards the most credible
one.

The thesis proven in this work is that accounting for operational and environ-
mental context improves science autonomy algorithms. Each of these algorithms
improve components of autonomous science, and thereby the process as a whole.

vi

Acknowledgments
This work was funded by NSERC, as well as a number of NASA-funded projects.

At CMU I was funded by the grants Robotic Investigation of Subsurface Life in the Ata-
cama Desert (NNX11AJ87G) and Reliable Autonomous Surface Mobility (NNX10CF52P).
At NASA my work was funded by the Mojave Volatiles Prospector, Resource Prospector,
ARADS, and ICICLES projects. Completing the work would not have been possible with-
out the support and assistance of many people.

First, my exceedingly patient advisor, David Wettergreen. He has put up with my non-
traditional path through the program, and provided sage guidance. Likewise, my thesis com-
mittee members, Jeff Schneider, Nathan Michael, and David R. Thompson, have graciously
provided valuable insights and shaped this work into a much better version of itself. Red
Whittaker and Reid Simmons also provided valuable advice and criticism.

Thanks to Suzanne Lyons-Muth, Jean Harpley, Sanae Minick, and Lynnetta Miller, who
help make the Robotics Institute work. Thanks also to Chuck Whittaker, Jim Teza, David
Kohanbash, Srinivasan Vijayarangan, and Dom Jonak. They made the robots work.

Second, I must thank everyone at the Intelligent Robotics Group at NASA Ames, in
particular Terry Fong, for his help and counsel. The IRG provided a home away from CMU,
excellent work experiences, and support. Thanks to Linda Kobayashi, Lorenzo Flückiger,
and Vinh To for facilitating the experiment with KRex2 in the Atacama desert. Thanks also
to Brian Glass and the ARADS team for making room in the schedule for that experiment.

Rick Elphic, Tony Colaprete, Mary Beth Wilhelm, Alfonso Davila, Kathryn Bywaters,
and Richard Quinn have very generously explained their instruments, scientific operations,
and provided data. Mark Shirley illuminated the constraints of mission operations.

Michael Dille, Uland Wong, Brian Coltin, Trey Smith, DW, Oleg Alexandrov, and the
rest of the IRG Reading Group provided interesting conversations and conspired on side
projects. I had the good fortune to mentor visiting student Akash Arora and NSRTF Fellows
Steve McGuire and Eugene Fang. Our collaborations have improved my own work.

Third, thanks to my friends and colleagues from CMU. Dave Silver and Melissa Haas,
Dan Munoz, Stephane Ross and Sandra Champagne, Nate and Alyssa Wood, Mark Desnoyer
and Catherine Izard, Scott Moreland and Ashley Kidd, Krzysztof and Monika Skonieczny,
Ed Hsiao, Breelyn Kane-Styler and Alex Styler, Felix Duvallet, and Scott Satkin furnished
good company and advice. Thanks to my officemate Greydon Foil for discussing ideas
and providing majestic photos of the robot, Zoë. Wennie Tabib provided insightful advice
on presenting the work. Special thanks to the dinner train, including but not limited to:
Brian Becker, Heather Jones, Pyry Matikainen, Prasanna Velagapudi, Joydeep Biswas, Ellen
Cappo, Eleanor Avrunin, Brina Goyette, Umashankar Nagarajan, Garratt Gallallagher and
Nora Flum, Heather Justice, Nate Brooks, Rika Antonova, Peter Anderson-Sprecher, Alvaro
Collet Romea, and Siddharth Sannan. They made life in the graduate program fun. Extra
special thanks are due to Rachel Vistein, for unflagging encouragement and support.

Finally, I’d like to thank my family who have been unconditionally supportive. My aunt,
Lt.Cmdr. (retd) Mary Furlong, was a diligent editor. Alain O’Dea helped turn the document
something humans can read. Any remaining language errors are purely my own invention.
My brother, Matthew, provided very direct advice on more than one occasion. And last, but
not least, my parents. I wouldn’t be here without them.

viii

Contents

1 Introduction 1
1.1 Why Automate Science? . 4
1.2 Thesis Statement . 5

1.2.1 Opportunistic Sampling of Discrete Objects (Foraging) - Chapter 3 . . . 6
1.2.2 Opportunistic Sampling In a Scalar Field (Prospecting) - Chapter 4 . . . 7
1.2.3 Global Planning for Hypothesis Falsification - Chapter 5 8

1.3 Scope of Work . 8
1.4 Summary . 10

2 Related Work 11
2.1 Passive Sampling . 11
2.2 Opportunistic Sampling . 13

2.2.1 Opportunistic Sampling of Discrete Objects (Foraging) 14
2.2.2 Opportunistic Science in Fields - Prospecting 19

2.3 Informative Path Planning . 21
2.4 Hypothesis Generation . 26
2.5 Summary . 30

3 Opportunistic Sampling of Discrete Objects (Foraging) 31
3.1 Prior Work . 34

3.1.1 The Secretary Problem . 35
3.1.2 Multi-armed bandits . 35
3.1.3 Optimal Foraging . 36
3.1.4 Opportunistic Science . 36

3.2 Method . 38
3.2.1 Algorithms . 38

3.3 Experiments . 42
3.3.1 Experiment 1 - Uniform Arrival Distribution, Different Underlying Dis-

tributions . 43
3.3.2 Experiment 2 - Skewed Arrival Distribution with Identical Underlying

Distributions . 43
3.3.3 Experiment 3 - Skewed Arrival Distribution with Distractor Object 44
3.3.4 Experiment 4 - Skewed Arrival Distribution with Random Underlying

Distributions . 44

ix

3.3.5 Experiment 5 - Distribution Change . 45
3.4 Results . 45

3.4.1 Experiment 1 Results - Uniform Arrival Distribution, Different Underly-
ing Distributions . 46

3.4.2 Experiment 2 Results - Skewed Arrival Distribution, Identical Underly-
ing Distributions . 47

3.4.3 Experiment 3 Results - Skewed Arrival Distribution with Distractor Object 50
3.4.4 Experiment 4 Results - Skewed Arrival Distribution with Random Un-

derlying Distributions . 52
3.4.5 Experiment 5 Results - Underlying Distribution Change 55

3.5 Discussion . 56
3.6 Summary . 57

4 Opportunistic Sampling in a Scalar Field (Prospecting) 61
4.1 The Mojave Volatiles Prospector Project . 62
4.2 Prior Work . 64
4.3 Method . 74

4.3.1 Algorithms . 74
4.3.2 Execution Time Comparison of SPRT to MCMC-Bayesian Change De-

tection . 81
4.3.3 Experiments . 85
4.3.4 Performance Metrics . 89

4.4 Results . 90
4.4.1 Experiment 1 Results - Effect of Magnitude of Change in the Underlying

Distribution . 92
4.4.2 Experiment 2 Results - Effect of Delay of Change Onset 95
4.4.3 Experiment 3 Results - Real MVP Data 98
4.4.4 Experiment 4 - Effect on Performance in 2D Operations 111

4.5 Discussion . 116
4.6 Summary . 117

5 Global Planning for Hypothesis Falsification 119
5.1 Prior Work . 123
5.2 Method . 127

5.2.1 Belief in Hypotheses . 127
5.2.2 Site Selection Algorithm . 127
5.2.3 Map Generation . 131
5.2.4 Experiments . 132

5.3 Results . 134
5.3.1 Experiment 1 Results - All Good Hypotheses 134
5.3.2 Experiment 2 Results - Mixed Quality Hypotheses 136
5.3.3 Experiment 3 Results - All Bad Hypotheses 138

5.4 Deployment in Chile . 140
5.5 Discussion . 142

x

5.6 Summary . 145

6 Conclusion 147
6.1 Contributions . 147
6.2 Limitations . 149
6.3 Future Work . 150

Appendices 153

A When is autonomy appropriate? 155
A.1 Factors In Selecting Autonomy Algorithms . 155
A.2 One Analysis of the Design Space . 156
A.3 Assessing Complexity of Autonomy . 159
A.4 Summary . 160

B List of Terms 161

C Opportunistic Sampling of Discrete Objects (Foraging) Supplemental Material 163
C.1 Experiment 1 - Uniform Arrival Distribution, Different Underlying Distributions 163
C.2 Experiment 2 - Skewed Arrival Distribution with Identical Underlying Distributions164
C.3 Experiment 3 - Skewed Arrival Distribution with Distractor Object 167
C.4 Experiment 4 - Skewed Arrival Distribution with Random Underlying Distributions170
C.5 Experiment Parameters . 174

D Opportunistic Sampling in a Scalar Field (Prospecting) Supplemental Material 175
D.1 Experiment 1 - Change in Underlying Distribution Rate 175
D.2 Experiment 2 - Effect of Delay of Change Onset 180
D.3 Experiment 3 - Real MVP Data . 181

D.3.1 Data Supporting ROC Curves on MVP Data 181
D.3.2 ROC for Adaptive Threshold Algorithm as a Function of γB 189

D.4 Experiment 4 - Effect on Performance in 2D Operations 190
D.4.1 Results Using Fixed Parameters . 190
D.4.2 Additional Settings of Adaptive Threshold Algorithm 193

D.5 Experiment Parameters . 196
D.6 Ergodic Planning vs AIM Deployment . 198

D.6.1 Method . 198
D.6.2 Results . 202
D.6.3 Discussion . 206

E Falsification Sampling Supplemental Material 209
E.1 Belief Distributions . 209

E.1.1 Experiment 1 - All Good Hypotheses 209
E.1.2 Experiment 2 - Mixed Quality Hypotheses 219
E.1.3 Experiment 3 - All Bad Hypotheses . 229

E.2 Statistical Significance Data . 239

xi

E.2.1 Experiment 1 - All Good Hypotheses 240
E.2.2 Experiment 2 - Mixed Quality Hypotheses 241
E.2.3 Experiment 3 - All Bad Hypotheses . 243

Bibliography 245

xii

List of Figures

1.1 Science as a Process . 1
1.2 Illustration of foraging scenario . 6
1.3 Illustration of prospecting scenario. 7

3.1 A lawnmower, or boustrophedon, trajectory . 32
3.2 Experiments 1.1-1.5 - Foraging vs Greedy, uniform arrival distribution 46
3.3 Experiments 1.1-1.5 - Foraging vs Uniform, uniform arrival distribution 47
3.4 Experiment 2.1 - 2.5 Foraging vs Greedy, unbalanced arrival distribution 47
3.5 Experiment 2.1 - 2.5 Foraging vs Uniform, unbalanced arrival distribution 48
3.6 Experiment 2.6 - 2.9 Foraging vs Greedy, Zipf arrival distribution 49
3.7 Experiment 2.6 - 2.9 Foraging vs Uniform, Zipf arrival distribution 49
3.8 Experiment 3.1-3.4 - Foraging vs Greedy, unbalanced arrival distribution 50
3.9 Experiment 3.1-3.4 - Foraging vs Uniform, unbalanced arrival distribution 51
3.10 Experiment 3.5-3.8 - Foraging vs Greedy, Zipfian arrival distribution 51
3.11 Experiment 3.5-3.8 - Foraging vs Uniform . 52
3.12 Experiments 4.1-4.4 - Foraging vs Greedy, unbalanced arrival distribution 53
3.13 Experiments 4.1-4.4 - Foraging vs Uniform, unbalanced arrival distribution . . . 53
3.14 Experiments 4.5-4.8 - Foraging vs Greedy, Zipfian arrival distribution 54
3.15 Experiments 4.4-4.8 - Foraging vs Uniform, Zipfian arrival distribution 54
3.16 Experiment 5 - Detecting distribution change improves performance. 55
3.17 Region of Algorithm Dominance . 59

4.1 KRex2 in the Mojave desert . 63
4.2 Execution time for SPRT vs MCMC change detection 83
4.3 Change detection performance for SPRT vs MCMC 84
4.4 Example water map simulated from MVP data 88
4.5 Evolution of estimated time change, t̂cp vs time 91
4.6 Experiment 1 - False Negative Rates . 92
4.7 Experiment 1 - False Positive Rates . 93
4.8 Experiment 1 - Mean Error Rate . 94
4.9 Experiment 2 - False Positive Rate . 95
4.10 Experiment 2 - False Negative Rate . 96
4.11 Experiment 2 - Mean Error . 98
4.12 Algorithm Performance on MVP Data from 2014-10-17 99
4.13 Algorithm Performance on MVP Data from 2014-10-18 100

xiii

4.14 Algorithm Performance on MVP Data from 2014-10-19 101
4.15 Algorithm Performance on MVP Data from 2014-10-20 102
4.16 Algorithm Performance on MVP Data from 2014-10-21 103
4.17 Algorithm Performance on MVP Data from 2014-10-22 104
4.18 Algorithm Performance on MVP Data from 2014-10-23 105
4.19 Algorithm Performance on MVP Data from 2014-10-24 106
4.20 Algorithm Performance on MVP Data from 2014-10-25 107
4.21 Experiment 3 - MVP Data ROC Curves . 110
4.22 Experiment 4 - Maxima observed vs AIMs deployed 112
4.23 Curve of Maxima Observed vs AIMs Deployed as Algorithm Parameters Change 115

5.1 Example geological map . 122
5.2 Example true and hypotheses maps . 132
5.3 Exploring Noise-Budget Space with All Good Hypotheses 135
5.4 Exploring Noise-Budget Space with Mixed Quality Hypotheses 137
5.5 Exploring Noise-Budget Space with All Poor Hypotheses 139
5.6 KRex2 in Chile with Icebreaker drill . 140
5.7 Proposed hypotheses used in ARADS deployment 141
5.8 Change in hypothesis belief after drilling . 142
5.9 Number of Samples to Reduce Noise Level to 0.1 143

C.1 Experiment 1 - Uniform vs Always Engage, Unbalanced Arrival Distributions . . 163
C.2 Experiment 1 - Greedy vs Always Engage, Unbalanced Arrival Distributions . . . 164
C.3 Experiment 1 - Foraging vs Always Engage, Unbalanced Arrival Distributions . . 164
C.4 Experiment 2 - Uniform vs Always Engage, Unbalanced Arrival Distributions . . 165
C.5 Experiment 2 - Greedy vs Always Engage, Unbalanced Arrival Distributions . . . 165
C.6 Experiment 2 - Foraging vs Always Engage, Unbalanced Arrival Distributions . . 166
C.7 Experiment 2 - Uniform vs Always Engage, Zipfian Arrival Distributions 166
C.8 Experiment 2 - Greedy vs Always Engage, Zipfian Arrival Distributions 167
C.9 Experiment 2 - Foraging vs Always Engage, Zipfian Arrival Distributions 167
C.10 Experiment 3 - Uniform vs Always Engage, with Distractor Object 168
C.11 Experiment 3 - Greedy vs Always Engage, with Distractor Object 169
C.12 Experiment 3 - Foraging vs Always Engage, with Distractor Object 170
C.13 Experiment 4 - Uniform vs Always Engage, Randomly Assigned Underlying

Distributions. 171
C.14 Experiment 4 - Greedy vs Always Engage, Randomly Assigned Underlying Dis-

tributions. 172
C.15 Experiment 4 - Foraging vs Always Engage, Randomly Assigned Underlying

Distributions. 173

D.1 Adaptive Threshold ROC . 190
D.2 Adaptive Thresold Parameters γB ∈ {45− 55} 194
D.3 Adaptive Thresold Parameters γB ∈ {60− 80} 195
D.4 Trajectory Produced by Algorithms for Water Map 09 203

xiv

D.5 Trajectory Produced by Algorithms for Water Map 05 204
D.6 Average performance of SPRT (s = 8) vs Optimal and Greedy Ergodic planning . 206

E.1 Belief Distributions, All Good Hypotheses, Budget= 25,
P (Error) ∈ {0, 0.01, 0.05, 0.1} . 210

E.2 Belief Distributions, All Good Hypotheses, Budget= 25,
P (Error) ∈ {0.2, 0.3, 0.4, 0.5} . 211

E.3 Belief Distributions, All Good Hypotheses, Budget= 50,
P (Error) ∈ {0, 0.01, 0.05, 0.1} . 212

E.4 Belief Distributions, All Good Hypotheses, Budget= 50,
P (Error) ∈ {0.2, 0.3, 0.4, 0.5} . 213

E.5 Belief Distributions, All Good Hypotheses, Budget= 100,
P (Error) ∈ {0, 0.01, 0.05, 0.1} . 214

E.6 Belief Distributions, All Good Hypotheses, Budget= 100,
P (Error) ∈ {0.2, 0.3, 0.4, 0.5} . 215

E.7 Belief Distributions, All Good Hypotheses, Budget= 150,
P (Error) ∈ {0, 0.01, 0.05, 0.1} . 216

E.8 Belief Distributions, All Good Hypotheses, Budget= 150,
P (Error) ∈ {0.2, 0.3, 0.4, 0.5} . 217

E.9 Belief Distributions, All Good Hypotheses, Budget= 200,
P (Error) ∈ {0, 0.01, 0.05, 0.1} . 218

E.10 Belief Distributions, All Good Hypotheses, Budget= 200,
P (Error) ∈ {0.2, 0.3, 0.4, 0.5} . 219

E.11 Belief Distributions, Mixed Quality Hypotheses, Budget=25,
P (Error) ∈ {0, 0.01, 0.05, 0.1} . 220

E.12 Belief Distributions, Mixed Quality Hypotheses, Budget= 25,
P (Error) ∈ {0.2, 0.3, 0.4, 0.5} . 221

E.13 Belief Distributions, Mixed Quality Hypotheses, Budget= 50,
P (Error) ∈ {0, 0.01, 0.05, 0.1} . 222

E.14 Belief Distributions, Mixed Quality Hypotheses, Budget= 50,
P (Error) ∈ {0.2, 0.3, 0.4, 0.5} . 223

E.15 Belief Distributions, Mixed Quality Hypotheses, Budget= 100,
P (Error) ∈ {0, 0.01, 0.05, 0.1} . 224

E.16 Belief Distributions, Mixed Quality Hypotheses, Budget= 100,
P (Error) ∈ {0.2, 0.3, 0.4, 0.5} . 225

E.17 Belief Distributions, Mixed Quality Hypotheses, Budget= 150,
P (Error) ∈ {0, 0.01, 0.05, 0.1} . 226

E.18 Belief Distributions, Mixed Quality Hypotheses, Budget= 150,
P (Error) ∈ {0.2, 0.3, 0.4, 0.5} . 227

E.19 Belief Distributions, Mixed Quality Hypotheses, Budget= 200,
P (Error) ∈ {0, 0.01, 0.05, 0.1} . 228

E.20 Belief Distributions, Mixed Quality Hypotheses, Budget= 200,
P (Error) ∈ {0.2, 0.3, 0.4, 0.5} . 229

xv

E.21 Belief Distributions, All Poor Hypotheses, Budget= 25,
P (Error) ∈ {0, 0.01, 0.05, 0.1} . 230

E.22 Belief Distributions, All Poor Hypotheses, Budget= 25,
P (Error) ∈ {0.2, 0.3, 0.4, 0.5} . 231

E.23 Belief Distributions, All Poor Hypotheses, Budget= 50,
P (Error) ∈ {0, 0.01, 0.05, 0.1} . 232

E.24 Belief Distributions, All Poor Hypotheses, Budget= 50,
P (Error) ∈ {0.2, 0.3, 0.4, 0.5} . 233

E.25 Belief Distributions, All Poor Hypotheses, Budget= 100,
P (Error) ∈ {0, 0.01, 0.05, 0.1} . 234

E.26 Belief Distributions, All Poor Hypotheses, Budget= 100,
P (Error) ∈ {0.2, 0.3, 0.4, 0.5} . 235

E.27 Belief Distributions, All Poor Hypotheses, Budget= 150,
P (Error) ∈ {0, 0.01, 0.05, 0.1} . 236

E.28 Belief Distributions, All Poor Hypotheses, Budget= 150,
P (Error) ∈ {0.2, 0.3, 0.4, 0.5} . 237

E.29 Belief Distributions, All Poor Hypotheses, Budget= 200,
P (Error) ∈ {0, 0.01, 0.05, 0.1} . 238

E.30 Belief Distributions, All Poor Hypotheses, Budget= 200,
P (Error) ∈ {0.2, 0.3, 0.4, 0.5} . 239

xvi

List of Tables

3.1 Experiment 1 - Parameters for underlying distributions 43
3.2 Experiment 2 - Unbalanced arrival distributions 43
3.3 Experiment 2 - Zipfian arrival distributions . 44
3.4 Experiment 3 - Parameter Settings . 44
3.5 Experiment 4 - Underlying Distributions . 45

4.1 Improvement in performance from adaptive sampling from (Ferri et al., 2010) . . 66
4.2 Analysis of improvement due to adaptive threshold from (Ferri et al., 2010). . . . 67
4.3 Effect size of SPRT vs MCMC . 85
4.4 Experiment 1 - Algorithm Parameters . 86
4.5 Experiment 2 - Algorithm Parameters . 86
4.6 Experiment 3 - Algorithm Parameters . 86
4.7 Experiment 3 - ROC Parameters . 87
4.8 Experiment 4 - Algorithm Parameters . 87
4.9 2D Simulation Exploration Parameters . 89
4.10 Experiment 3 - Performance Summary . 108
4.11 Experiment 3 - Precision and Recall Scores . 108
4.12 Experiment 3 - Precision and Recall Effect Sizes 109
4.13 Experiment 4 - AIMs deployed and maxima observed 113
4.14 Experiment 4 - AIMs deployed and maxima observed effect size 113
4.15 Experiment 4 - AIM effectiveness . 114
4.16 Experiment 4 - Difference in effectiveness and effect size 114

5.1 Similarity of hypotheses to true maps . 133
5.2 Hypotheses used in experiments . 133
5.3 The parameter settings tested in the experiments in this chapter. 133
5.4 Drill Hole Coordinates and Halite Content . 141

A.1 Mission Parameter Decomposition for Autonomy Selection 157

D.1 SPRT 2 vs MemThrehold False Negative Rate 175
D.2 SPRT 4 vs MemThrehold False Negative Rate 176
D.3 SPRT 8 vs MemThrehold False Negative Rate 176
D.4 SPRT 2 vs MemThreshold False Positive Rate 177
D.5 SPRT 4 vs MemThreshold False Positive Rate 177

xvii

D.6 SPRT 8 vs MemThreshold False Positive Rate 178
D.7 SPRT 2 vs MemThreshold Mean Error . 178
D.8 SPRT 4 vs MemThreshold Mean Error . 179
D.9 SPRT 8 vs MemThreshold Mean Error . 179
D.10 SPRT 8 vs MemThreshold False Positive Rate 180
D.11 SPRT 8 vs MemThreshold False Negative Rate 180
D.12 The effect size of the reduction in mean error as the change point is varied. 181
D.13 SPRT - True Positive Rate and False Positive Rate 181
D.14 Memory Threshold - True Positive Rate and False Positive Rate 182
D.15 Relative Change - True Positive Rate and False Positive Rate 182
D.16 Adaptive Threshold NS = 5 - True Positive Rate and False Positive Rate 183
D.17 Adaptive Threshold NS = 10 - True Positive Rate and False Positive Rate 183
D.18 Adaptive Threshold NS = 15 - True Positive Rate and False Positive Rate 184
D.19 Adaptive Threshold NS = 20 - True Positive Rate and False Positive Rate 184
D.20 Adaptive Threshold NS = 25 - True Positive Rate and False Positive Rate 185
D.21 Adaptive Threshold NS = 30 - True Positive Rate and False Positive Rate 185
D.22 Adaptive Threshold NS = 35 - True Positive Rate and False Positive Rate 186
D.23 Adaptive Threshold NS = 40 - True Positive Rate and False Positive Rate 186
D.24 Adaptive Threshold NS = 45 - True Positive Rate and False Positive Rate 187
D.25 Adaptive Threshold NS = 50 - True Positive Rate and False Positive Rate 187
D.26 Adaptive Threshold NS = 55 - True Positive Rate and False Positive Rate 188
D.27 Adaptive Threshold NS = 60 - True Positive Rate and False Positive Rate 188
D.28 Adaptive Threshold ROC Parameters . 189
D.29 Parameters used to produce results in Table D.30 and Table D.31. 191
D.30 Experiment 4 - Maxima observed on Maps by Algorithms 192
D.31 Experiment 4 -AIMs deployed on Maps by Algorithms 193
D.32 Parameters for Ergodic Planning Algorithms . 202
D.33 Maxima observed by ergodic planners in the simulated 2D water maps 205

E.1 Change in Belief, All Good Hypotheses, Budget= 25 240
E.2 Change in Belief, All Good Hypotheses, Budget= 50 240
E.3 Change in Belief, All Good Hypotheses, Budget= 100 240
E.4 Change in Belief, All Good Hypotheses, Budget= 150 241
E.5 Change in Belief, All Good Hypotheses, Budget= 200 241
E.6 Change in Belief, Mixed Quality Hypotheses, Budget= 25 241
E.7 Change in Belief, Mixed Quality Hypotheses, Budget= 50 242
E.8 Change in Belief, Mixed Quality Hypotheses, Budget= 100 242
E.9 Change in Belief, Mixed Quality Hypotheses, Budget= 150 242
E.10 Change in Belief, Mixed Quality Hypotheses, Budget= 200 243
E.11 Change in Belief, All Poor Hypotheses, Budget= 25 243
E.12 Change in Belief, All Poor Hypotheses, Budget= 50 243
E.13 Change in Belief, All Poor Hypotheses, Budget= 100 244
E.14 Change in Belief, All Poor Hypotheses, Budget= 150 244
E.15 Change in Belief, All Poor Hypotheses, Budget= 200 244

xviii

List of Algorithms

2.1 Skeleton of Eurequa Algorithm . 28
2.2 Skeleton of Automatic Statistician Algorithm 29
3.1 Greedy Sampling Strategy . 39
3.2 Uniform Sampling Strategy . 40
3.3 Foraging Sampling Strategy . 41
3.4 Foraging Change Detection . 42
4.1 Schematic of threshold adaption rule . 66
4.2 Threshold change detection . 75
4.3 Memory Threshold change detection . 76
4.4 Adaptive Threshold change detection . 77
4.5 Adaptive threshold update algorithm . 78
4.6 Relative change detection . 79
4.7 SPRT change detection . 81
5.1 Site selection algorthm . 128
5.2 Mutual information domain sampling . 128
5.3 Hypothesis falsifacation reward function . 131
5.4 Map generation algorithm . 132
D.1 Global variables and data structure used in approximately optimal ergodic planner 199
D.2 Approximately Optimal Ergodic Planner . 200
D.3 Rule for Expanding Nodes . 201

xix

xx

Chapter 1

Introduction

A natural end-goal of the project of science autonomy is a fully autonomous robot that conducts
scientific inquiry without human supervision. However, science autonomy is not a single prob-
lem to be solved. In this thesis we demonstrate improvements in different aspects of a robot
scientist by being aware of the operational conditions encountered in field work. We examine
three different aspects of the scientific process in the context of planetary science missions. Be-
fore we discuss the particular subjects of this research, we present the notion of science as a
process, and explain which aspects of that process we are improving.

Experiments

Experiment
Design

Hypotheses

Hypothesis
Generation

Observations Experiment
Selection

Figure 1.1: One view of the scientific process as a cycle. Hypotheses imply experiments
to be conducted. Experiments produce observations. Observations update or produce new
hypotheses.

The automation of the scientific process includes many different activities, but at the min-

1

imum it must include generating hypotheses from data, designing experiments to falsify those
hypotheses, and selecting (and conducting) informative experiments - for whichever measure of
information the experimenter prefers. One can connect these activities in a cycle, as depicted in
Figure 1.1. The activities in the cycle of scientific inquiry act upon three artefacts: hypotheses,
experiments, and observations. We define these terms as follows:
Hypotheses are models of some phenomena. Hypotheses must be falsifiable – the must make

predictions about the world, that are either implicitly or explicitly observable. For example,
a model of the spatial distribution of geologic material predicts that at specific locations
there will be specific mixtures of materials. In this document the words “hypothesis” and
“model” are used interchangeably. To represent it formally, we assume that a hypothesis, h,
maps an input domain, X , to a probability distribution over potential observations, P (Z).
In symbols: h : X → (Z → [0, 1]).

Experiments are actions that the scientist can take that result in observations. It is important to
ensure that these experiments are informative with respect to the hypotheses being tested.
It is also important to ensure that experiments do not reproduce each other unnecessarily.
In this document the word “experiment” and “action” are used interchangeably. In symbols
we write a : X → Z. In this thesis we consider only one kind of experiment, those that
collect an observation, Z, at a given point in the domain of the hypothesis, X .

Observations are the results of experiments. Observations are the data that are used to construct
or update hypotheses. “Observations” and “data” and “samples” are all phrases that will
be used interchangeably in this document. In symbols we would write an observation as
an input-output pair, (x, z), where x ∈ X, z ∈ Z. The ith observation would be (xi, zi). x
and z may be vector-valued, they also may also be random variables.

There is disagreement on which is these artefacts have primacy in the scientific process. Karl
Popper would have us believe that hypotheses are the currency of scientists (Popper, 2005). Ian
Hacking suggests that experiments are the most important object (Hacking, 1983). We suggest
that hypotheses, experiments, and data are all equally necessary components of scientific theory,
without one taking primacy over the others.

Science as a process is an iterative loop that one may join in at any point and that all three
are perfectly valid starting points. Robot scientists will need to manipulate these artefacts when
operating autonomously. Hence, roboticists will need to identify the processes that the robot
scientist use to move between these entities.

The process going from hypotheses to experiments is called Experiment Design. For ex-
ample, mutual information sampling is a type of experiment design. It identifies an action that
can be taken at a given point in the input space of a hypothesis. Mutual information sampling
(Lindley, 1956) also has the advantage of scoring the different candidate actions so they can be
prioritized. Another type of experiment design is random selection (Lind, 1757; Peirce and Jas-
trow, 1884). Random sampling reduces the effect of biases on the selection process and has the
advantage of forcing the experimenter to more thoroughly explore the domain of the hypothesis.

The process going from experiment to observations is called Experiment Selection. It is not
necessarily typical to make a distinction between experiment design and experiment selection.
The distinction we make between experiment design and experiment selection is this: Experi-
ment design asks “of all the possible actions, which ones are informative with respect to the hy-

2

pothesis being tested?”. Experiment Selection asks of “Of all the informative actions, and given
some budget, which is the best collection of actions to take?”. We can sub-classify experiment
selection into groups of reactive and deliberative experiment selection. Both deliberative and
reactive experiment selections can be made with respect to the constraints of mission resources.

We consider opportunistic science to be reactive experiment selection. This is because the
algorithms can determine sampling actions only once opportunities to conduct experiments have
been identified. Reactive sampling actions can only be decided in situ as one does not know what
opportunities to conduct experiments will be encountered before one explores the environment.

Deliberative experiment selection, determines a set of experiments to be conducted, and then
seeks out opportunities to conduct those experiments in the world. Deliberative sampling actions
are planned ahead of time in an attempt to maximize the information gained.

The process going from observations to hypotheses is called Hypothesis Generation. Sim-
ple structured machine learning – i.e. linear regression – is a form of hypothesis generation. It
chooses the hypothesis (weight settings) most likely given the constraints of the data to be ex-
plained and the family of hypothesis (linear functions) specified by the experimenter. Choosing
the structure of the hypothesis is part of the hypothesis generation and so model selection must
also be considered part of the hypothesis generation.

By iteratively engaging in hypothesis generation, experiment design, and experiment selec-
tion, robots can produce and test hypotheses, thereby improving their understanding of the phe-
nomena they are investigating. Science autonomy, then, must include research into systems that
do one or more of experiment design, experiment selection, and hypothesis generation.

In laboratory settings one has to consider the resources that are available to the robot scien-
tist. A limited volume of reagent, for example, may change how one would prioritize different
experiments. If a robot scientist is conducting field work there can be even more constraints.
Limitations on time or power resources affect how far a vehicle can travel in a day, or whether
or not it can backtrack to conduct a follow-up investigation. Noisy sensors complicate the inter-
pretation of data. The robot scientists may not be able to choose which experiments it is able
to conduct. These are some of the conditions which exist outside of the laboratory which add
additional complications to autonomously conducting science.

In this thesis we address two cases of reactive experiment selection/opportunistic science,
which we call “foraging” and “prospecting”, in the context of ground vehicle operations. We
define foraging to be the execution of discrete sampling actions in response to observing discrete
objects in the environment in order to learn those objects’ underlying distributions. We define
prospecting to be the execution of discrete actions in response to observations of a field which
the robot is moving through. We also address an experiment design approach which is based on
the theory of falsification, which we then use to direct global exploration for a lander capable of
re-ignition.

Of course, this is not an exhaustive listening of all the processes that go into science, and
it does not address how multiple robot scientists would coordinate their behaviour. There are
problems of perception, sample collection and manipulation, hypothesis generation, and com-
munication of findings which are not addressed in this thesis.

3

1.1 Why Automate Science?
Having formulated a description of science as a process, we should also address why one would
want to automate science. There are at least three reasons to automate the scientific process. First,
because future flight missions will require it. Second, because human agents demand it. Third,
because it poses a truly unique computational problem. The first two reasons are pragmatic,
while the third is more interesting from a philosophical standpoint.

Future Missions Require Science Autonomy

NASA, and other space faring science agencies, will require autonomous science simply because
of the strain on productivity that communications latency places on missions. The further afield a
robot explorer travels, the lower bandwidth it will have available to communicate back to Earth,
and the greater the latency will become.

Including humans in the decision making loop will require either designing robots to survive
the decision making cycle or forcing scientists to make less nuanced decisions, potentially lead-
ing to less effective missions. Further, with profound delays in communications the likelihood
of serendipitous discovery will drop precipitously.

A reliable autonomous scientist reduces science missions’ reliance on communications links.
If the robot can be treated as a trusted proxy for human scientists then we can send them to
locations that would previously be considered unfeasible or wasteful. We engage in a more
detailed discussion of when autonomy can aid mission operations in Appendix A.

The algorithms developed for space missions of course have applications here on Earth.
Prospecting for resources is an important task whether it is in support of colonies on the Moon
or in support of resource extraction for economic actors on Earth.

Humans Require Science Autonomy

The scientific method is a systematic process of generating quantifiable knowledge. Humans,
who are riddled with cognitive biases, are a problematic component of this process. Confirmation
bias, affirming the consequent, availability bias, and clustering illusions to name a few, interfere
with human ability to conduct scientific inquiry.

The literature on the design of experiments, starting at least as early as (Smith, 1918), is an
attempt build a mathematically rigorous approach to asking questions that ameliorates human
biases. Science autonomy is another step along this path. An illuminating anecdote comes
from Daston and Galison’s book Objectivity (Daston and Galison, 2007, pp.11-13) about Arthur
Worthington’s research into the physics of how water droplets splatter when the hit a surface.

Worthington, through careful observation with his eye and a flashing light, documented how
water droplets would split up upon hitting a hard surface. Circa 1897, he extensively documented
symmetry and regularity in the patterns. The symmetry and beauty of his observations spoke
to their necessary truth. What happened after he introduced photographic apparatus into his
experiments warrants a protracted quotation from (Daston and Galison, 2007):

For years, Worthington had relied on the images left on his retina by the flash.
Then, in spring 1894, he finally succeeded in stopping the droplet’s splash with a

4

photograph. Symmetry shattered. Worthington said, “The first comment that any
one would make is that the photographs, while they bear out the drawings in many
details, show greater irregularity than the drawings would have led one to expect.”
But if the symmetrical drawings and the irregular shadow photographs clashed, one
had to go. As Worthington told his London audience, brighter lights and faster plates
offered “an objective view” of the splash, which he then had drawn and etched [...].
There was a shock in this new, imperfect nature, a sudden confrontation with the
broken particularity of the phenomenon he had studied since 1875. Plunged into
doubt, Worthington asked how it could have been that, for so many years, he had
been depicting nothing but idealized mirages, however beautifully symmetrical.

Like Worthing we must ensure that observations are derived from meaningful, representa-
tive data. We must make sure that they are representing the true underlying statistics of the
phenomenon we are concerned about and not imposing some preconceived notion of truth. If
we cannot trust human perception to be unbiased, can we trust their decision making? Science
autonomy can produce assistive tools for when our rationality fails us.

Science Autonomy is an Interesting Problem

Science autonomy is the mathematisation of the philosophy of science. Scientific inquiry presents
an interesting set of behaviours that are designed to be rational and logical, but that need to be
produced in a reasonable period of time given finite computing resources.

Science autonomy necessarily fuses reason and deduction with symbols grounded in the real
world and in observable quantities. However, unlike other branches of robotics, it is fundamen-
tally important that science autonomy produce information that is human interpretable.

If we contrast science autonomy with other machine learning approaches, there may not be
much utility in producing, for example, a hyperparametric function approximation. Arguably
a collection of measurements could be more valuable to a remote team of scientists. In turn,
this leads to interesting questions about what it means to understand the universe and what are
the limits of human understanding. While this thesis does not address these questions, they do
motivate the field in general.

1.2 Thesis Statement
The work presented in this thesis looks at designing algorithms for science autonomy, with par-
ticular consideration for operations in the field. They are all underpinned by the notion that
accounting for operational and environmental context will improve the performance of sci-
ence autonomy algorithms.

The work in this thesis improves upon the state of the art by improving the level of adaptabil-
ity in algorithms for planetary robotics. We will consider this hypothesis in three settings: Oppor-
tunistic sampling of discrete objects (foraging), Opportunistic sampling in a field (prospecting),
and Experiment design for hypothesis falsification (informative action planning).

We improve foraging algorithms by recognizing that agents do not have random access to
all objects they would like to sample. We improve prospecting algorithms by recognizing that

5

decision thresholds decided a priori do not necessarily work for unknown environments. We
used a decision making process that detects changes in distribution underlying observations with
confidence, in order to make prospecting decisions.

We improve informative action planning by recognizing that scientists come to missions with
pre-existing hypotheses, and we can use them to direct information gathering actions. Motivated
by the concept of falsification, we incorporate the hypotheses into the planning process.

The experiments in this thesis mirror settings from analog and planned science missions. We
extend the state of the art in science autonomy algorithms by considering the missions constraints
from field work.

1.2.1 Opportunistic Sampling of Discrete Objects (Foraging) - Chapter 3
Opportunistic sampling of discrete objects is perhaps best exemplified by robots like NOMAD
and the OASIS/AEGIS system deployed on the Mars rovers. Robots identify something in the
environment – a rock, a strong match with a template – and then decide to sample it. This is very
much a reflexive, stimulus-response sort of behaviour, if an object of interest is identified, then
sample it. The purpose of sampling is to determine the distributions underlying these classes of
discrete objects.

Figure 1.2: An example of a robot which encounters discrete objects in the environment. When
the object, marked by the yellow circle, is far away it may not be identified by the perception
system of the robot. As the robot gets closer to the object it can then be resolved by the
perception system. Finally, as the robot passes the discrete object it no longer can affect the
perception system. Images produced using the Resource Prospector simulator courtesy NASA
Ames Intelligent Robotics Group.

The state of the art algorithms consider the value of these discrete objects to be binary, and
they do not consider the result of sampling these objects. Additionally the state of the art algo-
rithms in both science autonomy and statistical experiment design do not consider the distribution
with which these sampling opportunities are encountered. Approaches from stream active learn-
ing which do model environmental conditions do not consider costs in a manner appropriate for
field operations.

In this chapter we demonstrate that our algorithm, called Foraging, presents an improve-
ment over the practice of always sampling available objects, for large sampling costs. We also

6

demonstrate that the sampling algorithm which uniform distributes samples among object types
performs better than our proposed algorithm for some cost settings, but it also performs worse
than both our algorithm and the algorithm which samples everything it encounters.

The proposed algorithm represents a compromise algorithm which has some of the improve-
ment of the Uniform sampling strategy without losing the advantages of the strategy of always
sampling. We have identified different regimes of sampling and exploration costs which favour
the different algorithms, knowledge which could be used to plan mission sampling strategies.

1.2.2 Opportunistic Sampling In a Scalar Field (Prospecting) - Chapter 4
Opportunistic sampling in a scalar field, or prospecting, is the navigation a space in order to
determine locations considered valuable with respect to an objective function, illustrated in Fig-
ure 1.3. In this chapter we consider robots that deploy discrete actions in response to the readings
from its proxy sensor. A neutron spectrometer, for example, is a proxy sensor for water deposits,
and is slated to be part of the resource prospector mission (Andrews et al., 2014). The neutron
spectrometer will report a reading at any point in the environment, and even subtle changes in
the sensor position can change the readings of the sensor.

Figure 1.3: This image illustrates the notion of prospecting. The transparent versions of the
robot represent previous points in time. For every location the robot passes through the primary
sensor gives a valid reading. The robot has to choose where to deploy a sampling action in the
field.

In practice, autonomous robots conduct prospecting by monitoring the readings from the
prospecting sensor and if the reading crosses a threshold then deploy the sampling action. The
threshold may be on the raw data being reported from the prospecting sensor or it may present in
the form of a threshold in the surprise of a single reading, given a distribution. In either case, the

7

response is to an immediate sensor reading, and not to the belief that a change in the underlying
distribution has occurred.

Our approach is able to detect sub-threshold changes in sensor readings, and does not need
to be tailored to every individual setting. We demonstrate on real-world data from the Mojave
Volatiles Prospector (MVP) project that our algorithm is able to detect sub-threshold distribution
changes that are not detected using the threshold approach. The threshold used in our experiment
was determined for this test site and the data were all collected in the same region. This illustrates
the strength of our algorithm compared to the those used in practice.

The algorithm gives a measure of confidence in the belief that the underlying distribution
has changed, which can be tailored to the risk posture of a mission. It could also let the au-
tonomous scientist judge accordingly how risky an action would be, given mission resources and
constraints. In principle the technique used in this chapter should translate to vector fields as
well, but that application remains for future work.

1.2.3 Global Planning for Hypothesis Falsification - Chapter 5
State of the art in informative path planning focusses on collecting data that can be used to
estimate some unknown function, for example the spatial distribution of subsurface halite in an
environment. The paths are formulated to maximize information gained, for some measure of
information gain. However, these approaches assume that the robots are engaged in exploration
with no or one hypothesis being investigated as part of the mission.

In this chapter we examine the problem of designing experiments, and hence selecting sam-
pling points in 2D space, for a robot collecting observations that are designed to distinguish
which of a set of hypotheses are most likely to be correct. The robot is considering multiple
competing hypotheses about what it would observe at different locations in space, and it needs
to determine sampling locations which have the greatest likelihood of distinguishing between
hypotheses. This is an information gain problem, but instead of trying to maximize information
gained in the distribution over the parameters of one hypothesis, we are attempting to maximize
information gained in the belief over the hypotheses themselves.

Our approach is a sampling based approach that is agnostic of the form of the hypotheses un-
der investigation. As with other sampling-based planning, the approach lends itself to designing
experiments in 2d environments, but also in more abstract mathematical spaces.

We demonstrate that by being aware of the hypotheses under investigation we are able to
determine paths that more readily identify which of a set of hypotheses best explain the data. We
also demonstrated that when none of the hypotheses are “correct” (i.e. a probability of predicting
the observations> 0.5) our proposed algorithm is better at predicting that none of the hypotheses
should be considered.

1.3 Scope of Work
Science autonomy touches on many aspects of robotics and artificial intelligence. Consequently
we feel it is important to clearly demarcate the scope of this work. The problem settings tackled

8

in this thesis are narrowly focused on the author’s work at NASA Ames Intelligence Robotics
Group, although the algorithms developed may have applications outside of the studied domains.

We do not consider perception problems in this thesis. Perception is, in itself, a wide field of
work. We assume that some mechanism capable of identifying discrete objects in the world is
available to our robot scientist. Recent advances in machine learning for perception promise that
even better systems may be available in the future. It would be beneficial, but sample-expensive,
to use samples collected in a science mission to help train a perception system to distinguish
meaningful features in sensor data.

We do not address efficient path planning. For the first two components of the work we as-
sume that a trajectory has already been given to the robot and our algorithms are able to interrupt
that trajectory. Opportunistic science algorithms which are path-agnostic may make less efficient
decisions, but they can be more easily integrated into an existing robot. This situation aligns with
anticipated operations in future NASA missions, where mission planners may wish to determine
long-range trajectories themselves.

This is not to suggest that there is no role for planning algorithms in autonomous space
missions. The work presented in Chapter 3 and Chapter 4 can work in conjunction with existing
trajectory planners. Separating the concerns of the planner from those of the proposed algorithms
reduces the search space a planner must explore, making execution time faster, but possibly at
the cost of performance of the overall system.

In the third component of this thesis we consider a greedy planner. Here our problem setting
is with a landing vehicle that is capable of reignition and visiting multiple sites, and as such does
not pass through intermediate points in the map between goals. While more efficient path plan-
ning would be beneficial, the main purpose of the chapter is to consider the difference between
mutual-information sampling in the domain of the hypothesis and mutual information sampling
in the belief space of a set of hypotheses. Additionally, as this algorithm also has applications to
exploring domains where it is possible to have random access to elements in the domain of the
hypotheses, path planning is not necessarily a meaningful concept.

The work covered in Chapter 5 revolves around the falsification objective, which can be used
by a planner as a reward function. This is a form of mutual information sampling, which helps
resolve which of a set hypotheses is most accurate. This sort of a planner can act as an assistive
tool, helping negotiate mission priorities between competing hypotheses.

From a broader perspective, planners can play an important part of autonomous missions.
The MER rovers employed a variation on the D∗ planner (Maimone et al., 2006). While that is
an example of a planner being deployed tactically on-board an autonomous robot, planners can
also be useful from an strategic mission planning perspective.

Mission planners need to design trajectories for robots to follow, this requires weighing mis-
sion objectives and constraints. This places the burden on operators to think at both a strategic
and a tactical level. We can use automated planners to alleviate this pressure, by letting human
planners design the mission objective function, and having algorithms design the trajectories,
then have the humans accept or reject the proposed trajectory.

Using planning algorithms in this way gives remote science teams a different language for
interaction with robotic systems. It would let them focus on the strategic objectives – maximiz-
ing the science return – and simply evaluate the produced trajectories, modifying the planner’s
objective function until a satisfactory result is returned. This also produces an opportunity for

9

the algorithmic planners to learn the human mission planners’ utility function, in order to better
determine what are and are not acceptable trajectories.

We do not consider multiple communicating robot scientists, nor do we consider hypothesis
generation, summarizing hypotheses and data for human consumption, or prioritizing data for
downlink. We do highlight some approaches to these problems in Chapter 2, but the topics
themselves are outside of the scope of this thesis.

1.4 Summary
We view the scientific process as a collection of tools for designing experiments, conducting
experiments, and using collected data to update or generate new hypotheses. We believe by ac-
counting for operational and environmental context we can improve the performance of some of
these tools. In this thesis we consider two reactive, opportunistic science algorithms, and a third,
deliberative science algorithm which plans actions to determine which of a set of hypotheses are
most likely to be correct.

10

Chapter 2

Related Work

Robots have been involved in collecting scientific information since at least the Voyager probes
(Krimigis et al., 1983). Since then vehicles have used increasing levels of autonomy, as exem-
plified by the robot Zoë from the Life in the Atacama Desert project (Thompson, 2008). In this
chapter we consider robots that have been engaged in field work, specifically planetary science
and underwater exploration.

It should be stressed that while some of the approaches discussed in this chapter are con-
sidered more or less autonomous, this is not meant to be a value judgement of the work. Even
vehicles which ferry instruments in order to collect data, but make no decisions about data col-
lection, can be vital components of an autonomous science mission.

Further, the algorithms covered in this chapter are discussed in a way that strictly considers
the algorithms themselves, and not the concept of operations in which they are embedded. Algo-
rithms may appear to be brittle when considered out of context, but with a remote science team
in the loop the system as whole can be highly capable, and adaptive to the environment.

First we briefly discuss robots which engage in relatively passive data collection. Next we
review work relevant to this thesis, namely opportunistic sampling and informative action se-
lection. Then we review hypothesis generation research, which motivates the falsification-based
informative action selection developed in Chapter 5.

2.1 Passive Sampling
The first robot scientists were simple probes that carried scientific instruments, recorded data
and relayed those data to remote humans. Any decisions about how and where to collect samples
were made off-board the robot. Using robots eliminates risks to human life that would be incurred
by sending humans to explore, not to mention the costs of bringing humans back.

Early examples of these robot scientists include NASA’s Voyager (Krimigis et al., 1977,
1983) and Surveyor (Ezell, 1988, pp 325-331) probes, as well as the Venera (Vakhnin, 1968)
and Vega (Sagdeev and Moroz, 1986) programs. The Vega landers, despite Vega 1 failing during
landing and Vega 2 lasting only 56 minutes on the surface, returned information about the Venu-
sian surface and atmosphere without any intelligence or autonomy (Bertaux et al., 1996; Surkov
et al., 1986). Similarly the Viking landers revolutionized the understanding of the Martian sur-

11

face and hydro-geological processes there (Raeburn, 1998).
Passive sampling methods are by no means obsolete. The Phoenix (Arvidson et al., 2009)

and Philae (Hand, 2014) landers collected data from their respective landing sites, without ever
leaving them. The proposed Titan Mare Explorer was a vehicle which landed on a liquid body
and passively follow its currents (Stofan et al., 2013).

These space exploration missions may not necessarily fit the image one might have of a robot
explorer. A vehicle that makes decisions about where it travels, where it collects samples, and
what it does with those samples once collected seems more appropriate. However, when little is
initially know, collecting any data is valuable. On an alien body one lander can reveal a wealth
of information without needing to be fully autonomous.

More recognizable as a robot, the Dante II robot (Bares and Wettergreen, 1999) demonstrated
the utility of controlled mobility when collecting observations. Dante II was designed to descend
into volcanoes to collect valuable scientific information. Vulcanologists have died collecting
samples from volcanoes. The success of Dante II underscores how robotic scientists can reduce
risks to human life while enabling scientific information gathering.

Kunz et al. (2008) describes operations with two robots, Puma and Jaguar, which conducted
undersea exploration. Puma and Jaguar operated under the Arctic ice sheet as an analogue for
operations on Europa or Enceladus. There the vehicles collected conductivity, temperature, and
depth readings while following a zig-zag pattern covering the surface area of a region under the
ice, as well following an oscillating depth profile while exploring. Trajectory following allowed
the robots to collect the necessary data without human intervention.

Bingham et al. (2010) used robots to conduct deep water archaeology. Their robot follows a
lawnmower pattern, using precise navigation information to co-register a suite of sensor readings
and build accurate maps of underwater archaeological sites. Similarly, the robot developed by
Furgale et al. (2010) uses good motion estimates to register ground penetrating radar with terrain
geometry while following human-defined trajectories. Their algorithm also corrects for the ter-
rain’s topography, improving the sensor’s behaviour. While these robots do not make decisions
about their actions they nevertheless collect valuable and interesting scientific information.

The lawnmower, or boustrophedon, path (LaValle, 2006, §7.6, due to Acar and Choset),
which robots like those in (Bingham et al., 2010; Furgale et al., 2010), follow is a special case
of a space filling curve. Space filling curves are paths that can pass through every point in an
two dimensional region, and have applications in planning for coverage. These curves can also
generalize to higher dimensional spaces.

Spires and Goldsmith (1998) have conducted work into using space-filling curves for geo-
graphic exploration. They note some benefits of efficiency for multi-robot exploration. However,
there are at least two problems with using space filling curves.

The first problem with space filling curves is that they assume an obstacle-free volume. This
is unlikely to be the case in field work, requiring algorithms for decomposing the space into
unoccupied volumes, or more sophisticated planning algorithms.

The second problem with space filling curves, although not necessarily true for the lawn-
mower pattern, is that the robots sometimes move away from the goal while following the curve.
Depending on the probability of robot failures and the mission constraints, this may not be ac-
ceptable.

There are also logistical concerns when using space-filling curves. Choosing the resolution

12

of the space-filling curve a priori does not guarantee a good fit to the spatial resolution of the
underlying phenomenon of interest. Space-filling curves may produce trajectories much longer
than an informative path planner might, wasting time and resources. Informative path planners
gain efficiency over the lawnmower pattern by adapting their sampling to minimize costs.

Despite these shortcomings, it is possible that space-filling curves can satisfy mission re-
quirements, and so they should be considered. In combination with opportunistic science a space
filling curve may be more than adequate. Indeed, the lawnmower pattern is used to great effect
in research such as (Jakuba and Yoerger, 2008) and (Yoerger et al., 2000). The lawnmower path
is still actively used in research, Wilson and Williams (2017) have produced a new means for
building coverage within regions of interest defined by the contours of a Gaussian process re-
gression model the vehicle is learning. Their approach to covering the regions of interest is to
use the lawnmower pattern.

This is a very small sampling of robotic platforms that have been used to collect scientific
data. The important lesson to take here is that these vehicles have provided useful data, and
with a minimum of autonomy. Given the validation and verification overhead costs of using
autonomous systems in flight missions, simple systems that follow space filling curves can be
beneficial and inexpensive. While “simply” collecting data is the first instantiation of robot
explorers it is by no means an outdated methodology. When entering a new environment any
data collected is extremely valuable. Arriving in one location and collecting observations can be
profoundly informative. However, if one has limited sampling resources, then one may need to
consider more complex robots.

2.2 Opportunistic Sampling
A more complex autonomous scientist would be one that can react opportunistically to the phe-
nomena it observes1. Plans generated before exploring a space necessarily cannot account for
unexpected sampling opportunities. Because sampling opportunities encountered can be both
unexpected and scientifically valuable, robot scientists must be able to choose to sample oppor-
tunistically.

In the previous section, it was assumed that sensors were always recording or effectively
free to sample. Since there is no sampling decision to be made, opportunistic sampling is not
required, as all observations will be recorded. However, if there are costs for collecting samples,
or an instrument must be activated, then the robot needs to make decisions about how to spend
its sampling resources. Sampling costs make intelligent opportunistic sampling algorithms a
necessity for robots exploring an unknown environment, and increase the likelihood of making
serendipitous discoveries.

Opportunistic sampling can be decoupled from the trajectory planning process. Viewed
through the window of design of experiment literature opportunistic sampling has parallels in
the Multi-Armed Bandit (MAB) (Robbins, 1952) and Secretary Problem(Ferguson, 1989) litera-
ture.

1While opportunistic sampling algorithms necessarily react to stimuli as they encounter them, the algorithms
themselves are not necessarily purely reactive algorithms in the sense of behaviour-based robotics (Brooks, 1991).

13

Multi-armed bandits are a formulation for addressing the exploration/exploitation problem
when deciding which of a set of actions is most rewarding. However, the MAB formulation
assumes that it is possible to take any action at any time, which is not necessarily the case when
the actions are sampling objects distributed arbitrarily through an environment.

In the secretary problem an agent must pick the best out of a sequence of candidates, where
the agent can rank every candidate it encounters. The task also has the constraint that once
a candidate has been passed up, the player cannot return to it. This formulation makes the
assumption that the decision maker has perfect knowledge about the relative values of different
sampling opportunities, which is not necessarily the case when exploring an environment with
noisy observations.

2.2.1 Opportunistic Sampling of Discrete Objects (Foraging)
We first consider robots that opportunistically sample discrete objects. Discrete objects are items
that show up in the sensor data that can be segmented out from sensor data stream(s), i.e. a rock
in an image. Many of these approaches use template matching to identify targets, or variations
on these themes such as SVMs or Bayes’ nets. The fundamental idea behind them is the same,
however, is that an object is identified in the data stream, distinct from its surroundings, and then
sampled.

The first robot to consider in opportunistic sampling is the NOMAD robot (Wagner et al.,
2001). NOMAD explored the Canadian arctic looking for meteorites. While it was following
its path, NOMAD would search camera images for data that matched a visual template. If a
template match crossed a threshold then it was determined that a target had been discovered,
and NOMAD would collect a sample. However, the results of those samples are not used to
determine the relevance of the templates used by the robot. NOMAD may be the first example
of an autonomous robot scientist that makes decision in the field. Many of the robots we will
discuss in this section use some form of template matching, the implications of which we will
discuss below.

In a slightly earlier paper, Gilmore et al. (2000) identifies objects that warrant attention from
scientists or that can be put into a downlink for remote human scientists. They use classifiers
to determine what part of the sensor data represents an interesting object. The robot directs
cameras for higher resolution images, but does not change the overall trajectory of the vehicle.
The classifiers that are used are informed by mission-relevant constraints, but they don’t consider
the quality of the chosen classifiers. The system requires orbital imagery to be collected prior to
mission deployment, which limits its ability to operate locations without precursor data. While
precursor data collection is happening on the Moon and Mars, there are locations where precursor
data can’t be collected, such as in underwater caves or in lava tubes.

The Advanced Sciencecraft Experiment (ASE) software that ran on EO-1 identifies events of
interest by using the multi-spectrum Hyperion instrument to identify targets of interest (Chien
et al., 2003). This work was extended in (Chien et al., 2005), which presents software that ran on
the EO-1 that was responsible for “science data analysis, mission planning, and run-time robust
execution”.

Targets of interest are identified as one of: Thermal anomaly detection, cloud detection,
flood scenes, change detection, or other classifications based on on-board classifiers. Each of the

14

classifiers have an associated score which is used to score potential targets. The classifiers and
the relative scoring of outputs is pre-determined by scientists. This can be updated during the
mission, but they are not modified by the results of observations by the ASE software itself.

Should identified targets be deemed interesting, and in alignment with scientist-specified
mission objectives, then the vehicle trajectory will be modified to collect further observations.
The observation plans are then modified to collect more observations of high-ranking targets and
to remove planned observations of low-valued targets. Because the EO-1 was constantly orbiting
the planet it could take advantage of multiple views of the same location to identify time-varying
events in addition to any static features or characteristics that may be of interest to scientists.

The EO-1 employed a planner called CASPER which is capable of building and repair-
ing plans (Chien et al., 2000). CASPER schedules actions in order satisfy mission objectives.
CASPER performs plan repair in the case of conflicts between different objectives entered into
the plan. CASPER is also used with the AEGIS software, which we discuss below, for the same
purpose.

Both ASE and AEGIS employ additional checks to ensure commanded actions are safe and
viable. Complimenting an opportunistic sampling algorithm with a planner like CASPER is
important, as robots can then reason about the consequences of the selected sampling actions.

In the ASE software we see the framework of: Identify target, describe and rank targets, then
collect follow up data with high-cost instrument. ASE can be viewed as a progenitor of the On-
board Autonomous Science Investigation System (OASIS) and the Autonomous Exploration for
Gathering Increase Science (AEGIS) system, which can be viewed as a particular instantiation
of OASIS.

The OASIS/AEGIS system is currently in operation on Mars and is an excellent exemplar of
an opportunistic science system. The successful deployment of AEGIS is vitally important to
recognize, as it underscores that autonomous systems can be trusted to make scientific decisions.
Even though AEGIS was not given a longer leash until well into the life span of the MER rovers,
it still represents a substantial investment and an impressive body of work.

OASIS, as described by Castano et al. (2007), uses three methods to identify science targets.
The first is to match templates (as either weights on features or exemplar images) identified by
scientists. The second is to use novelty detection in a feature space, which is done using three
different modelling methods. The third is to use representative sampling, which ensures it sends
examples of stimuli from all the clusters it identifies in a scientist-defined feature space. The
representative sampling ensures that rare objects (e.g. uncommon rock types) don’t get starved
for attention due to an over abundance of other types of objects.

OASIS is a framework which has formed the basis of a number of different science autonomy
systems. For example, Gaines et al. (2010) use scientist-defined signatures (read: templates) to
identify objects of scientific value. Additionally, they use novelty detection to prioritize data for
downlink to Earth. Their data prioritisation scheme comes from the OASIS system, it combines
novelty detection, signature analysis(templates), and extracting representative samples. This
does let the robot redirect itself to collect more science data. OASIS allows the robot to change
its path and to override scheduled tasks, permitting greater freedom for the vehicle than what
was deployed on Mars in the form of AEGIS.

Estlin et al. (2012) document AEGIS, which was uploaded to the Mars Exploration Rovers
(MER) in 2009. The purpose of AEGIS is to select potential science targets from sensor data

15

that may warrant follow-up activities. AEGIS uses wide field-of-view (FOV) sensors, like the
navigation cameras on MER, to direct the use of narrow FOV sensors, such as a spectrometer or
high magnification imager, and thereby collect valuable scientific information.

AEGIS executes at the end of a traverse and uses navigation imagery to find sites of interest.
Should any be found the targets are imaged using the narrow FOV multi-spectral panoramic
imager onboard MER. Should no targets be identified the system takes no actions. By pre-
filtering the data in the navigation imagery and selecting relevant or interesting targets AEGIS
saves on bandwidth by only returning potentially interesting data to Earth. Additionally, not
transmitting the original navigation imagery for scientists to identify science targets reduces
collection time by the time to transmit the original data, have scientists identify targets in the
scene, determine best actions to take, and return commands to the rover in the next command
cycle.

AEGIS processes imagery in the following pipeline: It identifies targets, extracts features
from the image, prioritizes the targets, determines where it needs to point the narrow FOV sen-
sors, the collects data with the narrow FOV sensors. This framework is inherited through OASIS
from EO-1. The generality of this algorithm means it is not strictly tied to visual data or to the
multi-spectral imager, as noted in (Estlin et al., 2012).

AEGIS identifies targets by using an algorithm called ROCKSTER which identifies rocks in a
visible light intensity image. Once rocks are identified they are described by the features of size,
reflectance, shape, and location. Scientists have pre-loaded templates that identify feature values
of interest, given the local terrain. It remains unclear if the contextual information of “in the local
terrain” is encoded in some way other than the fact that the scientist have uploaded templates to
be used in the current context. With the rocks prioritized AEGIS identifies the location of the
rock(s) of interest and begins collecting information with the narrow FOV multi-spectral imager.

There are considerable computational constraints placed on AEGIS by the computing hard-
ware of the MER rovers. Consequently AEGIS uses edge detection to find rocks. There has been
continued work at JPL using the TextureCam (Thompson et al., 2012) algorithm, which employs
a computationally efficient random forest classifier to effect a better classifier for a wider range
of targets.

AEGIS computes the score, v, of targets using only two features extracted from the data,
f1, f2, at a time. The target scoring algorithm, given in Eq. (2.1), is defined by three variables,
α1, α2, β.

v = α1f1 + βα2f2 (2.1)

α1 and α2 determine whether high or low feature values are preferred, and take values of
either 1 or -1. β is in the range [0, 1] and determines the relative weighting of the two features.
There is the additional ability to exclude targets based on thresholded feature values, i.e. f1 ≥
C1, f2 ≥ C2, for some thresholds C1, C2, in order to remove potentially spurious targets.

AEGIS’ scoring function is fairly limited in what it can express. But this should be taken not
as a limitation of the AEGIS algorithm, which in principle can use much more complex scoring
functions, but of the computing environment on which it is deployed.

This objective function lacks, however, is some grounding in the results of the follow-up
sampling action. In defense of AEGIS, radiation tolerant computers may not be able to execute

16

adaptive algorithms quickly, and using an adaptive algorithm places additional burden through
the validation and verification process. Because the communications link between Earth and
Mars is a reliable, and the mission cadence does not demand autonomous operations, humans
can provide adaptivity on behalf of the rover.

AEGIS represents a substantial step forward in autonomous science because the system not
only identifies and classifies sensor data, it makes decisions about what data to collect and has
been deployed on another planetary body. The authors of (Estlin et al., 2012) identify several
directions that they feel are valuable for improving AEGIS. Chief among them are planning with
respect to resource allocation and planning for collecting observations that require direct contact
or vehicle motion.

The ProViScout team led by Mark Woods developed an autonomous scientist in the papers
(Shaw et al., 2007; Woods et al., 2008, 2009, 2011; Paar et al., 2013). Like the OASIS family
of systems, ProViScout is a framework for autonomous science. ProViScout identifies targets
to investigate and when it is safe, in the context of mission objectives, deviates from the current
plan of action to investigate those targets. It is also capable of conducting plan repair to finish
the mission, should opportunistically selected activities cause unforeseen delays.

Paar et al. (2013) review field experiments with the ProViScout where they combine human
designed feature detection and anomaly detection. They address, in simulation, the problem of
testing with limited sampling budgets and the problem of field testing their science decision mak-
ing algorithm (SARA), described in detail in (Woods et al., 2008, 2009). In the field, SARA was
supplied with a large sampling budget, so the decision making process would not be confounded
by cost constraints. In addition to any decisions made by the software, they also had standard
science investigation procedures that were conducted at the end of every transect.

The ProViScout system uses pre-defined science goals (Woods et al., 2011). It relies on aerial
data, which might not always be available in exploratory settings, i.e. lavatubes or underwater
scenes. This system uses a contextual model, which is fairly unique in opportunistic sampling
systems. However, the contextual model used in (Paar et al., 2013; Woods et al., 2011) is a
pre-specified set of parameters. The contextual model can be updated, but must be done by an
outside agent (Woods et al., 2009).

Like OASIS/AEGIS, ProViScout also uses classifiers for science targets that scientists have
pre-trained (Woods et al., 2011). The targets identified by SARA are assigned scores by scientists
in order to direct the behaviour of the robot (Woods et al., 2009).

Relying on human-assigned weightings assumes that the remote scientists know the rele-
vance of the different classes of objects. On the one hand, this is a simple way for humans to
communicate priorities to the robot. On the other hand, it limits the ability of robots to modify
the prioritization of different classes of objects, with respect to mission objects, based on ob-
servations. Building this adaptivity into the robot could be constructed easily in an information
theoretic framework, something acknowledged by Woods et al..

The plan repair component of ProViScout, analogous to OASIS’ CASPER, is documented in
(Woods et al., 2008). The decision to engage in the opportunistic sampling actions is given to
the Timeline Validation Control and Repair (TVCR) planner(Shaw et al., 2007). The sampling
opportunity is prioritized by its science value score, and then is given to the planner to insert into
the plan. Once the plan has been made consistent with mission goals, the robot executes the new
plan, which may contain the newly requested action. However, this decision doesn’t account

17

for the environmental abundance of any other such opportunities, only those which have already
been scheduled.

Both the OASIS/AEGIS and ProViScout systems are very similar frameworks for conducting
science autonomously. They both have reflexive responses to making the sampling decision: If
the object is in the scene, passes their respective prioritization schemes, then sample it. The
questions that the systems do not ask is: what is the value of this sampling opportunity, relative
to what is available in the environment? This particular question we address in chapter 3.

Having operators identify direct templates or feature weightings to identify objects risks im-
parting confirmation bias to the robot. Using trained classifiers based on a corpus of data is less
likely to impart confirmation bias to the robot. Specifying what objects the scientists want to be
identified and not how they want the algorithm to identify them reduces the influence of precon-
ceived notions about the value of different features. However, any trained classifier is limited by
the expressiveness of its structure and the data it was trained on, so biases may still reside in the
system.

While trained classifiers do let scientists determine which data are interesting, they exclude
all stimuli that are not identifiable by those classifiers. This is an acceptable approach if the
classifiers are reliable, but given that robots on planetary missions are exploring strange new
worlds, that assumption may not hold. An algorithm should to be able to identify objects or
clusters in sensor data relevant to the hypotheses the scientists are investigating, but which may
not have been in its original training set.

Wagstaff et al. (2013) presents an algorithm, called DEMUD, for identifying potentially in-
teresting targets in situ and reporting them to scientists. Wagstaff et al. used an SVD-based
approach to identify stimuli that are novel, given a corpus of prior observations. The observa-
tions are organized into a design matrix – a matrix where every row represents one observation.
Such an approach avoids the risk of bringing preconceived biases into object recognition and
selection.

More importantly DEMUD identifies the features that make the stimulus interesting. When
something is considered uninteresting it is removed from the design matrix, and the process
is repeated. In this way DEMUD builds a library of objects that reflect the statistics of the
environment. The core of DEMUD is that it evaluates the singular values of the design matrix
generated from all previously collected stimuli. DEMUD outperforms competing algorithms
designed for novelty detection, managing to find all six of the candidate classes in the UCI glass
data set (Frank and Asuncion, 2010).

DEMUD is obviously not the only unsupervised learning algorithm, but it is important be-
cause it was designed to operate efficiently, making it amenable to execution on space rated
hardware. DEMUD is important for learning things that are new or anomalous in the scene, but
we also want to connect these features to a variable of interest, like the work in (Das et al., 2015)
which is discussed in Section 2.2.2. Combining these approaches would help improve the ability
of robots to recognize and understand anomalous phenomena.

The approaches described above to opportunistic sampling of discrete objects share a com-
mon shortcoming. They make decisions to sample an object once it has been identified via some
means of classification, and scored as passing a pre-determined threshold on value. The sys-
tems do not consider the relative value of sampling these classes of objects, nor do they consider
the distribution of these objects in the environment, they simply respond with a sampling action

18

once conditions have been met. We address these shortcoming in chapter 3 and show that an
improvement in behaviour is possible with an algorithm that is adaptive to the environmental
condition.

2.2.2 Opportunistic Science in Fields - Prospecting
Distinct from opportunistic sampling of discrete objects is opportunistic sampling in fields, math-
ematical fields that map the robot’s location to a vector or scalar value. With discrete objects there
are only certain locations where the robot can collect samples. When sampling in a field, any
location the robot occupies is a viable sampling point, although the value of that location may
vary.

Thompson et al. (2013) model time series data collected by a robot following a transect. The
robot has a sensor that is collecting data at a fixed rate and the only control the robot has is
to slow the vehicle to collect more observations. The robot is further constrained by a limited
sampling budget. The algorithm considers the degree to which the data has deviated from an
assumption of stationarity. The data collected are fit using Gaussian process regression, with a
non-stationary kernel. How far the data has deviated from being stationary is determined by how
much one of the kernel parameters is increased during the data fitting process. The speed of the
vehicle is controlled proportionally to that parameter.

Like the work discussed in (Thompson et al., 2013), Girdhar et al. (2012) modulate the speed
of an underwater robot collecting data. The robot collects images with a camera with a fixed
frame rate, analyzes the scene, and if the scene is anomalous the vehicle slows down, collecting
more images. Their algorithm builds a topic model for the images using a bag of words of ORB
features (Rublee et al., 2011), and uses that topic model to score how surprising the current scene
is.

Girdhar et al. use the surprise of the scene to control the speed of the vehicle. Images
are modelled as distributions over the topics in the topic model, and surprise is measured with a
symmetric KL divergence between the new image and the closest image previously observed. As
surprise increases the speed of the vehicle is reduced proportionally, collecting more data, and
vice versa. With each image collected the topic model is updated, so with more observations, the
robot builds a better understanding of the world.

Girdhar continues development of the autonomous underwater explorer in (Girdhar et al.,
2013a) and (Girdhar and Dudek, 2016). In these two papers the topic modelling is not applied
to the whole scene in the navigation cameras of the robot, but to sub-regions of the image. This
way different parts of the image can be identified as novel and hence attract the attention of the
robot. Instead of simply throttling the vehicle speed the robot follows whatever novel stimuli it
encounters.

The robots of Girdhar et al. seek novel phenomena, which is valuable for learning about the
world. But it would be beneficial to ground the learned topics to other phenomena of interest.
Das et al. (2013) build feature descriptions of underwater environments and relates them to the
density of life in water samples. In contrast to Girdhar et al., the work of Das et al. begins to
relate concepts across sensing modalities.

The work in (Das et al., 2013) was later extended in (Das et al., 2015), where they focused on
improving repeated surveys through integration of previously collected data. The algorithm in

19

(Das et al., 2015) is simultaneously attempting to learn the relationship between environmental
features and the abundance of plankton discovered in water samples while maximizing the num-
ber of samples of plankton collected. Their approach is based around the submodular secretary
algorithm.

The submodular secretary problem is a variant on the secretary problem that permits collect-
ing k samples instead of just one (Bateni et al., 2010). It achieves this by dividing up the transect
into k segments, and executing a secretary problem algorithm in each one. They demonstrate
a reduction in regret in this paper, using both pre-recorded data and from field operations. The
basic secretary algorithm is to ignore the first N/e sampling opportunities, and collect the first
object with a value greater than or equal to the highest value among the first N/e objects. The
secretary problem is very useful when the explorer has non-reusable resources, like the water
samplers in (Das et al., 2015).

Secretary algorithms rely on being able to score candidate actions. In (Das et al., 2015)
they use the GP-UCB algorithm to score the encountered sampling opportunities. As a baseline
they tested an algorithm which scored sampling opportunities with the variance of the predicted
reward. While they found that baseline had a higher regret in terms of quantity of plankton
observed, it seems to have learned what appears to be a statistically indistinguishable model for
predicting plankton abundance from environmental conditions.

Yoerger et al. (2007) uses the Automatic Benthic Explorer (ABE) to localize underwater
hydrothermal plumes. They command the robot to follow a lawnmower path through the wa-
ter, collecting measurements with sensors that measure the density of chemicals ejected from
hydrothermal vents. Once the vehicle has reached the end of the transect it plans new site visita-
tions based on whether or not sites meets a revisitation criterion. The scalar-valued revisitation
value is not specified in this work, but it is a static threshold (Camilli et al., 2004).

This approach can result in a lot of back tracking on the part of the robot, but that may be
acceptable when mission risk posture permits it. However, static thresholds do not account for
sensor noise or variability in the underlying process. Further, if the quantity being examined is
transient, waiting until the end of the transect to decide to sample it could mean missing valuable
observations.

Ferri et al. (2010) address the shortcomings of the work in (Yoerger et al., 2007). Like
Yoerger et al. (2007) they complete a lawnmower pattern, identify chemical densities that relate
to hydrothermal vents, but if the densities exceed a threshold they then engage in a searching
activity to localise the hydrothermal vent.

Ferri et al. (2010) have an adaptive threshold based on how often it has crossed it’s original
translating path, and how many spiral investigations it has conducted compared to a recom-
mended number of spirals. This approach is an improvement over (Yoerger et al., 2007), but
it seems that (Ferri et al., 2010) could benefit further from techniques from secretary problem
literature.

The approaches presented in (Girdhar et al., 2012) and (Thompson et al., 2013) are about
continuous control of vehicles in response to changes in the observations without and with budget
constraints, respectively. Das et al. (2015), Yoerger et al. (2007), and Ferri et al. (2010) deploy
discrete actions in response to a vector- (Das et al., 2015) or scalar-valued (Yoerger et al., 2007;
Ferri et al., 2010) sensor readings. Das et al. (2015) relate the local observations to a secondary
value through the GP-UCB algorithm in a way which is not done in (Girdhar et al., 2012) and that

20

isn’t strictly necessary in (Thompson et al., 2013),(Yoerger et al., 2007), or (Ferri et al., 2010).
The above algorithms lack a notion of confidence in their observations. The work of Girdhar

et al. chases novelty, Thompson et al. (2013) do not consider the relative likelihood that the
underlying distribution has changed from stationary to non-stationary, only that it has been fit by
the model. The robot in (Yoerger et al., 2007) finishes the entire transect before identifying the
opportunities for sampling, incurring expensive travel times, while potentially missing opportu-
nities to sample time-varying phenomena. While an improvement, the strategy in (Ferri et al.,
2010) operates on a static threshold based on instantaneous readings, which leaves the decision
making process vulnerable to erroneous readings. Additionally, by using a threshold on readings
the vehicle can’t react to sub-threshold observations. An approach that acts on belief that the
underlying observations have changed could benefit these systems.

The approach in (Das et al., 2015) uses a secretary problem algorithm to collect water samples
to simultaneously maximize the volume of plankton observed and learn the relationship between
environmental characteristics and plankton abundance. Since their objective is to maximize the
observation of plankton in samples their use of the GP-UCB encodes a measure of uncertainty
in the prediction, helping it to make safer observations, but it seems to inherently assume that
the independent observations – the environmental characteristics – are stable readings. Filtering
those values, or building confidence that the underlying distribution has changed could be a
beneficial filtering stage for the algorithm.

2.3 Informative Path Planning
Next we consider robots that actively generate paths and actions in the world instead of simply
reacting to observations. The robots we review next are determining paths or trajectories that
maximize the information gained about their environment. Primarily these algorithms build maps
that relate the physical location of the robot to some measurable quantity.

Robots operating without infrastructure often need to conduct simultaneous localization and
mapping (SLAM) in order to build accurate georegistered models of data. Stipulating that SLAM
is an important aspect of robotics, and an active research topic, this thesis will not go into de-
tailed analysis of SLAM, and interested readers are directed to (Aulinas et al., 2008). What is
important to understand is that mapping enables robot scientists 1) to determine spatio-temporal
relationships between observations, revealing patterns not otherwise visible, and 2) to determine
what regions of the world have not been explored so they may plan their future actions.

Frontier exploration (Yamauchi, 1997) depends heavily on the existence of maps, maps that
record not only data where the observer has been, but that are capable of representing where the
robot hasn’t explored. A robot engaged in frontier exploration drives towards regions of a map
that it has not previously seen. The robot may prioritize or triage frontiers for exploration based
on different rubrics – traverse cost, distance to a goal, map coverage/certainty, etc. – and then
visit the frontiers to collect information (Tao et al., 2007).

Frontier exploration can be viewed as a special case of information gain planning. However,
as the space being explored becomes increasingly abstract then identifying frontiers becomes
increasingly difficult. That formal information gain planning supersedes frontier exploration is
noted in (Visser et al., 2007). Freda et al. (2009) use information gain to map a configuration

21

space. They use a frontier based exploration method to make sure the space is effectively ex-
plored. Thompson et al. (2015b) seek out unexplained spectral signatures in satellite imagery,
effectively exploring frontiers of the observed spectral space.

Frontier exploration is driven by an important point: One should sample where one is most
uncertain about the state of the world. This is a concept which was outlined in Kristin Smith’s
work (Smith, 1918), which pioneered the field of design of experiments, and it continues to
remain relevant. In many ways frontier exploration is what all science exploration robots are
doing. However, instead of simply seeking frontiers in physical space, modern robot scientists
explore frontiers in information.

(Thompson, 2008) and (Thompson et al., 2011) present an algorithm that plans paths through
overhead multispectral imagery that collects a set of observations that maximize their informa-
tiveness measure. Thompson and Wettergreen measure the informativeness of candidate sites
by the information that would be gained given all previous observations. The change in entropy
is measured with respect to the covariance function of a Gaussian process regression over the
satellite imagery. If the entropy function H(X) is defined over a set of observations X , and the
rover has to choose a subset of all possible of observations Q, and collect actual observations A,
then the rover in (Thompson, 2008) finds the path that reaches a goal location while minimizing
the quantity H(Q)−H(A). While data the rover actually encounters when it enters the location
corresponding to a ∈ A is not integrated into the future plans of the rover, as it continues its
exploration it can adapt its path to acquire a representative set of data.

This work is expanded in (Thompson et al., 2015b), where the robot seeks out unexplained
spectral signatures in satellite imagery. The robot here moves to locations in satellite maps of
spectral data to collect surface observations to determine what local mixture of materials explains
the spectra observed from orbit. As the robot travels it builds up a database of spectral signatures
which it then uses to try and “unmix” the satellite observations.

Pixels are unmixed by taking the database of spectral observations collected thus far, and
identifying endmembers. Endmembers act as a linear basis to represent the other as yet unsam-
pled satellite pixels. Those with the highest residual error are considered difficult to explain given
the current database of observations. The sites that are difficult to explain are the most interest-
ing ones, and so after every ground observation the robot re-plans and identifies new locations to
visit and sample.

Similar to (Thompson et al., 2015b) is the work of Girdhar et al. (2014). They take satellite
images, break each pixel down into a bag-of-words of feature descriptors, and learn a topic model
for each of the pixels. Then the pixels are scored for topic perplexity, which is a measure of how
well an individual pixel is explained by the topic model. The sites that represent the greatest
perplexity are then visited and samples are collected.

The perplexity score of Girdhar and Dudek parallels the unmixing procedure of Thompson
et al. (2015b). The major difference between the two is that Thompson et al. plans a shortest
path that maximizes the information gained, while Girdhar and Dudek let the robot follow an
unconstrained path. Consequently their trajectories appear rather more idiosyncratic, but there is
no reason their approach could not be used with a more conservative planner.

Building further on the work presented in (Thompson et al., 2015b), Candela et al. (2017)
changes the problem somewhat by explicitly accounting for a hypothesis about the geological
units present in remote sensor data. The global map is divided up into regions, each of which

22

represent a geological unit. The robot then designs trajectories that maximize the information
gained in the probability distribution over the geological unit assigned to a region, given the
observations made within those regions. This work is important for carrying with it a hypothesis
about the environment it is exploring, and planning in order to shore up support in that hypothesis.
However, it does only consider one hypothesis (the region divisions) at a time.

Hollinger et al. (2013) plan informative paths using a Gaussian Process with a non-stationary
kernel function. This approach permits modelling variable uncertainty in the object it is tracking,
which is important for representing non-stationary models. In a similar vein, (Hollinger and
Sukhatme, 2014) uses a sampling based approach to determine trajectories for an unmanned
water vehicle that maximizes information quality - a generic concept standing in for variance
reduction or information gain.

Work by the Williams’ group at the University of Sydney, documented in (Bender et al.,
2010), uses the results of in situ measurements to direct the actions of an AUV to adaptively
map the spatial distribution of an underwater coral reef. Bender et al. (2010) represent the spatial
distribution of the coral reef with a Gaussian process classifier. The robot’s sensory data was
classified into one of two classes (reef or sand), and the robot investigated ambiguous regions of
the map, the most interesting locations being where p(reef) = p(sand) = 0.5. By investigating
those sites they reduce the ambiguity in the map. They compare the behaviour of their algorithm
to a robot following a lawnmower pattern, and find their proposed algorithm improves the quality
of the map.

One downside of the approach detailed in (Bender et al., 2010) is that the Gaussian process
classification does not admit entropy calculations without a computationally intensive Monte
Carlo estimation. The computational demand makes using approaches like mutual information
or maximum entropy sampling challenging, especially for limited computing hardware. The
reward function they do use, finding ambiguous points, when scaled up to arbitrary numbers of
classes could be considered similar to the perplexity measure of interestingness used in (Girdhar
et al., 2014).

The work by Charrow et al. (2015) also plans an information gathering path. They manage to
extract significant speed up in planning time by virtue of using the Cauchy-Schwartz Quadratic
Mutual Information metric (Principe, 2010) and by discretizing the world being explored into
voxels. Through the use of these methods their informative path planner is found to be much
faster than with the standard Shannon Information Gain, as used in most other works in this
chapter, but still achieving the same objectives. Building upon Charrow et al., the work of Tabib
et al. (2016) hinges on the notion that given an observed object, the information gained from
sensors observing that object should be independent, and as such, additive. This means that the
robot can efficiently plan for multiple passive sensors simultaneously. This is, to the best of the
author’s knowledge, the first planning algorithm that address the multi-modal informative path
planning in a principled way.

Also eschewing the more standard Shannon information gain, Miller et al. (2016) use the ex-
pected value of the Fisher information to determine points of interest. Like mutual information
(Lindley, 1956), Fisher information is used as a score to select the most informative experiments.
Their path planner produces smooth paths that maximize the number of high information value
observations. Fisher information and the mutual information are intimately related through the
curvature of mutual information, but they are not identical quantities. However, a rigorous com-

23

parison of the behaviour of robots maximizing mutual information and those maximizing Fisher
information does not exist in the literature, to the best of the author’s knowledge. One would
conjecture that they would produce similar behaviour, but without such evidence it is difficult to
select one reward function over the other and this should be studied further.

Similarly, (Schwager et al., 2017) uses the gradient of mutual information as a reward func-
tion. However, this was done not because of a connection between mutual information and Fisher
information. Schwager et al. (2017) examine teams of exploring robots, and use the failures of
team members as a way of encoding hazards into the map of interesting phenomena. Where
robots fail, their sensors report no information, effectively zeroing out the gradient of informa-
tion gain, causing other team members, which are following the gradient of information gain
towards maxima, to avoid hazards encountered by less fortunate robots.

Das et al. (2013) take an interesting approach to science navigation by considering a compo-
sition of functions. They learn one function which maps locations in space to characteristics the
environment at those locations, and a second function which maps environmental characteristics
to the quantity of interest, namely abundance of plankton in water samples. Like the work of
Thompson et al., they use a Gaussian process to learn spatial model of environmental character-
istics, but they also use a second Gaussian process regression that maps environmental features
to plankton abundance.

The environmental characteristics are learned from features that describe data from cameras
and other sensors, such as temperature and chemical density sensors. The robot collects water
samples that are then processed between surveys to train the second Gaussian process.

After each sample is processed the robot plans new trajectories that maximize the chance of
discovering life. They use the unscented transform to propagate uncertainty in feature predictions
through to uncertainty in life abundance predictions. This can then be used to estimate the
distribution over the abundance of life over the entire map, which is then fed into a maximum
information gain planner. While this particular implementation of their project does have the
disadvantage of not being able to update the map of life abundance in situ, the approach could
be used unmodified if on-board processing of water samples is possible.

The interesting part of Das et al.’s design is that, assuming the features are useful for pre-
dicting other scientific quantities, this approach could readily admit multi-modal sensing for
scientific inquiry, simply by maintaining other Gaussian processes mapping the feature space to
the observations of other instruments.

These algorithms were mainly focused on planning efficient trajectories that also increased
informativeness, by some measure of informativeness. Almost all of them rely on the information
gain being submodular, meaning that greedy algorithms can approximate the best algorithms
within some acceptable margin of error. Hollinger and Sukhatme (2014) is the notable exception
this approach. There are four candidate functions for information gain used in the work discussed
above: Variance reduction, Shannon Mutual Information, Cauchy-Schwartz Quadratic Mutual
Information, and Fisher Information. Shannon and Cauchy-Schwartz mutual information are
intimately linked concepts, but it seems that Cauchy-Schwartz is faster to compute, according to
Charrow et al. (2015), and therefore favourable.

Variance reduction is an approach that has been used since at least the beginning of Design
of Experiments literature (Smith, 1918), and is the concept underlying the class of Upper Con-
fidence Bound algorithms (Lai and Robbins, 1985) used in the Multi-Armed Bandit literature.

24

Further, variance has a reciprocal relationship with Fisher information, so reducing variance is
equivalent to maximizing Fisher information. Connecting these concepts even further, Fisher
information is proportional to the second derivative (or curvature) of the mutual information
between two distributions (Gourieroux and Monfort, 1995). However, Fisher information does
have a strong dependence on parameterization, which could make implementation of more gen-
eral algorithms challenging.

There are a number of other variance minimizing criteria used in experiment design, above
and beyond those discussed here. The D-Optimality criterion is a means for selecting informative
experiments (Croarkin et al., 2002). If every experiment is represented in the row of a matrix,
X , then the best set of experiments, given a fixed budget, is the collection of experiments which
maximizes the determinant, |XTX|. This approach has the advantage of only needing to know
the parameters of the experiments being conducted.

Also worth discussing is the notion of maximum entropy sampling. With each experiment
represented as a random variable Xi, then the best collection of experiments to conduct A is the
set which maximizes the entropy of the joint distribution, fA(X1, . . . , XN), whereX1, . . . , XN ∈
A. This is also equivalent to maximizing the determinant of the covariance matrix of the selected
experiments, A. All of the above criteria can all be considered as objectives when designing
informative actions.

Smith (2007) considered navigating a grid world in order to deploy an ultraviolet fluorometer
in order to detect microbial colonization of materials. This work demonstrates that doing onboard
data analysis can improve the decision making processes of robot explorers. The problem was
solved as a POMDP, which let the robot reason about the effects of its actions on its state of
knowledge while it was exploring. This approach is rare in that it reasons about the actual
observations it may encounter while navigating, instead of just making sure it has observed a
reasonable sampling of the surface. POMDPs are, unfortunately, computationally intensive, and
do not scale well as the action space increases.

Choudhury et al. (2017) attempt to overcome the computational complexity involved in using
a POMDP model by using a reinforcement learning strategy. The objective is to produce a
function which can predict the relative value of candidate sampling in order to pick the best one.

In (Choudhury et al., 2017), different exploration tasks are simulated where a robot is tasked
with maximizing the information gained about a hidden world map. Here the algorithm can use
an oracle with access to true world knowledge to select actions during training. The current
state of the robot’s world knowledge and the oracle’s decision is used to train a heuristic that
approximates the optimal decisions without the computational overhead.

There are limitations in that this algorithm is only as good as the data upon which it was
trained. Nevertheless, a reinforcement learning strategy could be readily adapted to online per-
formance, and it is a reasonable approach to approximating POMDP based solutions.

Arora et al. (2018) detail an algorithm for a robot that is seeking to locate a subsurface dis-
tribution of water. The robot has to plan not only trajectories that inform the distribution of
subsurface water, but it also has to determine which of a set of instruments it will employ to
collect observations. These instruments have different costs, and the observations may change
the trajectory that may be the most informative. Their planning problem is complicated by not
obeying sublinearity. They use approximate planning measures to deal with the complexity of
the planning problem, and the use of an on-board robot-learned hypothesis about the relation-

25

ship between the navigation sensors and the instruments used to determine the abundance of
subsurface water.

The work of Choudhury et al. (2017) and Arora et al. (2018) both attempt to mitigate compu-
tational complexity. The first through approximating the reward function, and the second through
approximating the solution. The computational complexity of these problems can be crippling,
but mitigation strategies like those discussed can to mitigate computational demands.

All the information gathering algorithms presented above are attempting to plan trajectories
that are by some measure the most informative about the environment they are exploring. With
the exceptions of Candela et al. (2017) and Das et al. (2013), these algorithms do not consider
hypotheses about the phenomena they are exploring, only efficient ways to explore the envi-
ronment. Even (Candela et al., 2017) and (Das et al., 2013) consider only one hypothesis at a
time. In the next section we discuss different approaches to generating hypotheses, an important
component of the scientific process, but if we are to combine informative path planning and hy-
pothesis generation we will need a class of planners which are aware of and capable of reasoning
about multiple hypotheses.

2.4 Hypothesis Generation
A great deal of excellent work in autonomous science research goes into ensuring that useful
information is collected in a principled way, as per the work reviewed above, what is often
lacking is the question of what is done with the data after the collection. In flight missions,
scientists would use these data to generate hypotheses.

Hypotheses are an important part of conducting science, but generating hypotheses is not
an actively studied part of autonomous field science. While this thesis does not investigate the
automatic generation of hypotheses, this is an interesting area of research that is relevant to the
work conducted in chapter 5. Further, since chapter 5 is about designing experiments to test
hypotheses, it is worthwhile being aware of mechanisms for generating hypotheses.

Levin introduced the notion of searching for Turing machines, which are functions that map
input bit strings to output bit strings (Levin, 1973, 1984). Given a fixed language for describing
Turing machines and a problem to be solved, the simplest machine – the one described by the
shortest string – could be discovered by first searching through all the shorter machines. Each
one of the candidate Turing machines can be viewed as hypotheses that need to be tested to see
if they satisfy the relationship under investigation.

The search space can be quite large, but the algorithm that successfully completes the task
will eventually be found. Levin’s universal search procedure only considers functions that map
from exact inputs to exact outputs. To accept approximately correct solutions, one could simply
place tolerable level of error on the output and stop searching once that tolerance has been met.

Langley et al. (1987) presented a series of algorithms which discover empirical laws relat-
ing different datasets, as well as semantic rules for relating a dataset that has been collected
by some other process. Their work covers four algorithms, BACON, GLAUBER, STAHL, and
DALTON. These algorithms deal with using data for finding quantitative laws, qualitative laws,
inferring components of substances, and formulating structural models. In many respects algo-
rithms presented in that book are different types of searches through a hypothesis space, and is

26

an important precursor work to science autonomy algorithms presented below.
Levin’s search was further developed by Schmidhuber in (Schmidhuber, 1995) and (Wiering

and Schmidhuber, 1996) for (single layer) neural networks and POMDPs, respectively. Again,
the process is to start with simple attempts at solutions to the problem and progressively make
them more complex until a satisfactory solution is found. Here the algorithm depends on a
vocabulary of symbols that can be used to produce the hypothesized solutions. Each of the
solutions can then be tested for fitness – how accurately they solve the problem – and then either
discarded or retained accordingly.

The robots Adam and Eve were developed at Aberystwyth University to automatically con-
duct laboratory experiments (King et al., 2004, 2009a; Qi et al., 2010). These robots automate
much of the tedious work in laboratories, and help reduce variability in production. Adam gen-
erated functional genomics hypotheses about yeast, and tested the hypotheses in a laboratory
(King et al., 2009b). Adam conducted this work by exhaustively testing different hypotheses it
generated about the yeast.

Eve, on the other hand, methodically screens candidate drugs, but is able to stop the exhaus-
tive search of the space of hypothesized drugs in order to generate quantitative structure-activity
relationship (QSAR) models (Qi et al., 2010). QSAR modelling is a mechanism for determining
the predictive power of the drug components to the potency of the drug. With a completed QSAR
the robot can then predict drugs with similar structures which may be effective. This permits the
robot to design new hypotheses about drugs which may be effective in treating different diseases.
This gives the robot the freedom to follow up on promising drugs instead of having to wait to
finish testing all possible drugs in the space of drugs it is testing (Sparkes et al., 2010).

Schmidt and Lipson (2009) developed an algorithm for deriving natural laws based around
symbolic regression (Cramer, 1985) which has since been developed into the product Eurequa2.
This approach relies on being able to represent equations and relationships as parse trees in a
grammar over possible equations. They then apply a genetic algorithm to search the space of
parse trees in order to determine a hypothesis which best fits the collected data.

Because the genetic algorithm doesn’t progressively through the space of possible hypotheses
in the same way that a Levin search does there is a need to control for over fitting. The approach
used by Eureqa is to score each hypothesis based on its fitness to the data set under inquiry
combined with a penalty term for the computational complexity of that hypothesis. In (Ly and
Lipson, 2012) they use the Akaike information criterion (AIC) which is defined in Equation 2.2.

AIC(h,D) = 2|h| − 2 ln(P (D|h)) (2.2)

Where |h| is the algorithmic complexity of the hypothesis being scored and ln(P (D|h)) is
the log likelihood of the data, D, given the hypothesis, h. Smaller values of AIC are preferred.
The search algorithm that describes this system could be modelled as in Algorithm 2.1, where the
generate hypotheses method is the symbolic regression algorithm described in (Ly and Lipson,
2012).

2www.nutonian.com

27

www.nutonian.com

Algorithm 2.1 A skeleton of the hypothesis search algorithm used in Eurequa. hypothe-
sis generation is their symbolic regression function, and the score function is the Akaike in-
formation criterion.

function SEARCH HYPOTHESES(grammar,D)
H ← ∅
scores← ∅
while not terminated do

H ′ ← generate hypotheses(H, scores, grammar)
scores← score(h,D) ∀ h ∈ H ′
H ← H ′

end while
return argmax

h∈H
score(h,D)

end function

The system that supports Eureqa assumes that the data to be fit has already been collected.
It then uses the genetic algorithm to search through the space of possible hypotheses which are
expressed in a grammar given by a vocabulary and set of operations specified by the user. The
system has managed to re-discover physical laws from data that are in a human-interpretable
format, as opposed to, e.g. a neural network.

Genetic algorithms have the advantage of biasing the search space towards members of the
space that have already been successful, and hence eliminate a number of hypotheses that are
unlikely to be productive. However, there is always the risk that the “best” hypothesis will never
be evaluated, although this risk reduces the more generations are bred in the learning process.

A similar approach to searching the hypothesis space is embodied in the Automatic Statis-
tician3. This is a work that has been developed in three papers, (Grosse et al., 2012; Duvenaud
et al., 2013; Lloyd et al., 2014). The program is designed to study a dataset and develop descrip-
tions of the data in human-interpretable format. With the automatic statistician the hypotheses
are the symbolic representations of the kernel functions, and it attempts to find one that best
explains the data.

The algorithm works by generating covariance functions for Gaussian process regression
and classification models and then translating those into natural language statements about the
data. The method for generating the kernel functions is to start with a simple function and
progressively make it more complex, as in Levin search, by iteratively applying the rules of the
grammar to generate new and more complex functions.

The automatic statistician assumes that all data are available initially and exhaustively searches
through the space of possible hypotheses, to a fixed depth of the search tree, to find the best one.
They score their hypotheses using the Bayesian Information Criterion (BIC) (Schwarz et al.,
1978), given in Equation 2.3, which is very similar to the AIC used in Eureqa, however it more
sharply penalizes the complexity of the model. Where h is the hypothesis, D the dataset, |h| is
the complexity of the hypothesis, and |D| the number of points in the dataset.

BIC(h,D) = |h| ln(|D|)− 2 ln(P (D|h)) (2.3)
3https://www.automaticstatistician.com

28

https://www.automaticstatistician.com

As with Eureqa there isn’t an explicit stopping criteria, although the authors of the automatic
statistician do put a limit on how deep in the tree of possible kernel functions it is permitted to
search. With arbitrary complexity a model can be made to fit data arbitrarily well – over fitting
– so there needs to be a way to trade off the fitness of the hypothesis with the complexity of the
hypothesis. Where the Eureqa uses the AIC, the Automatic Statistician uses the BIC. We sketch
the automatic statistician’s algorithm in Algorithm 2.2.

Algorithm 2.2 A skeleton of the hypothesis search algorithm used in the automatic statistician.
The generate hypothesis function is a Levin search through the space of kernel functions, and
the score function is the Bayesian Information Criterion

function SEARCH HYPOTHESES(grammar,vocabulary,verbs,max depth,D)
H ← ∅
while depth not reached do

H ← grammar expand(H,D, vocabulary, verbs, depth,)
end while
return argmax

h∈H
score(h,D)

end function

Where Eureqa uses a guided search, the Automatic Statistician uses a depth-bound Levin
search through a grammar of kernel functions, but ultimately they both attempt to find a hypoth-
esis in the space of hypotheses which best fits a dataset, according to a fitness function that trades
off performance with algorithmic complexity. Neither the automatic statistician nor Eureqa have
a mechanism for recognizing that a new hypothesis is required, they simply search until they
have found the best one. Nor do they determine where to collect samples to further improve
their understanding of the hypotheses under consideration. In Chapter 5 we address both these
shortcomings.

In the closing remarks of (Schmidhuber, 1995) the authors make the observation that true
generalization is impossible. That any one model fit to data only really speaks about the data
collected and can’t necessarily be trusted to predict on data that has not been previously observed.
In many respects this reflects Hume’s problem of induction (Vickers, 2016) - any hypothesis
cannot be truly trusted to predict outputs from inputs it has not been developed from. The logical
problem of induction is what drives Popper’s falsification criterion and what also drives scientists
to collect more data in order to test out their hypotheses, and when they find them wanting,
generate new ones.

An ad hoc hypothesis is a modification to a favourite hypothesis to save it from being falsified
in the face of new data. While the phrase “ad hoc hypotheses” is often considered a disparaging
remark, it is important to remember that all hypotheses are ad hoc responses to new data that
could not previously be explained, what separates “good” hypotheses from “bad” hypotheses
is that the modifications do not reduce the predictive ability of the hypotheses and that those
hypotheses are not later themselves falsified.

It is the need to continually falsify hypotheses that drives the notion of active learning. Agents
need to collect more data in order to determine which of a set of possible hypotheses is the “best”
hypothesis. Here best will be taken to mean maximizing or minimizing some objective function

29

over the hypotheses and the data to be explained by them. Unless a very comprehensive set of
hypotheses are provided from the outset, an agent may well have to generate new hypotheses to
explain the data they collect in pursuit of their scheme of falsification.

What all these approaches have in common is that they are using a grammar to generate
a (possibly infinite) space of potential hypotheses, and they operate on a fixed dataset. They
search the hypothesis space, either in a breadth first search, like (Levin, 1973), or in the case of
(Schmidhuber, 1995), using a genetic algorithm to perform the search like the Eureqa project, or
exhaustively with an imposed limit like the automatic statistician. These hypothesis generation
algorithms do not consider, once a set of credible hypotheses have been identified, how to expand
the dataset in order to determine which of those hypotheses are most credible.

2.5 Summary
In opportunistic sampling of discrete objects we have seen that the state of the art algorithms
ignore the relative availability of different classes of objects. While they do evaluate taking
opportunistic sampling actions with respect to the effect on the overall mission, they do not
consider the likelihood of encountering more valuable sampling opportunities. We address that
shortcoming in Chapter 3.

With prospecting algorithms we see that they don’t consider with what confidence a trigger-
ing event has been observed. We address that shortcoming in Chapter 4, in order to demonstrate
an improved ability to deploy secondary sampling actions.

Finally, when it comes to planning for information gathering we see two things. The first is
that the vast majority of informative planning algorithms consider at most one hypothesis when
planning paths and sampling actions for autonomous robots. The second thing we see is that
algorithms which generate hypotheses only consider fixed datasets at the moment of generation.

What is not answered by these bodies of work is how to plan actions that are informative, in
order to determine the most accurate hypothesis. In Chapter 5 we present an algorithm that plans
informative actions in order to determine which of a set of hypotheses most accurately describes
collected data. This kind of planning will be a fundamental component of robots which are
simultaneously attempting to generate and choose between multiple competing hypotheses.

30

Chapter 3

Opportunistic Sampling of Discrete
Objects (Foraging)

While exploring unknown environments robots will necessarily encounter unanticipated phe-
nomena. To handle this situation robots require some mechanism that allows them to react op-
portunistically to those phenomena. In this chapter we consider robots that are encountering
discrete objects and that are interested in learning the underlying distributions of observations
from sampling these discrete objects.

The object classes and the underlying distributions could represent many different things.
For example, it could be types of drugs and expected outcomes, or, continuing a medical theme,
it could be patients representing clusters of symptoms and recommended treatment. It could
be classifiers acting on a data stream, and the underlying distribution could be its accuracy, as
verified by some oracle.

This work was developed in the context of the Life in the Atacama Desert project (Wetter-
green et al., 2005). The algorithm could act as a tool to bring some human adaptivity on-board
the vehicle. In the AEGIS system (Estlin et al., 2012), humans decide whether or not to activate
the autonomous science system.

Our proposed foraging algorithm can provide some of that human decision making on-board
a robot for when the communications link to a remote science team is limited. However, the tool
could also be used to suggest sampling actions to human operators during a high tempo missions
that has high communications throughput.

To keep the project grounded in planetary exploration, we consider different classes of geo-
logic materials, rocks in particular, as the discrete objects, and the underlying distribution would
be over the colonization by microbes of that class of rocks. We assume that the robot can identify
the different objects with some inexpensive proxy sensor, but it can only collect observations in-
forming microbial colonization by using a more expensive sensor. The overall goal of the robot
is to estimate the distributions underlying the different classes of objects with minimal error.

We further assume that the robot has no global information. That is, the robot does not know
how many objects it will encounter, nor what their classes will be. We assume that the robot is
following some pre-determined trajectory, such as a lawn mower pattern as in Figure 3.1.

The classes of objects that the robot encounters are drawn independently from a distribution
representing the prevalence of different classes of objects in that environment. In each encounter

31

Figure 3.1: A cartoon of a path explored by a rover. The images represent different classes of
desert pavements that may encountered by a rover as it follows a pre-determined path.

32

with an object the robot can either choose to sample or continue exploring along the trajectory.
Thus, the problem can be thought of as a stream of sensing opportunities, providing varying
reward, and each requiring a decision to either sample or move on.

The state of the art algorithms in robotics literature for opportunistic sampling represent
a reflex-like approach to opportunistic sampling. They generally either match a template or
they respond to the novelty of the class of object. Seeking novelty is beneficial from both an
information theoretic and a logistical approach. If class of object is rare, either it will provide
greater information gain, because the explorer is unlikely to have collected many samples from
it, or logistically because there may not be many remaining opportunities to sample that class of
object, so passing up the object doesn’t make sense.

A template matching approach, however, is more problematic. Note that we include pre-
trained classifiers in the phrase “template matching”. On the one hand classification schemes
are an efficient way for scientists to communicate their preferences for sampling to robots. On
the other hand, if these templates are not properly vetted then template matching is a means by
which confirmation bias can be encoded into the robot. That, in turn, can reduce the quality of
the science conducted.

Both novelty seeking and template matching ignore the results of their sampling actions.
That is to say, how much information was gained by the most recent sample of an object of a
given class. There are standard tools in the design of experiments literature which do address
this shortcoming. However, those algorithms make assumptions which do not hold in field oper-
ations. This will be discussed in section 3.1.

Another consideration is that the number of samples that a planetary robot might carry. The
Phoenix lander carried four copies of the single-use Wet Chemistry Laboratory (WCL) instru-
ments (Hecht et al., 2009). Zoë, in the second Life in the Atacama Desert project had 20 sample
receptacles it could use to collect soil samples (Paulsen et al., 2013). The upcoming Resource
Prospector mission will likely be only collecting on the order of tens of samples with its drill (An-
drews et al., 2014). In planetary exploration missions sampling resources can be very limited,
and as such one wants to be effective with small total sampling budgets.

In this chapter we introduce an algorithm to address the shortcomings of the novelty-seeking
and template matching algorithms. The method we propose makes two major modifications to
the state of the art. First, the objects are valued by the expected information gained by sampling
the object. Second, we compare the anticipated information gain from the current object to the
expected information gain for the next encountered object. With these improvements our algo-
rithm is able to make the decision to either sample the object that is immediately available to the
robot, or to continue along the trajectory in the hopes of finding a more informative opportunity
for sampling.

The proposed algorithm draws on techniques from optimal foraging theory and sequential
experiment selection. Its use is motivated by observations of human and animal behavior, exem-
plified by geologists making decisions about investigating local phenomena without prior access
to detailed maps. They are able to effectively choose between either sampling materials in front
of them or exploring for more profitable sampling locations. These decisions may not be globally
optimal, but they offer robots a mechanism for making foraging decisions (either to engage with
the environment or to continue exploring) in a computationally tractable way.

The algorithm is then extended to address another common situation in scientific exploration,

33

namely environmental variability. As the robot traverses the environment, it may easily pass be-
tween regions where environmental conditions differ, which affects the distribution underlying
the classes of objects. In the Atacama desert 100% of photosynthesis-promoting translucent
rocks are colonized by microbes in semi-arid regions, but less than 50% of such rocks in arid
regions, and less than 1% in the hyper arid core (Warren-Rhodes et al., 2007, 2006). If one can
detect changes in the observed quantity, then one might infer changes in unobserved quantities in
the environment, and trigger other investigative actions. Reacting to such changes is also relevant
for information gathering purposes, so sampling decisions will not be based on historically ob-
served but now inaccurate class information. The proposed extension incorporates an additional
statistical test to detect a change in class distribution to notify operators, separate data segments,
and reset the observation history that might otherwise misinform upcoming sampling decisions.

To demonstrate the value of the algorithm we conducted a number of simulation experiments.
First we gave the robot a problem with three classes of objects to investigate. Next we explored
the effect of the arrival distribution on the behaviour of the foraging algorithm relative to baseline
algorithms, and the effect of the underlying distribution on the algorithms.

In all experiments we varied the exploration and sampling costs for the robot and non-uniform
arrival probabilities. In the first experiment we used a uniform arrival distribution with a small
number of class of objects. In experiments 2,3, and 4 we considered two arrival distributions
which are heavily skewed in favour of one class of object over the others. We also varied the
underlying distribution of the most common algorithm (experiment 3) in order to determine the
effect of the algorithms’ prior belief in colonization on their performance.

In experiment 5 we tested a change detection extension to the algorithm, by changing the
distribution underlying the classes of objects during operations. Here we selected one sampling
and exploration cost, which were small relative to the overall sampling budget, in order to see
how detecting changes in the underlying distribution can improve estimates of class distribution
parameters.

The remainder of this chapter begins with a brief survey of the relevant literature. Next, a
detailed comparison of the proposed foraging algorithm and one based upon existing principles
from the design of experiments literature. Finally, discussion of experimental results from a
simulated exploration scenario indicates that under limitations on sample collection and over-
all mission time, the foraging algorithm presents a statistically significant improvement for a
realistic range of sampling costs.

3.1 Prior Work
Automating experiment design and selection is not without precedent. Kristine Smith started the
field of optimal experiment design in 1918 (Smith, 1918). Recently robots have been employed
to conduct scientific inquiry autonomously (Wagner et al., 2001; Castano et al., 2007; King
et al., 2004). Current robot scientists’ reliance on global information makes operating in truly
unknown environments challenging. Additionally, previous approaches in sequential decision
making from statistics do not necessarily reflect the settings that autonomous robots encounter in
the real world. The particular approaches in question are formulations of sequential experiment
selection problems, which are the Secretary Problem and the Multi-armed Bandit (MAB).

34

3.1.1 The Secretary Problem
The secretary problem asks a decision maker to select the best candidate from sequentially pre-
sented candidates where it is not possible to return to rejected candidates. In the original setting,
there is only one position for the candidate to fill, (Ferguson, 1989) and the optimal strategy is to
reject the first N

e
candidates and then accept the first candidate who is ranked better than any of

the previously seen candidates. Further, the decision maker was able to objectively score the can-
didates without cost. In our setting, candidate value is unknown before sampling, and sampling
a class incurs a sampling cost.

There have been many variations on this problem including selecting multiple candidates
(Vanderbei, 1980), or when the total number of candidates is random (Presman and Sonin, 1972),
for more variations (Ferguson, 1989) is an excellent source. The Odds algorithm has been de-
signed as an optimal solution to the secretary problem, but it requires knowledge of how many
opportunities there are to collect samples (Bruss et al., 2000). More recently, the submodular
secretary problem has been developed to handle selection of k candidates, as opposed to just
one (Bateni et al., 2010). It simply divides the transect into k contiguous regions and runs the
standard secretary algorithm on each segment.

What distinguishes the secretary problem from the particular science autonomy problem we
propose is that we do not know the value of a candidate, or class, when we encounter it. Objects
must be sampled to learn their true value. Additionally repeatedly sampling the same class
decreases the value to the decision maker, whereas in the secretary problem the encountered
value of the object is the value of the object. Since most of the secretary problems rely on
previous observations of candidate values, our expected decrease in candidate value would not
be compatible.

3.1.2 Multi-armed bandits
Sequential experiment selection, a type of active learning, is addressed in the multi-armed bandit
(MAB) literature. This was introduced by Robbins (1952) as a means of sequentially selecting
which experiments to conduct with a limited budget. In Robbins’ work, selecting experiments is
modelled on determining the payouts of one-armed bandit machines – each machine representing
a different experiment. The player has a fixed sampling budget and has to sequentially choose
which machine to play, trading off exploiting expected rewards from well-studied arms against
exploring different arms, learning more accurately the payouts of those arms.

Lai and Robbins (1985) use a value function in which uncertainty in arm rewards makes an
arm more interesting. Recently decision rules like Thompson sampling (Thompson, 1933) and
Bayesian Optimal Control (Ortega and Braun, 2010) have gained popularity. Other techniques
addressing the exploration/exploitation problem use uncertainty as a reward metric (Burnetas and
Katehakis, 1997; Auer, 2003; Balcan et al., 2006). In our setting, because the agent only needs
to learn the distribution and not use it for anything, uncertainty is the only necessary reward.

Balcan et al. (2006) presents a method for learning classifiers by requesting samples from the
input space with the greatest classification error. Classification error and uncertainty in function
value are fungible quantities in this case. An analogy can be drawn between the classifiers used
in (Balcan et al., 2006) and the bandit arms used by Auer and Ortner (2010).

35

Several factors distinguish the MAB setting from the problem explored in this chapter. In
MAB, the agent has access to any arm (analogous to a class in our setting) it chooses at any
given time. The agent in our setting does not get to choose which of the classes it can investigate.
Any previously seen classes are no longer available, and new classes arrive per a random model.
Additionally, the standard MAB setting does not have switching costs, although there are some
formulations which do include such costs (Jun, 2004). In our setting, there is a cost incurred with
every choice to continue exploring.

3.1.3 Optimal Foraging
Foraging is the problem encountered by animals seeking to maximize energy intake when operat-
ing in unknown environments. The central question of the problem is whether it is more valuable
to continue extracting resources from the current location than it is to seek out resources in
new locations. Charnov (1976) introduced a technique for dealing with “patchy” environments,
in which there are distinct regions that contain different classes of resources. The forager can
extract value from these patches, with diminishing returns (modeling resources consumed), or
choose to continue to wander randomly in the hopes of encountering more valuable locations.

The optimal time to leave a patch, according to Charnov’s Marginal Value Theorem, is when
the expected return from continuing to sample a patch is less than the expected return from
searching the environment. In this formulation, the expected return from both the current patch
and the environment are offset by the cost of extracting resources in this patch and the energy
spent seeking a new patch.

Pirolli and Card (1999) studied researchers attempting to acquire information. They mod-
elled the rate of information gain and had their agent decide to leave a patch when the rate of
information gain was lower than that of the environment. What differentiates their setting from
ours is that their decision maker can choose which patch to sample, yet our exploring agent
cannot.

Kolling et al. (2012) studied humans engaged in a gambling task in which players have to
consider the option they have before them and the opportunities the environment provides. Sub-
jects were repeatedly presented with a choice of playing a gambling game or being randomly
presented with a different game. Each game was a Bernoulli trial with some unknown probabil-
ity of success. Kolling et al. identify possible neural substrates for foraging decisions in humans.
The behaviour was near optimal, with some skewing of probabilities near 0 or 1.

3.1.4 Opportunistic Science
In chapter 2 we discussed the NOMAD(Wagner et al., 2001), OASIS/AEGIS (Castano et al.,
2007; Estlin et al., 2012), and ProViScout (Paar et al., 2013) systems for deploying samples
opportunistically. These algorithms use classifiers to identify objects in the scene, which are
then prioritized via value functions specified by remote scientists. Any identified objects which
meet a criterion for being sampled are then passed on to their scheduler to be integrated into the
mission plan. In this chapter we demonstrate that recognizing the availability of the different
classes of objects in the environment, can improve estimates of the underlying distributions.

36

Das et al. (2015) present a method for deploying samples as robots explore along a transect, as
does Girdhar et al. (2013b) and Thompson et al. (2013). However, the problem settings in these
papers have robots operating in either scalar or vector fields, as opposed to sampling discrete
objects. These works will be discussed in more detail in Chapter 4.

Other autonomous science work demonstrate that information gain, either in terms of Shan-
non(Thompson, 2008), Cauchy-Schwartz Quadratic(Tabib et al., 2016), or Fisher(Miller et al.,
2016), is a useful quantity to evaluate the relative worth of different sampling actions. In this
chapter we used the Shannon definition of information gain, however, in future work we would
recommend using the Cauchy-Schwartz Quadratic mutual information, if for no other reason
than the decrease computation time noted by Charrow et al. (2015).

Sun et al. (2011) proposed a method for maximizing the expected information gain of a se-
quence of actions in a Markovian world. This work can be viewed as a more general formulation
of the solution presented in this work. It forecasts out the actions of the robot to either a fixed
or infinite horizon possible sampling opportunities. Our work can be viewed as employing the
model developed by Sun et al. (2011) with a single time-step horizon, something more amenable
to operation in restricted computing environments.

Thompson et al. (2015a) present a method for deploying observations using the Planetary
Instrument for X-Ray Lithochemistry (PIXL). This instrument is a type of spectrometer which
collects samples while being moved at the end of a robot arm. This algorithm is interesting
because instead of dealing with discrete classes of objects, it deals with spectra, which exist in a
Rn, instead of N+.

The objective of the algorithm is to determine when to deploy observations with the spec-
trometer with long integration times. Because of the possible imprecision of returning to previous
locations, the instrument back-tracking to previous observations is not permitted.

Thompson et al. (2015a) consider two algorithms for deciding when to deploy sampling ac-
tions. The first looks to see if the currently observed spectrum, u, differs from any spectrum, v, in
the library of spectra collected during operations. If the difference, by a weighted distance func-
tion, crosses a threshold τ , then the sampling action is triggered. The second algorithm tested
in the work will deploy a sampling action if any of the channels in the currently observed spec-
trum is greater than n standard deviations of the mean, estimated from the previously collected
spectral data.

Both these algorithms can be viewed as types of novelty detection. In the first case, the
library of spectra and the distance function forming a density estimator over the space over
observations. In the second case, the distributions over the channels form their own density
estimates over the space of possible observations. Both approaches produce improvements in
performance compared to the random and periodic sampling algorithms tested as baselines.

Foil presents an alternative approach to deploying the sampling actions in (Foil, 2016, Chap-
ter 6). They consider classifications of the spectra that are being observed by the instrument.
Using a probabilistic classifier, they attempt to determine if the probability of the class being
misclassified is above a certain threshold (P (misclassification) > 0.997). They claim results that
are at least as good as or better than the methods presented in (Thompson et al., 2015a).

Previous work by the author employing optimal foraging techniques for science autonomy
has considered robots with sampling budgets limited by a number of containers and assumed
knowledge of the number of sampling opportunities that would occur (Furlong and Wettergreen,

37

2014b,a). While the limited sampling budget is realistic, foreknowledge of the transect is not
necessarily so. This chapter improves upon the prior work by using productivity, the ratio of in-
formation gained to resources expended, to reason about sampling choices and gives a constraint
of time instead of an unknowable number of sampling opportunities. In those works we found
that algorithms which simply engage with every available opportunity never outperform uniform
and foraging sampling algorithms, for that reason we do not consider them in this chapter.

3.2 Method
We consider a scenario where a rover is following a path set for it by remote scientists. The
robot has a budget of 100 units of time which it can expend while following the trajectory. While
following this path the rover will repeatedly encounter objects that belong to one of K possible
classes. Initially the robot does not know how many different types of materials it may encounter.

At every encounter the robot has a choice of sampling that object, represented by taking
action x ∈ X and making an observation Z, or continuing along the path in the hopes of find-
ing a more interesting sampling opportunity. The role of the agent is to determine P (Z|x) =
θzx (1− θx)1−z ∀x ∈ X .

The experimental setup is a variation on Charnov’s patchy foraging (see Section 3.1.3). In
this case we assume a patch is exhausted by taking one sample. If the agent chooses to continue
searching it will be presented with a new object, drawn with probability P (X = x). The reward
for taking a sampling action is information gained about the underlying distribution, which is the
reduction in the entropy of P (Z|X = x) as a result of the latest observation. This reward func-
tion decreases in expectation, but in some instances may increase. However, if the distribution
underlying the classes of objects changes, then we might expect to see the rewards increase for a
period.

In this chapter we distributions underlying the classes of objects as Bernoulli random vari-
ables, representing whether a phenomenon of interest is present or not. In the grounding example
of searching for life in a planetary science setting, it would model whether or not a material is
colonized by microbes.

We place a Beta prior on the parameter θx ∼ Beta (αx, βx) that determines the probability
that a class of material is colonized. Post observation we estimate that the probability of a class of
object being colonized is E [θx] = αx/ (αx + βx). Here αx is the number of times material x was
observed being colonized (“success”), and βx is the number of times material x was observed as
not being colonized (“failure”).

We anticipate that the agent will encounter a number K = |X| ≤ ∞ classes of random
variables while exploring. Different experiments have different values of K. However the agent
is never informed of how many classes of objects exist in the environment, and as such the
algorithms must adapt as they encounter new classes of objects.

3.2.1 Algorithms
Three algorithms for sampling decision-making are evaluated in these experiments. Two of
these algorithms estimate the value of action x ∈ X by using Lindley’s value of an experiment

38

(Lindley, 1956), given in Equation 3.1. This reward represents the expected information gain
over all possible observations that may result from choosing to take sampling action x.

R (x) = H (θx|zx,1:t−1, x)− EZ [H (θx|zx,1:t, x)] , (3.1)

Where zx,1:t refers to the t observations that were collected for object class x. The expectation
over Z is computed from the robot’s current belief in P (Z|X = x), which is where the prior
Beta(α, β) has influence. In our case this value can be computed exactly, because the space
of possible values of Z is small. However, for different random variables this would require
estimating the value if closed-form solutions are not available.

In the final experiment we consider a fourth algorithm, which is a modified form of the For-
aging algorithm. This algorithm attempts to detect whether the distribution underlying one of the
classes of objects has changed. Should it do so, the algorithm caches the previous observations
and re-initializes the algorithm.

Greedy (Baseline Algorithm) The first baseline algorithm, greedy sampling (Algorithm 3.1),
will only choose to sample the encountered object, xt, if it is has the highest reward compared
to any other x ∈ X . This algorithm does not take into account the cost of moving to finding
the next xt, nor the rate at which they arrive. This algorithm corresponds to the simple greedy
strategy of maximizing immediate reward.

Algorithm 3.1 Greedy Sampling Strategy
function INIT GREEDY SAMPLING

X← ∅
R (·)← ∅

end function
function GREEDY SAMPLE(xt)

if xt /∈ X then
X ← X ∪ xt
return ACTION SAMPLE

end if
if R (xt) > R(x) ∀ x ∈ X \ {xt} then

return ACTION SAMPLE
else

return ACTION EXPLORE
end if

end function

Uniform (Baseline Algorithm) The second baseline algorithm, Uniform sampling, will choose
to sample xt if any other class of object, x ∈ X , has been sampled more than xt. Like Greedy,
this algorithm does not take into account the cost of traverse nor the cost of taking a sampling
action. This algorithm attempts to distribute samples uniformly across all classes. Uniform sam-
pling provides valuable comparison as it has been previously shown to be a robustly successful
strategy (Furlong and Wettergreen, 2014b).

39

Algorithm 3.2 Uniform Sampling Strategy
function INIT UNIFORM SAMPLING

X← ∅
N(·) ← ∅

end function
function UNIFORM SAMPLE(xt)

if xt /∈ X then
X ← X ∪ xt
Nxt ← 1
return ACTION SAMPLE

end if
if ∃ x ∈ X \ {xt} s.t. Nxt < Nx then

return ACTION SAMPLE
else

return ACTION EXPLORE
end if

end function

Foraging The proposed algorithm, foraging (Algorithm 3.3), chooses to sample if the ex-
pected rate of reward of xt is greater than or equal to the expected reward from continuing to
explore the environment and sample the next encountered object. We call the ratio of expected
reward to costs the productivity of the algorithm. The foraging algorithm captures exploration
and sampling costs, Je and Js in Algorithm 3.3, respectively, when making its decision.

We place a Dirichlet prior on the occurrence of the classes of objects, estimating the prob-
ability of encountering class xt as P̂ (X = xt) = nxt/

(∑
x∈X nj

)
, where nxt is the number of

times xt has been encountered. Initially, all classes of objects nx = 0, so the algorithm only
believes in the existence of a class of object after it has been observed. The distribution P̂ (xt) is
used to compute the estimated value in the environment, in Algorithm 3.3.

40

Algorithm 3.3 Foraging Sampling Strategy
function INIT FORAGE SAMPLING

X ← ∅
R (·)← ∅
N· ← ∅

end function
function FORAGE SAMPLE(xt)

if xt /∈ X then
X ← X ∪ xt
Nxt ← 0
return ACTION SAMPLE

end if
Nxt ← Nxt + 1
sample← R (xt) /Js
explore← EX [R (xt)] / (Js + Je)
if sample ≥ explore then

return ACTION SAMPLE
else

return ACTION EXPLORE
end if

end function

Foraging with Change Detection The foraging with change detection algorithm uses the same
decision rule as Algorithm 3.3, but after it makes an observation it checks to see if the distribu-
tion underlying those observations has changed, as in the function “DETECT CHANGE” in
Algorithm 3.4. It detects the change with a likelihood ratio test. It maintains two windows of
observations for each x ∈ X , one which is initially populated with window size many observa-
tions, the other populated with the window size most recent observations.

The two observation windows represent hypotheses about the parameter θx. A third window
of the sample size most recent observations is used as the test population. An instance of Wald’s
sequential probability ratio test (Wald, 1945) determines if the observations in the second win-
dow represents a different distribution from the first. The threshold for detecting a change in the
distribution, change threshold, is selected as specified in (Wald, 1945). window size is arbi-
trarily set to be 30, and sample size to 5. If a distribution change is detected the current world
model is cached, and the rover resets its sampling algorithm to an initial state.

41

Algorithm 3.4 Foraging with Change Detection
function INIT FORAGE SAMPLING

X← ∅
R (·)← ∅
N(·) ← ∅
windowa,x ← queue(∅)
windowb,x ← queue(∅)
samplex ← queue(∅)
sample size← 5
window size← 30

end function
function DETECT CHANGE(x, zx,t)

if size(windowa,x) < window size then
push(windowa,x, zx,t)

end if
push(windowb,x, zx,t)
if size(windowb,x) > window size then

pop(windowb,x)
end if
push(samplex, zx,t)
if size(samplex) > sample size then

pop(samplex)
θa,x ← sum(windowa,x)/size(windowa,x)
θb,x ← sum(windowb,x)/size(windowb,x)

Λ←
j=sample size∑

j=0

log

(
P (samplex(j)|θa,x)
P(samplex(j)|θb,x)

)
if Λ > change threshold then

cache(windowa,x) ∀x ∈ X
windowa,x ← windowb,x ∀x ∈ X
init forage sampling()

end if
end if

end function

3.3 Experiments
We conducted five experiments to demonstrate the effectiveness of our algorithm, varying the
underlying distribution of each class, class arrival probability, and introducing a class distri-
bution change during the experiment. The costs of sampling and searching were varied over
{0.1, 0.2, 0.5, 0.75, 1.0, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10} for experiments 1 through 4. In all experi-
ments, we ran 50 trials of each algorithm for each setting of experiment parameters and costs.
In each experiment we consider different numbers of objects, K, and we assume that the robot

42

makes no errors in identifying these classes.

3.3.1 Experiment 1 - Uniform Arrival Distribution, Different Underlying
Distributions

In the first experiment the arrival probability is fixed with a constant uniform distribution. That
is to say the probability that the next random variable to be presented to the agent is P (X = x) =
1/3. In this experiment we vary the underlying distribution of the random variables, P (Z|X = x),
which is the probability that objects in class x ∈ X is colonized. The used values are given in
Table 3.1.

Table 3.1: Experiment 1 Parameter Settings

Experiment P (Z|X = 1) P (Z|X = 2) P (Z|X = 3)
1.1 0.01 0.50 0.99
1.2 0.01 0.30 0.01
1.3 0.01 0.50 0.01
1.4 0.01 0.75 0.01
1.5 0.01 0.99 0.01

3.3.2 Experiment 2 - Skewed Arrival Distribution with Identical Underly-
ing Distributions

We consider arrival probabilities which are highly skewed such that there is one overwhelmingly
available class of object. We use two kinds of distributions to examine this case. The first, with
K = 6 objects, we set the arrival probabilities as per Table 3.2.

Table 3.2: The highly unbalanced arrival distributions used in this experiment. One class is given a
majority of the probability mass, while the remaining probability mass is shared among the remaining
classes of objects. In these experiments we let K = 6.

Experiment P (X = 1) P (X = x) ∀ x ∈ {2, . . . , K}
2.1 0.9 0.1/(K-1)
2.2 0.8 0.2/(K-1)
2.3 0.7 0.3/(K-1)
2.4 0.6 0.4/(K-1)
2.5 0.5 0.5/(K-1)

We also consider a skewed distribution which is not as extreme. For this we use a Zipfian
distribution (Newman, 2005), given in Equation 3.2. We consider different numbers of objects
with K ∈ {5, 6, 7, 8}. The list of experiments using this arrival distribution is given in Table 3.3.

PZipf (X = x; s,K) =
1/xs

K∑
n=1

(1/ns)

(3.2)

43

Table 3.3: Arrival distributions which follow Zipf’s law. These distributions favour some classes of objects
much more than others. In these experiments the number of classes of objects varied from K = 5 to
K = 8.

Experiment P (X = x)
2.6 PZipf (X = x; s = 1, K = 8)
2.7 PZipf (X = x; s = 1, K = 7)
2.8 PZipf (X = x; s = 1, K = 6)
2.9 PZipf (X = x; s = 1, K = 5)

In all experiments in this section we set P (Z|X = x) = 0.3 ∀ x ∈ X . We compare the
performance of the Foraging algorithm against the Greedy and Uniform sampling algorithms.

3.3.3 Experiment 3 - Skewed Arrival Distribution with Distractor Object
In this experiment we consider Zipfian and skewed arrival distributions and we vary the under-
lying distribution of the second most common class of object, which for both distributions is
X = 2. We have K = 8 objects in this experiment. The arrival distribution for all classes
and the underlying distribution for the most common class is given in Table 3.4. P (Z|X =
x) = 0.3 ∀ x ∈ {2, . . . , K}. We want to determine how the effect of a object with a surprising
underlying distribution will effect the behaviour of the Foraging algorithm.

Table 3.4: The Different settings for the arrival distributions of the different classes of objects and the
distribution underlying the most commonly occurring class.

Experiment Arrival Distribution P (Z|X = 2)
3.1

P (X = 1) = 0.8, P (X = 2, . . . , K) = 0.2/(K − 1)

0.1
3.2 0.3
3.3 0.5
3.4 0.6
3.5

P (X = x) = PZipf (X = x; s = 1, K = 8)

0.1
3.6 0.3
3.7 0.5
3.8 0.6

3.3.4 Experiment 4 - Skewed Arrival Distribution with Random Underly-
ing Distributions

In the previous experiment the majority of the distributions underlying the classes of object were
held constant at P (Z|X = x) = 0.3. In this experiment we consider four different settings of
P (Z|X = x) which were drawn randomly from the interval]0, 0.5]. These parameters are given
in Table 3.5.

44

Table 3.5: The underlying distributions used in experiment 4. For Experiments 5.1 to 5.4 we use the
unbalanced distribution where P (Z|X = 1) = 0.8 and the remaining 7 objects share the remaining 0.2
of the probability mass. In experiments 4.5 to 4.8 the arrival distribution follows the Zipf distribution,
PZipf (X; s = 1,K = 8).

Condition Experiments P (Z|X = {1, . . . , K})
RAND1 4.1,4.5 {0.14, 0.28, 0.28, 0.04, 0.27, 0.42, 0.38, 0.43}
RAND2 4.2,4.6 {0.10, 0.32, 0.12, 0.32, 0.23, 0.39, 0.36, 0.06}
RAND3 4.3,4.7 {0.04, 0.44, 0.01, 0.16, 0.31, 0.49, 0.03, 0.50}
RAND4 4.4,4.8 {0.34, 0.33, 0.25, 0.07, 0.14, 0.39, 0.37, 0.31}

3.3.5 Experiment 5 - Distribution Change
In this experiment we compare the Foraging algorithm against the Foraging algorithm with
change detection, alongside a uniform sampling algorithm that collects samples for every sam-
pling opportunity the foraging algorithm encounters. We compare only to a version of the Uni-
form sampling algorithm which already knows how many objects exist in the environment. Con-
sequently it has an unfair advantage over the Foraging algorithm.

We return toK = 3 classes of objects, and fix the arrival probabilities P (X) = {0.4, 0.3, 0.3},
and fix the sampling and searching costs at 0.01 and 0.1, respectively. Halfway through this
experiment the underlying distribution is changed from P (Z|x) = {0.001, 0.500, 0.001} to
P (Z|x) = {0.001, 0.001, 0.300}. In the planetary setting this would represent moving between
environmental regions, causing a change in colonization behaviour. The change occurs when the
agent gets halfway along its path.

3.4 Results
To determine the success of an algorithm we measure the KL divergence between the true and
estimated distributions. The performance of each algorithm is measured by the error in the
algorithms’ estimate the underlying distributions by reporting the sum of the KL divergence of
the underlying distributions for the different classes of objects. This performance metric is given
in Equation 3.3.

error(alg) =
∑
x∈X

DKL

(
θx||alg.θ̂x

)
(3.3)

For experiments 1 through 4 we present 3D plots showing how the effect on the error in esti-
mating the parameters θx from using the Foraging algorithm over the baseline algorithms as cost
of sampling, Js, and exploring, Je, are changed. In addition, we present 2D plots showing where
either the foraging algorithm performs better than the control algorithm, or the control algorithm
performs better than the foraging algorithm, or when their performance is indistinguishable.

We report the effect size with Cohen’s d (Cohen, 2013). Cohen’s d is the ratio of the mean to
the standard deviation of the difference between the trials. Values greater than 1.3 are considered
to be very large, above 0.8 to be large, and below 0.5 to be moderate, and below 0.2 to be

45

5 10
5

10−0.5

0

Js (time)

∆
D
K
L

(%
)

Exp 1.1, N=50

5 10
5

10−0.5

0

Js (time)

Exp 1.2, N=50

5 10
5

10−0.5

0

Js (time)

Exp 1.3, N=50

5 10
5

10−0.5

0

Js (time)

Exp 1.4, N=50

5 10
5

10−0.5

0

Js (time)

J e
(ti

m
e)

Exp 1.5, N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)
J
e

(t
im

e)
5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

Figure 3.2: In this situation the Foraging algorithm performs as well as or better than the
Greedy algorithm. With the exception of the very high sampling and exploration costs in Ex-
periment 1.4 and 1.5.

insignificant. In the plots of Cohen’s dwhere the behaviour of the algorithms is indistinguishable
we set the value to zero.

In the figures plotted, dark blue means that the foraging algorithm had superior performance,
and the red regions means that baseline algorithms had superior performance. In the plots of
effect size where the graph is white and set to zero that means there was not a statistically sig-
nificant difference in performance, to a 95% confidence level. Reports of the performance of the
three algorithms relative to a strategy which always samples is available in Appendix C.

3.4.1 Experiment 1 Results - Uniform Arrival Distribution, Different Un-
derlying Distributions

In this experiment we had a small number of objects, and a uniform arrival distribution we can
see that the Foraging algorithm performs as well as or better than either the Greedy (Figure 3.2)
or Uniform (Figure 3.3) sampling algorithms. The Greedy algorithm has a slight advantage when
there are very high sampling and exploration costs for Experiment 1.4 and 1.5, there the Greedy
algorithm has a slight, but statistically significant improvement over Foraging. Across the board,
Foraging performs as well as or better than Uniform sampling, mainly where there are small
sampling costs but large exploration costs.

46

5 10
5

10−0.5

0

Js (time)

∆
D
K
L

(%
)

Exp 1.1, N=50

5 10
5

10−0.4
−0.2

0

Js (time)

Exp 1.2, N=50

5 10
5

10−0.4
−0.2

0

Js (time)

Exp 1.3, N=50

5 10
5

10−0.4
−0.2

0

Js (time)

Exp 1.4, N=50

5 10
5

10−0.4
−0.2

0

Js (time)

J e
(ti

m
e)

Exp 1.5, N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)
J
e

(t
im

e)
5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

Figure 3.3: In this situation the Foraging algorithm is as good as or better than the Uniform
algorithm, for all sampling and exploration costs.

We can see here that when the arrival distribution is uniform and the number of classes are
small, the Foraging algorithm is an acceptable algorithm to use. However, as can be seen in
Figs. C.1 to C.3, the approach of sampling every opportunity is a competitive approach, and
outperforms all the algorithms for large sample and exploration costs.

3.4.2 Experiment 2 Results - Skewed Arrival Distribution, Identical Un-
derlying Distributions

When the arrival distribution follows the unbalanced distribution, and the underlying distribu-
tions are uniform, the Foraging algorithm generally performs as well or better than the Greedy
algorithm, as seen in Figure 3.4. There is a small region where the Greedy algorithm performs
better than Foraging, and that seems to be at low exploration costs, and shifts rightward as the
arrival distribution becomes less unbalanced.

5 10
5

10−1

0

1

Js (time)

∆
D
K
L

(%
)

P (X = 1) = 0.9, N=50

5 10
5

10

Js (time)

P (X = 1) = 0.8, N=50

5 10
5

10

Js (time)

P (X = 1) = 0.7, N=50

5 10
5

10

Js (time)

P (X = 1) = 0.6, N=50

5 10
5

10

Js (time)

J e
(ti

m
e)

P (X = 1) = 0.5, N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

Figure 3.4: Foraging vs Greedy Algorithm, unbalanced arrival distribution. As the arrival dis-
tribution approaches uniform, the performance of the Foraging algorithm approaches that of
Greedy. Top row is the percent change in performance, bottom row is the effect size of the
change in performance. Dark blue means Foraging is better, dark read means the baseline
algorithm is better, white means there is no statistically significant difference between the algo-
rithms.

47

In comparison to the Uniform algorithm, we can see that the Uniform algorithm is statis-
tically significantly better than the Foraging algorithm for many sampling costs and small to
moderate exploration costs. However, for larger exploration costs the Foraging algorithm per-
forms better than the Uniform algorithm, although that gap decreases as the arrival distribution
becomes less unbalanced. As the distribution becomes less unbalanced the region where the Uni-
form algorithm is better than Foraging becomes more diffuse. Further, the minimum sampling
cost where Uniform performs better than Foraging increases. For small sampling and exploration
costs Foraging is significantly better than Uniform.

5 10
5

10−1

0

1

Js (time)

∆
D
K
L

(%
)

P (X = 1) = 0.9, N=50

5 10
5

10

Js (time)

P (X = 1) = 0.8, N=50

5 10
5

10

Js (time)

P (X = 1) = 0.7, N=50

5 10
5

10

Js (time)

P (X = 1) = 0.6, N=50

5 10
5

10

Js (time)

J e
(ti

m
e)

P (X = 1) = 0.5, N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)
J
e

(t
im

e)
5 10

5

10

Js (time)

J
e

(t
im

e)

Figure 3.5: Foraging vs Uniform Algorithm, unbalanced arrival distribution. As the arrival
distribution approaches uniform, the performance gap between Foraging and Uniform algorithm
decreases. Uniform has an advantage for moderate to large sampling costs, whereas Foraging
tends to have an advantage for moderate to large exploration costs. Top row is the percent
change in performance, bottom row is the effect size of the change in performance. Dark blue
means Foraging is better, dark red means the baseline algorithm is better, white means there
is no statistically significant difference between the algorithms.

Comparing all the algorithms to an approach that samples every object it encounters, as
illustrated in Figs. C.4 to C.6, we can see that while the Foraging algorithm performs strictly
as good as or better. The Greedy and Uniform algorithms perform better than the Foraging
algorithm for some cost settings, as discussed above, but occasionally they perform worse than
always sampling.

When the arrival distribution follows Zipf’s law, as in Fig. 3.6, we see that the Foraging
algorithm is as good as or better than the Greedy algorithm, with the small exception of moderate
sampling costs. Foraging has a statistically significant improvement for large sampling costs
when the number of classes of objects are larger. However, as this number decreases, the gap
between Foraging and Greedy decreases.

48

5 10
5

10−1

0

1

Js (time)

∆
D
K
L

(%
)

Zipf(s = 1, K = 8), N=50

5 10
5

10

Js (time)

Zipf(s = 1, K = 7), N=50

5 10
5

10

Js (time)

Zipf(s = 1, K = 6), N=50

5 10
5

10

Js (time)

Zipf(s = 1, K = 5), N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

Figure 3.6: Foraging vs Greedy Algorithm, arrival distribution follows Zipf’s law. As the number
of objects are reduced the performance of the foraging algorithm decreases. Top row is the
percent change in performance, bottom row is the effect size of the change in performance.
Dark blue means Foraging is better, dark read means the baseline algorithm is better, white
means there is no statistically significant difference between the algorithms.

When compared to the Uniform algorithm, in Fig. 3.7, we see that Foraging is as good as or
better than Uniform for moderate to small sampling costs, and for moderate to large exploration
costs. When samples are expensive the Uniform algorithm generally performs better with large
effect size, and this area tends to be more diffuse as the number of objects are reduced.

5 10
5

10−1

0

1

Js (time)

∆
D
K
L

(%
)

Zipf(s = 1, K = 8), N=50

5 10
5

10

Js (time)

Zipf(s = 1, K = 7), N=50

5 10
5

10

Js (time)

Zipf(s = 1, K = 6), N=50

5 10
5

10

Js (time)

Zipf(s = 1, K = 5), N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

Figure 3.7: Foraging vs uniform Algorithm. As number of objects is decreased the Foraging
algorithm loses its advantage for large exploration costs. However, the degree of advantage
that the Uniform algorithm has decreases with fewer objects. Uniform sampling has superior
performance with large effect size for small exploration costs and large sampling costs. Top
row is the percent change in performance, bottom row is the effect size of the change in perfor-
mance. Dark blue means Foraging is better, dark read means the baseline algorithm is better,
white means there is no statistically significant difference between the algorithms.

Again, while the Foraging algorithm does not always perform better than the Greedy or

49

Uniform algorithms, we can see that it does not perform worse than an algorithm which always
collects samples, as in Fig. C.9. Uniform (Fig. C.7) and Greedy (Fig. C.8) perform worse than
always sampling for small sampling and exploration costs.

We can see that the relative performance of the algorithms is sensitive to the arrival distri-
bution. The Foraging algorithm has greater performance with small sampling and exploration
costs. Effectively, when there are many opportunities to sample, the Foraging algorithm takes
advantage of them when Greedy and Uniform do not. Uniform, however, will only sample an
object if it is not the most sampled object. Consequently when the sample costs are expensive
and the exploration costs are low, the optimistic stance of Uniform provides a distinct advantage.

3.4.3 Experiment 3 Results - Skewed Arrival Distribution with Distractor
Object

In this experiment we attempted to determine the effect of a distractor object on the relative
performance of the Foraging algorithm. We varied the underlying distribution of the second
most frequently encountered object to vary from the initial prior belief.

When the arrival distribution was the unbalanced distribution, there was no major change to
the performance relative to the Greedy algorithm, as seen in Figure 3.8. Generally the Foraging
algorithm is as good as or better than the Greedy algorithm for a wide variety of sampling and ex-
ploration costs. There is a small region where the Greedy algorithm has a statistically significant,
with small effect size (d < 0.5), improvement over Foraging.

5 10
5

10−1

0

1

Js (time)

∆
D
K
L

(%
)

P (Z|X = 2) = 0.1, N=50

5 10
5

10

Js (time)

P (Z|X = 2) = 0.3, N=50

5 10
5

10

Js (time)

P (Z|X = 2) = 0.5, N=50

5 10
5

10

Js (time)

P (Z|X = 2) = 0.6, N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

Figure 3.8: The Foraging algorithm vs Greedy, unbalanced arrival distribution. There is no
substantial change in performance across the different settings of the underlying distribution.
Greedy has a slight advantage for sampling costs of about 1.5 and exploration costs of about
1.

When compared to the Uniform algorithm, Foraging is as good as or better for moderate to
large exploration costs, as in Figure 3.9. However, for small exploration costs, the Uniform algo-
rithm is statistically significantly better and with large effect size. There is a small improvement
in Foraging at the most extreme value of the underlying distribution of the distractor object.

50

5 10
5

10−1

0

1

Js (time)

∆
D
K
L

(%
)

P (Z|X = 2) = 0.1, N=50

5 10
5

10

Js (time)

P (Z|X = 2) = 0.3, N=50

5 10
5

10

Js (time)

P (Z|X = 2) = 0.5, N=50

5 10
5

10

Js (time)

P (Z|X = 2) = 0.6, N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

Figure 3.9: The Foraging algorithm vs Uniform, unbalanced arrival distribution. The Uniform
sampling algorithm maintains the advantage for moderate to large sampling and small explo-
ration costs. There gap in performance between Foraging and Uniform is slightly decreased
for moderate exploration costs in the case P (Z|X = 2) = 0.1.

When the arrival distribution follows Zipf’s law, we see that the gap in performance between
Greedy and Foraging is decreased for large exploration costs. The advantage that Foraging enjoys
for small exploration and sampling costs is expanded, as can be seen Fig. 3.10. Greedy gains a
small, but statistically significant advantage for small exploration costs and moderate sampling
costs.

5 10
5

10−1

0

1

Js (time)

∆
D
K
L

(%
)

P (Z|X = 2) = 0.1, N=50

5 10
5

10

Js (time)

P (Z|X = 2) = 0.3, N=50

5 10
5

10

Js (time)

P (Z|X = 2) = 0.5, N=50

5 10
5

10

Js (time)

P (Z|X = 2) = 0.6, N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

Figure 3.10: The Foraging algorithm vs Greedy, Zipfian arrival distribution. The Foraging algo-
rithm either outperforms or is statistically indistinguishable from the Greedy algorithm, except
for moderate sampling and small exploration costs. At the smallest settings of exploration and
sampling costs the Foraging algorithm has a statistically significant improvement over Greedy.

Compared to the Uniform algorithm, following a Zipfian arrival distribution, the Foraging
algorithm does not change significantly as a function of the distribution underlying the distrac-
tor object. The Foraging algorithm is as good as or better than Uniform for moderate to large
exploration costs, and again for small sampling and exploration costs.

51

5 10
5

10−1

0

1

Js (time)

∆
D
K
L

(%
)

P (Z|X = 2) = 0.1, N=50

5 10
5

10

Js (time)

P (Z|X = 2) = 0.3, N=50

5 10
5

10

Js (time)

P (Z|X = 2) = 0.5, N=50

5 10
5

10

Js (time)

P (Z|X = 2) = 0.6, N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

Figure 3.11: The Foraging algorithm vs Uniform, Zipfian arrival distribution. For moderate to
large sampling costs and small exploration costs the Uniform algorithm is statistically signifi-
cantly better than the Foraging algorithm. Otherwise the Foraging algorithm is as good as or
better than the Uniform algorithm. There is no major change in performance as a function of the
change in the underlying distribution of the second most common class of object, P (Z|X = 2).
Again, Foraging is a large improvement over Uniform for small sampling and exploration costs.

For both arrival distributions the Foraging algorithm continues to be strictly as good as or
better than an approach which samples everything it encounters, as seen in Figure C.12. While
the magnitude of the increase may not be as great, we see that the range where the Foraging algo-
rithm outperforms the always-sample approach is broader than in either Uniform (Figure C.10)
or Greedy (Figure C.11).

The results from this experiment demonstrate that the relative performance of the Foraging
algorithm isn’t overtly sensitive to the underlying distribution of the second most commonly
encountered object. What we can conclude from this is that the Foraging algorithm preferen-
tially collects quantities of information instead of chasing after surprises. However, one should
consider, if the encountered classes of objects do vary significantly from the prior, perhaps an ex-
plorer should spend more time investigating them. Since the Foraging and Greedy algorithms use
the same reward function, and the Uniform algorithm doesn’t consider the observations collected
at all, none of the algorithms can be said to react to surprising observations.

3.4.4 Experiment 4 Results - Skewed Arrival Distribution with Random
Underlying Distributions

In the previous two experiments we kept the underlying distributions of most of the objects
constant at P (Z|X = x) = 0.3 ∀ x ∈ X . In this experiment we compared the Foraging
algorithm to the baselines where the underlying distributions were set as in Table 3.5. As we can
see, the difference in performance of the Foraging algorithm compared to the baseline algorithms
is highly sensitive to the underlying distributions of the classes of objects.

When compared to the Greedy algorithm, for either the unbalanced (Fig. 3.12) or the Zipfian
(Fig. 3.14) arrival distributions, the Foraging algorithm reduces its advantages, for all but the
smallest sampling and exploration costs. In the case of the RAND3 parameter setting, the Greedy

52

algorithm actually performs as well as or better than the Foraging algorithm for many sampling
costs and for moderate exploration costs.

5 10
5

10

Js (time)

RAND1, N=50

5 10
5

10

Js (time)

RAND2, N=50

5 10
5

10

Js (time)

RAND3, N=50

5 10
5

10

Js (time)

J e
(ti

m
e)

RAND4, N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)
J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

Figure 3.12: Foraging vs Greedy, unbalanced arrival distribution. The gap in performance
between Foraging and Greedy closes, and in some settings Foraging loses its advantage for
moderate exploration costs.

The Uniform algorithm demonstrates a substantial improvement in performance for the set-
tings RAND3 and RAND4, with an increase in the region where it performs as well as or better
than Foraging, as seen in Figure 3.13. We also see much larger regions where the performance
between the two algorithms is not distinguishable at a 95% confidence interval.

5 10
5

10

Js (time)

RAND1, N=50

5 10
5

10

Js (time)

RAND2, N=50

5 10
5

10

Js (time)

RAND3, N=50

5 10
5

10

Js (time)

J e
(ti

m
e)

RAND4, N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

Figure 3.13: Foraging vs Uniform sampling, unbalanced arrival distribution. The region where
Uniform performs better than Foraging becomes more diffuse for the settings of the underlying
distributions used in RAND3 and RAND4.

We see similar behaviour for the Greedy algorithm when the classes of objects follow a Zip-
fian distribution (Fig. 3.14), as we do when following the unbalanced distribution. However, the
Foraging algorithm is better able to preserve it’s advantageous performance for small sampling

53

costs, across all settings of exploration costs. In all but the RAND1 setting, the Greedy algorithm
is as good as or better than the Foraging algorithm for moderate to large sampling costs.

5 10
5

10

Js (time)

RAND1, N=50

5 10
5

10

Js (time)

RAND2, N=50

5 10
5

10

Js (time)

RAND3, N=50

5 10
5

10

Js (time)

J e
(ti

m
e)

RAND4, N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)
J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

Figure 3.14: Foraging vs Greedy, Zipfian arrival distribution. The Foraging algorithm preserves
the advantage for small sampling costs, but behaves as well as or worse than the Greedy
algorithm for moderate to large sampling costs.

Using a Zipfian arrival distribution and comparing against the Uniform algorithm we see in
Fig. 3.15 that the Foraging algorithm preserves its superior performance for sampling costs up
to 3, for small to moderate exploration costs, compared to uniform underlying distributions as
in Experiment 2. This is true across all four settings of the underlying distributions. However,
Foraging loses the advantage when the exploration costs are large.

5 10
5

10

Js (time)

RAND1, N=50

5 10
5

10

Js (time)

RAND2, N=50

5 10
5

10

Js (time)

RAND3, N=50

5 10
5

10

Js (time)

J e
(ti

m
e)

RAND4, N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

Figure 3.15: Foraging vs Uniform algorithm, Zipfian arrival distribution. Foraging maintains
superior performance for small sampling and exploration cost, but loses the advantage for
large exploration costs. This is most noticeable in the condition RAND4, where the Uniform
algorithm is superior is over a much larger region.

What we can conclude from these experiments is that the Foraging algorithm is quite sensitive
to the values of the underlying distribution. The main observation is that the performance of the

54

Foraging algorithm is much more variable for large exploration costs, but it preserves it’s superior
performance when the sampling and exploration costs are small, relative to the total budget.

When comparing to the algorithm which always samples, we observe the rare situation where
the Foraging algorithm performs worse. Shown in Fig. C.15, when the arrival distribution is
unbalanced and the test condition is RAND3, the Foraging algorithm is worse than an approach
that always samples for large exploration and sampling costs. Otherwise Foraging is strictly as
good as or better than always sampling. Again, Foraging avoids the penalty when the sampling
costs are small that the Uniform (Fig. C.13) and Greedy (Fig. C.14) incur.

3.4.5 Experiment 5 Results - Underlying Distribution Change
Fig. 3.16 shows that the foraging algorithm with change detection performs substantially better
than not using it. The leftmost bars show the performance of the algorithms with and without
change detection immediately before the change in the underlying distribution. By employing
change detection (“After” in Fig. 3.16) we see the error in estimating the underlying distribution
is profoundly reduced. Notice also that the uniform sampling algorithm, while it performs better
after the change detection than the standard foraging algorithm, it is still statistically significantly
worse than the foraging with the change detection. Obviously, the uniform algorithm could also
benefit the change detection mechanism.

If the number of opportunities to sample is not very large, then the agent will not be able
to detect a change in an underlying distribution with any confidence. This must be considered
when planning exploration missions. The number of samples that are needed to estimate the
distribution with confidence can be determined through PAC learning bounds, but would require
a confidence level determined by the designers of the mission.

Before After
0

0.1

0.2

0.3

K
L

D
iv

er
ge

nc
e

KL Divergence when Distribution Changes, N=50

Uniform Foraging Foraging with Change Detection

Figure 3.16: All algorithms perform comparably just before the underlying distribution change.
At the end of the path the algorithm that detects changes performs substantially better than the
ones that don’t. Error bars represent a 95% confidence interval, estimated from 50 trials.

55

The sampling/exploration cost that this experiment takes place in corresponds to the region
identified in the previous two experiments, and hence we see that the uniform algorithm outper-
forms the foraging algorithm. However, the fact remains that by recognizing a change in the
underlying distribution the algorithm is able to better estimate the underlying distribution.

3.5 Discussion
While improving the modelling of field work, this approach still has some limitations. For exam-
ple, the probability of encountering different classes of objects is considered to be independently
and identically distributed (i.i.d). While this may be a valid first-order approximation, it could
extend the utility of the algorithm to consider a Markov chain with a limited time horizon to
estimate the value of continued sampling.

We also consider fixed sampling and search costs. While this work looked at different regimes
of sampling and exploration costs, it could increase the fidelity of the simulation to introduce
randomness into those costs.

The decision about whether or not to sample the currently available object is based on a hard
comparison to the estimated value of exploring the environment. There are three underlying
assumptions in this decision.

First, it is assumed that one bit of information gained is worth one unit of cost. It may be that
a different relative weighting of rewards and costs would be more beneficial to behaviour. Since
the decision being made by the robot is sampling value

sampling cost ≥
exploring value

sampling cost+exploration cost , when the cost of
sampling is very small, and in particular much smaller than 1, it could ensure that the algorithm
will never give up on a sampling opportunity. However, when both sampling and exploration are
cheap, this is not unacceptable behaviour.

Second, it is assumed that the value of classes of objects is determined exclusively by the
information gained. While this protects against confirmation bias on the part of the robot, it does
not permit scientists to impart preferences.

Third, it is assumed that a hard decision boundary between the value of current sampling
opportunity and the estimated value of the environment is a suitable decision-making mechanism.
A softer boundary could reduce the propensity of the foraging algorithm to give up on sampling
opportunities.

In the final experiment in this chapter, the foraging with change detection algorithm kept fixed
the number of old and new samples that are compared, and the confidence threshold for detecting
a change. These parameters can greatly impact the ability to detect changes, and furthermore
could conceivably mask changes in the underlying distribution which occur slowly over time.
While hard changes in the underlying distribution are anticipated in the situations which inspired
this work, in other scenarios this assumption must be re-examined.

The sampling budget that the algorithms were tested with was fixed arbitrarily at 100 units.
While the costs of sampling and exploring were varied, the total budget was not. We would
expect that this would change the topography of the surfaces of the KL divergence and confidence
bounds for the algorithms.

We also consider that the robot is able to identify the different classes of objects without
error. Many template-matching algorithms deployed in situ effectively make this assumption as

56

well. While this may be possible in some settings, when perception systems are deployed in
unstructured environments this is almost certainly not true. Accounting for that confusion would
make opportunistic sampling algorithms better suited to deployment in realistic systems.

This work can be extended in several ways. First, employ the same change detection of the
sample values to the arrival probabilities. This way the exploring agent can detect when the
composition of the environment changes, which may be interesting to remote scientists. Second,
model more complex underlying distributions. Third, integrate site selection with a path planner
in order to determine costs of different sampling actions. Finally, account for possible misclassi-
fication of the identified random variables in a scene. These additions will make progress towards
robust autonomous planetary exploration.

The Foraging algorithm performs best relative to the Greedy and Uniform sampling algo-
rithms when the sampling and exploration costs are small. Effectively, Foraging can recognize
when it is sensible to engage with most of the encountered objects. However, it clearly loses
out to the Uniform algorithm when the sampling costs are large and the exploration costs are
small. While Foraging still out-performs a strategy of sampling everything for these cost set-
tings, it would be good to enable Foraging to be more like Uniform sampling in these conditions,
without losing Foraging’s advantages when sampling costs are small.

It would be good to consider the relationship between environmental conditions and the
results of sampling objects. A search procedure using one motivated by Quadratic Cauchy-
Schwartz Mutual Information would be a natural method of valuing these samples - how indepen-
dent are environmental parameters and the distribution underlying classes of objects. However,
this does require knowledge about environmental conditions, and once we have this information
in a map we then get into the notion of planning. Further, it assumes that the relevant environ-
mental parameters are observable.

Finally, it was noted that different points of the sample/exploration cost space yield different
performance for the competing algorithms. It would be valuable to develop an algorithm that can
estimate the relative costs, and then use that estimate to modify which sampling strategy they
should employ. This should yield greater flexibility and performance of the algorithms overall.

3.6 Summary
In this chapter we examined the case of a robot following a pre-determined trajectory while
attempting to learn the distribution underlying a number of classes of objects. The fundamental
idea underlying the work in this chapter is the recognition that an agent does not necessarily have
the choice of which class of object to sample. We proposed a foraging algorithm to address this
shortcoming. Additionally we consider a modified version of the algorithm which can identify
changes in the underlying distributions.

When the likelihood of encountering the different classes of objects is uniformly distributed
we see that the Foraging algorithm generally performs better than the Uniform sampling algo-
rithm. When the costs of sampling and exploring were high the Greedy algorithm had a slight
performance advantage over the proposed Foraging algorithm.

When the distribution governing which classes of objects were encountered was non-uniform
we saw this performance gap narrow, for both the Greedy sampling algorithm and the Uniform

57

algorithm, with an increase in regions where the baseline algorithms out perform the Foraging
algorithm. For larger settings of the sampling cost, the Uniform sampling algorithm out-performs
the Foraging algorithm. However, the Foraging algorithm rarely under performs the Always
Engage algorithm, as can be seen in Appendix C.

The result of the experimentation in this chapter demonstrate that there is not one clear win-
ner between the Foraging, Greedy, and Uniform sampling. When exploration costs are small
and sampling costs are large, the Uniform algorithm produces the best results. However, when
sampling costs are small, the Foraging algorithm can yield improvements. There are also many
settings of the parameters where the algorithms perform statistically indistinguishably from one
another.

We must conclude that there are different scenarios when different sampling strategies have
the best performance. When the arrival distribution of the classes of objects is near uniform,
or the number of objects is small, it makes sense to choose the Foraging algorithm, however,
once that distribution becomes unbalanced, the Foraging algorithm begins to lose out for large
sampling costs, motivating the choice of the Uniform algorithm. One can consider the costs for
sampling and exploration, and then decide which mode of behaviour it would be most beneficial
to employ. However, if one must choose a single alternative to the approach of always engaging
with samples, then we can say with confidence that the Foraging algorithm performs generally
as good as or better than that strategy. Neither the Uniform or the Greedy algorithms can make
this claim for the tested search and exploration costs, and arrival distributions.

The Foraging algorithm demonstrates its greatest advantage when the sampling and explo-
ration costs are small. It can recognize when it is sensible to engage with most of the encountered
objects. While, it clearly loses out to the Uniform algorithm when the sampling costs are large
and the exploration costs are small, Foraging still performs better than the always sampling
strategy. The Foraging algorithm can be viewed as a compromise point between the Uniform
sampling algorithm’s optimism, in the case of large sampling costs and small exploration costs,
without losing the opportunistic zeal of a strategy that always chooses to sample.

An alternative view of this work is, if one has a secondary sensor where the cost of sampling
can be controlled, and the mission has committed to a sampling strategy, then one can begin to
reason about acceptable upper and lower bounds on that sampling cost. In this way the accuracy
in individual samples can be traded against the overall accuracy in the estimates of the underlying
distributions.

To this end, we constructed a map of where the different algorithms provide the best per-
formance. The three algorithms were compared for all sampling and exploration costs and all
experiment conditions, and the best algorithm was chosen for each point. Either the Foraging or
the Uniform algorithms dominate performance, as seen in Fig. 3.17.

58

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9

10

Sampling Cost

E
xp

lo
ra

tio
n

C
os

t

Uniform

Foraging

Region of Superior Operation

Figure 3.17: The dashed blue line gives the boundary between the regions where either the
Foraging algorithm or the Uniform algorithm dominates. Note that where the Uniform algorithm
performs better than the Foraging algorithm, both are better than an algorithm which samples
every object it encounters. This plot is calculated only for budgets of 100 units of arbitrary time.

Designers of future missions could use the above figure to determine which style of sampling
to employ. To figure out the location of the mission in the map one would have to determine
the actual costs of sampling and exploration relative to the values tested in these experiments.
To achieve this, given the maximum budget was 100 units of time, one would have to scale
the estimated sampling and exploration costs by 100

budget . Where “budget” is the mission budget
expressed in units of sampling and exploration costs.

While this analysis is useful, it motivates a more rigorous analysis of the behaviour of the
different algorithms. Without a theoretical relationship between the budget and the search and
exploration costs, our map of relative algorithm performance remains a heuristic.

We also demonstrated that an algorithm which monitored samples for changes in the under-
lying distribution was better able to estimate the underlying distributions after the change than
algorithms which did not. Additionally, identification of these changes offers a trigger for au-
tonomous explorers to examine the environment for changes causing the shifts in the underlying
distribution. Regardless of the sampling algorithm used, change detection would be a valuable
addition to any opportunistic sampling system.

59

60

Chapter 4

Opportunistic Sampling in a Scalar Field
(Prospecting)

Prospecting is a type of reactive sampling. One traverses a region with a sensor that is rela-
tively cheap to use – the proxy sensor. The proxy sensor acts as a known indicator for some
phenomenon to be investigated with an expensive, secondary, sensor. Prospecting is a distinct
problem from the information foraging problem chiefly because it is not interacting with dis-
crete targets, and because the relationship between the proxy sensor and the expensive sensor is
already known.

During prospecting the agent is traversing a region with a cheap proxy sensor looking to iden-
tify places or regions to engage in sampling activities that we call Area of Interest Manoeuvres
(AIMs). Examples of an AIM would be collecting soil samples with, e.g., a drill, or to drive a
tight spiral pattern, interrupting the planned trajectory. Generally, the robot is navigating through
a scalar or vector field, as opposed to a space littered with discrete objects, and it needs to find
the best - per some objective function - location to deploy an action.

In this chapter we assume that a trajectory has been determined by some mechanism external
to the agent. We can write that trajectory as τ(t) where t ∈ [0,∞[. The prospecting sensor col-
lects observations zt that are drawn from some underlying distribution G(t) = G(τ(t)). Which
is to say that the distribution driving the readings from the proxy sensor is determined by where
the agent is along the trajectory.

We seek to improve upon state of the art algorithms by being aware of the hypothesis about
change points in the underlying distribution. Specifically, one change point when the distribution
changes from G(t) = G1 to G(t) = G2 at some change point, tcp. We build an algorithm upon
the Sequential Probability Ratio Test (SPRT), developed by Wald (1945), to determine with
confidence that a change in the underlying distribution has occurred. We demonstrate that being
aware of the change in the underlying distribution can produce superior performance to state of
the art approaches used in the field.

What we call prospecting is different from sample scheduling in that it is reactive to the ob-
servations collected in situ along the trajectory. Further we do not place a constraint on how many
discrete actions should be deployed, we leave that determination to a higher-level component in
a robot system. As previously stated we assume a pre-determined trajectory. While intelligently
planning a trajectory could increase the performance of prospecting it does not eliminate the need

61

for a mechanism which makes opportunistic decisions to take discrete actions, so in this way the
prospecting problem is different from planning for information gathering.

The work in this chapter was modelled on the Mojave Volatiles Prospector Project conducted
in the Mojave desert in 2014 in part by the NASA Ames Intelligent Robotics Group. Here the
prospecting instrument was a neutron spectrometer (NSS) and the high-cost intervention was an
Area of Interest Mapping Manoeuvre (AIM). In this chapter we model an AIM as driving in a
circular pattern when an area of interest is detected. The data used in this chapter was either data
from the MVP project or simulated based on the distribution of NSS readings collected during
this project. The MVP project is discussed in Section 4.1.

The state of the art in prospecting is best exemplified by the work of Ferri et al. (2010). As
such this algorithm is used as a baseline for comparison in the experiments conducted in this
chapter. This algorithm issues an AIM if an observation crosses a predetermined threshold. This
and other related work are discussed in Section 4.2.

What we propose is an algorithm that attempts to determine if the source driving the readings
of the prospecting sensor has changed. If a change has occurred then the robot can take any nec-
essary actions. This algorithm is based around the sequential probability ratio test (SPRT)(Wald,
1945), which is used to determine if one of two hypotheses are more likely, given the observed
data. The competing hypotheses are either that there has been no change in the underlying dis-
tribution or there has been one change in the underlying distribution.

The algorithms will be discussed in detail in Section 4.3.1. The experiments used to test them
will be described in Section 4.3.3 and their results discussed in Section 4.4.

4.1 The Mojave Volatiles Prospector Project
To ground this work we consider the Mojave Volatiles Prospector (MVP) project conducted by
NASA Ames in the Mojave desert in 2014 (Heldmann et al., 2015). The robot deployed in this
project, pictured in Fig. 4.1, was equipped with a Neutron Spectrometer (NSS), which was used
to estimate the abundance of subsurface water.

MVP served as an early test of the high-tempo scientific operations that would be required
to support short-duration exploration missions like the anticipated Resource Prospector mission
(Andrews et al., 2014). Robot-habitable conditions on the surface of the moon, (e.g. sunlight,
temperatures above freezing) last for only two week periods at a time.

The concept of operations for Resource Prospector (RP) differs from typical planetary mis-
sions to date. Resource prospector is focused on prospecting for subsurface volatiles using point
measurement instruments, such as a neutron spectrometer.

The neutron spectrometer (NSS) is an instrument that can infer the abundance of water
molecules in its field of view. The NSS can sense water content up to a meter below the surface
of the ground and in approximately a meter radius parallel to the ground plane. Since the NSS
has a limited range and field of view, readings must be taken from the surface of the planetary
body, and not from orbit.

The mode of operation for prospecting varies between long-range paths looking for varia-
tions or gradients in the field observed by the instrument. Periodically, at the discretion of the
remote science team, the rover will deviate from the long-range path to engage in localized map-

62

Figure 4.1: KRex2 in the Mojave desert. The stainless steel and cadmium cylinders of the
Neutron Spectrometer are visible on the rear of the vehicle.

ping. These localized mapping actions are called Area of Interest Manoeuvres (AIMs), and are
designed to collect more information about the subsurface.

The measurement requirements for Resource Prospector differs from what is required of a
field geology mission. In field geology one would focus on one region at a time, collect a wide
variety of measurements thus thoroughly establishing the geological context of the site.

For Resource Prospector it would be the exception rather than the rule to spend time in one
location. The time pressures of the mission drive the operations more towards long-range travel
instead of repeated observations of one site.

Since the RP vehicle is designed to not survive lunar night, which saves mission costs, op-
erations are limited to the lunar day. Consequently PR does not have the luxury of taking long
periods of time to make decisions about deploying scientific instruments. Likewise, opportunities
to return to previous locations may also be limited.

The work presented in this chapter is designed to identify when changes in the signal ob-
served by the on-board instruments occur. The purpose is to act as an assistive tool for the
remote science team, observing the prospecting sensor, detecting changes in the signal driving
observations. The science team can use the identified changes to determine if an AIM should be
deployed.

There are a number of benefits that come from separating the concerns of the path planner
and the change detection algorithm. First, it reduces the search space the planner has to explore.
Second, by separating the planner and the change detection algorithm the planner can produce
paths which optimize one criterion, while the change detection algorithm can monitor unrelated
signals. Finally, by separating path planning and the change detection algorithm, the change
detection algorithm can be used even when paths are provided by human operators.

We take the conservative stance that precursor mapping information is not available to the

63

change detection algorithm. The algorithm itself is agnostic of the plan that is being executed,
and simply monitors for changes which can be identified for remote operators. A principled
way to incorporate prior information without breaking the separation between a planner and the
change detection algorithm would be for either the remote science teams or a planning algorithm
to use any precursor data to plan the trajectory that the robot is following.

The NSS reports counts of how many neutrons it estimates passed through the field of view
of the instrument in one second blocks of time. These counts are modelled as a Poisson process.
The average rate of the Poisson process is a function of the water abundance by weight and
the depth of the water deposit. Generally speaking, a higher rate of counts implies a greater
likelihood of water.

In the process of the MVP project it was discovered that the background rate was approxi-
mately 40 counts per second. A high number of counts, highly correlated with water is approx-
imately 120 counts per second. A threshold for having detected water was approximately 80
counts per second. As such we used 80 as the threshold for the threshold algorithm used in this
chapter.

The NSS is always on and does not consume resources other than power. Therefore we
assume no sampling budget is consumed when using the NSS. We consider the fixed power
budget of the NSS while prospecting as non-negotiable.

Prospecting is an important part of exploration, especially for missions focussed around in
situ resource utilisation. An NSS is planned to be part of NASA’s upcoming Resource Prospector
mission. The instrument will be the primary prospecting sensor in the search for subsurface
deposits of solid water. The vehicle will drill at where the water density is most likely highest.
The tight time constraints of operating in one lunar day motivate effectively finding likely water
density maxima as observed by the neutron spectrometer.

4.2 Prior Work
There are three major non-adaptive methods for determining where and when to deploy AIMs:
Delegate to a human; scout out the area and return to relative maxima; or to use a threshold
to determine when an AIM should be employed. However, human judgement is not always
available, or if it is, it requires demands be placed on unbiased experts whenever the prospecting
sensor is deployed.

Pre-scouting an area is a viable approach should the exploration budget have sufficient mar-
gin that it can traverse the length of the path at least twice. But this approach does make the
assumption that the interesting observations that are made along a traverse have no temporal
component and will still be there when the robot returns to the site. This is not necessarily a
valid assumption, and as such decisions that are made reactively would be more effective.

Yoerger et al. (2000) use a robot to scan an area by searching a grid. This approach is
principled and avoids collecting data. However, erroneous readings can be over-represented in
the data, as there is no attention paid to the statistical confidence in the reported data. Likewise,
any anomalies that do appear are uninvestigated, as this is a non-adaptive approach. The work
presented in (Yoerger et al., 2007) improves on their prior approach by having the vehicle follow
a search pattern, then identify anomalies – readings that pass a certain pre-determined threshold

64

– and then return along the path to gather more observations of those anomalies.
The third approach of using a threshold to determine when to conduct an AIM is, in principle,

feasible, but only if the statistics of the environment are already well understood going into the
exploration site. A static-threshold approach does not adapt to the statistics of an environment,
and as such it may execute AIMs either too frequently, in sufficiently abundant territories, or not
frequently enough, should sites with high concentrations of the reading of interest be missed, or
the higher concentration regions be not as highly concentrated as the remote scientists hoped.

The paper (Ferri et al., 2010) describes a robot that is attempting to localize undersea hydro-
thermal vents. They track the vents by looking at the concentration of chemicals in the water
which are emitted from hydro-thermal vents. Should the observed concentration pass a threshold
they initiate a spiral area of interest mapping manoeuvre in order to build a more informed map
of chemical concentrations.

In the case of the Resource Prospector project, the purpose is to localize maxima of the
neutron signal in order to drill in a location likely to be most abundant with water. In the case
of the work of Ferri et al. (2010) the objective was to localize geothermal vents, places likely to
contain new and exciting ecosystems.

The work in (Ferri et al., 2010) is a method for deploying AIMs in an online fashion, im-
proving on (Yoerger et al., 2007). In the previous work the vehicle had to travel to the end of
the trajectory before it determined where to deploy the AIMs, where as (Ferri et al., 2010) the
vehicle can determine to deploy AIMs as it is travelling. The AIMs that the algorithm deploys
are spiral motions which collect more observations with the chemical sensor.

In (Ferri et al., 2010) they present an algorithm which uses an adaptive threshold, and com-
pare it to a baseline of a fixed threshold algorithm. They employ their algorithms on pre-recorded
data from transects collected with the ABE robot.

As the robot travels along the length of the transect they increase and decrease the threshold
based on how many AIMs have been deployed vs how many AIMs it was suggested to be de-
ployed. The suggested number of AIMs deployed is not a hard upper limit on how many can be
deployed.

The threshold, γ, is updated when a “patch” is ended. A patch is a region of the transect where
readings come close to triggering an AIM, but do not necessarily trigger an AIM. A schematic
of the decision rule for updating the threshold is given in Algorithm 4.1.

65

Algorithm 4.1 The algorithm checks to see if the number of AIMs deployed is keeping pace, as
a fraction of the suggested number of AIMs, with the fraction of the transect covered. The algo-
rithm starts off with a threshold, γ determined by a default threshold, specified by the scientists,
which is denoted γB. There is also defined a minimum threshold, γmin.

transect frac← distance travelled
transect length

K ← 2
if aims deployed

suggested aims ≤ transect frac then . The threshold should be lowered
γlow ← median({max(p) : ∀ p ∈ patches s.t.max(p) < γ})
γ′ ← max(γB ∗ (1− transect frac) + γlow ×K × transect frac, γmin)
γ′ ← min(γ′, γB)

else . The threshold should be raised
γup ←median({max(p) : ∀ p ∈ patches})
γ′ ← max(γB ∗ (1− transect frac) + γup ×K × transect frac, γB)

end if
γ ← γ′

However, the actual fraction of the distance travelled was estimated by the number of track
lines in the lawnmower pattern that have been completed. In effect the algorithm attempts to
ensure that at least the number of suggested AIMs are deployed by the end of the transect. As it
gets closer to the end of the transect the threshold will be lowered towards the minimum allowed
threshold, γmin. However, this approach is focused more on ensuring the AIMs are deployed,
and less on ensuring that it has successfully detected changes in the distribution that is driving
the sensors.

The reliance on an a priori threshold, in the case of the static policy in (Ferri et al., 2010)
means that the vehicle cannot adapt itself to operations in environments that have not been pre-
viously characterized. Ferri et al. (2010) proposed their adaptive algorithm addresses this by
modifying the threshold in response to the data observed.

Comparing their adaptive algorithm to the fixed algorithm they classified the AIMs they de-
ployed into one of three categories: AIM with confirmed vent, AIM with likely nearby vent, and
AIM with no vent. They also counted the number of vents that were missed by the algorithms,
the performance of which is summarized here in Table 4.1 and found on p27 of (Ferri et al.,
2010).

Table 4.1: The success of the AIMs deployed by the adaptive and fixed threshold algorithms. Also
reported the number of missed vents. Numbers come from Table 2 on p27 of (Ferri et al., 2010).

Adaptive Threshold Fixed Threshold
Confirmed Vents 11 9
Likely Vents 5 4
No Vent 2 3
Missed Vents 2 4

If we include all likely vents in the count of successful vent discoveries, we can fit beta
distributions to the precision and recall of the algorithms. We compute precision by dividing

66

the number of true positive identifications of vents by the sum of the true positives and the false
positives. We compute recall by dividing the number of true positive identifications by the sum
of the true positive identifications and the missed vents.

From this analysis, summarized in Table 4.2, we find the degree of belief in the improvement
does not meet a 95% confidence level, but is still quite large at 84% probability of improvement.
From a “gambler’s ruin” perspective, one should overwhelmingly choose the adaptive threshold
over the fixed. The effect size of the improvement from using the adaptive algorithm is large,
with a Cohen’s d = 0.99.

Table 4.2: A Bayesian statistical analysis of the improvement due to the adaptive threshold.

Adaptive Fixed P (Adaptive > Fixed) Cohen’s d
Precision 0.61 0.56 84% 0.99
Recall 0.85 0.69 84% 0.99

It should be noted that the behaviour of the algorithm proposed by Ferri et al. (2010) is depen-
dent on a number of parameters determined by scientists in the field. There are opportunities to
fine tune this algorithm to be more or less aggressive in how it deploys AIMs, but it also requires
knowledge of the environment in the form of the default threshold, the minimum threshold, and
the suggested number of AIMs to be deployed.

The work developed by Girdhar focuses on processing images in situ. The images that are
collected by the robot are subjected to topic analysis to create meaningful clusters of images. As
the robot explores, it scores the perplexity of the scene, or in the case of (Girdhar and Dudek,
2016) sub-regions of the scene. Topic perplexity in this case is a measure of how well the image
is described by any one of the topics already discovered in the image database. When the topic
perplexity is high for an image, the vehicle slows down in order to collect more observations of
the perplexing scene. These vehicles do not plan with respect to overall mission objectives or
goals, but simply employ their resources greedily.

There is an analogy between topic perplexity and the entropy of an image. Girdhar et al.
model images as Bag of Words (BoW) vectors. Their topic content can be viewed as the dot
product between the topics BoW vectors and their individual image BoW descriptions. The
product between the images and all the topic models produces a distribution over the topics. An
image that has a high entropy distribution over the topic models represents an anomaly that is
not adequately described by the code book developed from the previous observations and as such
warrants further investigation. Additional observations get added into the database that are used
for producing the topic models, and as such there is an adaptation to the topic model to describe
the environment the robot is operating in.

In (Thompson et al., 2013) the focus is on deploying samples when there is a limited sampling
budget. Here the explorer is carrying an instrument that is sampling at a predetermined rate and
the only thing the robot can do to collect more samples of a phenomenon of interest is to slow
the vehicle down. Further, the vehicle is forbidden from back-tracking. The focus of the work
was constructing a non-stationary Gaussian Process kernel function in order to have the vehicle
adapt to anomalies on-line. That being said, generating two distributions to model the data, one
stationary and one not, could be used as the competing hypotheses that are considered in this
work, should one need to make a discrete decision.

67

In the case of using an instrument such as a neutron spectrometer, as in this chapter, there
is no reason to believe that there will be an explicit limit on the number of samples that can be
collected. However, there may be a limit on overall mission time and/or power resources that
can be deployed at any given time. Additionally, unlike (Thompson et al., 2013), our algorithm
needs to make a decision to deploy a discrete action, and not control a parameter in a continuum.

Lee et al. (2018) engage in the automatic localization of gamma-ray sources using a single
ground vehicle. The experimenters had the robot following one of three different paths, a straight
line, a spiral, or a lawnmower path, and used a Compton gamma camera to localize the sources
of radiation. The Compton camera is capable of reporting three-dimensional data about incident
gamma-rays, and thereby enable localization of sources much more effectively. The work hinges
on having a good estimate of the 3D location of the robot and directional information from the
Compton camera.

Unfortunately the Mojave Volatiles Prospector and Resource Prospector projects only have
access to a point sensor in the form of the NSS. Having such an instrument for neutrons would be
highly valuable, and would spur an interesting extension of this work - automatically detecting
changes in the number of neutron sources with confidence.

Wilson and Williams (2017) present an approach for designing trajectories for surveying an
environment to maximize the observations of values, in their case depth, within a certain range.
The algorithm operates within an prescribed boundary, and uses a Gaussian process to model
the depth observed by the robot. The robot then follows the gradient of the depth model until
it intersects with the boundary. Then the robot follows the contour of the depth measurements
until it has identified a closed region within the proscribed boundary, and then decomposes that
region into polygons that are searched using a lawnmower pattern.

The approach developed by Wilson and Williams (2017) uses the Gaussian process to reac-
tively change directions in order to identify the region to be decomposed. After the decomposi-
tion is designed the robot then deploys the lawnmower pattern without further reactive planning.
This approach could be used to design the trajectories that the robot in our algorithm is following,
at the overall mission level.

The problem setting discussed in this chapter does not permit control of the robot’s path, the
robot can simply deploy short-term deviations from the path. In settings where the robot can
control its global trajectory, planning more intelligent trajectories is likely to be more effective.
Below we discuss ergodic trajectory planning and trajectories designed by Bayesian optimisa-
tion.

Ergodic trajectory planning uses an existing density function over a closed region. The ob-
jective of the planner is to produce trajectories which cover regions of a space in proportion to
the density function over that space (Mathew and Mezić, 2011).

Mathew and Mezić (2011) developed a greedy planner for multiple robots in order to achieve
uniform coverage of an enclosed space. This approach was extended to plan optimal trajectories
with finite time horizons by Miller and Murphey (2013b) over the course of three papers (Miller
and Murphey, 2013b,a; Miller et al., 2016).

Miller and Murphey (2013b) introduce an optimal trajectory planner to produce trajectories,
x(t) that are ergodic with respect to some distribution over space, φ(x). The planner works with
continuous time trajectories, and does not require a discretization of the operating domain. This
is achieved by transforming the density map the robot is investigating into the frequency domain.

68

The ideal trajectory is scored by examining the difference between the coefficients of the
Fourier decompositions of the trajectory and the density function. This metric is given by
Eq. (4.1).

E =
K∑
k=0

1

(1 + |k|2)n+1
2

|ck − φk|2 (4.1)

Where ck is the kth Fourier coefficient of the time-averaged trajectory of the robot. φk is the
kth Fourier coefficient of the distribution. The ergodicity metric is summed over the number of
Fourier coefficients, K, determined before planning time, and n is the number of dimensions of
the region that is being explored by the robot.

Minimizing this metric ensures that the trajectory of the robot has approximately the same
spatial distribution of the distribution φ(x). The higher-level terms are discounted by the square
of the component number, meaning higher frequency terms have less of an effect on the planned
trajectory.

In (Miller et al., 2016), Miller et al. develop the planner in the face of incomplete information.
Here the algorithm starts with an estimated spatial density φ(x), and executes a trajectory for a
time horizon, T . Then the algorithm updates the map and plans a new trajectory. Miller et al.
note that the ergodic planning objective would be compatible with a fast re-planning algorithm
and could react to sensor readings as they are observed.

The advantage of the ergodic objective function may initially appear unclear, compared to
simply planning a trajectory that maximizes the integral of the trajectory through the density
function. What ergodic planning can reject, without additional constraints, is a trajectory that
travels to maximum value locations and never leaves. In this way the ergodic metric drives
trajectories to explore more of the environment while focusing on high-value locations.

Bayesian Optimization relaxes the requirement to have an initial distribution. Bayesian Op-
timization algorithms find maxima in a function while exploring the space to determine where
those maxima are located. An approach which employs Bayesian optimisation is presented by
Marchant et al. (2014). They use the Bayesian optimisation approach to find the maxima in an
unknown function over a two-dimensional space. They apply their method to static and time-
varying functions. They have a robot travelling at a fixed speed, and with a fixed sampling rate.

They speed up the solution to their POMDP problem by using the Monte Carlo Tree Search
(Abramson, 1987). The operations of the robot in question is talked about in terms of days, and it
takes the algorithm approximately 8 days to learn the dynamic function, which itself has a period
of 1 day.

The work reported in (Marchant et al., 2014) was conducted in simulation. Morere et al.
(2017) implement the BO-POMDP algorithm with a UAV mapping an indoor environment. Be-
cause of the increased efficiency of the MCTS algorithm they are able to re-plan quickly on a
commodity computer. Motion plans consist of a fixed number of cubic splines, the robot collects
samples while executing the trajectory. When the trajectory endpoint is reached a new trajectory
is planned, incorporating the most recent observations.

In the work of Morere et al. (2017) there is no intra-trajectory reaction to the samples col-
lected. But as the capacity to re-plan increases, approaches like those described by Morere et al.
(2017) will obviate the need for algorithms like the one proposed in this chapter, if only to trigger

69

replanning. While the algorithm only considers planning trajectories and not deploying distinct
sampling actions, this is something that could be formulated into a POMDP framework, and
benefit from the efficient planner they employ.

In the situation dealt with in this chapter, the robot is making decisions about deploying
discrete actions (Area of Interest Manoeuvres) to observe more of the subsurface water density.
The objective in deploying these AIMs is to observe maxima in the subsurface water density,
achieved by spending more of the robot’s trajectory over the high density regions.

An ergodic trajectory planner would naturally spend more of its trajectory in high value re-
gions, removing the need for an explicit representation of the discrete AIM actions. However,
this plan would not translate into other types of discrete actions, such as collecting subsurface
samples by drilling. Further, the trajectories produced tend to produce back-tracking and oscilla-
tion between peaks in the density map, which is not amenable to the Resource Prospector concept
of operations. For a comparison of an ergodic planner to the SPRT-based method discussed in
this chapter, see Section D.6.

Bayesian optimization approaches are capable of dealing with situations where the underly-
ing function is either known or unknown. Like ergodic planners, Bayesian approaches attempt
to maximize observations of high value regions. The planners like those described by Morere
et al. (2017) have the capability to reason about discrete actions like drilling or deploying AIMs.
Arguably this would make them a more extensible tool for mission planning than the ergodic
planner.

When the ergodic planner does not have knowledge of the density map it needs to execute
multiple passes to learn the density map. This is also true for the Bayesian optimisation planner.

When prior data about the terrain being explored is limited or unavailable the ergodic and
Bayesian optimization planners will produce trajectories with, possibly substantial amounts of,
backtracking. A strategy which requires multiple passes in order to plan paths is at odds with the
mode of operations of the Resource Prospector mission, where backtracking is actively discour-
aged due to the mission time pressures. However, these tools could be useful in designing the
Area of Interest Manoeuvres, instead of relying on fixed patterns of motion.

Given that the ergodic planner is simply an optimization routine around the ergodic reward
function (Eq. (4.1)), it could be integrated with the Bayesian optimization approach. It remains to
be investigated the utility of combining an ergodic reward function with a Bayesian optimisation
planner.

Since radiation tolerant hardware lags the performance of commodity hardware by at least
a decade, there is still a need for fast-executing reactive behaviour while the robot is executing
plans designed off-board the robot. While they can’t necessarily be executed on-board current
space rated hardware, even today algorithms like those described in (Wilson and Williams, 2017),
(Marchant et al., 2014), and (Miller et al., 2016) can be immediately useful as ground-based
mission planning tools.

(Alcantarilla et al., 2016) present an approach for using convolutional neural networks (CNNs)
to do change detections on images sequences captured at two different times. The approach relies
on having hand-labelled masks for where change has occurred. They do not construct a notion
of confidence for the change.

Adams and MacKay (2007) present a Bayesian approach to change detection. Their model
attempts to estimate the run length of different distributions which are driving the observations

70

presented to the algorithm.
With every new observation they update the belief that the run of observations from the same

distribution has continued. Their baseline algorithm has a computational complexity that is linear
in the number of observations collected. They propose an improvement of throwing away history
prior to the previously detected change point.

Throwing out data prior to a change mirrors the behaviour of our algorithm, which focusses
on only detecting one change at a time. Our algorithm, however, has a computational complexity
that grows with the square of the number of observations.

Two things distinguish our work from (Adams and MacKay, 2007). First, we estimate the
confidence that a change has occurred, whereas Adams and MacKay (2007) only report the prob-
ability of the change. Second, the algorithm of Adams and MacKay (2007) is an online algorithm
that updates the probability of the run length based only on the current state (a Markovian as-
sumption) and a fixed transition distribution. At the cost of greater computational complexity,
our algorithm looks at the relative evidence for one change vs none, fitted to all observed data,
we do not make assumptions about the transition probability distribution.

Thompson et al. (2008) present a means of selecting subsets of images for downlink to remote
scientists. They used a hidden Markov model to track the probability that the robot is in one of
two terrain types. By accumulating evidence from multiple observations it is able to estimate
which class of terrain the robot is currently occupying, and hence identify when changes have
occurred. Using this knowledge the robot is able to send representative datasets which bracket
the change point in the underlying distribution.

Like (Adams and MacKay, 2007), Thompson et al. (2008) puts a prior on the transition of
one regime to another. Their transition distribution was tuned to the datasets to produce ideal
behaviour. While this is not necessarily amenable to operation in unknown environments, this
distribution could conceivably also be learned online.

Hidden Markov Models are an approach that could be employed in our setting as well, how-
ever, instead of having two terrain classes we could have up to an uncountable number of states.
These states would be the parameter(s) of the distribution driving observations collected by the
robot.

One could discretize the parameter space to reduce the number of states that would need to be
updated. Further, if the parameter space can be bounded, then the computational complexity of
the update at each time step can likewise be bounded. However, this approach wouldn’t directly
address the question of when the change point occurred with a measure of confidence.

Likewise, as in (Adams and MacKay, 2007), this work does not directly give a measure
of confidence that a change has occurred. To detect a change, one could start with an initial
parameter estimation, λi, and use the Sequential Probability Ratio Test for each parameter setting
λj ∈ Λ, j 6= i. After P (λ = λi|Z = zt) is updated, given an observation zt, we could determine
a change has occurred if maxj 6=i

∑T
t=1

P (λ=λj |Z=zt)
P (λ=λi|Z=zt) crosses a pre-determined level of confidence.

Scargle (1998) presents the Bayesian Blocks algorithm for detecting changes in Poisson data.
Like the algorithm presented in this chapter, it uses the ratio of two likelihoods to determine if
a change has occurred. They explicitly place a prior on the change point and the rates of the
Poisson distributions driving the observations.

Their approach integrates over the possible driving rates of the distributions, similarly, we

71

use the Maximum Likelihood Estimator to fit the parameters for the Poisson processes driving
observations. Scargle (1998) determine the likelihood of there having been a change in the
underlying distribution as being the average likelihood over all change points. In contrast, we
consider each point individually, and select the maximum likelihood of all change points.

The threshold for detecting a change was based on whether the likelihood of a change, relative
to no change, crossed a threshold, ρ. ρ was defined as a prior odds ratio which discouraged
detecting changes. They observe that their choice for ρ may not be justifiable in a Bayesian
formalism, but they do report good results. They do not explicitly mention likelihood ratio tests
(e.g. (Wald, 1945)) in the description of their formalism, however, that is precisely what they
have developed.

Steyvers and Brown (2006) present an efficient method for detecting changes. They test
a Monte Carlo Markov Chain (MCMC) sampler as well as their proposed “Fast and Frugal”
change detection algorithms. Steyvers and Brown test the ability of these algorithms to model
human change detection behaviour, and find the performance acceptable..

In this experiment the tth observation, yt, contains a bundle of Bernoulli results, i.e. yt =
{yt,1, . . . , yt,D}. Here yt,i ∈ {0, 1}, and D is the number of trials in an observation.

The fast and frugal change detection algorithm collects a window of at most M data points
and fits a Binomial distribution to those data, which we refer to as fA(·). An alternative distribu-
tion is fit to the new observations when it is collected, which we will call fB(·).

Changes are detected when the ratio between the likelihood of the latest observation is more
likely given the distribution fB, than the likelihood of the data given the distribution fit to the
previously observed data, fA. They place a threshold C which is tuned in experiments to better
model the decision making behaviour of the humans in their experiments.

log (fB(yt))− log (fA(yt)) > C (4.2)

The decision making rule used in (Steyvers and Brown, 2006) is given in Eq. (4.2). Once
a change has been detected, the window of M observed data points is emptied, and new obser-
vations are added to it until another change is detected. While in the paper they frame it as a
difference of the log of two likelihood functions, it is equivalent to a likelihood ratio test, which
the work in (Scargle, 1998) and in this chapter are also examples of.

Scargle (1998) report that the likelihood of there being a change in the underlying distribution
is “astronomically large in favor of segmentation”. This may be due to the fact that in practice,
they omit the probability of the individual change points and compute a sum of the likelihood of
the change points. Since they assumed a uniform prior on the change points, these two quantities
were equivalent.

The Bayesian Blocks algorithm was then extended in (Scargle et al., 2013) to use a non-
parametric approach. They found their approach was able to detect changes in a number of data
sets, and also detect multiple changes. The non-parametric approach let them deal with a wider
variety of data types, and they proposed additional work with higher-dimensional data.

Worpel and Schwope (2015) use the Bayesian Blocks algorithm to detect transient events in
X-ray astronomy data. They found that the approach reduced the error in transient detection.

At first glance, situation addressed in (Ferri et al., 2010) is a perfect application for algorithms
that solve the secretary problem. The purpose of the secretary problem is to give the decision

72

maker some data on which to build a distribution, and only seeks to make one decision instead
of taking multiple actions, and does not consider if the underlying distribution is changing.

The secretary problem is a problem setting from statistical literature (Ferguson, 1989) which
was constructed to determine when was the optimal time to stop collecting samples. The prin-
ciple set up was this: A person is trying to hire a secretary. They are presented with a sequence
of N candidates to consider for the position. Each candidate has a knowable score, relative to
all the other candidates which can be determined by interviewing the candidate. The interviewer
then can either choose to hire the candidate or dismiss them and go on to the next candidate.
Once a candidate has been dismissed they cannot be recalled. The problem is to determine when
is the optimal time to stop interviewing candidates. It was determined that the optimal solution
for this problem was to interview the first N/e candidates, where e is Euler’s constant, and reject
each one in turn. The interviewing process stops either when the first candidate who scores as
well as or better than the best candidate in the first N/e candidates, or take the last candidate.
This ensures finding the best candidate 37% of the time.

In principle this decision rule makes sense: Determine the distribution of the scores of can-
didates, then find an outlier with a high score. This problem does line up nicely with automatic
AIM execution, the sensor readings from our proxy sensor maps nicely to the score of the candi-
dates. As the robot continues to move we are encountering the sensed phenomena much like the
sequence of candidates.

Work like that described in (Das et al., 2015) applies what is called the submodular secre-
tary problem to deploying a fixed sampling budget across a transect. The submodular secretary
problem deploys k samples across a transect by dividing it up into k segments, and running a
standard secretary algorithm in each segment. This approach does come with the assumption
that the value of all the encountered sampling opportunities come from the same distribution.

Distributing samples uniformly across sub-regions of an environment is a principled ap-
proach. But due to the nature of secretary algorithms each sample must be deployed on its
region of the transect. This could result in ineffectual deployment of resources, should some
regions of the environment have a substantially lower amount of the quantity of interest.

Since the objective of Das et al. (2015) is to learn the relationship between the encountered
environmental characteristics, that is a reasonable assumption. This approach does not neces-
sarily translate to our setting. We know the relationship between the proxy sensor readings and
the quantity we are interested in sampling, and we understand that the underlying distribution is
changing as we traverse the environment.

There are other reasons why the secretary problem setting is not an exact match for our
proposed problem. First, it does not consider noise in the sensor. However, this objection could
be overcome through the use of sensor filtering.

Second, the candidates are considered to be drawn identically and independently from the
same distribution. In our setting there can be strong spatial effects on the population from which
sensor readings are derived. That is to say, near a location of a water deposit, the readings will
come from a distribution with a higher mean than those from farther away from the water deposit.

Third, it assumes that there is no cost to continuing to the next candidate, and that candidate
cannot be recalled. This is not the case for autonomous exploration, moving between locations
takes time, and any traverse comes with risk associated with the execution of tasks in an un-
known environment. While there are algorithms for secretary problems that permit recalling past

73

opportunities, such as the work in (Rocha, 1993), these do not address changes in the distribution.
The strong spatial dependence creates a need to not only determine how many distributions

there are, but also to determine when the vehicle should be confident that it is operating in
either one mode or the other. Just modelling the distribution alone is not sufficient, as simply
executing AIMs when the probability of being in one regime is higher than the others could result
in excessive deployment of AIMs and an unnecessary use of mission resources.

In summary, there are applications for robots that need to determine when to deploy ex-
pensive activities, namely AIMs. To date the algorithms deployed are either greedily ignoring
resources, using arbitrary and non-adaptive thresholds, or simply control speed of a vehicle pro-
portionally to perceived anomalies without considering if there is statistical confidence that an
anomaly has been observed. This chapter proposes an adaptive algorithm that determines when
to deploy resources in response to statistical confidence that there has been an event that warrants
observation.

4.3 Method
We consider three algorithms for detecting changes in the distribution driving the observations in
the proxy sensor, which are described in Section 4.3.1. There are four experiments that are used
to test the algorithms. The first two experiments test the effect of the magnitude of the change and
the delay in the onset of the change in the distribution driving the observations from the proxy
sensor. The third experiment tests the algorithms on data collected as part of the MVP project.
The fourth and final experiment simulates the performance of the algorithms in deploying AIMs
while operating in a two-dimensional environment. We also compare the performance of the
proposed algorithm to an MCMC sampling model, and find the execution time does not warrant
further investigation at this point. Otherwise, the results of the experiments are presented in
Section 4.4

4.3.1 Algorithms
We used three algorithms in this experiment. The state of the art algorithm, as used in (Ferri
et al., 2010) is to issue an AIM whenever a reading crosses a threshold. We modify this algorithm
slightly to make for a fairer comparison to the proposed algorithm. The threshold algorithm with
memory described in Section 4.3.1 is the baseline algorithm that is employed in the experiments
of this chapter.

We employ a second baseline algorithm, which detects a change if the probability of the cur-
rent observation is not within the 95% high confidence interval of a Poisson distribution based on
previous data. This algorithm permits relative changes in the signal to be detected, and should be
able to identify changes that occurred below the threshold of the Memory Threshold algorithm.

Additionally, in Section 4.3.2 we compare the proposed algorithm to a similar MCMC based
approach. Although performance is comparable to the proposed algorithm, and the implementa-
tion of the algorithm could be considered more intuitive than the proposed algorithm, we find that
the time to compute solutions is significantly higher and does not warrant that adoption without
additional hardware speed-ups.

74

Detecting Changes with a Threshold

This algorithm compares every observation zt to a threshold, γ and if zt > γ, or conversely if
zt < γ then a change is considered to have happened. This algorithm is memoryless and only
considers one observation at a time, and each in isolation.

When the process being observed is well characterized this is a useful algorithm. However,
the threshold needs to be tuned to every different environment that a robot is operating in. This
makes the algorithm very brittle, but it remains a state of the art algorithm.

An analogous version of this algorithm is given a probability distribution, consider a change
has occurred when a reading has a probability P (zt|θ) < δ then consider a change has occurred.
For every such setting of δ there is a corresponding γ to threshold the sensor values. Again, this
algorithm has no memory, and once one starts trying to accumulate data in favour of a change,
we get into the proposed algorithm, the Sequential Probability Ratio Test.

Algorithm 4.2 Threshold Change Detection. This algorithm reports that a change has occurred
whenever the observed value, zt, is greater than the threshold, γ. Because the algorithm has no
memory, it simply reports that the change has occurred at the current time step.

function INIT THRESHOLD CHANGE DETECTION(γ)
γ ← γ
t̂cp ← ∅

end function
function DETECT CHANGE(zt)

if zt ≥ γ then
t̂cp ← t

else
t̂cp ← ∅

end if
return t̂cp

end function

This algorithm is in line with the approach taken by Ferri et al. (2010).

Detecting Changes with a Threshold and Memory (Baseline Algorithm)

With little additional effort it is possible to have a slightly smarter algorithm based on threshold-
ing the observed data. We add additional memory such that the first time an observation crosses
the threshold, γ, we mark the current time as the start of the change. The algorithm reports the
change point as being the time of the first observation that has crossed the threshold until the
observation goes below the threshold again. This approach is coded in Algorithm 4.3.

Memory of when a change first occurred helps stabilize the algorithm’s estimation of when a
change has occurred. Without memory the algorithm will think that every time the threshold has
been crossed is a new instance of a change in the underlying distribution.

75

Algorithm 4.3 Threshold Change Detection with Memory. This algorithm reports that a change
has occurred at the first observed value, zt, is greater than the threshold, γ. Once the observed
value goes below the threshold the change period is reset. This prevents the algorithm from con-
stantly reporting that a new change has occurred even though it has been consistently occurring
for a number of time steps.

function INIT MEMORY THRESHOLD CHANGE DETECTION(γ)
γ ← γ
t̂cp ← ∅
in change← false

end function
function DETECT CHANGE(zt)

if zt ≥ γ ∧ ¬ in change then
t̂cp ← t
in change← true

end if
if zt < γ then

in change← false
t̂cp ← ∅

end if
return t̂cp

end function

Detecting Changes with Adaptive Threshold (Baseline Algorithm)

The approach in (Ferri et al., 2010) had two major aspect: First they recorded the anomalousness
of observation, and used an adaptive threshold. With this algorithm we employ a threshold
adaptation mechanism similar to, but not identical to, that employed by Ferri et al. (2010). We
give our implementation of the algorithm in Algorithm 4.4.

An important part of the algorithm is the identification of patches. For our purposes a patch
is created when counts cross over the lower bound on the threshold, γmin. Observations over
γmin are added to the patch as they are observed. If observed values drop below γmin for more
than Npatch contiguous observations then the patch is closed. Whenever a patch is closed the
threshold is updated.

76

Algorithm 4.4 Adaptive Threshold Change Detection with Memory. This algorithm reports that
a change has occurred at the first observed value, zt, is greater than the threshold, γ. Once the
observed value goes below the γ for more than Npatch time steps, the change period is reset. This
prevents the algorithm from constantly reporting changes due to momentary fluctuations around
γ. Patches are closed when observations go below γmin.

function INIT ADAPTIVE THRESHOLD CHANGE DETECTION(γB, γmin, Ns)
γ ← γB
γB ← γB
γmin ← γmin
t̂cp ← ∅
in change,in patch← false
patches← ∅
current patch← 〈·〉
patch count, NAIM , Ns, Npatch ← 0

end function
function DETECT CHANGE(zt, s) . detect change requires,s, % of transect completed

if zt ≥ γ ∧ ¬ in change then
t̂cp ← t
in change← true
NAIM ← NAIM + 1

end if
if zt < γ then

in change← false
t̂cp ← ∅

end if
if zt ≥ γmin then

patch count← 0
current patch← current patch ∪ 〈z〉
if ¬ in patch then

in patch← true
end if

else
patch count← patch count +1
if in patch ∧ patch count ≥ Npatch then

in patch← false
patches← patches ∪{current patch}
current patch← 〈·〉
update threshold(s)

end if
end if
return t̂cp

end function

77

The algorithm takes as parameters a default threshold, γB, a minimum threshold γmin, and a
suggested number of AIMs to be deployed Ns. The algorithm also keeps track of how far along
the transect it has completed, and if the number of AIMs deployed is not keeping pace with the
fraction of the transect covered, the threshold is adjusted. The algorithm used for modifying the
threshold, γ is given in Algorithm 4.5.

Algorithm 4.5 The algorithm compares the number of AIMs that have been deployed to the
fraction of the transect that has been completed. If a smaller fraction of the suggested AIMs
have been deployed than the fraction of the transect have been completed then the threshold is
lowered to encourage a greater number of AIMs to be deployed. If a larger fraction of AIMs
have been deployed than transect covered, then the threshold is raised to discourage future AIMs
from being deployed.

function UPDATE THRESHOLD(s)
if NAIM/NS ≤ s then

low thr← median ({max(p) : ∀p ∈ patches s.t. max(p) < γ})
γ′ ← max (γB × (1− s) + low thr× s, γmin)

else
raise thr← median ({max(p) : ∀p ∈ patches})
γ ← max (γb × (1− s) + raise thr× s, γB)

end if
end function

In our experiments we set γB to be the same value as γ in the Memory Threshold algorithm,
and keep the number of suggested AIMs, Ns = 50. The minimum threshold, γmin is set to 53 for
experiments 1,2, and 4, and set to 45 for experiment 3.

We do not employ the same techniques for identifying anomalous readings as that used by
Ferri et al. (2010), consequently our algorithm doesn’t detect changes that occur below the min-
imum threshold, γmin. However, as will be seen in Section 4.4, we get similar improvements in
performance from using the adaptive vs a fixed threshold as in (Ferri et al., 2010).

Detecting Changes with Relative Changes (Baseline Algorithm)

The threshold-based algorithms described above only detected changes if observations cross a
pre-determined level. An obvious other approach is to examine relative changes of the readings,
and if readings cross a boundary then consider that a change has occurred. In this case we take
a Poisson distribution and detect a change if the probability of the new reading is outside of the
interval that contains δ percentage of the distribution. We set the confidence level to 95% for all
experiments in this chapter. The implementation of the algorithm is given in Algorithm 4.6.

78

Algorithm 4.6 The relative change detection algorithm considers that the underlying distribution
has changed. When a change has been detected the new reading is taken as the mean of the new
distribution.

function INIT RELATIVE CHANGE DETECTION(δ)
δ ← δ
λ← ∅
t̂cp ← ∅

end function
function DETECT CHANGE(zt)

if λ = ∅ then
λ← zt

end if
if zt /∈ interval(P (Z), δ) then

λ← zt
t̂cp ← t

end if
return t̂cp

end function

Detecting Changes with the Sequential Probability Ratio Test (Proposed Algorithm)

The sequential probability ratio test considers two hypotheses, h1 and h2. Each hypothesis im-
plies some probability distribution about observations that were collected. The sequential proba-
bility ratio test asks the question which distribution better explains observed data z1, . . . , zt. We
determined the relative probability of the data given the hypotheses is:

Rt =
P (z1, . . . , zt|h2)
P (z1, . . . , zt|h1)

(4.3)

If at any given time R > 1 then h2 is more likely. If R < 1 then h1 is more likely. However,
if observations are considered to be independently and identically distributed then we can write
the following:

Rt =
t∏
i=1

P (zi|h2)
P (zi|h1)

(4.4)

And if we take the log of this quantity we find:

Λt =
t∑
i=1

[log (P (zi|h2))− log (P (zi|h1))] (4.5)

Λt =
t∑
i=1

log (P (zi|h2))−
t∑
i=1

log (P (zi|h1)) (4.6)

79

The log form of the equations has the advantage of letting us work with sums, which are
easier to keep a running total of than products. Since likelihoods can become very small very
quickly it is more numerically stable to work with the log of the likelihood function.

Wald determined thresholds α and β based on the acceptable false positive and false negative
rates for the test. If Λt > α then h2 is accepted and if Λt < β then h1 is accepted and the ex-
periment stops. For specified levels of error probabilities the SPRT is the test with the minimum
expected stopping time (Wald, 1945).

In this chapter h1 is the hypothesis that no change has occurred and h2 is the belief that a
change has occurred. We consider the hypothesis that a time has occurred at every time point
between 1 and t, the current time. We select the most likely time change. If that potential change
point crosses a threshold α then we consider that a change in the underlying distribution has
occurred.

Fitting two distributions to a data set should always fit the data better than one distribution.
The implication of this is thatRt ≥ 1 and hence Λt ≥ 0. So we can ignore checking if we become
certain that there has been no change. In fact, because we don’t do anything until confidence has
built that there has been a change, no further action is required of the robot except to continue
driving. The aim is only necessary when we are confident that a change has occurred.

Because Λt ≥ 0 ∀ t ≥ 0 there is the risk that with enough observations the quantity will
eventually cross the confidence threshold, even if no underlying change has occurred. To mitigate
this risk we set α to be larger than prescribed by Wald. The task of determining the confidence
level at which an AIM should be deployed is left to the people who designed the mission and be
a function of their tolerance of risk and the expected duration of the entire transect.

There are a number of assumptions we make here in order to implement this algorithm. First,
we assume the data from a given distribution are all independently and identically distributed
(IID) and coming from Poisson distributions. We consider that in the case of no change in the
underlying distribution that it was drawn from a Poisson distribution with rate θ0. In the case
where there has been a change in the distribution we call the rate before the change θ1 and the
rate after the change θ2.

Since we do not know θ0, θ1, or θ2, we estimate them by the maximum likelihood estimates
from corresponding samples, θ̂0 = MLE(〈z0, . . . , zT 〉), θ̂1 = MLE(〈z0, . . . , zt〉), and θ̂2 =
MLE(〈zt+1, . . . , zT 〉), respectively, where T is the current maximum time step.

After an AIM has been conducted the window of samples gets reset to the samples after the
change point, t, and the process continues on as before. The implementation of the algorithm is
given in 4.7.

80

Algorithm 4.7 Sequential probability ratio test-based change detection. This algorithm considers
all the data that has been collected up to the present time, t, and determines whether or not there
has been a change in the underlying distribution.

function INIT SPRT CHANGE DETECTION(s)
s← s
data← 〈·〉

end function
function LIKELIHOOD(z1, . . . , zn, λ) . Computes log likelihood for a Poisson distribution

return log (
∏n

k=1 Ppoisson(zk|λ))
end function
function DETECT CHANGE(zt)

data← data + 〈zt〉
l0 ← likelihood(data,mean(data))
likelihoods← 〈·〉
for all k ∈ {1, . . . , t} do

λ1 ← mean(z1, . . . , zk)
λ2 ← mean(zk+1, . . . , zt)
likelihoods[k]← likelihood(z1, . . . , zk, λ1) + likelihood(zk+1, . . . , zt, λ2)

end for
t̂cp ← argmax

k∈{1,...,t}
(likelihoods[k])

if likelihoods[change point]− l0 > s then
data← data

[
t̂cp, . . . , |data|

]
return t̂cp

else
return ∅

end if
end function

This algorithm simply detects the changes in the underlying distribution. It is up to other
mission objectives to make value judgements about the meanings of those values. For instance,
observations that contradict remote sensing data may warrant a different level of interaction than
data that is variable, but consistent with what is observed from orbit.

We can achieve a 2× speed up in the algorithm by not recomputing the log likelihood of
the first 1, . . . , t data points for each t. The naive implementation is given above, for ease of
communication.

4.3.2 Execution Time Comparison of SPRT to MCMC-Bayesian Change
Detection

A principled method to approach this problem would be to employ an MCMC sampling method
to determine if there has been a change in the underlying distribution. Modern approaches would
have one construct a probability distribution over the change point in the underlying distribution,

81

then feed the model data and use, e.g., an MCMC sampling algorithm to determine the proba-
bility that a change has occurred for each time step, for example as conducted in (Adams and
MacKay, 2007). The MCMC model will produce a distribution over change points. One can
use that distribution to select the most likely change point and act upon it, or pass the whole
distribution to another decision making algorithm. The setup for such a problem is given as
follows:

Ct ∼ Poisson(rt); (4.7)

rt =

{
late if s < t

early if s ≥ t
(4.8)

s ∼ U(1, tmax) (4.9)
early ∼ exp(1) (4.10)
late ∼ exp(1) (4.11)

Where s is the switch point between the early and late arrival rates. The arrival rates are
drawn from an exponential distribution. They, in turn, drive the Poisson distribution that produces
the counts observed by the NSS. This model, along with the observed data up until the current
time, tmax, is estimated with an MCMC sampler.

To illustrate the relative performance of our proposed algorithm vs the Bayesian-MCMC
approach in Fig. 4.2 we report the time it takes to execute an update in response to the latest
sample for transects with up to 100 samples.

We executed the two algorithms on an Intel Core i7 CPU 860, which has eight cores and a
clock speed of 2.8GHz, with 16 GB of RAM. The algorithms were both implemented in Python
version 2.7 running in Ubuntu 16.04 LTS. The MCMC algorithm was implemented using the
pymc3 library (Coyle, 2016).

The time to complete an update is substantially larger for the MCMC approach than the SPRT
algorithm. The average time for the MCMC algorithm to process a sample was 61.1 seconds,
the average time for SPRT to process a sample was 0.0719 seconds. The reduction in processing
time was approximately 61 seconds, with a 95% High Density Interval (HDI) of [58, 62] seconds
and effect size (Cohen’s d) of 16.8, which is an very large effect. Because of the increased time
execution we exclude MCMC-based solutions.

82

0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

90

Number of Observations

Ti
m

e
to

co
m

pu
te

ch
an

ge
po

in
t(

se
c)

Time to Compute t̂cp vs Number of Samples,N = 30

SPRT (s = 8)
MCMC

Figure 4.2: The average execution time for the SPRT and Bayesian-MCMC algorithms as a
function of the number of observations collected. Error bars represent one 95% confidence
interval based on N = 30 trials. The SPRT algorithm is on the order of 100x faster than the
MCMC algorithm.

We also considered the execution the two different algorithms. We compare the performance
of the two algorithms by looking at the error in identifying when the change in the underlying
distribution occurred, Ecp. We define that error as:

Ecp = |t̂cp − tcp| (4.12)

Where t̂cp is the estimated time of the change and tcp is the actual time of the change. In the
ten trials we performed the change all occurred at the halfway point, t = 50 and the underlying
distribution changed from λ1 = 40 to λ2 = 80. We looked at the error that occurs before the
change in the underlying distribution (t = 25), immediately after the time change (t = 52), a
short time after the time change (t = 60) and at the end of the transect (t = 100). The change
point detection performance is shown in Fig. 4.3. Notice that immediately after the change in the
distribution has taken place, the variability of the MCMC algorithm is very large.

83

t=25 t=52 t=60 t=100

0

5

10

15

20

25

Query Time

C
ha

ng
e

Po
in

tD
et

ec
tio

n
E

rr
or

Change Point Prediction Error for MCMC vs SPRT Algorithm

SPRT
MCMC

Figure 4.3: Considering the performance of the two algorithms over 10 trials. The performance
is measured as the error between the estimated time of change in the underlying distribution
and the true change time. We consider their performance before the change in the underlying
distribution (t=25), shortly after the change in the underlying distribution (t=52 and t=60) and at
the end of the transect (t=100).

Table 4.3 shows the relative performance of the MCMC algorithm and the SPRT algorithms
in detecting the change point in the underlying distribution. In all cases the SPRT and MCMC
had statistically significantly different performance.

Something we observed is that after the change had occurred at t = 50sec the MCMC ap-
proach reported the change happened at t = 49sec while the SPRT algorithm reported that the
change occurred at t = 50sec. This difference can be viewed as a slightly different interpretation
of how to report when the change happened, when is the last time step before the new data is
observed or when is the first time step corresponding to the new data. So while the difference
between the two algorithms is statistically significantly different, and with a substantial effect
size it can be viewed as demonstrating comparable behaviour.

More telling is that before the change has occurred the SPRT algorithm is superior to the
MCMC algorithm to correctly reporting that no change has occurred. This is a statistically
significant difference with a profoundly large effect size. This alone could be taken as motivation
for not using the MCMC approach.

84

Granted, the MCMC algorithm described here assumes that there is at least one change in
the underlying distribution. Making it more complex would enable it to identify that there might
be zero changes in the distribution in a scene. However, making the model more complex would
not make it less computationally intensive.

Table 4.3: In all cases there is a statistically significant reduction in the error in detecting the change
point. Before the time change has occurred the SPRT algorithm is better at detecting there has been
no change in the underlying distribution than the MCMC approach. However for all the cases after the
change has occurred there is an error of 1 time step, which is a negligible error. We can say that the
SPRT and MCMC algorithms have indistinguishable performance after a change has occurred.

T (sec) µMCMC − µSPRT 95% HDI Effect Size
(sec) (Cohen’s d)

25 24 [24, 24] 1.87× 103

52 1 [0.97, 1.03] 48.2
60 1 [1, 1] 1.88× 103

100 1 [1, 1] 1.86× 103

Because the performance of the SPRT algorithm is indistinguishable from that of the Bayesian
algorithm after the change, and superior to it before the change in the distribution, and because
the time performance is substantially better, we choose to use the SPRT algorithm in favour of
the Bayesian/MCMC approach.

4.3.3 Experiments
We test the SPRT algorithm against the Memory Threshold and Relative Change algorithms in
four different experiments. All of the experiments revolve around detecting a change from one
underlying distribution to another. All experiments consider a sensor with noisy readings that
follow a Poisson distribution. The experiments compare the performance of the algorithms:

1. As a function of the magnitude of change in the underlying distribution rate.

2. As a function of the delay in the onset of the distribution change.

3. On real MVP data.

4. On a simulated 2D environment using data drawn from the observations from the MVP
project.

In all the experiments a time step was one second. For the Memory Threshold algorithm a
threshold of γ = 80 was used. For the Relative Change algorithm we used a confidence interval
of δ = 0.95.

Experiment 1 - Effect of Magnitude of Change in the Underlying Distribution

In the first experiment the agent is presented with sequential data. There is a change in the under-
lying distribution half way through the simulated transect. The initial rate for the Poisson distri-
bution is θ1 = 40 counts per second. The second rate is given by θ2 ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

85

We ran 50 trials of each setting of θ2. The duration of the transect was T = 100 time steps. Al-
gorithm parameter settings are given in Table 4.4

Table 4.4: The parameter settings for the algorithms used in this experiment. γmin was chosen to be 53
because that is the upper end of a 95% confidence interval of a Poisson process with a rate of 40.

Algorithm Parameters
Memory Threshold γ = 80
Adaptive Threshold γB = 80, γmin = 53, NS = 50
Relative Change δ = 0.95
SPRT s ∈ {2, 4, 8}

Experiment 2 - Effect of Delay in Onset of Change in the Underlying Distribution

In experiment 2 we kept the two different rates constant with θ1 = 40 and θ2 = 100. The
duration of the transect T = 400 time steps. The time step at which the distribution changed was
varied over t ∈ {0.1T, 0.2T, 0.3T, 0.4T, 0.5T, 0.6T, 0.7T, 0.8T, 0.9T}. We ran 50 trials for each
budget. The algorithm parameter settings are given in Table 4.5.

Table 4.5: The parameter settings for the algorithms used in this experiment. γmin was chose to be 53
because that is the upper end of a 95% confidence interval of a Poisson process with a rate of 40.In
this experiment we down selected the SPRT confidence level settings to just s = 8. This was done in
response to the performance from the previous experiments.

Algorithm Parameters
Memory Threshold γ = 80
Adaptive Threshold γB = 80, γmin = 53, NS = 50
Relative Change δ = 0.95
SPRT s = 8

Experiment 3 - Performance on Real-World Data

We tested the algorithms on real-world data collected as part of the MVP project. The objective
of the test was to detect changes in the underlying distribution that were annotated by humans.
We tested on 9 days of data collected during October of 2014. Algorithm parameter settings are
given in Table 4.6.

Table 4.6: Algorithm parameters were the same as in Experiment 2, except the lower threshold for the
Adaptive algorithm was lowered to 50, because otherwise the algorithm did not identify changes in a
majority of the transects.

Algorithm Parameters
Memory Threshold γ = 80
Adaptive Threshold γB = 80, γmin = 50, NS = 50
Relative Change δ = 0.95
SPRT s = 8

86

To determine the sensitivity of the algorithm performance to different parameters we con-
structed a Receiver Operating Characteristic (ROC) curve. This reports the true positive and
false positive rate of the algorithms. The parameters we used to determine those rates are given
in Table 4.7. We selected the initial threshold for the Adaptive Threshold algorithm based on the
best performing threshold for the Memory Threshold algorithm.

Table 4.7: Parameter settings used to construct ROC curve. The initial threshold for the Adaptive Thresh-
old algorithm was selected from the best performing setting of the Memory Threshold algorithm.

Algorithm Parameters

Memory Threshold γ ∈

{
10, 20, 30, 33, 35, 37, 40, 43, 45, 47, 50,

52, 55, 57, 60, 70, 80, 90, 100, 110

}

Adaptive Threshold
γB = {43}
Ns ∈ {10, 30, 50}

γmin =

{
20, 25, 30, 33, 35, 37, 40, 43, 45, 47,

50, 53, 55, 60, 65

}

Relative Change δ ∈

{
0.85, 0.90, 0.925, 0.95, 0.975,

0.99, 0.995, 0.997, 0.999

}
SPRT s ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Experiment 4 - Effect on Performance in 2D Operations

Finally, to explore what effect the algorithm would have on performance in a mission scenario
we simulated exploration by a rover in an environment modelled on data from the MVP project.
We consider the objective to be the same as in (Ferri et al., 2010) - to localize the local maxima
of the underlying distribution. We considered a maxima to have been localized if the vehicle
drove over that point.

We add another algorithm, No AIMs, simply follows the pre-defined trajectory. This was
added to be able to gauge an absolute improvement of the baseline and proposed algorithms.
The algorithm parameter settings are given in Table 4.8.

Table 4.8: Parameter settings were returned to the values used in experiment 2.

Algorithm Parameters
Memory Threshold γ = 80
Adaptive Threshold γB = 80, γmin = 53, NS = 50
Relative Change δ = 0.95
SPRT s = 8

We tested the performance of the algorithms on 30 randomly generated maps and compared
them against an additional algorithm which simply followed a lawnmower pattern across the
landscape. A map of the subsurface water density was produced by randomly placing 1000
samples in a 50m× 50m map and the constructing a Voronoi map from those samples. The map
was approximated as a 100× 100 cell grid, where cell width was 0.5m.

87

Figure 4.4: Here we see a simulated map with the planned lawnmower path superimposed on
it. The rate of the Poisson distribution that samples were drawn from was determined by the
location of the vehicle in the map.

88

In this experiment we did not consider trafficability or obstacle avoidance and simply fol-
lowed a lawnmower pattern that was 50m wide with 5m spacing between switchbacks. An ex-
ample of the map with the path superimposed is shown in Fig. 4.4. At any point in time,t, when
the rover was at location (x, y) the rate of the Poisson distribution from which observations were
sampled was given by θt = M(x, y), where M(x, y) was the value of the map at location (x, y).

As with Experiment 3 we also constructed a ROC-like curve to show the sensitivity of the
algorithms to their parameters. Table 4.9 gives the parameters that were explored in evaluating
the algorithms’ performance.

Table 4.9: Parameters explored to test the sensitivity of the algorithms when operating in 2D environ-
ments.

Algorithm Parameters

Memory Threshold γ ∈

{
10, 20, 30, 33, 35, 37, 40, 43, 45, 47, 50,

52, 55, 57, 60, 70, 80, 90, 100, 110

}

Adaptive Threshold

γB ∈ {40, 45, 50, 55, 60, 65, 70, 75, 80}
Ns ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60}

γmin ∈

{
20, 25, 30, 33, 35, 37, 40, 43, 45, 47, 50,

53, 55, 60, 65

}

Relative Change δ ∈

{
0.85, 0.90, 0.925, 0.95, 0.975, 0.99,

0.995, 0.997, 0.999

}
SPRT s ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

4.3.4 Performance Metrics
In experiments 1 and 2 we used three performance metrics. The first was the false positive
rate. This is the number of time steps before the change in the underlying distribution that were
reported as changes. The second metric was the false negative rate. This is the number of time
steps after the change in the underlying distribution where no change was reported. The third
metric was the mean error in the reported time change. This is the average difference the reported
time of change and the actual time of change, for all time changes reported.

In experiment 3 we recorded true positives, false positives, and false negatives. We identi-
fied changes in the NSS signal manually, and recorded the ability of the competing algorithms
to identify them. We recorded this data for each data set, corresponding to data collected on
different days of the MVP field work.

In the fourth experiment we considered the number of local maxima in the map of the water
map captured by the vehicle during navigation. This metric is inspired by Ferri et al. (2010),
as the objective of the robot was to capture the local maxima of the chemical densities it was
tracking. Ferri et al. (2010) placed an upper limit on the number of AIMs that the robot could
deploy, which we do not. To remove the number of maxima that would have been observed
regardless of how many AIMs were deployed, we subtracted the number of maxima observed by
the No AIM algorithm from the performance of all the other algorithms. In order to determine

89

how effectively the algorithms use the AIMs we consider the ration of maxima observed to AIMs
deployed.

4.4 Results
Below we present the results in the experiments described above. In the first three experiments
we found that the proposed SPRT based algorithm outperforms the baseline algorithms. In the
fourth experiment we find that the Relative Change algorithm successfully captures more max-
ima in the water map, but we find that it is less productive in its deployment of AIMs than the
SPRT algorithm. We compare the performance of the algorithms using pooled Bayesian hy-
potheses tests for experiments 1-3, and a paired Bayesian hypothesis test in experiment 4. We
set a confidence threshold of 95% probability of a difference in performance. When statistical
confidence is achieved we report the effect size of the improvement in performance.

In order to understand how the changes are reported by the algorithms we direct the reader’s
attention to Fig. 4.5. This illustration shows that the change point determined by the Memory
Threshold and Relative Change algorithms are unstable. They continue to increase their estimate
of the time change in response to noisy observations, and after the time change has occurred.
The SPRT with a confidence level set at 2 erroneously detects changes before the actual change
in the underlying distribution. The SPRT algorithm with the confidence level set to 8 does not
report changes before the actual change has occurred, and after the change the estimate is stable.
This behaviour is typical in all the experimental settings.

90

0 10 20 30 40 50 60 70 80 90 100

0

50

100

t̂ c
p

MemThreshold (γ = 80)

0 10 20 30 40 50 60 70 80 90 100

0

50

100

t̂ c
p

Adaptive (γmin = 53)

0 10 20 30 40 50 60 70 80 90 100

0

50

100

t̂ c
p

Relative (δ = 0.95)

0 10 20 30 40 50 60 70 80 90 100

0

50

100

t̂ c
p

SPRT (s = 2)

0 10 20 30 40 50 60 70 80 90 100

0

50

100

Time (sec)

t̂ c
p

SPRT (s = 8)

Figure 4.5: The detected change points vs time. Both the Memory Threshold and SPRT
(s = 8) report no change before the change has occurred. After the change has occurred
both SPRT algorithms have stable predictions of the change point. The Memory Threshold,
Adaptive, and Relative Change algorithms have unstable predictions, with the Relative Change
algorithm predicting changes before the change actually occurs, which the Memory and Adap-
tive Threshold algorithms do not.

91

4.4.1 Experiment 1 Results - Effect of Magnitude of Change in the Under-
lying Distribution

In Fig. 4.6 we see that with the exception of where there is no change between the two arrival rates
the SPRT algorithm detects the change with high accuracy. The Relative Change algorithm has
approximately a zero false negative rate, this is because it reports changes with high frequency,
regardless of whether or not a change has occurred. We see that the Adaptive algorithm has
similar performance to the Memory Threshold algorithm, with a slight improvement over the
fixed threshold algorithm.

When there is no change in the arrival rates the SPRT algorithm has a much higher false
negative rate. This, however, is desirable, as if there is no change in the arrival rate then we don’t
want the algorithm to detect a change. In this experiment that it was the SPRT algorithm with a
parameter set to 8 that had the best false negative rate.

−30 −20 −10 0 10 20 30 40 50 60

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

λ2 − λ1

Fa
ls

e
N

eg
av

ite
R

at
e

False Negative Rate vs Change in Distribution Rate, N = 50

SPRT (s = 2) Relative (δ = 0.95)
SPRT (s = 4) MemThreshold (γ = 80)
SPRT (s = 8) Adaptive (γmin = 53)

Figure 4.6: Showing the rate of false negatives as a function of the difference between the
arrival rates as the confidence parameter of the SPRT algorithm is tuned. A peak at λ2−λ1 = 0
is expected because this represents no actual change in the distribution. Error bars represent
a 95% confidence interval, N = 50.

If we look at Table D.1,Table D.2,and Table D.3, we can see that all of the SPRT algorithms

92

perform statistically significantly different from the Memory Threshold algorithm.
In Fig. 4.7 we see that the false positive rate is independent of the change in the distribution

driving the sensor readings. It is clear to see that the Relative Change algorithm is performing
significantly worse than any of the other algorithms. The SPRT algorithm with a confidence level
of s = 8 is the best performing SPRT algorithm.

−30 −20 −10 0 10 20 30 40 50 60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

λ2 − λ1

Fa
ls

e
Po

si
tiv

e
R

at
e

False Positive Rate vs Difference in Distribution Rate, N = 50

SPRT (s = 2) Relative (δ = 0.95)
SPRT (s = 4) MemThreshold (γ = 80)
SPRT (s = 8) Adaptive (γmin = 53)

Figure 4.7: Showing the rate of false positives as a function of the difference between the ar-
rival rates as the confidence parameter of the SPRT algorithm is tuned. The SPRT algorithm’s
performance is independent of the change in background arrival rate. This graph reveals that it
is possible to control the false positive rate through the SPRT confidence parameter. Memory
and Adaptive Threshold algorithms have identical performance. The Relative Change algo-
rithm has an exceptionally large false positive rate. Error bars represent a 95% confidence
interval, N = 50.

In Table D.4 shows that the SPRT algorithm with the confidence level set to 2 performs
demonstrably worse than the Memory Threshold algorithm. When the SPRT confidence thresh-
old is set to 4 (Table D.5) and 8 (Table D.6) we see that the false positive rate of the SPRT
is indistinguishable from that of the Memory and Adaptive Threshold algorithms, and in turn,
indistinguishable from 0.

In Figure 4.8 we see that the Memory Threshold algorithm does not correctly identify a

93

change until the second distribution begins to approach the threshold. By virtue of having an
adaptive threshold, the Adaptive algorithm improves on the Memory Threshold algorithm. The
Adaptive algorithm was able to detect smaller changes in the driving rate than the Memory
algorithm, and it had an improvement on the error in predicting the change. However, like the
Memory Threshold algorithm, its estimation of the change point were not stable, post-distribution
change.

The SPRT algorithm with a confidence level of 2 tends to make premature predictions about
the change, hence the average negative error. SPRT with confidence levels of 4 and 8 both have
a negligible prediction error. Again, with there being no difference between λ1 and λ2, an error
rate of 50 is ideal. It means the algorithms are identifying the change point as being either at the
start or the end of the transect, either being a valid statement. SPRT with a confidence level of
s = 8 is the best performing algorithm.

The Relative Change Algorithm has a high and fairly consistent mean error in the estimated
change point. This is a function of the high number of false positives and the unstable perfor-
mance after the distribution change.

−30 −20 −10 0 10 20 30 40 50 60

0

5

10

15

20

25

30

35

40

45

50

λ2 − λ1

M
ea

n
E

rr
or

Mean Error in t̂cp vs Difference in Distribution Rate, N = 50

SPRT (s = 2) Relative (δ = 0.95)
SPRT (s = 4) MemThreshold (γ = 80)
SPRT (s = 8) Adaptive (γmin = 53)

Figure 4.8: The average error between the reported time step and the true change point, for
every reported change point. Error bars represent a 95% confidence interval, N = 50.

94

As shown in Table D.7, Table D.8, and Table D.9, the SPRT algorithms maintain statistically
significant difference from the Memory Threshold algorithm for all cases except for there being
no difference in the underlying distribution when the SPRT confidence level is 8.

The conclusion we draw is that the SPRT algorithm with a confidence level of 8 overall has
the best performance over the range of different changes in the magnitude of the background rate.
When the change in the underlying distribution is small, it has a slightly higher false negative
rate than SPRT with confidence level 4, but this is more than compensated for by the lower false
positive rate, and the better performance when there is no change in the distribution. From here
on out we exclude other settings of the SPRT confidence level other than s = 8.

4.4.2 Experiment 2 Results - Effect of Delay of Change Onset
Based on results from the previous experiment, we only test the SPRT algorithm with confidence
level s = 8. The SPRT algorithm outperforms the threshold based algorithms. SPRT’s false posi-
tive rate is largely unaffected by the change point. Threshold-based algorithms have a statistically
significantly higher rate, see Figure 4.9. The Relative Change algorithm has a substantially larger
false positive rate than the Memory Threshold, Adaptive, or SPRT algorithms.

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Change Point (sec)

Fa
ls

e
Po

si
tiv

e
R

at
e

False Positive Rate vs tcp,N = 50

SPRT (s = 8) MemThreshold (γ = 80)
Relative (δ = 0.95) Adaptive (γmin = 53)

Figure 4.9: As the change point increases the false positive rate of the Relative Change in-
creases towards 97%. Memory Threshold and Adaptive had identical performance. SPRT
false positive rate is approximately 0. Error bars show a 95% confidence interval, n = 50.

95

The false negative rate of the SPRT algorithm is lower than that of the Memory Threshold
and Adaptive algorithms, with statistical significance and almost entirely large effect sizes, as
per Figure 4.10. The false negative rate of the SPRT algorithm does increase as a function of the
time change of the distribution, Figure 4.10. Simply, if there is an overwhelming amount of data
from the first distribution, it becomes more difficult to identify a change late in the observation
scheme.

The Memory Threshold and Adaptive algorithms maintain an approximately constant perfor-
mance as a function of change in the transition point. We expect an average false negative rate
close to zero because the background rate is changed to be above the threshold of the Memory
Threshold and Adaptive algorithms, the probability of dropping below the threshold is low. The
Relative Change algorithm has a higher false negative rate, and the variability tends to increase
with the increase in change onset.

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

0

0.01

0.01

0.02

0.02

0.03

0.03

0.04

Change Point (sec)

Fa
ls

e
N

eg
at

iv
e

R
at

e

False Negative Rate vs tcp,N = 50

SPRT (s = 8) MemThreshold (γ = 80)
Relative (δ = 0.95) Adaptive (γmin = 53)

Figure 4.10: False negative rate vs onset time of change. Error bars represent a 95% confi-
dence interval, N = 50.

The mean error in the detected time change for the SPRT algorithm is very close to zero,
as we see in Figure 4.11. The mean error of the Memory Threshold decreases linearly with the
delay in the change, whereas the Relative Change follows a roughly parabolic curve.

96

The Adaptive algorithm has better performance than the Memory Threshold algorithm. This
is consistent with the results found by Ferri et al. (2010). The Memory Threshold algorithm has
unstable predictions post-distribution change, as does the Adaptive algorithm. However, because
the Adaptive algorithm increases its threshold as more changes are detected, it will reduce the
likelihood that a change will be identified. This makes the change estimation more stable, after
the distribution change, hence the reduced error rate.

The reason for the linear behaviour of the Memory Threshold algorithm is that it isn’t really,
at it’s heart, designed to detect changes in the underlying distribution, it is designed to detect
anomalies. Because of this, whenever the readings rise above or drop below the threshold the
algorithm determines that an event worth investigating has happened, and it has no confidence
that this is the case.

As a result of this, at different points in the transect the algorithms will receive an observation
at t1 and report that a change has occurred, that t̂cp = t1. Then at a later time, t2 > t1, the
observation will go below the threshold, indicating that it has left the regime of interest but
at t2 + dt the observation may cross the threshold again, causing the algorithm to report that
another change in the distribution has occurred, that t̂cp = t2 + dt. As observations keep dipping
below the threshold, the more likely that the Memory Threshold algorithm is to report additional
changes in the distribution.

The closer the new background rate is to the threshold, the more frequently this is going to
happen. The result is that the estimated time change grows with the number of observations
collected by the Memory Threshold algorithm. As the time change increases there are fewer
opportunities to trigger the Memory Threshold algorithm, hence the reduction in error.

Similar reasoning applies to the Relative Change algorithm. However, where the Memory
Threshold algorithm’s estimate of the change point is only unstable after the change has occurred,
the Relative Change algorithm has unstable estimates before and after the change, due to its high
false positive rate. This error reaches a minimum when the change point is in the middle of the
transect. The SPRT algorithm, however, maintains a stable estimate of the time change once it
has detected the change.

We see this in Figure 4.11. The average error of the change estimate, whenever a change is
reported, is considerably higher for the Memory Threshold and Relative Change algorithms than
the SPRT algorithm. The Adaptive algorithm has better performance than either the Memory
Threshold and Relative Change algorithms, but still inferior to the SPRT algorithm. The error in
the SPRT algorithm remains effectively constant, and small. Table D.12 shows that at all times
the error in prediction for the SPRT was statistically significantly different from the Memory
Threshold algorithm.

97

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

0

50

100

150

200

250

300

350

Change Point

M
ea

n
E

rr
or

Mean Error in t̂cp vs tcp, N = 50

SPRT (s = 8) MemThreshold (γ = 80)
Relative (δ = 0.95) Adaptive (γmin = 53)

Figure 4.11: The average error in predicting the time point of the distribution change. The
SPRT algorithm has a very small error in predicting the change point, independent of the onset
of the change. The threshold algorithm, however, has a linear relationship in the change point
prediction error. Relative Change algorithm has a roughly quadratic relationship, and never
gets below 100 time steps error in estimating the change point. Error bars represent a 95%
confidence interval, N = 50.

4.4.3 Experiment 3 Results - Real MVP Data
We tested the competing algorithms on data collected during the 2014 MVP operations in the
Mojave desert. We are using the NSS data that was collected from the 17th to the 25th of October,
2014.

In this experiment we consider only counts from the stainless steel channel. Figure 4.12 to
Figure 4.20 shows the data that were collected during the MVP project. We set the threshold and
memory threshold algorithms with the same threshold that was used to identify hot spots in the
field. The SPRT algorithm was run with a confidence level of 8, the Memory Threshold was run
with a threshold of 80 counts, and the Relative Change algorithm used a threshold of 0.95.

98

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

40

60

M
em

T
hr

es
ho

ld

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

40

60

R
el

at
iv

e

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

40

60

A
da

pt
iv

e

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Time (104 sec)

40

60

SP
R

T

Figure 4.12: The blue line indicates the NSS counts recorded on 17 October 2014. The vertical
dashed lines show when the different algorithms detected a change. Solid vertical lines indicate
where the algorithm determined the change occurred.

99

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

40

60

80

100

M
em

T
hr

es
ho

ld

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

40

60

80

100

R
el

at
iv

e

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

40

60

80

100

A
da

pt
iv

e

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

40

60

80

100

Time (sec)

SP
R

T

Figure 4.13: The blue line indicates the NSS counts recorded on 18 October 2014. The vertical
dashed lines show when the different algorithms detected a change. Solid vertical lines indicate
where the algorithm determined the change occurred.

100

1,000 2,000 3,000 4,000 5,000 6,000

40

50

60

M
em

T
hr

es
ho

ld

1,000 2,000 3,000 4,000 5,000 6,000

40

50

60

R
el

at
iv

e

1,000 2,000 3,000 4,000 5,000 6,000

40

50

60

A
da

pt
iv

e

1,000 2,000 3,000 4,000 5,000 6,000

40

50

60

Time (sec)

SP
R

T

Figure 4.14: The blue line indicates the NSS counts recorded on 19 October 2014. The vertical
dashed lines show when the different algorithms detected a change. Solid vertical lines indicate
where the algorithm determined the change occurred.

101

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

30

40

50

60

M
em

T
hr

es
ho

ld

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

30

40

50

60

R
el

at
iv

e

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

30

40

50

60

A
da

pt
iv

e

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Time (104 sec)

30

40

50

60

SP
R

T

Figure 4.15: The blue line indicates the NSS counts recorded on 20 October 2014. The vertical
dashed lines show when the different algorithms detected a change. Solid vertical lines indicate
where the algorithm determined the change occurred.

102

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

30

40

50

60

M
em

T
hr

es
ho

ld

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

30

40

50

60

R
el

at
iv

e

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

30

40

50

60

A
da

pt
iv

e

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Time (104 sec)

30

40

50

60

SP
R

T

Figure 4.16: The blue line indicates the NSS counts recorded on 21 October 2014. The vertical
dashed lines show when the different algorithms detected a change. Solid vertical lines indicate
where the algorithm determined the change occurred.

103

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

40

60

80

M
em

T
hr

es
ho

ld

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

40

60

80

R
el

at
iv

e

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

40

60

80

A
da

pt
iv

e

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Time (104 sec)

40

60

80

SP
R

T

Figure 4.17: The blue line indicates the NSS counts recorded on 22 October 2014. The vertical
dashed lines show when the different algorithms detected a change. Solid vertical lines indicate
where the algorithm determined the change occurred.

104

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

30

40

50

M
em

T
hr

es
ho

ld

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

30

40

50

R
el

at
iv

e

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

30

40

50

A
da

pt
iv

e

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (104 sec)

30

40

50

SP
R

T

Figure 4.18: The blue line indicates the NSS counts recorded on 23 October 2014. The vertical
dashed lines show when the different algorithms detected a change. Solid vertical lines indicate
where the algorithm determined the change occurred.

105

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

30

40

50

M
em

T
hr

es
ho

ld

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

30

40

50

R
el

at
iv

e

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

30

40

50

A
da

pt
iv

e

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time (104 sec)

30

40

50

SP
R

T

Figure 4.19: The blue line indicates the NSS counts recorded on 24 October 2014. The vertical
dashed lines show when the different algorithms detected a change. Solid vertical lines indicate
where the algorithm determined the change occurred.

106

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

30

40

50

60

M
em

T
hr

es
ho

ld

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

30

40

50

60

R
el

at
iv

e

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

30

40

50

60

A
da

pt
iv

e

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Time (104 sec)

30

40

50

60

SP
R

T

Figure 4.20: The blue line indicates the NSS counts recorded on 25 October 2014. The vertical
dashed lines show when the different algorithms detected a change. Solid vertical lines indicate
where the algorithm determined the change occurred.

107

Table 4.10: In this table we report the results of the Memory Threshold, Adaptive , Relative Change, and
SPRT algorithms on real-world data. While SPRT does report some false positives, they are rare. We
also see that SPRT notices changes that are not observed by the Memory Threshold algorithm simply
because they are happening below the threshold. This is done without adapting the algorithm to the
environment.

Date Memory Threshold Relative Adaptive SPRT
TP FP FN TP FP FN TP FP FN TP FP FN

2014-10-17 0 0 7 5 3 2 1 0 6 6 0 1
2014-10-18 1 0 2 3 0 0 1 0 2 1 0 2
2014-10-19 0 0 10 4 0 6 1 0 9 3 0 7
2014-10-20 0 0 13 8 6 5 1 0 12 12 1 1
2014-10-21 0 0 13 4 1 9 1 0 13 8 0 5
2014-10-22 1 0 8 3 1 6 1 1 8 8 1 1
2014-10-23 0 0 11 3 1 8 0 0 11 9 0 2
2014-10-24 0 0 9 4 1 5 1 0 8 5 1 4
2014-10-25 0 0 17 5 1 12 0 0 17 16 1 1
Total: 2 0 90 39 14 57 7 1 86 68 4 24

We can use these aggregate data to fit Beta distributions over the precision, computed TP
TP+FP

,
and recall, computed TP

TP+FN
, of the different algorithms. We can also use these distributions to

determine the probability that any one algorithm’s performance is higher than the others.

Table 4.11: We estimate the precision and recall of the algorithms estimated from the data in the final row
of Table 4.10. The Memory Threshold algorithm has a high precision, but the overall level of detection is
quite poor, as seen in its recall score.

Algorithm Precision Recall
SPRT (s = 8) 0.94 0.74
Memory Threshold (γ = 80) 1.00 0.02
Adaptive (γmin = 50) 0.88 0.08
Relative (δ = 0.95) 0.74 0.41

The precision and recall of the algorithms are given in Table 4.11 and the statistical signifi-
cance of the relative performance is given in Table 4.12. As we can see the SPRT algorithm has
a statistically significant improvement over the baseline algorithms, except for the precision of
the Memory Threshold algorithm. While the Memory Threshold algorithm does have superior
precision, we can see that its rate of detecting changes is sufficiently low that the improvement
in precision doesn’t warrant adopting the algorithm.

108

Table 4.12: The comparison of the SPRT algorithm to the Relative and Memory Threshold algorithms.
We see that the SPRT algorithm has superior recall compared to either algorithm, with probability ≥ 95%,
and huge effect sizes. The SPRT algorithm also has statistically significantly larger precision than the
Relative change algorithm with probability ≥ 95% and huge effect size.

Comparison Metric p ≥ 95% Effect Size
SPRT > MemThreshold Precision N N/A
SPRT > MemThreshold Recall Y 14.83

SPRT > Relative Precision Y 3.15
SPRT > Relative Recall Y 4.92
SPRT > Adaptive Precision Y 22.58
SPRT > Adaptive Recall Y 12.51

Sensitivity of Parameters

The above experiment demonstrates the performance of the algorithms with parameters that were
tuned to the environment. When operating in an unknown environment one will not have the
opportunity to tune the parameters in the fashion that we conducted above. To demonstrate the
sensitivity of the algorithms’ performance with respect to parameter settings we constructed a
Receiver Operating Curve demonstrating the change detection abilities of the algorithms as a
function of parameter change.

The ROC curve for the algorithm performance is given in Fig. 4.21. We can see that the SPRT
algorithm generally has superior true positive and false positive rates compared to the competing
algorithms. Data supporting the ROC curve is given in Tables D.13 to D.15 and Tables D.16
to D.27. Note that the false positive rates are very small, less than 10−2. The number of samples
recorded by the sensor is on the order of ∼ 103 − 104, and most of those data points do not
represent a change in the underlying distribution. So while the false positive rate may be quite
small for an algorithm, it could easily be reporting as many false positives as true positives.

109

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

Tr
ue

Po
si

tiv
e

R
at

e

Receiver Operating Curve

Memory Threshold
SPRT

Relative
Adaptive

Figure 4.21: In the above figure we can see that the SPRT algorithm is capable of producing
better true positive rates than the other algorithms while maintaining lower false positive rates.

In Fig. 4.21 we see that the SPRT algorithm produces generally superior performance to
the other algorithms. We can control the false positive rate by increasing the confidence level, s.
While the relative change algorithm can produce comparable performance to the SPRT algorithm
with respect to the false positive rate, we see that it is inferior with respect to the true positive
rate.

Both the Adaptive Threshold and the Memory Threshold algorithms suffer higher rates of
false positive in exchange for better true positive rates. Their ROC curves also notably loop back
on themselves. As thresholds are lowered, more of the true changes will be identified, increasing
the true positive rate, and likewise increasing the false positive rate. However, once the threshold
reaches a certain level, for the Memory Threshold algorithm, only one change will be detected,
reducing the true positive rate as well as the false positive rate.

The Adaptive Threshold algorithm is sensitive to the γMIN parameter. We see that by chang-
ing γMIN that the false positive rate can be reduced, but at a cost to the true positive rate. Chang-
ing the γMIN parameter can have as big an effect on performance as lowering the threshold, γ,

110

for the Memory Threshold algorithm, but it preserves the true positive rate. However, this per-
formance is still inferior to the SPRT algorithm with respect to the false positive rate. A more
thorough examination of the effect of the γB parameter is found in Fig. D.1.

4.4.4 Experiment 4 - Effect on Performance in 2D Operations
In (Ferri et al., 2010) the objective was to localize maxima in the map. To determine the ef-
fectiveness of the SPRT algorithm we have simulated an experiment where a rover is following
a lawnmower pattern across a terrain that has pockets of water density that will drive different
average rates of the Poisson process for the NSS sensor.

The algorithm does not know that it is operating in a two dimensional environment. This
choice was made in order to gauge the performance of the algorithm as a trajectory-agnostic
component to a robot scientist. Futher, this mirrors the deployment of the threshold algorithm
employed by Ferri et al. (2010). There are higher-level concerns that are ignored by the algorithm
which can be delegated to a higher-level module of the robot, much like the CASPER system in
OASIS/AEGIS.

We took data from the NSS readings from the MVP field experiment and fit a distribution
over the number of counts. We sampled 100 observations from this distribution and used them
as seeds to generate a Voroni map, called M , representing a 50m by 50m area, with a grid size
of 0.5m.

The map was then smoothed with a Gaussian blur with a scale factor of σ = 0.8 in order to
mimic the effect of the field of view of the sensor. At each point (x, y) in M the robot is given a
sample from a Poisson distribution with λ = M(x, y). We generated 30 maps and ran ten trials
on each map for each algorithm.

The robots follow a trajectory that follows a lawnmower pattern across the width of the map
and with the swaths of the path having a spacing of 5m. The trajectory is illustrated in Figure 4.4.
We compare three algorithms. The first simply follows the lawnmower path without conducting
any AIMs. The second algorithm conducts an AIM when an observation crosses a threshold,
as per (Ferri et al., 2010). The third algorithm uses the SPRT algorithm described above, and
when a transition is detected going from a lower background rate to a higher background rate it
conducts an AIM, in the hopes of being on a gradient towards a local maxima.

Because the objective of the experiment in (Ferri et al., 2010) was to localize the source of
chemicals, we set the robot in the simulation the task of collecting high-value observations. High
value observations were defined to be local maxima in the water map. To score the performance
of the robot we counted the number of instantaneous observations that were above the threshold
over the course of the transect. To score the performance on localizing maxima we count the
number of maxima that fell within the robot’s field of view while driving. Higher scores are
better. A threshold of 80 counts was established in conversation with member of the MVP team.

To identify the number of maxima that are captured by virtue of using the different algorithms
we first subtracted the number of peaks that were captured by not doing any AIMs. Figure 4.22
plots the number of unique maxima captured vs the number of AIMs that were deployed by the
algorithms. The raw data is available in Table D.31 and Table D.30.

111

0 10 20 30 40 50 60 70 80 90 100 110 120

0

10

20

30

40

50

60

70

80

90

100

110

Number of AIMs Deployed

N
um

be
ro

fM
ax

im
a

O
bs

er
ve

d

Number of Maxima Observed vs AIMs Deployed

Memory Threshold (γ = 80)
SPRT (s = 8)

Relative (δ = 0.95)
Adaptive (γmin = 53)

Figure 4.22: The number of maxima observed by the algorithms versus the number of AIMs
deployed for the 30 different simulated maps. The Relative Change algorithm captured a
greater number of maxima than the SPRT algorithm, and the SPRT captured a greater number
of maxima than the Memory Threshold algorithm. The Adaptive algorithm deployed slightly
more AIMs than the SPRT algorithm, and observed a similar number of maxima. The dashed
line has a slope of 1. The further below the line, the less efficient the algorithm is in deploying
AIMs. Each point represents n = 10 trials on each map.

The Relative Change, SPRT, and Memory Threshold algorithms were all statistically signifi-
cantly different from one another in terms of both the number of AIMs deployed and the number
of maxima captured. The Adaptive algorithm deployed a significantly different number of AIMs
from the other algorithms, but the number of maxima captured was statistically indistinguishable
from the SPRT algorithm at a confidence level of 95%.

The number of AIMs deployed and maxima observed by the algorithms are given in Ta-
ble 4.13. The statistical significance of the differences in performance is given in Table 4.14.
We ordered the comparisons by decreasing number of AIMs deployed. With the exception of
the number of maxima observed by the SPRT and Adaptive algorithms, all other quantities were
distinct at a confidence level of 95%.

112

Table 4.13: The number of AIMs deployed and maxima observed by the different algorithms averaged
over the 30 simulated maps. Relative Change deploys the most AIMs and observes the most maxima,
followed by the Adaptive and SPRT algorithms, then the Memory Threshold algorithm.

Algorithm AIMs Deployed Maxima Observed
(µ± σ) (mu± σ)

Relative Change (δ = 0.95) 108.5± 0.7 76.8± 4.7
Adaptive (γmin = 53) 57.7± 7.5 32.4± 3.14
SPRT (s = 8) 41.4± 2.2 35.8± 3.3
Memory Threshold (γ = 80) 2.2± 1.5 1.7± 1.6

Table 4.14: Relative Change deploys more AIMs than SPRT, and it observes more maxima than SPRT
with an extremely large effect size at a confidence level of 95%. Similarly the SPRT algorithm deploys
more AIMs than the Memory Threshold algorithm, and it also observes more maxima in the map, at a
confidence level of 95% and a very large effect size. The number of maxima observed by the Adaptive
threshold is statistically indistinguishable from the SPRT algorithm, while deploying more AIMs.

Comparison AIMs Deployed Maxima Observed
p ≥ 95% Cohen’s d p ≥ 95% Cohen’s d

Relative Change > Adaptive Y 6.83 Y 10.4
Adaptive > SPRT Y 2.33 N N/A
SPRT > Memory Threshold Y 14.79 Y 8.86

However, if we look at how effective the AIM deployments are, the picture changes some-
what. We can measure the effectiveness of the algorithms by the ratio of maxima captured to
AIMs deployed. If every AIM deployed resulted in discovering a unique maxima in the field,
then the ratio would be 1. Values greater than 1 would be preferred, and the further below the
dashed line in Figure 4.22, the less effective the algorithm is.

The Memory Threshold algorithm and the SPRT algorithm are statistically indistinguishable
in their relative effectiveness at a confidence level of 95%. The uncertainty for the Memory
Threshold algorithm is much higher than the other algorithms because there were two trials
where the Memory Threshold algorithm did not deploy any AIMs, and so they were excluded
from the analysis. The effectiveness of the different algorithms is reported in Table 4.15.

The Adaptive algorithm had the worst effectiveness. We conjecture that is because, as the
transect progresses, the threshold for deploying an AIM is reduced, should AIMs have not been
deployed. If the threshold is lowered then AIMs are likely to be deployed in less favourable
environments.

113

Table 4.15: The ratio of maxima observed to AIMs deployed. An effectiveness of 1 would mean that
every AIM deployed observes a unique maxima in the underlying map.

Algorithm Effectiveness
(µ± σ)

SPRT (s = 8) 0.86± 0.07
Memory Threshold (γ = 80) 0.77± 0.45
Relative Change (δ = 0.95) 0.70± 0.04
Adaptive (γmin = 53) 0.57± 0.07

Using a paired significance test the SPRT algorithm has a higher effectiveness than the Rel-
ative Change algorithm at a confidence level of 95% and an effect size of d = 2.56. The SPRT
algorithm has a greater effectiveness than the Adaptive algorithm at a confidence level of 95%
and effect size of d = 3.80. The average difference in effectiveness between the algorithms is
given in Table 4.16.

Table 4.16: The difference in effectiveness for the different algorithms. At a 95% confidence level it is not
possible to distinguish the performance of the Memory Threshold from the SPRT algorithm. There are two
transects where the Memory Threshold algorithm did not deploy any AIMs, omitting these transects makes
the performance of the Memory Threshold algorithm sufficiently variable as to make its performance
indistinguishable from the other algorithms. The SPRT algorithm has superior effectiveness than either
the Relative Change or Adaptive algorithms.

Comparison ∆ Effectiveness p ≥ 95% Cohen’s d
(µ± σ)

SPRT >
0.16± 0.06 Y 2.56

Relative Change
SPRT >

0.30± 0.08 Y 3.80
Adaptive
SPRT >

0.09± 0.46 N N/A
Memory Threshold

What we can conclude from these results is that the SPRT algorithm is as efficient as the
Memory Threshold algorithm, at a confidence level of 95%, but it collects a greater number
of maxima in the underlying map. The Relative Change algorithm captures more maxima, but
comes at the cost of significantly reduced efficiency, this is the result of the false positives ob-
served in subsection 4.4.1 and subsection 4.4.2.

We see that the Adaptive threshold was able to capture more maxima than the Memory
Threshold algorithm, which is consistent with the results reported by Ferri et al. (2010). How-
ever, with our formulation of the adaptive threshold, we see that the adaptive algorithm is less
productive, largely because of how it lowers its standards for deploying an AIM as the threshold
is lowered.

Fig. 4.23 shows the sensitivity of the algorithms to changes in the controlling parameters. For
the Memory Threshold, Relative Change, and SPRT algorithms, all seem to follow trend lines
with similar slopes. The Adaptive Threshold algorithm follows a different trendline with a lower

114

slope than the other algorithms. As with the ROC curve for Experiment 3 the results for the
Adaptive Threshold algorithm was selected to show the best performance, and the performance
for different settings of the intial threshold are given in Fig. D.2 and Fig. D.3.

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

140

160

AIMs Deployed

M
ax

im
a

O
bs

er
ve

d
Maxima vs AIMs as Algorithm Parameters are Varied

Memory Threshold
SPRT

Relative
Adaptive (γB = 80)

Figure 4.23: The individual points in the plot represent the performance of the algorithms
averaged over all 30 water maps. As in Fig. 4.22, the y-axis is the number of maxima observed
by the algorithm less the maxima that would be observed by following the lawnmower path
without deploying any AIMs. The dashed line has a slope of 1.

For the Memory Threshold algorithm, when the threshold γ is high, the number of AIMs
deployed is low, but they generally result in observations of maxima. As γ is lowered the Memory
Threshold algorithm deploys more AIMs but, at the extreme, the number of maxima observed
saturates.

The Relative Change algorithm with the higher settings of δ performs comparably to the
SPRT algorithm. At the lowest settings of δ the Relative Change algorithm deploys more AIMs
and observes more maxima in the water map. However, when the number of AIMs deployed by
the Relative Change algorithm are similar to that of the SPRT algorithm, they observe slightly
fewer maxima in the water map.

115

The SPRT algorithm does not deploy as mainy AIMs as the Relative Change or Memory
Threshold algorithm. At its lowest setting of s, the SPRT remains safely out of the region of sat-
uration that the Memory Threshold algorithm enters, but at the cost of observing fewer maxima
in the water map. With the highest setting of the s parameter the number of AIMs deployed is
lower, but at the benefit of higher effectiveness.

The Adaptive Threshold algorithm does not make as effective use of its AIMs as the other
algorithms. This can be ascertained from the lower slope of the data points. As can be seen in the
Fig. D.2 and Fig. D.3 the performance of the algorithms does not significantly vary. The most
effective use of AIMs is when the γmin parameter is at the highest value, but this results in fewer
AIMs being deployed and hence fewer maxima being observed.

The advantage of the SPRT algorithm is that it gives a measure of confidence that can be
used in mission-level decision making to deviate paths, which is not something that can be done
with the Relative Change algorithm alone. However, the SPRT algorithm can be viewed as an
integration of the observations from the Relative Change algorithm to the point where such a
decision can be made.

4.5 Discussion
The algorithms presented in this chapter assumed that only one change in the underlying distri-
bution occurred. We were able to mitigate this in the 2D exploration simulation by caching any
history of previously collected samples. However, it is possible that multiple changes could have
occurred in the time series collected by the robot. Representing this, and dealing with an un-
known number of changes would require more sophisticated machinery, but could be addressed
by techniques like the multi-hypothesis developed by (Baum and Veeravalli, 1994), making for
a logical extension of the work.

Similarly, we assume that the functions driving the background rate of the observations is
constant in between changes. If that assumption does not hold up, then the hypotheses that are
used to model the changes may not be able to do so correctly. For example, if the background
rate was determined by a periodic function then a change detection algorithm assuming constant
background rates would most likely frequently report that changes have occurred.

We assumed that the boundaries of changes in the underlying distribution are sharp, an as-
sumption motivated by mission context in which this work was developed. There is a distinct
boundary between different settings of the underlying distribution. A change that occurs more
slowly over a long period of time may not be identified by the approach described in this chapter
and would require a different competing hypotheses in the decision making algorithm. This is
where an approach like the one described in (Thompson et al., 2013) could be used as input to
the decision making algorithm.

In the experiments we conducted in this chapter we assumed that the values reported from the
sensor had infinite certainty. Accounting for uncertainty in the values would be a more principled
(read: Bayesian) approach to change detection.

The changes in the distribution underlying the readings collected by the robot were consid-
ered to to be a function of distance along the robot’s pre-determined path. This is considering
the path to be one dimensional. In actuality the robot is following a trajectory through (at least)

116

two-dimensional space, and it should be possible to incorporate knowledge about the spatial rela-
tionships between readings to make better decisions. This does come at the cost of the simplicity
of the algorithm discussed in this chapter and so trade-offs in computing resources should be
considered in a mission context.

Because the scientists employing the neutron spectrometer have well characterized the rela-
tionship between the readings of the instrument and the abundance of subsurface water, there
isn’t a need to learn that relationship on-line. However, one might be in the situation where the
relationship between the prospecting sensor and the secondary sensor is not characterized and
needs to be determined on-line. In this setting an upper confidence bound value function (Auer,
2003) like the one used by Das et al. (2015) would be more appropriate.

The decision rule used to determine if an AIM should be employed was a fairly trivial exem-
plar to illustrate the efficacy of the approach. Actual missions should employ AIM deployment
decision rules that reflect mission risk and vehicle resources. Likewise the threshold for confi-
dence in the change in the underlying distribution implies a certain risk tolerance. The confidence
threshold should also be tuned to mission risk.

We do not consider the case of having a limited sampling budget. Should that become a con-
straint then the authors would recommend combining the change detection algorithm described
in this chapter with the submodular secretary described in (Das et al., 2015).

The algorithm assumes that a path is pre-determined for the vehicle. In the 2D simulation we
considered a lawnmower path of fixed width. The success and failure of the mission could depend
on the spacing of switchbacks along that path. An informative path planner could improve the
overall performance of the algorithm, reducing the risk of missing locations of interest in the
world.

The SPRT algorithm as implemented searches through every time step in the data that have
been collected from the last detected change. This is a linear search in the number of time steps,
T , which in turn requires an order T computation, yielding O(T 2) complexity. However, we can
reframe this problem as searching for the roots of the equation λ(t)−s, where s is the confidence
level threshold for choosing one hypothesis over the other. With this reframing we could employ,
for example, a bisection search which would have a worst-case complexity of O(T log T).

4.6 Summary
The objective of the work in this chapter was to use a change detection algorithm to improve the
deployment of discrete secondary sampling actions. We chose an Area of Interest Manoeuvre
as the discrete, secondary sampling action. We designed an algorithm which is a straightfor-
ward application of the sequential probability ratio test and compared it against a hard threshold
technique which is used, in the author’s experience, by planetary scientists.

We have shown that the SPRT-based algorithm is able to outperform the Memory Threshold,
and Relative Change algorithms on real data from the MVP project, and in the simulated 2D
environment. Most importantly, it is able to detect sub-threshold changes that would be invisible
to an algorithm using a hard decision-making threshold.

By recognizing trends that occur below the threshold, the autonomous science agent can
make decisions about deployment that the competing algorithm can’t. By being able to detect

117

changes with confidence the SPRT algorithm can reduce the rate of false positives, thus reducing
waste of sampling resources.

The Relative Change algorithm is easily distracted by anomalies, resulting in a much higher
false positive rate than the other algorithms. This behaviour could also be tuned to different
scenarios, but again, it may need to be modified before every deployment. If the environment is
truly unknown then this proposition is untenable.

In the simulated experiments we found that the Adaptive algorithm increases the number of
changes detected, and reduces the error in estimating when the change occurs, compared to a
fixed threshold algorithm. However, we found on the MVP data the improvements in perfor-
mance were not maintained.

In the simulated 2D environment we found the SPRT algorithm was able to observe more
maxima in the water maps than the Memory Threshold algorithm was, with potentially greater
productivity. The number of maxima observed by the Adaptive Threshold was not statistically
significantly different from the SPRT algorithm, but the Adaptive algorithm comes with the bur-
den of additional parameters which must be tuned to the environment, the γmin and number
of suggested AIM deployments. We found with the MVP data that the γmin parameter of the
Adaptive Threshold algorithm still prevents sub-threshold activity from being detected.

It is difficult to recommend the use of the Adaptive algorithm, as the SPRT algorithm had
better performance on efficiency, and because the Adaptive algorithm introduces more parame-
ters than either the Memory Threshold or the Relative Change algorithm. There may certainly
be benefits to encouraging the algorithm to deploy samples as a function of how much of the
transect remains to be explored. To the author this seems to be conflating two notions, the first,
determining how aggressively AIMs should be deployed, and second, what is the standard for
an anomaly given environmental conditions. In our proposed algorithm we attempt to determine
with some statistical confidence whether or not a change has occurred in the driving distribution,
which seems to be a more direct solution to the problem.

Because the SPRT algorithm combines multiple measurements to calculate the likelihood
that something has changed, rather than simply measuring their magnitudes independently, it is
less dependent on prior knowledge for operation. With a reduced dependence on prior knowl-
edge there should be greater confidence in performance when sending prospecting robots into
unknown environments.

118

Chapter 5

Global Planning for Hypothesis
Falsification

The previous chapters discussed methods for reactive autonomous science. Both the foraging
and prospecting algorithms assumed that the trajectory to be followed already existed. In this
chapter we develop an algorithm which selects goal locations in two-dimensional space, in order
to collect samples that determine which of a set of competing hypotheses is most likely to be
correct.

The hypotheses we consider in this chapter are functions that map observations in a domain,
X , to a probability distribution over observations, Z. The task then set out for the learner is to
collect sufficient data to determine the accuracy of a hypothesis, h : X → (Z → [0, 1]).

We present this work in the context of a physical robot moving to collect samples, however,
the concepts should generalize to more abstract applications. Before we discuss the technical
contributions of this chapter, we briefly frame the problem of selecting the most true of a set of
hypotheses in the context of the philosophy of science.

To say a hypothesis is correct relies on having a notion of truth. In a world with noisy sensors
and variable processes having an objective notion of truth can be challenging, to say the least.
In this work we use F.P. Ramsey’s notion of truth, which is a gambler’s notion of truth. That is
to say, the thing which makes the predictions we can gamble on with greatest reward is the truth
(Ramsey, 1931).

Previous approaches to science autonomy generally considers zero or one hypothesis at a
time. Informative path planning attempts to collect observations in the domain of a hypothesis
in question in order to build accurate models. The prototypical example of this is to find the
distribution of some quantity over a region of a map. The algorithms that are used to design the
sampling points come with certain assumptions about the smoothness and the continuity of the
hypothesis over the domain.

In many respects this mirrors the notion of confirmation theory or verificationism, due to
Carnap (1936). Verificationism was a “bottom-up” theory of science (Hacking, 1983), the ex-
perimenter was expected to collect data and generate hypotheses which fit those data. The belief
was that sufficient observations enable one to generate hypotheses about the world from true
statements regarding empirical data. Hypotheses would be proven true by the irrefutable weight
of the experimental data.

119

Really this does not seem an objectionable stance. The belief that with sufficient data one can
uncover rules which generalize to unseen cases, is fundamental to the field of machine learning.
One starts with a dataset and then attempts to identify the functions that best fit the data.

The space of functions searched is constrained by the representations used in the function
learning process, and by the optimization and search techniques used to fit the function. Con-
straints, like regularization terms, are also added to mitigate overfitting, which is to say, to avoid
functions that make accurate predictions where data has been collected, but that make wildly
inaccurate predictions where data have not been collected.

Generalization is the holy grail of many a machine learning algorithm. The attempt to curtail
overfitting, to ensure that predictions on unseen data are reasonable, is a pre-emptive defense
against David Hume’s problem of induction (Vickers, 2016). The problem of induction is that
when extracting a law from observed data one only really knows that the law holds for those
data, it says nothing about what may be encountered in the future.

Directly addressing the problem of induction is what motivates Karl Popper’s scheme of fal-
sificationism (Popper, 2005). Falsificationism is based on the notion that no predictive statement
about the world can be proven true, it can only be proven false. That is to say, that we may
uncover that its predictive power is less useful in all circumstances than previously thought.

Under Falsification we can only consider hypotheses that make predictions about the state of
the world. Further, those predictions must be, either directly or indirectly, observable. Then we
can take the hypothesis, test its predictions and assess its relative truth.

With the best performing hypothesis we can then go about the world making predictions and
reaping our rewards. Take for example the progression from Kepler’s Orbits to Galileo’s, or
Newton’s physics to Einstein’s. Of course, it is possible that there might be a set of hypotheses
which have different levels of predictive power at different points in the domain. The prototypical
example here would be relativistic and quantum physics. They remain stubbornly ununited, so
we keep both and apply them where they are most effective.

This is all well and good, but the question stands: What use is all this and how does it help
us change how robot scientists behave? To answer that we have to look at what the implications
of verificationism and falsificationism are for experiment design.

The way to design experiments under a verificationist regime is to try to observe as many
points in the domain, X , as possible. Greater information content is yielded by points that are
farther away from each other, under whatever distance metric is used in the domain space. The
logical end point of this thinking is to collect samples that are evenly spaced through the domain
of the function. Under a falsification approach and in the case of testing only one hypothesis the
end result is very similar. The objective is to take the predictions of the hypothesis and evaluate
their accuracy. Then one must eventually test all parts of the hypothesis, leading to something
resembling a uniform sampling across the domain of the hypothesis.

There may be more or fewer samples spent in locations correlated with the uncertainty in the
predictions at that point. Sampling based on the uncertainty in the predictions of a function is a
concept developed by Kristine Smith, (Smith, 1918), the progenitor of mathematical experiment
design, who preceded Popper. The underlying notion here is that predictions which are certain
require fewer experiments to falsify than those which are uncertain.

Where falsification becomes more interesting is in the setting where there are multiple com-
peting hypotheses and one wants to determine the best one. What becomes relevant in this

120

setting is where the hypotheses disagree. Where hypotheses agree on their predictions they are
all equally right or equally wrong, sampling in those regions does help assess their overall accu-
racy, but it does not help assess which of the hypotheses is better at making predictions. Points
in the hypotheses’ domains where they disagree in their predictions are exactly the points that
one wants to sample to determine their relative accuracy.

If the goal is to assess the accuracy of different hypotheses, it is important to sample broadly
in their domain in order to assess their overall performance. However, there is the additional goal
of simultaneously determining which of a fixed set of hypotheses is most accurate, so we bias our
search towards regions where hypotheses disagree. The technical contribution of this chapter is
an algorithm which selects sampling points to learn the multinomial distribution of belief across
the different hypotheses while assessing the overall quality of the set of hypotheses.

Broad sampling in the domain of the hypotheses that favours points of disagreement is the
idea underpinning the algorithm developed in this chapter. Sampling only points of disagreement
would address which of the set of hypotheses are most accurate, but it would not necessarily
inform the overall accuracy of the proposed hypotheses.

On the other hand, while broad sampling in the domain of the competing hypotheses will help
assess the overall accuracy of the hypotheses, a sampling approach which ignores the predictions
of the hypotheses may well miss regions of disagreement in predictions, and thus be unable to
distinguish the relative value of the hypotheses.

The proposed algorithm selects sample points in the domain of a set of competing hypotheses
in order to determine which one of them is the most likely to be correct. To assess the overall
assessment of the set of hypotheses, we introduce an additional, fictional hypothesis, H0, which
represents the belief that none of the proposed hypotheses are correct.

We believe that our algorithm represents a principled fusion of verificationist and falsifica-
tionist approaches to experiment design. Here we view falsification as sampling for information
gain not in a distribution over the domain of a hypothesis, but information gain in the belief
distribution over a set of competing hypotheses.

We test our algorithm in a simulated mission with a multi-hop lander that is trying to deter-
mine the accuracy of hypotheses that make predictions about some quantity that is not observable
remotely. Such an activity might be drilling to access subsurface materials, or conducting laser
ablation of the objects in the environment. The point is, travel to and interaction with the envi-
ronment is required. The domain of the hypotheses in this setting is a 2D map of the terrain.

This type of mission would be typical of a mission to, for example, the lunar South Pole-
Aitken Basin (Board et al., 2012). Here the geological scale that must be sampled is on the order
of thousands of km, and as such would not readily admit exploration by a ground vehicle.

To further support the simulation findings we tested the algorithm in the Atacama desert as
part of the ARADS project. The algorithm was deployed on the KRex2 robot where it chose
locations to drill in order to localize subsurface halite.

The robot is testing a set of competing hypotheses that classify regions into one of two binary
classes. Here we ignore any intermediary features that might be used to classify the terrain and
simply test binary maps as black-box hypotheses regarding some model presented to the robot
from scientists.

Such hypotheses could be classifications developed from remote sensing data, such as the
presence of frozen water in lunar soil, or subsurface halite in the Atacama desert. Depending on

121

the models used to make predictions the same precursor data could generate multiple predictions
about the underlying variable(s) of interest. The observations that robots collect on the surface
help determine which of these hypotheses accurately predict the robots observations, in turn
implying the relative accuracy of the hypotheses.

Figure 5.1: A geological map of Jupiter’s Moon, Io. The remote data produced from observing
Io has been interpreted as a map of terrain classifications. However, observations from the
ground would be required to confirm the predictions of the map creators. Image courtesy
wikipedia.org

We compare our algorithm to another algorithm which simply does mutual information sam-
pling in the domain of the hypotheses. We find that our algorithm is statistically significantly
better at identifying the best hypothesis out of the set than the competing algorithm when all
hypotheses are good, and when all hypotheses are bad. We found that when the quality of the
hypotheses were mixed the mutual information sampling in the domain had better performance
than the proposed algorithm for some settings of sensor noise and sampling budget, but were
otherwise statistically indistinguishable at a 95% confidence level.

Neither algorithm uses planners that attempt to be efficient with any resource other than sam-
ples. We use a greedy planner that simply hops to the next most informative site. The approach
used in this chapter may not map to long-term ground vehicle operations. There is additional
information to be gained by visiting locations between the identified goal points, which this al-
gorithm ignores. If modified to address this short-coming, the falsification sampling algorithm
could be used in ground vehicle scenarios.

Additionally, the proposed algorithm does not attempt to generate hypotheses from the ob-
servations it collects. It is an important part of future work to decide when to generate new
hypotheses. To track the belief that none of the presented hypotheses are correct, we maintain a
parameter, H0. By keeping track of this quantity for both the mutual information sampling and

122

the proposed falsification sampling it was possible to represent the confidence that none of the
proposed hypotheses are correct.

5.1 Prior Work
Science autonomy robots have not previously needed to choose between hypotheses, they have
generally been focused on collecting data for remote operators. However, the design of exper-
iments literature has been largely focused on selecting experiments that inform hypotheses. A
popular example of an experiment selection technique is the multi-armed bandit.

Multi-armed bandits (MABs) (Robbins, 1952) are a formalization for sequentially selecting
the most rewarding of a set of experiments. There are a number of different algorithms for ap-
proaching the MAB problem. The main families of which appear to Upper Confidence Bound
algorithms (Lai and Robbins, 1985), the Gittins index (Gittins et al., 2011), and Thompson sam-
pling (Thompson, 1933). Thompson sampling has recently gained attention for being simple to
implement and for having near-optimal regret properties (Chapelle and Li, 2011; Agrawal and
Goyal, 2012; Ortega and Braun, 2010).

Standard MAB settings assume the interaction with the candidate arms is simple. An arm
is selected for testing, the arm is pulled, and a reward is delivered. In planetary exploration one
can map candidate hypotheses to bandit arms, but executing tests is complex. Robots have to
move through space and interact with the world, incurring unpredictable costs. Because targets
of interest, like geologic materials, have highly spatially dependent distributions, sampling a
random point is not guaranteed to be an informative action.

We look to science autonomy algorithms to determine how to select sample points. Most
noteworthy of these algorithms is the OASIS/AEGIS (Castano et al., 2007; Estlin et al., 2012)
system, as it has actually been deployed on Mars. However OASIS, like other prior work, either
learns models from without prior data (Thompson, 2008) or uses proxy measures of importance
that encode scientists’ preferences (Paar et al., 2012; Chien et al., 2005), but is unaware of the
hypotheses under examination. Given that access to data from precursor remote sensing is likely,
starting each new scientific mission from a blank slate seems inefficient.

Girdhar et al. (2014)’s approach to exploration focusses on visiting locations that help con-
struct a topic model for classifying satellite imagery. This approach continually improves the
topic model the robot is constructing but it does not inform any hypotheses that scientists are
attempting to resolve.

Thompson (2008) maximizes the diversity of collected samples with mutual information
sampling. This approach ensures samples are distributed through the input space of the function
it is learning. A shortcoming of this approach, and all approaches that rely on mutual informa-
tion sampling using Gaussian processes (GP) with stationary kernel functions is that they do not
depend on the observations collected. For a GP P (f(x)|x1, . . . , xt) the mutual information for
a new data point, xt+1, is proportional to:

I(xt+1) ∝ k(xt+1, xt+1)− kt(xt+1)
TK−1t kt(xt+1) (5.1)

where k is the kernel function. kt is the vector of distances between the t collected data points
and the test point x, and Kt is the t × t matrix of the distances between all previously collected

123

observation points. Mutual information sampling depends only on points in the input space that
have been observed and the kernel function. While this is a principled approach, being aware of
the hypothesis tested would require accounting for observations, f(x).

The algorithm in (Thompson et al., 2015b) is aware of observations made on the ground. Its
robot attempts to explain spectra data from satellites by collecting a library of spectra from the
ground. Each pixel of satellite data is explained as a mixture of the end member spectra collected
by the rover. The end members represent a basis of examples of “pure” minerals. The rover
travels to locations where library of rover-observed spectra poorly explains the satellite data and
collects more observations to explain the satellite data. This approach is implicitly constructing
a hypothesis about the terrain composition but the algorithm itself does not test points in the
satellite data that it considers well explained, nor does it consider alternate hypotheses.

Miller et al. (2016) use the expected value of the Fisher Information to determine points
of interest. Like mutual information (Lindley, 1956), Fisher information is used as a score to
select the most informative experiments. Their path planner produces smooth paths maximize
the number of high information value observations. Fisher information and the mutual infor-
mation are intimately related, but not identical, quantities. However, a rigorous comparison of
the behaviour of robots maximizing mutual information and those maximizing expected Fisher
information does not exist in the literature. Without such evidence it is difficult to select one
reward function over the other and this should be studied further.

The above approaches to distributing sampling points throughout the input space are princi-
pled approaches to learning functions de novo. However, when trying to select between com-
peting hypotheses it is conceivable that a sequence of observation points x1, . . . , xt will miss
the points of conflict between those hypotheses, especially when sampling resources are limited.
However, widely sampling an input space is important to ensure the predictions of a hypothesis
are generally accurate. Most deployed science autonomy algorithms do not operate in the realm
of hypotheses, they either focus on distributions of data or on hand-coded proxy measures, not
necessarily the verification or falsification of hypotheses under consideration. For that reason we
propose the method described in Section 5.2.

The work that probably bears the greatest similarity to the work contained in this chapter
is Balcan’s Agnostic Active Learning algorithm. Agnostic Active Learning, as developed in
(Balcan et al., 2006), is an approach to selecting samples in order to determine which of a set of
hypotheses most accurately models data. Through repeated sampling the algorithm reduces the
number of hypotheses that are considered valid. The algorithm repeatedly takes two hypotheses
under consideration, determines where they disagree and samples in the region of disagreement.
This is a method consistent with the strategy of falsification laid out by Popper. Sampling where
two hypotheses agree cannot help determine which of the two hypotheses is more correct.

Their work, as described in (Balcan et al., 2006) focused on linear functions and threshold
functions, which makes determining the region of disagreement more straightforward than in the
general case of arbitrary functions. In our work we use a sampling strategy to determine which
regions of the domain are interesting. While this has the downside of potentially considering
more unnecessary locations, it has the distinct advantage of not requiring knowledge of how
to compute the region of disagreement between competing hypotheses. Further, while the A2

algorithm iteratively compares only two hypotheses at a time, we consider the change in belief
over all the hypotheses. This comes at a greater computational cost, but it helps simultaneously

124

re-evaluate more hypotheses.
The work contained in this chapter is an extension of the work presented in (Furlong, 2017).

That work bears some resemblance to the work of Dorsa Sadigh et al. (2017). The work by Dorsa
et al. attempts to select the optimal control strategy for a dynamic system by first simulating
performance and then asking a human, playing the role of an oracle, to rate the performance of
the algorithm. Both these algorithms are instantiations of the Thompson sampling algorithm.

The distinguishing factor between the work of (Dorsa Sadigh et al., 2017) and this work is
where the former simply finds the best action at every iteration and then evaluates it. The work
presented in this chapter identifies the sampling action, the question which would be posed to
the oracle in (Dorsa Sadigh et al., 2017), that yields the greatest reduction in uncertainty in the
belief over the competing hypotheses.

Similarly, Ravanbakhsh and Sankaranarayanan (2017) use Thompson sampling-like behaviour.
They are attempting to find control laws for different dynamic systems. However, where the work
above attempts to learn accurately the relative performance of different points in the action space
Ravanbakhsh et al. simply need to find one control law that is successful and halts immediately.

There have been proposed some algorithms for active model selection. These algorithms start
with a fixed set of hypotheses and attempt to resolve which one of them are most accurate, given
an oracle they can use to label points

Madani et al. (2004) perform an empirical evaluation of active model selection algorithms.
They consider a setting where the different hypotheses are modelled as coins, and the goal is to
find the coin with the highest success rate. This differs from our problem in that the observa-
tions from one coin flip only informs the success rate of that coin. In our problem setting, the
observation from conducting a sampling action informs all the hypotheses under investigation.

Madani et al. (2004) find that their “biased round-robin” sampling algorithm is one of the
consistently highest-performing algorithms. Biased round robin cycles through the coins in turn,
but does not move from one coin to the next until a tails has been observed. This bears some
similarity to our algorithm which treats the hypothesis with the greatest success rate as the most
likely hypothesis.

Sawade et al. (2010) present a method for active sampling that attempts to estimate the accu-
racy of one pre-trained classifier. They design a sampling distribution which is proportional to a
function of the uncertainty of the candidate sampling point, x, given previous observations, σ2

x,
and the risk of the classifier, Rθ. Rθ is a constant for any classifier parameterization, θ.

The sampling distribution developed by Sawade et al. is given in Eq. (5.2). For a fixed
parameterization of a classifier, this term is proportional to the uncertainty as a function of the
candidate point. They assume that the estimate of uncertainty is provided by some other means,
such as a Gaussian process.

q∗(x) ∝
√

3σ4
x − 2Rθσ2

x +R2
θ (5.2)

Sampling candidate points based on the uncertainty function given by a Gaussian process
was implemented for robotic planning in (Thompson, 2008). It is also interesting to note that for
stationary Guassian kernels the estimate of uncertainty of a sampling point, x, does not depend
on the observations collected at those locations.

Further, sampling locations based on uncertainty again echos the work of Smith (1918). In

125

broad strokes, the algorithm developed in (Sawade et al., 2010) is analogous to the default mutual
information sampling algorithm which we compare against in our experiments.

Kumar and Raj (2016) present a method for estimating the accuracy of a single, trained
classifier with a limited sampling budget. They use the classifier to label the data, and then use
those labels to segment the data into strata. The goal was to estimate the accuracy of the classifier
by requesting labels for the data in these strata.

They tested a number of different allocation techniques to distribute random samples to the
different strata. They found that techniques which allocated samples proportional to the variance
of the classifier accuracy within the strata performed well, but that an equal allocation of samples
across the strata also had competitive performance.

Kumar and Raj (2016) use random sampling within the strata of data points. The algorithms
they use are about deciding how many samples to draw from each location. It would be interest-
ing to examine what happens when informative sampling is conducted within the strata.

Ali et al. (2014) present an active learning algorithm for simultaneously training and validat-
ing the different hypotheses, called Active Learning and Model Selection (ALMS). They con-
sider candidate sampling points and score their relative value for either training the hypotheses
or selecting the best hypothesis.

In order to determine how valuable a candidate point would be for training, the algorithm pre-
dicts the label of the point by averaging over the predicted labels from all the hypotheses. ALMS
then re-trains the hypotheses with the previously collected training set, all but two elements of
the validation set, and the candidate point with its estimated label. Leave-two-out validation is
conducted with the remaining two data points, which have had labels determined by the oracle.
The value of the candidate point is the average error in the cross-validation process, averaged by
the current belief in the competing hypotheses.

The value of the candidate point for validation purposes is the average loss of the hypotheses
trained with only the training dataset, computed using leave-two-out cross-validation on the en-
tire validation set plus the candidate point with its estimated label. The training-value quantity
is, in effect, asking which data point, if added to the training set, causes the worst performance
for the validation of the hypotheses. On the other hand, the validation-value quantity is asking
the question of which candidate point causes the greatest reduction in belief in the hypotheses.

If the expected reduction in performance from training with the data point is higher than
the reduction in validation, then the worst performing candidate point is added to the training
data set. If the expected reduction in validation is greater than the reduction in training, then an
unbiased sample is drawn from the pool of candidate points, and added to the validation data set.

The algorithm recomputes the probability of the models given the dataset it is building over
every time step, and uses that to determine the value of previously unobserved sampling points.
It is necessary to recompute this probability before each sample is selected because the algorithm
is simultaneously training the hypotheses with the data it collects while trying to validate them.
In our approach, with fixed hypotheses, we don’t need to re-train the hypotheses, so we can
accumulate evidence with each data point selected.

The algorithm proposed by Ali et al. (2014) does not account for the probability that none
of the proposed hypotheses are correct, something we do address in this chapter. This is an
important quantity to keep track of for future algorithms which will be not only searching for
candidate sample points, but also new candidate hypotheses.

126

5.2 Method
The objective of the mission is to build belief in the hypothesis that is least false, H∗. In order
to do this the robots must select sampling locations, l ∈ L, in the input space of the hypotheses
that most productively inform the investigation. The robots collect true observations, M(l), from
the true map, M , that can be used to update the belief in the different hypotheses based on the
predictionHi(l) from the corresponding hypothesisHi. The hypotheses the robots are attempting
to validate were generated by corrupting true map data. This is a stand-in for hypotheses that
have different interpretations of the precursor data.

5.2.1 Belief in Hypotheses
The algorithms estimate their belief that hypothesis Hi, where i ∈ 1, . . . , K, with a multinomial
distribution, P (Hi), where

∑K
i=0 P (Hi) = 1. We have a special place-holder hypothesis H0,

which represents the probability that none of the proposed hypotheses are correct.
We place a Dirichlet prior on the distribution of belief in the hypotheses, with corresponding

condensation parameters α0, . . . , αK . The condensation parameters are initialized with an unin-
formative prior, αi = 1, as initially all hypotheses are considered equally likely. However, the
condensation parameters can be initialized to reflect any prior belief in the competing hypotheses.

After an observation the condensation parameters are updated to reflect the agreement with
the predictions from the different hypotheses. That is to say:

αi,t+1 = αi,t + P (Hi(lt) = M(lt)|Hi) (5.3)

The observations the robot makes in these experiments have sensor noise. However, we
assume that the hypotheses themselves do not make probabilistic predictions. This mirrors the
author’s experience working with planetary scientists, but dealing with probabilistic predictions
should be addressed in future work.

5.2.2 Site Selection Algorithm
Algorithm 5.1 selects sampling sites with a modified version of Thompson sampling. At each
time step, t, the algorithm samples a belief state ~θ from the Dirichlet prior described in Sec-
tion 5.2.1, and then chooses the Hi that has the largest belief θi. The algorithm assumes that Hi

is “true” for the duration of this step, and uses it to evaluate which location lt is most informative.
At the location lt the robots collect the observation M(lt). Observations are used to update the
belief in the hypotheses that have been assigned to them.

We assume the robot starts in the (0, 0) position on the map, which corresponds to the top
left-hand location of the maps shown in Figure 5.2. The robot is capable of sampling at locations
l in the input space L, which in this experiment are (x, y) locations on a two-dimensional map
with integer coordinates. A Robot at location lt that chooses to travel to lt+1 incurs a cost of
cost(lt, lt+1). We assume that cost(l1, l2) = 0 when l1 = l2, and cost(l1, l2) > 0 when l1 6= l2.

Once a location has been selected, the robot travels to the specified location and collects an
observation from the actual map, M(lt), and the belief state is updated. After each observa-

127

tion the place-holder condensation parameter α0 is incremented with the belief that none of the
hypotheses predict the observation from the map at lt.

The reward function for candidate sampling locations is how the competing algorithms con-
trol the vehicle behaviour. The reward functions for the mutual information domain sampling
algorithm and our proposed falsification sampling algorithm are specified in Sections 5.2.2 and
5.2.2.

Algorithm 5.1 Site Selection Algorithm

function SAMPLE-SELECTION(M ,〈H1, . . . , HK〉,budget)
αi ← 1 ∀ i ∈ {0, . . . , K}
t← 0
l0 ← 〈(0, 0)〉
repeat

~θ ∼ Dirichlet (α0, α1, . . . , αK)
i← argmax

i
θi

lt ← argmax
l

reward(E
[
~θ
]
, Hi, 〈l0, . . . , lt−1〉)

for i← 1, K do
αi ← αi + 1(M(lt) = Hi(lt))

end for
if
∑K

i 1(M(lt) = Hi(lt)) = 0 then
α0 ← 1

end if
budget← budget− cost(lt)
t← t+ 1

until budget = 0
end function

Control Algorithm - Mutual Information Domain Sampling

For the control algorithm we build a density estimator using a Gaussian kernel function and we
select the candidate point where the increase in information would be the greatest. We compute
the entropy, H(·) of the kernel density estimator as described by Beirlant et al. (1997). The
algorithm for the reward function is given in Algorithm 5.2.

Algorithm 5.2 Mutual information domain sampling. This algorithm uses a measure of mutual
information like the one used in (Thompson, 2008) or (Sawade et al., 2010). It depends only on
previously observed locations to find the most informative point.

function SPATIAL-REWARD(P
(
~θ
)

,Hi,〈l0, . . . , lt−1〉,lt)
Pt(l)← KDE(〈l0, . . . , lt−1〉)
return H(Pt)−H(Pt|lt)

end function

128

The information gain computed by this algorithm is with respect to the domain of the hy-
potheses, given all previous points in the domain where observations were collected. The kernel
density estimator used for computing mutual information in the domain makes assumptions about
the smoothness of the underlying function.

This algorithm is analogous, but not identical to, that proposed in (Sawade et al., 2010).
Previously, we observed that algorithms like that of (Sawade et al., 2010) did not necessarily
consider the predictions made by the different functions. Consequently, by following a sampling
method which does not strictly depend on the predictions of any one hypothesis, we can, in
effect, simultaneously learn the accuracy of all three hypotheses. As we will see in the results,
this algorithm does perform well in the experiments we conduct.

Proposed Algorithm - Hypothesis Falsification Sampling

This algorithm seeks sampling locations that concentrate belief across the hypotheses given ob-
servation Hi(lt), as seen in Equation 5.4, where Hi is considered the “true” hypothesis as per
Algorithm 5.1. These locations maximize the mutual information between the belief state ~θ and
the observation Hi(lt).

I
(
~θ;Hi (lt)

)
= H

[
~θ
]
−H

[
~θ|Hi(lt)

]
(5.4)

This will automatically seek out locations that maximize the change in the belief distribution
over the hypotheses. With Equation 5.4 as the reward function at any point l where theHi’s agree
will increase the credibility of all hypotheses, resulting in negative mutual information for lt.

However, one also wants to ensure that the hypotheses are accurate. Sampling at disagree-
ment points will help build the credibility of the best hypothesis, but it does not give confidence
with the overall predictions of Hi. To mitigate this problem we add to Equation 5.4 the re-
sult computed in Algorithm 5.2 to ensure the sampled points are spatially diverse. The reward
function used for this algorithm is given in Algorithm 5.3.

We can derive this algorithm as follows:

129

H (θi, L) = −
N∑
i

∑
l∈L

p(θi, l) log (p(θi, l))

= −
N∑
i

∑
l∈L

p(θi|l)p(l) [log (p(θi|l)p(l))]

= −
N∑
i

∑
l∈L

p(θi|l)p(l) [log (p(θi|l)) + log (p(l))]

= −
N∑
i

∑
l∈L

[p(θi|l)p(l) log p(θi|l)]−
N∑
i

∑
l∈L

[p(θi|l)p(l) log p(l)]

= −
N∑
i

∑
l∈L

[p(θi|l)p(l) log p(θi|l)]−
∑
l∈L

N∑
i

[p(θi|l)p(l) log p(l)]

= −
N∑
i

∑
l∈L

[p(θi|l)p(l) log p(θi|l)]−
∑
l∈L

[[
N∑
i

p(θi|l)

]
p(l) log p(l)

]

= −
N∑
i

∑
l∈L

[p(θi|l)p(l) log p(θi|l)]−
∑
l∈L

[p(l) log p(l)]

= −
N∑
i

∑
l∈L

[p(θi|l)p(l) log p(θi|l)] + H (L)

= −
∑
l∈L

N∑
i

[p(θi|l)p(l) log p(θi|l)] + H (L)

= EL

[
−

N∑
i

p(θi|l) log p(θi|l)

]
+ H (L)

= EL [H (θi|L))] + H (L)

Allowing us to conclude that

H (θi, L) = EL [H (θi|L)] + H (L) (5.5)

The expectation term of Equation 5.5 can be difficult to compute as the space of L increases.
However, since mutual information is the difference before and after the observation the compu-
tation can be simplified.

MI = H (θi, L)−H (θi, L|z(lt), ξ = lt) (5.6)

Substituting the derived value for entropy from Equation 5.5 into Equation 5.6 we can write

130

MI = EZ [H (θi|L = lt)]−EZ [H (θi|L = lt, z(lt), ξ = lt)] +H (L)−H (L|z(lt), ξ = lt) (5.7)

H (L) − H (L|z(lt), ξ = lt) is the information gained by sampling at a location li in the do-
main, given the prior sampling locations. The term EZ [H (θi|L)] − EZ [H (θi|L, z(lt), ξ = lt)]
permits some opportunities for simplification that hinge on how much of the hypothesis an obser-
vation effects. We make the naive assumption that conditioned on the map location, observations
are independent of all other locations.

Algorithm 5.3 Hypothesis falsification sampling. We use Eq. (5.4) to bias the value of sites
towards locations where the hypotheses disagree.

function DISAGREE-REWARD(P (~θ),Hi,〈l0, . . . , lt−1〉,lt)
P (~θ|Hi(lt))← update(P (~θ), Hi(lt))
rh ← H

[
~θ
]
−H

[
~θ|Hi(lt)

]
rs ← spatial-reward(P (~θ), Hi, 〈l0, . . . , lt−1〉, lt)
return rh + rs

end function

In this experiment we directly add the information gained from the spatial distribution and the
hypothesis belief distribution with an equal weighting term of 1. The relative importance of the
two terms could be modified in order to produce behaviour that either more aggressively targets
differences in predictions (increase weight on rh), or prioritizes determining overall accuracy
(increase weight on rs).

At this juncture it is important to recognize that the proposed algorithm is implicitly making
naive assumptions about the relationships between the information gained by sampling in the
domain and the information gained in the belief distribution over the different hypotheses. In
effect, our algorithm may double count some of the information gained by making assumptions
about independence that do not necessarily hold.

It remains for future work to construct a more formal representation which explicitly in-
corporates the relationship between sampling in the domain of the hypotheses and sampling in
the belief over the hypotheses. With the correct representation, the spatial diversity should be
achieved while attempting to maximize the information gained in the belief distribution over the
hypotheses.

5.2.3 Map Generation
We generated 10 different maps, each 20 × 20 pixels, with each pixel containing a label from
z ∈ 1, . . . , N . We produce the ground truth maps by selecting 20 seed locations and randomly
assigning them a label z with uniform probability (denoted by the function U(·)), over the N
labels. We then use a Voronoi map generation algorithm, given in Algorithm 5.4. Example maps
are shown in Figure 5.2a.

To generate the hypotheses maps we take the same 20 seed points used to generate a true
map and mislabel the seed locations with probability P (z = i|z = j) = ε/(N − 1) for all i 6= j,

131

Algorithm 5.4 Map Generation Algorithm
function GENERATE-MAP(numSeeds,numPixels,numLabels)

seeds← 〈·〉
map← zeros(numPixels, numPixels)
for i ∈ 1, . . . , numSeeds do

xi ∼ U(numPixels)
yi ∼ U(numPixels)
label ∼ U(numLabels)
seeds← seeds+ 〈(xi, yi, label)〉.

end for
for x ∈ 1, . . . , numPixels do

for y ∈ 1, . . . , numPixels do
map(x, y)← closest(seeds, x, y).label

end for
end for
return map

end function

(a) The True map
for M0.

(b) H1,93.25%
similarity with M0,
ε = 0.1.

(c) H4, 49% simi-
larity with M0, ε =
0.5.

(d) The H7, 7.25%
similarity with M0,
ε = 0.9.

Figure 5.2: Examples of a map and the hypotheses generated that attempt to predict the map.

i, j ∈ 1, . . . , N . Using the corrupted seeds we then generate maps using the Algorithm 5.4.
Figures 5.2b, 5.2c,5.2d shows the effect of maps as ε increases. We tested hypotheses generated
with ε ∈ {0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9} which correspond to H1 to H7 in Table 5.1. Because
the maps are binary, we set N = 2 for these experiments.

5.2.4 Experiments
We compared the performance of our proposed algorithm and of the control algorithm in three
experiments. For each experiment we tested ten different maps, and each map was repeated
for twenty trials. The true maps and the hypothesis maps were generated as described in Sec-
tion 5.2.3. The similarity between the true map and the hypotheses is given in Table 5.1.

132

True Maps H1 H2 H3 H4 H5 H6 H7

M0 0.93 0.82 0.66 0.49 0.26 0.14 0.07
M1 0.91 0.86 0.70 0.53 0.24 0.11 0.02
M2 0.90 0.79 0.73 0.62 0.23 0.19 0.19
M3 0.95 0.86 0.77 0.36 0.25 0.23 0.00
M4 0.98 0.81 0.74 0.67 0.23 0.20 0.00
M5 1.00 0.83 0.69 0.45 0.29 0.18 0.08
M6 0.98 0.91 0.86 0.42 0.20 0.17 0.06
M7 1.00 0.80 0.79 0.55 0.38 0.16 0.05
M8 0.94 0.77 0.76 0.62 0.30 0.10 0.07
M9 0.99 0.92 0.76 0.42 0.20 0.14 0.00

Table 5.1: This table gives the similarity between the true maps Mi and the hypotheses proposed by the
simulated scientists Hj . The similarity score for each map is the fraction of locations in the hypothesis
map which agree with the true map.

When a robot travelled to a point on the map it was informed of the true classification of the
point subject to sensor noise. Since the observations were binary, we considered bit-flip noise
models. Our noise model was symmetric, with P (Error) ∈ {0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}.

We assume in this experiment that the robot is capable of hopping long distances. As such
the cost of traversal is simply limited to the number of hops. The robots were given a budget
of T ∈ {25, 50, 100, 150, 200} hops. Since the mission budget is in number of hops the cost
function is the constant function cost(lt, lt+1) = 1. The budget and cost function can be modified
for different mission settings.

Experiment H∗ Hypotheses
1 - All Good Maps H1 H1 H2 H3

2 - Mixed Quality Maps H1 H1 H4 H7

3 - All Bad Maps H0 H5 H6 H7

Table 5.2: The hypotheses tested in the experiments. Column H∗ gives the best hypothesis for each
experiment. Subscripts correspond to Table 5.1.

In Experiment 1 the hypotheses are all of reasonable quality. This represents a mission with
good precursor data and generated hypotheses. In Experiment 2 the hypotheses are of mixed
quality. In this scenario the precursor data is ambiguous, but there is one good hypothesis. In
Experiment 3 all hypotheses are of poor quality. In this scenario the hypotheses do not describe
the environment accurately. The parameters used are given in Table 5.3.

Table 5.3: The parameter settings tested in the experiments in this chapter.

Parameter Settings
Budget T ∈ {25, 50, 100, 150, 200}
Sensor Noise P (Error) ∈ {0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}

133

Analysis of Results At the end of the experiments we compute mean of P (H∗). Across the
ten different maps we computed the effect size of our intervention. To determine the effect size
we use Cohen’s d, with pooled standard deviation, σpooled.

d =
µ1 − µ0

σpooled
(5.8)

σpooled =

√
σ2
1 + σ2

0

2
(5.9)

where µ and σ are the sample mean and standard deviation of P (H∗) for the mutual information
(0) and falsification sampling (1) algorithms, respectively. Cohen’s d can be divided into four
levels of effect size: d < 0.2 is a negligible effect, 0.2 < d < 0.5 is a small effect, 0.5 < d < 0.8
is a medium effect, and d > 0.8 is a large effect. Negative values of d mean that the control
algorithm (domain mutual information sampling) has a higher belief in H∗. Lipsey et al. (2012)
gives criticisms of using these thresholds for Cohen’s d, but the dearth of effect size reporting in
robotics does not provide alternative thresholds for effect size magnitudes.

5.3 Results
We present the results based on the quality of hypotheses being tested. These experiments are
for “All Good”, “Mixed Quality”, and “All Poor” hypotheses. For each condition there is a pre-
determined “best” hypothesis for the algorithm to select. We report the change in probability
mass assigned to the best hypothesis.

In the tables below we denote whether statistical significance has been achieved with p ≥
95%. We use paired Bayesian significance testing, as per (Bååth, 2014). To report effect size we
use Cohen’s d (Lipsey et al., 2012).

In plots of Cohen’s d (Fig. 5.3 to Fig. 5.5) regions of white indicate that there was no statistical
significance between the performance of the algorithm. Where the maps of Cohen’s d are blue,
it means that the mutual information sampling algorithm is better than the falsification sampling.
Where the maps of Cohen’s d are red, the falsification algorithm has greater belief in the best
hypothesis.

5.3.1 Experiment 1 Results - All Good Hypotheses
In this experiment the correct hypothesis to select, H∗, is H1. As we can see in Fig. 5.3, for
all budget and error rates, the falsification algorithm is as good as or better than the mutual
information sampling algorithm, although the change in performance is quite small.

Curiously, while the greatest difference in performance occurs for sampling budgets of 25,
and an error rate of approximately 0.05, the greatest effect size occurs for larger budgets and
moderate noise levels (P (error) ∈ [0.1, 0.3]). What this means is that the variability in perfor-
mance is reduced, relative to the change in performance.

134

25
50

100

150

200

0.1

0.2

0.3

0.4

0.5

0

1

2

3

·10−3

Budget P (Error)

PFalsification(H
∗)− PMI(H

∗), N=20

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

25 50 100 150 200
0.01

0.05

0.1

0.2

0.3

0.4

0.5

Budget

P
(E
rr
or
)

Cohen’s d, N=20

−0.80

−0.60

−0.40

−0.20

0.00

0.20

0.40

0.60

0.80

Figure 5.3: All Good Hypotheses - The difference in belief in the best hypothesis, H∗, and the
effect size of that difference. Underlying data is found in Section E.1.1 (performance data) and
Section E.2.1 (effect size data).

135

In this condition we can say with confidence that the falsification algorithm has better perfor-
mance. However, we should observe that the magnitude of difference performance is relatively
small.

The relative performance and the size of the effect of using the falsification algorithm can
be found in Section E.2.1. The belief distributions learned by the two algorithms can be seen
in Section E.1.1. Note that once the error rate exceeds 20%, both algorithms begin to lose the
ability to identify the best hypothesis.

5.3.2 Experiment 2 Results - Mixed Quality Hypotheses
In this experiment the correct hypothesis to select, H∗, is H1. As we can see in Fig. 5.4, the
mutual information algorithm produces greater belief in the best hypothesis, especially for small
sample sizes.

In this case only when the budget is large and the noise is moderate does the falsification
algorithm perform better than the mutual information sampling algorithm.

The relative performance and the size of the effect of using the falsification algorithm can
be found in Section E.2.2. The belief distributions learned by the two algorithms can be seen
in Section E.1.2. Note that once the error rate exceeds 40%, both algorithms begin to lose the
ability to identify the best hypothesis. This is a higher rate than when all hypotheses were of high
quality.

136

25
50

100

150

200

0.1

0.2

0.3

0.4

0.5

−1.5

−1

−0.5

0

·10−2

Budget P (Error)

PFalsification(H
∗)− PMI(H

∗), N=20

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

25 50 100 150 200
0.01

0.05

0.1

0.2

0.3

0.4

0.5

Budget

P
(E
rr
or
)

Cohen’s d, N=20

−0.80

−0.60

−0.40

−0.20

0.00

0.20

0.40

0.60

0.80

Figure 5.4: Mixed Quality Hypotheses - In this case the standard mutual information sampling
algorithm outperforms the falsification algorithm for a wide range of parameter settings. Data
supporting these plots are found in Section E.1.2 (performance data) and Section E.2.2 (effect
size data).

137

5.3.3 Experiment 3 Results - All Bad Hypotheses
In this experiment the correct hypothesis to select, H∗, is H0 - the possibility that none of the
proposed hypotheses are correct. In Fig. 5.5, the falsification algorithm generally performs better
than the mutual information algorithm, except when the sampling budget is small (< 50) and the
noise level is moderate to large, (P (Error) ∈ [0.2, 0.4]).

The relative performance and the size of the effect of using the falsification algorithm can be
found in Section E.2.3. Where the falsification algorithm has better performance, it has a very
large effect size, d ≥ 1.0.

The belief distributions learned by the two algorithms can be seen in Section E.1.3. There
are two modes of degradation. First, once the error rate in the sensor reaches about 20%, the
algorithms both select the best hypothesis of all three poor hypotheses, instead of selecting the
hypothesis that none of the proposed hypotheses are correct. Then, once the error rate exceeds
40%, both algorithms loose the ability to distinguish between any of the proposed hypotheses.

138

25
50

100

150

200

0.1

0.2

0.3

0.4

0.5

0

5 · 10−2

0.1

Budget P (Error)

PFalsification(H
∗)− PMI(H

∗), N=20

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

25 50 100 150 200
0.01

0.05

0.1

0.2

0.3

0.4

0.5

Budget

P
(E
rr
or
)

Cohen’s d, N=20

−0.80

−0.60

−0.40

−0.20

0.00

0.20

0.40

0.60

0.80

Figure 5.5: All Poor Hypotheses - The falsification algorithm performs better than the standard
mutual information algorithm, with the exception of small budget sizes and moderate to high
error rates. The data supporting these plots can be found in Section E.1.3 (performance data)
and Section E.2.3 (effect size data).

139

5.4 Deployment in Chile
To demonstrate the proposed algorithm, we deployed it on the KRex2 robot in Chile (Figure 5.6)
as part of the 2017 field season of NASA Ames’ ARADS project. Planetary scientists who were
part of the project were interested in mapping subsurface halite deposits. The scientists consid-
ered a location around a region they called “the pit”, which was located, in UTM coordinates, at
Zone 19J 396528.98 E 7334167.93 S.

Figure 5.6: The IRG robot KRex2 with a mounted drill and sample collection arm exploring the
Atacama desert in Chile. The drilling process could take up to four hours to drill a 2m deep
hole, including time to operate sample collection arm.

The scientists were interested in two competing hypotheses about the distribution of subsur-
face halite. The first hypothesis (H1) was that the halite was a deposit resulting from a dried body
of water of approximately 30m in diameter, centred at the pit. The competing hypothesis was
that there is a uniform distribution of halite in and around the pit (H2). We maintained both these
hypotheses along with the belief that neither hypothesis was correct. The domain of operation
was restricted to a 30m square space centred on the pit. The two hypotheses are illustrated in
Fig. 5.7.

The subsurface halite was detected using a rotary-percussive drill developed by Honeybee,
Inc. (Bergman et al., 2016). The halite was detected by having a human operator observe the
current draw of the primary motor in the drill. When current draw had crossed a threshold the
human observer determined that halite had been encountered. Obviously this is a less than ideal
sensor and not rigorously calibrated. However, laboratory analysis later determined that halite
was recovered from the holes where the current draw indicated that halite was discovered.

140

(a) H1 - Halite distributed under a dried
pond.

(b) H2 - Uniform halite distribution

Figure 5.7: The two hypotheses the ARADS planetary scientists were interested in investigat-
ing. The red line represents the restricted domain of operation. The green hatching pattern
represents where the hypotheses would predict halite would be present.

It took approximately one hour to reach a depth of 1m. Since the halite was generally known
to be at a depth of 1.5m in the area holes were drilled to a depth of 2m. This took approximately
two hours to drill to this depth, with additional time to extract the drill from the hole after a
maximum depth was reached. Five drilling sites were identified by the algorithm and were then
drilled before the allotted time for the exercise was exhausted. Those locations and the findings
from the drilling actions are given in Table 5.4.

We discretized the operations area into a 1m resolution grid. At each time step the algorithm
considers which point in the grid would be most informative about the two hypotheses. When a
grid point is selected the robot travels there and commences drilling. The presence of halite was
determined by the human observer, and this observation was fed into the algorithm. The holes
were drilled in the order of the hole numbers given in Table 5.4.

Table 5.4: The resultant observations from drilling operations in the Atacama desert. Holes were selected
in the order given by the column titled “Hole”.

Hole Commanded Hole Coordinates (UTM) In Circle? Observation
1 Zone 19J 396515 E 7334151 N No Halite present
2 Zone 19J 396548 E 7334182 N No Halite not present
3 Zone 19J 396514 E 7334182 N No Halite not present
4 Zone 19J 396543 E 7334153 N No Halite not present
5 Zone 19J 396531 E 7334166 N Yes Halite present

In Fig. 5.8 we can see the belief in the different hypotheses change as a function of the holes

141

drilled. As the number of holes increases, the belief inH1 is increased, supported by the evidence
collected from the drill samples. The locations selected by the algorithm focused on where the
competing hypotheses disagreed and focused its initial samples there. The final sampling point
was located at the centre point of the domain. Presumably the component of the reward function
that attempts to maximize the diversity of the algorithm forced the sample point to be the location
furthest from the other samples while still staying within the domain of operation.

On the whole the behaviour of the algorithm in the field was consistent with the performance
demonstrated in the preceding experiments. The amount of time it took to drill a hole and the
restricted operation time for this portion of the field season drastically limited the number of
holes that could be drilled. However, even though the number of samples was drastically limited
compared to the simulation experiments the algorithm still behaved accordingly.

0 1 2 3 4 5

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Holes Drilled

B
el

ie
f

Evolution in Belief in Competing Hypotheses as Data are Acquired from Drill Holes

P (H0)
P (H1)
P (H2)

Figure 5.8: This plot shows the belief in the different hypotheses changing over time. Ultimately
the non-uniform hypothesis was found to be most credible. This algorithm sent the robot first
to points of disagreement between the two hypotheses.

5.5 Discussion
In this chapter we considered a symmetric noise model, with a maximum probability of an error
of 0.5. Asymmetric noise models would also be worth investigating, but remain for future work.

142

Noisy observations warrant taking multiple readings at sites to reduce the effect of sensor
noise. A principled strategy for trading off the reduction in uncertainty and the mission costs
would be an important addition to a deployed system. Fig. 5.9 shows how many samples would
have to be taken to reduce the sensor noise below 10%, assuming sensor errors are drawn inde-
pendently. While multiple observations can reduce the noise level, they also reduce the overall
mission budget.

0.1 0.2 0.3 0.4

0

2

4

6

8

10

12

P (Error)

N
um

be
ro

fS
am

pl
es

Number of Samples Required to Reduce P (Error) ≤ 0.1.

Figure 5.9: If one has a sensor that has a binary output, with an error specified along the x-axis,
the y-axis gives the number of samples necessary to reduce P (Error) ≤ 0.1. As P (Error) →
0.5, the number of samples required to reduce the error level below 0.1 tends towards infinity.

As we have seen from the belief distributions learned in Appendix E, sensor error rates above
20% reduce the ability of the algorithms to successfully identify the best of the set of hypotheses.
While the above graph illustrates how the effect of sensor noise can be reduced with multiple ob-
servations, it does assume that those observations are independently and identically distributed.

However, if the noise model is highly dependent on what is being observed, as say an image
or spectral classifier might be, then it may prove difficult to ameliorate the effect of noise. Prior
work, discussed in Section 5.1, assumes that the oracle providing labels for observations are
noise-free, something that will almost certainly not be true during field operations.

Another consideration is that our robots had sampling budgets of at least 25 samples. In
many planetary missions, it is not unusual to have a small number of samples. The Phoenix
Mars Lander, for example, can only process four samples with the Wet Chemistry Laboratory
instrument (Arvidson et al., 2009). Requiring multiple observations can drastically deplete small

143

sampling budgets, making it all the more important to ensure that sensor noise is small.
If one were attempting to falsify hypotheses with only a small number of samples we might

propose a different strategy from the one presented above. In that case, it might be more valuable
to focus exclusively on the points of disagreement and discount the spatial information gain term.
Focusing on the disagreements in the hypotheses is predicated on the assumption that we would
not send robots on missions without reasonable hypotheses.

We do not consider hypotheses that make probabilistic predictions. This decision is consistent
with the author’s experience with planetary scientists, but it is unsatisfying from a Bayesian
standpoint. Incorporating such hypotheses is not challenging given the framework presented in
this chapter and it should be considered in future work.

Similarly, the range of the predictions made by the hypotheses was quite narrow, it being
the set {0, 1}. Hypotheses which make a broader range of predictions may yield more profound
differentiation in relative belief.

The exhaustive evaluation of the domain of the hypotheses when attempting to identify the
best sampling location does not scale well with the size of the domain. Scaling would also be a
problem if the extent of the domain remains the same, but the level of discretization is increased.
A sampling strategy such as a probabilistic roadmap, could mitigate the increased computational
demand at the expense of some accuracy.

There are at least three obvious next steps that should be taken to continue the exploration
of falsification-based sampling. First, do falsification planning that is more aligned to ground
vehicle navigation. Second, take techniques from computational learning theory to control when
hypotheses are rejected and new ones are sought. Third, integrate hypothesis generation algo-
rithms.

The greedy algorithm used to select the waypoints is not necessarily ideal. It assumes that the
vehicle has random access to any point in the hypotheses’ domain. This assumption holds in the
narrow context of the hypothesized mission discussed in the chapter, and indeed for experiment
design where moving between experiments doesn’t have a traverse cost, such as in drug design.
But in the case of ground vehicles this assumption does not hold.

Paths for ground vehicles that ignore all the intervening locations between two goals are
missing out on potentially valuable sampling opportunities. However, estimating the value of
different trajectories can become computationally expensive. For that reason it would be natural
to use an approximate planner like the one used by Arora et al. (2018), and faster information gain
measures like the Cauchy-Schwartz quadratic mutual information used by Tabib et al. (2016).

The second improvement would be to use techniques from computational learning theory to
evaluate the performance of the different hypotheses. Specifically, using concepts like Proba-
bly Approximately Correct bounds to estimate whether or not a hypotheses can be found to be
accurate within a certain error threshold given the number of samples that are available.

What would make the PAC bounds even more useful is to develop an automatic means to
estimate the number of samples required to estimate the effectiveness of a hypothesis given its
symbolic representation and the anticipated noise models of the sensors. Much like automatic
differentiation has been a game changer for artificial neural networks, such an automatic learning
bound estimate would be instrumental in automated experiment design.

There is a problem with using PAC bounds, however. They rely on arbitrarily set thresholds
for how accurate a hypothesis should be, and with what level of confidence we are prepared

144

to accept that accuracy. These thresholds must come from somewhere and could change how
aggressively an algorithm would search the space of possible hypotheses. At this juncture the
author can not think of an objective means to control these parameters.

Finally, the coupling of the falsification sampling algorithm with hypothesis generation al-
gorithms is a vital part of liberating the robot from human oversight. The main objective of
including the H0 hypothesis in the algorithm was to identify when new hypotheses are needed.
Using this belief state we could trigger the search for better hypotheses given the data collected
so far, and add them to the set to be evaluated.

Having a robot simultaneously generate and falsify hypotheses while exploring the world
is going to require substantially larger sampling budgets than are typically deployed in space
missions. It is the necessary step to close the cycle of science in a deployed, fielded robot, a
larger objective than just flight missions.

The approach developed in this chapter reduces the need to have a reliable communications
link between the robot and remote human scientists. Since the algorithm is able to identify when
the presented hypotheses are not credible, combining this algorithm with some of the hypotheses
generation algorithms discussed in Chapter 2 would be a good step towards reducing robots’
dependence on humans. A robot with the capacity to generate and evaluate hypotheses, and de-
termine when to ask for new hypotheses, could conceivably conduct long-term scientific explo-
ration without direct human supervision. Simultaneous hypothesis generation and falsification
represents an exciting new direction for science autonomy research.

5.6 Summary
In this chapter we set out to develop an algorithm that sampled the domain of a set of hypotheses
in order to determine which hypothesis was the most accurate. We achieved this by using mutual
information sampling in the belief space over the hypotheses, in addition to mutual information
sampling in the domain of the hypotheses. We also added a place-holder component in our
algorithm which was able to identify when none of the hypotheses were of good quality.

We found that the falsification algorithm was better able to identify when none of the hy-
potheses were valuable, with statistical significance, than the standard mutual information sam-
pling algorithm. Likewise, when all of the hypotheses were good, the falsification algorithm had
statistically significantly more belief in the best hypothesis, although the magnitude of the in-
crease was small. However, when the quality of the hypotheses was mixed, the standard mutual
information sampling algorithm generally had superior performance.

There are three things to learn from these experiments. First, the addition of H0 – the belief
that none of the proposed hypotheses are correct – let the algorithms identify when none of the
hypotheses were correct. Further, it did not distract the algorithms when hypotheses of mixed
quality were present. We can conclude that H0 provides value when attempting to explore the
relative value of candidate hypotheses. Regardless of the value of the falsification relative to
the mutual information sampling approaches, the H0 term is a valuable addition to automated
hypothesis testing.

Second, we learned that when all the hypotheses are of poor quality the falsification algo-
rithm more readily learns that H0 is the correct hypothesis to believe. While the more standard

145

approach to mutual information sampling does outperform the falsification algorithm when the
quality of the hypotheses are mixed, both algorithms are capable of successfully identifying the
correct hypotheses.

Thirdly, we learned that once the probability of getting an incorrect value from the sensor ex-
ceeds 20%, both algorithms begin to lose the ability to distinguish the quality of the hypotheses.
At 50% error rate, the algorithms are incapable of distinguishing any of the hypotheses.

We also see that with sufficient sampling budget the performance of the algorithms converge.
This makes sense, as the number of samples begins to cover the domain of the hypotheses, the
accumulated evidence must support the same conclusion in both cases. However, if one can
afford to exhaustively sample the domain of the hypotheses, then the problem addressed by these
kinds of active learning vanishes.

Because we use a sampling approach to evaluating different parts of the hypotheses’ do-
main, we do not need to understand the structure of the hypotheses in order to select informative
sampling points. Since the functional form of the hypotheses is not necessary to evaluate their
accuracy the presented algorithm can, and does, handle hypotheses which are more complex than
simple linear classifiers.

Given that a long-term objective for science autonomy is to have robots conducting science
without human supervision, ability to identify that the robot does not have a correct hypothesis
is vital. Robots need to be able to identify that a new hypothesis is needed in order to decide
when to ask for, or generate, a new one. The H0 term can be used to quantify whether a new
hypothesis is needed or not.

The work presented in this chapter can be a valuable tool for remote science missions. First,
as a planner, it can be used to identify targets of high science value. Giving robots the freedom to
plan actions that test hypotheses with reduced human interaction could increase mission science
throughput. This also lets scientists communicate to robots in the language of hypothesis and
mission science objectives, instead of in individual commands or actions.

Second, it can be used to reduce the need to develop a consensus on one hypothesis to be
tested prior to a mission. Instead, a small pool of candidate hypotheses can be identified, and
investigative actions can be planned, or suggested to a mission science team, that would resolve
the relative accuracy of the proposed hypotheses. In this way the algorithm could act as an
assistive tool in mission planning and resolve conflicts in the prioritization of sensing actions.

Thirdly, in the case of fully autonomous missions, where communications with a remote
science team is not possible, the robot can use this algorithm to operate in a way that respects the
priorities of remote science teams. Identifying that none of the proposed hypotheses are accurate
lets robots determine when they should request new hypotheses from Earth, or perhaps more
excitingly, generate their own.

146

Chapter 6

Conclusion

In this thesis we set out to improve three aspects of autonomous exploration by accounting for
operational and environmental context. Each of the three algorithms – foraging, prospecting,
and falsification sampling – represent components of a robot conducting science autonomously.
We have shown, with statistical significance and at least moderate effect size, in all cases that
improvements in performance were achieved.

We were able to improve the performance of foraging for information by recognizing that
exploring agents do not have random access to all objects they would like to sample. We further
demonstrated that distributions learned by foraging can be improved by detecting changes in the
distributions underlying classes of objects being sampled. We improve the performance of the
prospecting algorithm by building confidence in detected changes in the scalar field observed by
the proxy sensor. Finally, we determined that falsification based sampling can more effectively
identify which of a set of hypotheses most credibly explains the data. Below we lay out the
specific contributions of this work, discuss limitations of the work, and then review possible
avenues of future work.

6.1 Contributions
Our approach touched on three different aspects of autonomous field science. We demonstrated
a causal link between the proposed algorithms and improvements over the credible baseline
algorithms in all three approaches. The first two algorithms deal with situations where the robot
is operating without global knowledge, the third algorithm plans experiments to determine which
of a set of hypotheses are the most credible.

Foraging We considered opportunistic science when sampling discrete objects which are ran-
domly distributed about an environment. Previous approaches did not consider the distribution
governing which classes of objects an exploring robot would encounter. We have shown that
for a variety of sampling and exploration costs our algorithm produces a statistically significant
reduction in error in the estimation of the underlying distribution.

We also found that, given sufficient sampling budget, there were different settings of sampling
and exploration costs which resulted in the foraging, greedy, and uniform sampling having the

147

best performance. When the exploration and search costs are low, the foraging algorithm is the
best algorithm with statistical significance. To the best of the author’s knowledge this is the first
application of foraging algorithms to opportunistic sampling.

Further, we have identified that there are scenarios where the greedy and uniform sampling
algorithms can have a statistically significant improvement over the other tested algorithms. By
knowing the performance of the algorithms given exploration costs, sampling costs, and an op-
erational budget, a robot scientist could modify its behaviour to produce better results.

Conversely, if one knows the exploration costs, then one could design sampling operations to
control the costs of sampling, and keep robot performance within a desired regime. However, a
formal understanding of these relationships remains to be determined.

We have also demonstrated that, with enough observations, a robot sampling discrete objects
can successfully detect changes in the underlying distribution. This algorithm permits the robot
to monitor changes while learning about the different classes of objects. This permits the robot
to reset its probability distribution estimates and to segment a map based on their observations,
which may demarcate changes in the environment. Regardless of the opportunistic sampling
algorithm that is used by a robot, change detection would make a useful addition to any oppor-
tunistic sampling algorithm.

Prospecting The shortcoming that we identified in prospecting algorithms as they are practiced
was the reliance on hard thresholds. In our work we demonstrated that we can estimate the
confidence that the distribution underlying the readings has changed. The state of the art in this
area is to deploy more expensive actions when readings have crossed a threshold. Our approach
recognizes what could be sub-threshold behaviour, and need not be tuned to every environment.

When applied to the task of localizing maxima in a scalar field, and compared to the threshold-
based algorithm we were able to better localize the maxima in the field with statistical signifi-
cance and large effect size. While we did not capture as many maxima in the field as a surprise-
based algorithm, change-detection algorithm made more effective use of the AIMs we deployed,
with statistical significance and large effect size.

Our algorithm did not need to be adjusted for different deployments, unlike threshold based
algorithms. We demonstrate on real data that our algorithm was able to detect sub-threshold
changes in the distribution and act accordingly. This work represents a new, simple, algorithm
that is agnostic of the trajectory the robot is following.

Falsification The third contribution of this thesis is an action planner that aims to determine
which of a fixed set of hypotheses is most accurate. The algorithm selects actions that inform
not only the belief distribution over the hypotheses, but also the performance of the hypothe-
ses themselves. We compared the algorithm against mutual information sampling and found a
statistically significant improvement for certain sensor error rates and sampling budgets.

Our algorithm does not need to understand the functional form of the hypotheses being inves-
tigated. It does require that the hypotheses can be evaluated at arbitrary points in their domain.
Because we used a sampling approach to evaluating exploratory actions the robot only needs to
know the predictions of the hypotheses and not their structure or functional form.

We found that the proposed algorithm was better able to identify that none of the hypotheses

148

were correct when all the hypotheses had less than 50% accuracy. This implies that the algorithm
is better able to determine that a new hypothesis is needed when none of the proposed hypotheses
are suitable.

We demonstrated this algorithm on the KRex2 robot in the Atacama Desert, and found the be-
haviour consistent with the simulation results. The samples collected by the algorithm supported
the hypothesis favoured by the planetary scientists in the field.

This work demonstrates that robotic scientific explorers can plan actions that inform the belief
in different hypotheses, and do so without reliance on deep knowledge of the hypotheses them-
selves. This, in turn, sets a new approach to science autonomy which is not focused exclusively
on collecting data but on letting robots explore on behalf of scientists, collecting data relevant
to the scientists’ hypotheses. Further, the collected data could be used to support hypothesis
generation techniques like those described in Section 2.4.

Collecting data in the context of hypotheses returns to the notion of science as a cyclic pro-
cess. We have demonstrated how robots can use multiple competing hypotheses to determine
what new experiments ought to be conducted, but what remains is the question of when and how
to generate new hypotheses. This work is the first to direct robot actions to falsify multiple com-
peting hypotheses. Selecting actions that simultaneously falsify multiple hypotheses and being
able to identify when none of the hypotheses are suitable is a necessary component for a robot
that is simultaneously generating and testing hypotheses.

6.2 Limitations
As stated previously, empirical work can naturally only speak to the circumstances under which
the data were collected. While our experiments demonstrate statistically significant improve-
ments in performance for the proposed algorithm, hypotheses about performance outside of the
stated conditions must be rigorously supported with experimentation.

Foraging The foraging algorithm makes the assumption that the next encountered object is
drawn from a distribution independent of previously encountered objects. Modelling the next
object to arrive with a Markov chain would further improve the fidelity of the algorithm to field
operations, and should gracefully handle when the classes of encountered objects are indepen-
dently and identically distributed.

The foraging system as described in this document does not consider the mission objectives
beyond the cost for sampling and exploring, and even then it employs a greedy approach. It would
be beneficial to integrate the foraging algorithm with a higher-level scheduler like CASPER
(Knight et al., 2001), in order to prioritize opportunistic sampling in the context of mission
objectives.

Prospecting The prospecting algorithm that we presented in this document intentionally ig-
nored the fact that the one dimensional signal the algorithm was monitoring was embedded in a
two dimensional environment. There are almost certainly advantages to be gained by recogniz-
ing that the robot is operating in a more complex environment. Like foraging, requests to deploy

149

an AIM could be scheduled by a higher-level system that could account for the spacing between
AIMs, and the degree of overlap from previous AIM deployments.

Falsification Our approach to falsification only considered a small number of hypotheses, test-
ing with a larger pool of hypotheses is warranted. While adding more hypotheses should not
reduce the ability to identify which of the hypotheses are most likely to be correct, it could have
deleterious effects on the ability to recognize that none of the hypotheses are accurate.

Further, this algorithm does not update hypotheses in response to the data that have been
collected. Being able to revise hypotheses in the light of new evidence would increase the ability
of the robot to learn the correct hypothesis. However, for design purposes it might be best to keep
the knowledge of how to update the hypotheses separate from the action planning algorithm.

Samples were selected such that they maximized the sum of the information gained in the
distribution over the samples collected from the hypotheses’ domain and the information gained
in the belief distribution over the hypotheses. This representation makes naive assumptions about
the relationship between the hypotheses. Further, it is possible that some samples may appear
valuable by having moderate information gain in both components of the sum, but do not yield
considerable information in either the domain of the hypotheses or the belief in the hypotheses
alone. It is possible that other weightings of the components are required, or that the value of
samples should be derived from a more comprehensive formalism.

There is lacking a measure of salience of the results. In the algorithm as it is designed no one
observation can disqualify a hypothesis. In fact, if a considerable amount of favourable data has
been collected, it could prove challenging to unseat a hypothesis. Partially this is a function of
the codomain of the hypotheses being relatively small, but the algorithm should be modified to
account for this.

One of the stated objectives of the algorithm was to identify when a new hypothesis is needed,
by maintaining a belief in a hypothetical hypothesis, H0. It might be that the variance across the
belief in the hypotheses is a better indicator that a new hypothesis is needed. Regardless, it
remains a problem to determine when to trigger a search for a new hypothesis and when to
sample amongst the existing hypotheses.

6.3 Future Work
While the work in this thesis advances science autonomy algorithms, there still remains work to
do. To that end we identify a number of extensions for the algorithms presented in this document,
and to science autonomy in general, that should be undertaken to improve the state of the art.

In the presented work we used a measure of information gain based on Shannon’s defini-
tion of entropy. As discussed in Chapter 2, there are advantages to using the Cauchy-Schwartz
Quadratic Mutual Information (Principe, 2010) in information gathering algorithms, chiefly the
increased speed of computation. The efficiency of the algorithms presented in this thesis could
be improved by using the Cauchy-Schwartz Quadratic Mutual Information criterion.

Foraging The algorithm should be modified to recognize that the arrival distribution of the
different classes of objects is not memoryless. This would make the algorithm more amenable

150

to operations in environments where the next sampling opportunity is highly dependent on the
currently available option.

The authors would like to investigate different cost/benefit analyses for the exploration vs
sampling decision. As noted previously, using the ratio of reward to cost is potentially numeri-
cally unstable, therefore different strategies should be investigated.

The algorithm tested in this document only considered objects where the underlying distri-
bution was Bernoulli. Other distributions should be tested in order to be more reflective of the
variety of observations – real valued, vector valued – that can be collected by robots in the field.

The algorithm should be integrated with a mission scheduler and tested on a real robot. Dur-
ing deployment it would also be worthwhile to integrate the algorithm with some form of classi-
fier that identifies targets of interest in the environment. Consequently the algorithm will need to
be updated to account for uncertainty in the classification of objects.

Prospecting The prospecting algorithm should be extended with a planner that makes more
rigorous decisions about resource trade-offs and mission risks incurred in more involved sam-
pling processes like drilling. The addition of confidence in change detection could let robots
apply traditional decision-making rules without human supervision.

Multi-hypotheses testing would let a robot scientist deal with a broader range of scenarios
while exploring. Multi-hypothesis testing would also let the algorithm consider more than one
number of change points in the underlying distribution at any given time.

The AIMs that were deployed by the prospecting algorithm were simple Archimedean spirals.
It would be useful to deploy AIMs that were more informed by data previously collected. This
would be an excellent application of an algorithm like that deployed by Wilson and Williams
(2017). A more sophisticated plan for AIM deployment could account for higher dimensional
environment that the presented change detection algorithm ignored.

Falsification The falsification planning algorithm needs to incorporate uncertainty in the hy-
potheses’ predictions. However, this is a straightforward application of Bayes’ chain rule. But
perhaps the most important question that needs to be addressed as the next step is when is it nec-
essary to create a new hypothesis. If we use the quantity P (H0) to determine if a new hypothesis
is required it is possible that early observations could cause an excessive amount of time spent in
generating new hypotheses before a sufficiently informative dataset is collected. As discussed in
Chapter 5, the automatic determination of the number of samples required, under a PAC learning
framework, to be confident in the predictions of a hypothesis would be immensely valuable. This
would be an important step forward in simultaneous exploration and hypothesis generation.

Science Autonomy, in general The perception algorithms that are used in science autonomy
focus around fairly basic classifiers, and most of them are pre-trained before they are deployed.
Having a perception system that learns in situ could help distinguish a wider range of scientifi-
cally interesting phenomena. DEMUD, developed by Wagstaff et al. (2013), is an important first
step in this approach. Given the progress being made in artificial neural networks, they would be
a natural avenue to explore. However, the training of neural networks relies on large volumes of

151

training data and powerful computers. The computational demands are antithetical to the com-
puting resources available on flight missions. On the one hand, one could find a middle ground
between basic, pre-trained classifiers and full deep learning system, such as extreme learning
machines (Huang et al., 2011). On the other hand, one could explore alternative computing
architectures.

Non-traditional computer architectures, as discussed in (Younger et al., 2014; Traversa et al.,
2015), are an area that should be investigated for building robot scientists. Traversa et al. (2015)
claim their computing hardware is able to solve non-polynomial problems in polynomial time.
Given that solving information gathering problems can be computationally intensive, it is worth
evaluating whether these new kinds of computers could improve the performance of robot scien-
tists and what, if any, effect their use would have on scientific decision-making processes.

Another interesting advancement is the development of language for individual robots explor-
ing both here on Earth and in the universe. This language must be grounded in sensory apparatus
and also be temporally aware. A lot of information is compressed in language, and humans use
metaphors and analogies to do reasoning. Imbuing a robot scientist with some of that ability
could help speed up hypothesis formation. This is again something that can be addressed with
non-traditional computing (Kanerva et al., 2000).

152

Appendices

153

Appendix A

When is autonomy appropriate?

The work in this document is to improve the autonomy of on-board vehicles, by increasing the
adaptivity of the on-board autonomy. Autonomy can take on different roles in a mission, and
include assistive tools to help humans make better decisions, faster.

How autonomy should be employed in a mission depends on how the algorithms can help
achieve mission objectives. This section covers some of the considerations that go into making
the decision about when and where autonomy should be used in a mission.

A.1 Factors In Selecting Autonomy Algorithms
When evaluating different autonomous systems we should consider a number of factors in de-
signing the system. Factors that affect the ability of a system to complete tasks in a timely fashion
include the mean time between interventions from remote operators, the mean time for those op-
erators to complete interventions, and how tolerant the system is of neglect by remote operators.
These factors are well analyzed by Shah et al. (2008).

The performance of the algorithms in the system can also be analyzed in terms of the time
to complete tasks and the accuracy in completing those tasks. The algorithms’ performance
should also be assessed with respect to the mission’s tolerance for commission of errors and the
omission of desired actions.

There are also factors extrinsic to the algorithms being considered. These are constraints
placed on the mission independent of the algorithms themselves.

The operations tempo of a mission is affected by, among other things, the time to complete
the mission, how long the robot can survive in the planned environmental conditions, and the
dynamics of the phenomena being observed. The mission tempo reflects the time pressures on
the mission.

Operational tempo is not necessarily fixed over the lifetime of a mission. If the primary
mission objectives are accomplished, and there is still time remaining for operations, then the
tempo can change from high to low. Likewise, unanticipated events that shorten the mission
lifetime can change the operational tempo from low to high.

The system completing the mission, including autonomous and human components, must
keep pace with the mission tempo. The decision-making loop of the planned system must execute

155

fast enough to keep up with the operational tempo, regardless of what autonomous components
are employed.

Human operators in the loop are subject to workload stresses, which can degrade their per-
formance. Autonomy can alleviate the workload placed on human decision makers. Assistive
tools in the mission operations centre is a valuable use of autonomy.

The communications throughput reflects the availability, reliability, and capacity of the com-
munications link between the robot and the remote science team. The communications link
constrains how quickly decisions can be made and, depending on where decisions are being
made (on-board or remotely), can constrain the performance of decision making loops.

A major cost in the development of flight missions is the burden of proving that a given sys-
tem performs the desired tasks (validation) and that they are performed correctly (verification).
The cost of validation and verification for a system increases with its algorithmic complexity.

The stringency of the validation and verification process is a function of the mission risk
tolerance, and mission budget. Successful validation and verification of an autonomous sys-
tem depends on the ability to trust and predict the behaviour of complex systems in unknown
environments.

Highly risk tolerant missions, such as CubeSats (Heidt et al., 2000), can afford much more
complex or experimental, and hence risky, autonomous systems, than could a mission where
human life could be endangered. Building a level of trust appropriate to mission risk posture
involves formal verification of the system, empirical testing of behaviour, and building a legacy
of performance and, in the case of space missions, flight heritage.

However, time and cost constraints can limit the thoroughness of the validation and verifica-
tion process. In these cases risks which could be controlled through autonomy may have to be
controlled through operational procedures.

A.2 One Analysis of the Design Space
Choosing what degree of autonomy to use is a decision with a continuum of factors to consider
and design decisions to make – how much autonomy, how complex. Modelling this decision
process is outside the scope of this thesis. However, in Table A.1 we present one possible view
into how this decision might be made, considering only two factors in the mission. We consider
the communications throughput and the mission operations tempo.

156

Communications Throughput
High Low

O
pe

ra
tio

ns
Te

m
po

L
ow Simple Autonomy

Human Adaptivity
On-board, Complex

Autonomy and Adaptivity

H
ig

h
Distributed Autonomy

On-board, Simple
Autonomy and Adaptivity

Table A.1: This table gives one possible decomposition of an autonomous mission, discretizing commu-
nications throughput and operations tempo into “high” and “low”. For each combination we suggest one
possible approach to designing an autonomous system.

Operations tempo and communication throughput is discretized into “high” and “low” values,
and we only consider the space defined by these two factors. Recognizing that these distinctions
are qualitative and relative, we discuss different kinds of autonomy that may be appropriate for
these scenarios.

Communications links from Earth to the Moon of Earth and to Mars have very high commu-
nications throughput compared to a surface mission to Europa or Enceladus. Surface missions
to Europa would have higher communications throughput again than a mission to explore the
subsurface ocean of said moon.

The early Vega missions (Surkov et al., 1986) had a very high time pressure, due to the nature
of the Venusian atmosphere. They could be said to have a high operations tempo, due to the short
mission duration. Likewise, if the phenomena being observed is ephemeral, such as water plumes
erupting on Europa, the pressure to make decisions quickly, and execute well-timed actions is
much higher.

In contrast, the Mars rovers have the benefit of a relatively benign environment, as well as a
superbly engineered robotic platform, well exceeding the original nine-month planned mission
lifetime. Consequently the tempo of these missions is less demanding. The ground vehicle
missions to Mars could be said to have a low tempo.

High Communications Throughput, Low Operations Tempo: When the communications
throughput is high it affords remote science teams the opportunity to be actively involved in
the decision-making process. In this situation we would recommend using simple on-board
autonomy, with the remote science team providing the adaptivity of the overall system.

When the operations tempo is low, the need to make decisions quickly is low, so humans
can afford to take time to evaluate decisions and modify parameters controlling algorithms on-
board the vehicle. The need for sophisticated autonomy is reduced, as humans can provide that
behaviour.

A low operations tempo gives the opportunity to field simple algorithms whose behaviour
can be monitored and modified by human operators. The simplicity of the on-board algorithms
reduces the burden of validation and verification on the mission while still producing a responsive

157

system capable of conducting valuable field science.
This mode of operations is used to great success with the Mars rovers (Sojourner, Spirit,

Opportunity, and Curiosity). Communications are relatively reliable and the environmental con-
ditions do not place a strong time-pressure on vehicle operations. By using a combination of
simple on-board autonomy and extensive human adaptivity, enabled by the reliable communica-
tions link, the Mars rovers and remote science team as a system produce autonomous behaviour
that is responsive to the environment and is capable of learning from it.

High Communications Throughput, High Operations Tempo: When the tempo of the
mission is increased, but communications throughput is still high, the role of autonomy changes.
Where in the previous setting the remote science team can afford to make considered decisions,
a high tempo mission adds pressure to make decisions quickly on the remote science team. Here
we would recommend a distributed autonomy system.

In a distributed autonomy system some of the software components are running on-board
the remote vehicle while other components are running on Earth, where computing resources are
greater. The components of a distributed autonomy system which are running on Earth can either
be directly in the decision-making loop or act as a decision-making tool for humans.

Increasing workload pressures on human decision makers reduces the quality of the decisions
made. As such, there is a need to produce tools which can help a remote science team preserve the
quality of their decisions, and ameliorate the effects of workload stress and imperfect situational
awareness.

An example of a mission with high mission tempo and high communications throughput
would be the proposed Resource Prospector mission (Andrews et al., 2014). The Resource
Prospector rover is not designed to survive lunar night, so there are only fourteen Earth days
to complete the mission. Because lunar missions can have low latency, high availability commu-
nications, a mission can afford to have autonomy algorithms running on the Earth.

As part of a distributed autonomous system, humans provide valuable oversight of the algo-
rithms. If the components of the autonomous system are loosely coupled, as they are likely to be
when distributed between the robot and the Earth, then Earth-based components of the system
can be used by the remote science team to assist in the decision making process. Once trust has
been sufficiently established in these tools, one might imagine reducing human oversight and
integrating them more closely in future decision-making pipelines.

Low Communications Throughput, Low Operations Tempo: When the communications
throughput is low, the robot is isolated from the guidance of the remote science team. Fortunately,
when the operations tempo is low, the vehicle can take more time to make decisions. This is an
opportunity to employ more complex autonomy, which may take longer to execute, than might
be used in a mission with high communications throughput or high mission tempo.

We recommend the use of on-board autonomy and adaptivity which is as complex as the
mission’s validation and verification process can support. This recommendation assumes that
the proposed autonomy is no more complex than what is required by the mission goals. Missions
with low operations tempo can afford the time it takes to execute complex algorithms on on-board
computing resources.

158

For example, in an orbital mission around a distant planetary body, a robotic satellite has
the luxury of completing multiple passes over regions of the surface during the mission lifetime.
Provided the phenomena being observed persists longer than the time to re-observe the original
location, the tempo of the mission is not high. The time between observations can be used to
process collected data and regenerate plans to maximize the utility of future actions.

Low Communications Throughput, High Operations Tempo: Increasing the mission tempo
increases the time pressure for the algorithms on-board the vehicle. When the mission tempo is
high, making imperfect decisions quickly may be better than making good decisions slowly.
Hence, here we would recommend using simpler algorithms than one might use when mission
tempo is low.

Especially given the constraints of space-rated hardware, the mission might not be able to
afford the time to execute state-of-the-art algorithms on-board the vehicle. Repeated use of
slow decision making algorithms could exhaust the mission budget for time or power, or the
phenomena to be observed may no longer exist by the time sampling decisions have been made.

An example of a mission with low communications throughput and high operations tempo
would be the autonomous exploration of the subsurface oceans of Europa or Enceladus. Here a
robot is likely to be almost completely cut off from a remote science team during the mission.
The vehicle would have to make decisions without human oversight. Without access to solar
power, the robot is likely to have a finite power budget, and all science must be completed within
that constraint.

Likewise, the proposed lake lander mission to Titan, the Titan Mare Explorer (Stofan et al.,
2013), proposes a vehicle with limited control capability. The planned vehicle would operate at
the mercy of the currents (Lorenz et al., 2012), meaning that it won’t be able to keep place, or
track interesting targets.

While the Titan Mare Explorer can have direct to Earth communications, at an estimated
distance of approximately 1.2× 109km, the light-time delay in communications could be on the
order of an hour. On-board autonomy can help capture events that occur below what is observable
given the communications delay. However, decisions to sample or collect ephemeral data must
be made quickly, requiring fast-acting autonomous algorithms.

A.3 Assessing Complexity of Autonomy
Above we made reference to “complex” and “simple” autonomy. Next we discuss what it means
for an algorithm to be simple or complex.

Without reliable human communications the vehicle will require some form of autonomous
behaviours, even if it is something as simple as waypoint following, or the blind drive commands
sometimes used with the Mars Exploration Rovers (Biesiadecki et al., 2007). Likewise, some
degree of safeguarding autonomy is likely to be necessary on-board, as eloquently argued by
Pratt and Murphy (2012).

Above and beyond a baseline level of autonomy, there are more sophisticated algorithms,
like path planners for information gathering. Further, because mission tempo can change during
missions, it is worthwhile giving special attention to anytime algorithms.

159

To discuss the complexity of autonomous systems we should consider the algorithmic com-
plexity of the algorithms, and the constraints of the computing environment in which the algo-
rithms are running. Algorithmic complexity has a huge impact on the validation and verification
burden of the mission, as well as the ease with which trust can be built in the system. This is
especially important when the robot is operating without human supervision in an alien environ-
ment.

As the system’s algorithmic complexity increases, it can become increasingly difficult to en-
sure that the space of possible behaviours has been tested. The validation and verification process
can grow exponentially with the complexity of the algorithms, adding considerable burden to the
mission budget.

There are also the limitations imposed by the computing resources on-board an autonomous
system. When complex algorithms are run on limited hardware, which space-rated computing
often is, the execution time of the algorithm can be greatly reduced. This can be a problem when
considering mission tempo.

Take for example the GESTALT algorithm on MER. In comparison to, for example, a self-
driving car, GESTALT is not a complex autonomy system. However, because it is running on a
RAD6000 processor, which has a clock speed on the order of 200MHz, it takes approximately
70 seconds to plan an autonomous traverse (Maimone et al., 2006).

The complexity of an algorithm cannot be understood out of context of the computing system
it is being executed on. There are new computing architectures being developed for operations in
radiation environments, but at the time of writing this thesis, readily available options are limited.

A.4 Summary
Deciding when and how to use autonomy must be tailored to individual missions, taking into
account the costs and the benefits of any proposed system. This section briefly addresses many
topics which warrant considerable discussion and analysis, in and of themselves.

Key to understanding the role of autonomy in flight missions is modelling the effect the
selected algorithms have on the concept of operations, workload on operators, and the mission
budget. Reducing the costs of the validation and verification process, and increasing the trust in
autonomy are vital to advancing autonomy in science missions.

160

Appendix B

List of Terms

AIM Area of Interest Manoeuvre.

Entropy Assumed to be Shannon’s Entropy, H(p) of a distribution p(x), defined to be H(p) =
−
∑

x∈X p(x) log2 p(x).

Hypothesis A function that predicts from an input space X to a probability distribution over an
observation space, Z. Formally: h : X → (Z → [0, 1])

I.I.D. Identically and independently distributed.

NSS Neutron Spectrometer.

Object An entity in the environment the robot can reason about.

Opportunistic Sampling Sampling conducted in response to sampling opportunities that were
not or could not be anticipated.

PAC Learning Probably Approximately Correct Learning, invented by Leslie Valiant. A branch
of computational learning theory that specialises in putting confidence bounds on learned
functions.

Perplexity A measure of how well a probability model describes an observation.

Primary or Proxy Sensor This is the instrument that is used to identify sampling opportunities.
For example, a camera which can be used to determine the type of rock visible

Prospecting The navigation of a scalar or vector field in order to seek locations that maximize
an objective function.

Prospecting Sensor The primary sensor used during prospecting.

Sampling Resources Material that is consumed during the sampling process. For example,
chemical reagents or sample containers.

Sampling Opportunity An object that the robot can choose to sample with one of its instru-
ments, for some cost.

Secondary Sensor This is the instrument that is used to extract observations from sampling
opportunities identified by the primary sensor. Secondary sensors can be more expensive
in time, energy, or sampling resources than the primary sensor.

Speed Made Good The speed of a vehicle towards the goal. Less than the speed of the vehicle

161

unless the vehicle is headed directly towards the goal.

Surprise As defined by Claude Shannon, surprise of an event x given a probability distribution
p is − log p(x)

Transect A path along which one collects data.

162

Appendix C

Opportunistic Sampling of Discrete
Objects (Foraging) Supplemental Material

In this appendix we present the performance of the competing algorithms (Foraging, Uniform,
and Greedy) against a sampling algorithm which always engages with the environment, called
“Always Engage”.

C.1 Experiment 1 - Uniform Arrival Distribution, Different
Underlying Distributions

In the case where all objects are equally likely, the Foraging algorithm has the least bad perfor-
mance relative to the always engage algorithm.

5 10
5

10−1

0

1

Js (time)

∆
D
K
L

(%
)

Exp 1.1, N=50

5 10
5

10−1

0

1

Js (time)

Exp 1.2, N=50

5 10
5

10−1

0

1

Js (time)

Exp 1.3, N=50

5 10
5

10−1

0

1

Js (time)

Exp 1.4, N=50

5 10
5

10−1

0

1

Js (time)
J e

(ti
m

e)

Exp 1.5, N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

Figure C.1: Uniform sampling algorithm vs Always Engage sampling algorithm. Arrival distri-
bution is uniform, K = 3 with different underlying distributions.

163

5 10
5

10−1

0

1

Js (time)

∆
D
K
L

(%
)

Exp 1.1, N=50

5 10
5

10−1

0

1

Js (time)

Exp 1.2, N=50

5 10
5

10−1

0

1

Js (time)

Exp 1.3, N=50

5 10
5

10−1

0

1

Js (time)

Exp 1.4, N=50

5 10
5

10−1

0

1

Js (time)

J e
(ti

m
e)

Exp 1.5, N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

Figure C.2: Greedy sampling algorithm vs Always Engage sampling algorithm. Arrival distri-
bution is uniform, K = 3 with different underlying distributions.

5 10
5

10−1

0

1

Js (time)

∆
D
K
L

(%
)

Exp 1.1, N=50

5 10
5

10−1

0

1

Js (time)

Exp 1.2, N=50

5 10
5

10−1

0

1

Js (time)

Exp 1.3, N=50

5 10
5

10−1

0

1

Js (time)

Exp 1.4, N=50

5 10
5

10−1

0

1

Js (time)

J e
(ti

m
e)

Exp 1.5, N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)
Figure C.3: Foraging algorithm vs Always Engage sampling algorithm. Arrival distribution is
uniform, K = 3 with different underlying distributions.

Notice that the Foraging algorithm has the least amount of underperformance relative to
Always Engage over the space of sampling and exploration costs.

C.2 Experiment 2 - Skewed Arrival Distribution with Identi-
cal Underlying Distributions

Here we give the performance of the competing algorithms with respect to the Always Engage
algorithm with the unbalanced arrival distribution. These distributions test performance of the
algorithms when K = 6 objects.

164

5 10
5

10−1

0

1

Js (time)

∆
D
K
L

(%
)

P (X = 1) = 0.9, N=50

5 10
5

10−1

0

1

Js (time)

P (X = 1) = 0.8, N=50

5 10
5

10−1

0

1

Js (time)

P (X = 1) = 0.7, N=50

5 10
5

10−1

0

1

Js (time)

P (X = 1) = 0.6, N=50

5 10
5

10−1

0

1

Js (time)

J e
(ti

m
e)

P (X = 1) = 0.5, N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

Figure C.4: Uniform sampling algorithm vs Always Engage sampling algorithm. Arrival
distribution is unbalanced, with P (X) being much larger than for other classes of objects.
P (Z|X = x) = 0.3 ∀ x ∈ X.

5 10
5

10−1

0

1

Js (time)

∆
D
K
L

(%
)

P (X = 1) = 0.9, N=50

5 10
5

10−1

0

1

Js (time)

P (X = 1) = 0.8, N=50

5 10
5

10−1

0

1

Js (time)

P (X = 1) = 0.7, N=50

5 10
5

10−1

0

1

Js (time)

P (X = 1) = 0.6, N=50

5 10
5

10−1

0

1

Js (time)

J e
(ti

m
e)

P (X = 1) = 0.5, N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)
J
e

(t
im

e)

Figure C.5: Greedy sampling algorithm vs Always Engage sampling algorithm. Arrival dis-
tribution is unbalanced, with P (X) being much larger than for other classes of objects.
P (Z|X = x) = 0.3 ∀ x ∈ X.

165

5 10
5

10−1

0

1

Js (time)

∆
D
K
L

(%
)

P (X = 1) = 0.9, N=50

5 10
5

10−1

0

1

Js (time)

P (X = 1) = 0.8, N=50

5 10
5

10−1

0

1

Js (time)

P (X = 1) = 0.7, N=50

5 10
5

10−1

0

1

Js (time)

P (X = 1) = 0.6, N=50

5 10
5

10−1

0

1

Js (time)

J e
(ti

m
e)

P (X = 1) = 0.5, N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

Figure C.6: Foraging algorithm vs Always Engage sampling algorithm. Arrival distribution is
unbalanced, with P (X) being much larger than for other classes of objects. P (Z|X = x) =
0.3 ∀ x ∈ X.

Uniform (Figure C.4) and Greedy (Figure C.5) perform as well as or better than Always
Engage for most settings of exploration and sampling costs. The Foraging algorithm never un-
derperforms the Always Engage algorithm (Figure C.6).

Next we show the performance of the competing algorithms with respect to the Always En-
gage algorithm with a Zipfian arrival distribution, where s = 1 and K ∈ {5, 6, 7, 8}. Again, the
Foraging algorithm never underperforms the Always Engage algorithm (Figure C.9).

5 10
5

10−1

0

1

Js (time)

∆
D
K
L

(%
)

Zipf(s = 1, K = 8), N=50

5 10
5

10−1

0

1

Js (time)

Zipf(s = 1, K = 8), N=50

5 10
5

10−1

0

1

Js (time)

Zipf(s = 1, K = 8), N=50

5 10
5

10−1

0

1

Js (time)

J e
(ti

m
e)

Zipf(s = 1, K = 8), N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

Figure C.7: Uniform sampling algorithm vs Always Engage sampling algorithm. Arrival distri-
bution is Zipfian with s = 1 and K ∈ {5, 6, 7, 8}.

166

5 10
5

10−1

0

1

Js (time)

∆
D
K
L

(%
)

Zipf(s = 1, K = 5), N=50

5 10
5

10−1

0

1

Js (time)

Zipf(s = 1, K = 6), N=50

5 10
5

10−1

0

1

Js (time)

Zipf(s = 1, K = 7), N=50

5 10
5

10−1

0

1

Js (time)

J e
(ti

m
e)

Zipf(s = 1, K = 8), N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

Figure C.8: Greedy sampling algorithm vs Always Engage sampling algorithm. Arrival distri-
bution is Zipfian with s = 1 and K ∈ {5, 6, 7, 8}.

5 10
5

10−1

0

1

Js (time)

∆
D
K
L

(%
)

Zipf(s = 1, K = 5), N=50

5 10
5

10−1

0

1

Js (time)

Zipf(s = 1, K = 6), N=50

5 10
5

10−1

0

1

Js (time)

Zipf(s = 1, K = 7), N=50

5 10
5

10−1

0

1

Js (time)

J e
(ti

m
e)

Zipf(s = 1, K = 8), N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

Figure C.9: Foraging algorithm vs Always Engage sampling algorithm. Arrival distribution is
Zipfian with s = 1 and K ∈ {5, 6, 7, 8}.

C.3 Experiment 3 - Skewed Arrival Distribution with Distrac-
tor Object

These plots show the performance of the competing algorithms with respect to the Always En-
gage algorithm first with the unbalanced arrival distribution with P (X) = 0.8 and K = 8, and
next with a Zipfian distribution with s = 1, K = 8.

Uniform’s underperforming of the Always Engage algorithm is more pronounced when a
Zipfian distribution is followed (Figure C.10). There appears to be no difference in performance

167

as a function of the underlying distribution of the modified object class. This also holds for the
Greedy algorithm (Figure C.11). Again, the Foraging algorithm never underperforms the Always
Engage algorithm (Figure C.12).

5 10
5

10−1

0

1

Js (time)

∆
D
K
L

(%
)

P (Z|X = 2) = 0.1, N=50

5 10
5

10−1

0

1

Js (time)

P (Z|X = 2) = 0.3 N=50

5 10
5

10−1

0

1

Js (time)

P (Z|X = 2) = 0.5 N=50

5 10
5

10−1

0

1

Js (time)

J e
(ti

m
e)

P (Z|X = 2) = 0.6, N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)
J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10
5

10−1

0

1

Js (time)

∆
D
K
L

(%
)

Zipf(s = 1, K = 8), N=50

5 10
5

10−1

0

1

Js (time)

Zipf(s = 1, K = 8), N=50

5 10
5

10−1

0

1

Js (time)

Zipf(s = 1, K = 8), N=50

5 10
5

10−1

0

1

Js (time)

J e
(ti

m
e)

Zipf(s = 1, K = 8), N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
s

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

Figure C.10: Uniform sampling algorithm vs Always Engage sampling algorithm. Second most
common object has a distractor underlying distribution. Both unbalanced (top) and Zipfian
(bottom) arrival distributions are used.

168

5 10
5

10−1

0

1

Js (time)

∆
D
K
L

(%
)

P (Z|X = 2) = 0.1, N=50

5 10
5

10−1

0

1

Js (time)

P (Z|X = 2) = 0.3 N=50

5 10
5

10−1

0

1

Js (time)

P (Z|X = 2) = 0.5 N=50

5 10
5

10−1

0

1

Js (time)

J e
(ti

m
e)

P (Z|X = 2) = 0.6, N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10
5

10−1

0

1

Js (time)

∆
D
K
L

(%
)

Zipf(s = 1, K = 8), N=50

5 10
5

10−1

0

1

Js (time)

Zipf(s = 1, K = 8), N=50

5 10
5

10−1

0

1

Js (time)

Zipf(s = 1, K = 8), N=50

5 10
5

10−1

0

1

Js (time)

J e
(ti

m
e)

Zipf(s = 1, K = 8), N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
s

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

Figure C.11: Greedy sampling algorithm vs Always Engage sampling algorithm. Second most
common object has a distractor underlying distribution. Both unbalanced (top) and Zipfian
(bottom) arrival distributions are used.

169

5 10
5

10−1

0

1

Js (time)

∆
D
K
L

(%
)

P (Z|X = 2) = 0.1, N=50

5 10
5

10−1

0

1

Js (time)

P (Z|X = 2) = 0.3 N=50

5 10
5

10−1

0

1

Js (time)

P (Z|X = 2) = 0.5 N=50

5 10
5

10−1

0

1

Js (time)

J e
(ti

m
e)

P (Z|X = 2) = 0.6, N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10
5

10−1

0

1

Js (time)

∆
D
K
L

(%
)

Zipf(s = 1, K = 8), N=50

5 10
5

10−1

0

1

Js (time)

Zipf(s = 1, K = 8), N=50

5 10
5

10−1

0

1

Js (time)

Zipf(s = 1, K = 8), N=50

5 10
5

10−1

0

1

Js (time)

J e
(ti

m
e)

Zipf(s = 1, K = 8), N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
s

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

Figure C.12: Foraging sampling algorithm vs Always Engage sampling algorithm. Second
most common object has a distractor underlying distribution. Both unbalanced (top) and Zipfian
(bottom) arrival distributions are used.

C.4 Experiment 4 - Skewed Arrival Distribution with Ran-
dom Underlying Distributions

These plots show the performance of the competing algorithms with respect to the Always En-
gage algorithm first with the unbalanced arrival distribution with P (X) = 0.8 and K = 8, and
next with a Zipfian distribution with s = 1, K = 8.

Uniform sampling performs better than Always Engage for most sampling costs, with a
degradation that is much more pronounced when the arrival distribution follows Zipf’s law (Fig-
ure C.13. Notice that the Uniform sampling performs worse for RAND3 than for the other
settings of the underlying distributions.

The Greedy algorithm (Figure C.14) appears fairly robust to the changes in the underlying
distribution. Generally good performance for small exploration costs, excepting small sampling

170

cost, where the Always Engage algorithm performs better.
The Foraging algorithm also has performance that is sensitive to the settings of the underlying

distributions, as can be seen in Figure C.15. Notice only in one setting, the RAND3 settings for
the underlying distribution and the unbalanced arrival distribution, does the Foraging algorithm
perform worse than the Always Engage algorithm. The worse performance is localized to large
settings of exploration cost and sampling cost.

5 10
5

10−1

0

1

Js (time)

∆
D
K
L

(%
)

RAND1, N=50

5 10
5

10−1

0

1

Js (time)

RAND2, N=50

5 10
5

10−1

0

1

Js (time)

RAND3, N=50

5 10
5

10−1

0

1

Js (time)

J e
(ti

m
e)

RAND4, N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)
5 10

5
10−1

0

1

Js (time)

∆
D
K
L

(%
)

Zipf(s = 1, K = 8), N=50

5 10
5

10−1

0

1

Js (time)

Zipf(s = 1, K = 8), N=50

5 10
5

10−1

0

1

Js (time)

Zipf(s = 1, K = 8), N=50

5 10
5

10−1

0

1

Js (time)

J e
(ti

m
e)

Zipf(s = 1, K = 8), N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
s

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

Figure C.13: Uniform sampling algorithm vs Always Engage sampling algorithm. Randomly
assigned underlying distributions. Both unbalanced (top) and Zipfian (bottom) arrival distribu-
tions are used.

171

5 10
5

10−1

0

1

Js (time)

∆
D
K
L

(%
)

RAND1, N=50

5 10
5

10−1

0

1

Js (time)

RAND2, N=50

5 10
5

10−1

0

1

Js (time)

RAND3, N=50

5 10
5

10−1

0

1

Js (time)

J e
(ti

m
e)

RAND4, N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10
5

10−1

0

1

Js (time)

∆
D
K
L

(%
)

Zipf(s = 1, K = 8), N=50

5 10
5

10−1

0

1

Js (time)

Zipf(s = 1, K = 8), N=50

5 10
5

10−1

0

1

Js (time)

Zipf(s = 1, K = 8), N=50

5 10
5

10−1

0

1

Js (time)

J e
(ti

m
e)

Zipf(s = 1, K = 8), N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
s

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

Figure C.14: Greedy sampling algorithm vs Always Engage sampling algorithm. Randomly as-
signed underlying distributions. Both unbalanced (top) and Zipfian (bottom) arrival distributions
are used.

172

5 10
5

10−1

0

1

Js (time)

∆
D
K
L

(%
)

RAND1, N=50

5 10
5

10−1

0

1

Js (time)

RAND2, N=50

5 10
5

10−1

0

1

Js (time)

RAND3, N=50

5 10
5

10−1

0

1

Js (time)

J e
(ti

m
e)

RAND4, N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10
5

10−1

0

1

Js (time)

∆
D
K
L

(%
)

Zipf(s = 1, K = 8), N=50

5 10
5

10−1

0

1

Js (time)

Zipf(s = 1, K = 8), N=50

5 10
5

10−1

0

1

Js (time)

Zipf(s = 1, K = 8), N=50

5 10
5

10−1

0

1

Js (time)

J e
(ti

m
e)

Zipf(s = 1, K = 8), N=50

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
s

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

5 10

5

10

Js (time)

J
e

(t
im

e)

Figure C.15: Foraging sampling algorithm vs Always Engage sampling algorithm. Randomly
assigned underlying distributions. Both unbalanced (top) and Zipfian (bottom) arrival distribu-
tions are used.

173

C.5 Experiment Parameters

Parameter Purpose

Simulation

Arrival Distribution - P (X) Governs which class of the next object encoun-
tered by the algorithm.

Underlying Distribution -
P (Z|X = x)

Governs the observations, z, collected by
querying an object of class x ∈ X with the sec-
ondary sensor.

Number of object classes - K The number of different types of objects exist-
ing in the environment the robot is exploring.

Cost of collecting samples -
Jsample

The cost of extracting samples. In the exper-
iments we consider the cost to be time, but it
could be energy, or some other quantity of in-
terest to experimenters.

Cost of exploration - Jexplore This is the cost incurred by the robot as it
searches for the next object. As with sampling
cost, we pose the cost in terms of time.

Budget - T The total quantity of resources the robot has
to spend. The sampling and exploration costs
draw down on this budget.

174

Appendix D

Opportunistic Sampling in a Scalar Field
(Prospecting) Supplemental Material

D.1 Experiment 1 - Change in Underlying Distribution Rate
The following tables show the effect size comparing the SPRT algorithm to the Memory Thresh-
old algorithm.

Table D.1: The size of the effect on the false negative rate using the SPRT algorithm as compared to the
Memory Threshold algorithm. SPRT confidence level is set at 2.

λ2 − λ1 µ[FN]MemThresh − µ[FN]SPRT (s=2) 95% HDI Effect Size
(Cohen’s d)

-30 1.00 [1, 1] 1.98× 103

-20 1.00 [1, 1] 1.98× 103

-10 0.99 [0.979, 0.993] 68.8
0 0.49 [0.380, 0.589] 1.86

10 0.98 [0.971, 0.988] 49.6
20 1.00 [1, 1] 1.98× 103

30 0.88 [0.867, 0.897] 29.6
40 0.48 [0.460, 0.500] 9.79
50 0.12 [0.110, 0.139] 3.51
60 0.02 [0.016, 0.027] 1.51

The following tables show the effect size on the mean error rate in predicting the time of
change as a function of the change in the underlying rate.

175

Table D.2: The size of the effect on the false negative rate using the SPRT algorithm as compared to the
Memory Threshold algorithm. SPRT confidence level is set at 4.

λ2 − λ1 µ[FN]MemThresh − µ[FN]SPRT (s=4) 95% HDI Effect Size
(Cohen’s d)

-30 1.00 [1, 1] 1.98× 103

-20 1.00 [0.995, 1] 1.96× 103

-10 0.95 [0.932, 0.958] 30.20
0 0.00 [0.000, 0.000] 0.02

10 0.95 [0.934, 0.953] 32.050
20 0.99 [0.986, 1.000] 133.00
30 0.88 [0.868, 0.892] 36.70
40 0.48 [0.462, 0.500] 9.81
50 0.12 [0.110, 0.139] 3.53
60 0.02 [0.015, 0.027] 1.54

Table D.3: The size of the effect on the false negative rate using the SPRT algorithm as compared to the
Memory Threshold algorithm. SPRT confidence level is set at 8.

λ2 − λ1 µ[FN]MemThresh − µ[FN]SPRT (s=8) 95% HDI Effect Size
(Cohen’s d)

-30 1.00 [1.000, 1.000] 1.98× 103

-20 0.98 [0.975, 0.983] 99.30
-10 0.87 [0.862, 0.884] 16.10

0 0.00 [0.000, 0.000] 0.01
10 0.87 [0.844, 0.903] 13.50
20 0.98 [0.968, 0.981] 96.80
30 0.87 [0.858, 0.882] 28.60
40 0.48 [0.459, 0.504] 11.00
50 0.12 [0.110, 0.138] 3.55
60 0.02 [0.015, 0.027] 1.54

The follow plots show the size of the effect on the false positive rate as a function of the
change in the underlying rate.

176

Table D.4: The size of the effect on the false positive rate using the SPRT algorithm as compared to
the Memory Threshold algorithm. SPRT confidence level is set at 2. Here the SPRT 2 algorithm is
demonstrably worse in terms of false positive rate than the memory threshold algorithm.

Rate Change µ[FP]MemThresh − µ[FP]SPRT (s=2) 95% HDI Effect Size
λ2 − λ1 (Cohen’s d)

-30 -0.25 [−0.316,−0.179] -1.61
-20 -0.25 [−0.313,−0.176] -1.65
-10 -0.25 [−0.314,−0.176] -1.66

0 -0.25 [−0.316,−0.179] -1.60
10 -0.25 [−0.313,−0.177] -1.67
20 -0.25 [−0.317,−0.177] -1.64
30 -0.25 [−0.314,−0.177] -1.60
40 -0.25 [−0.317,−0.180] -1.67
50 -0.25 [−0.317,−0.178] -1.67
60 -0.25 [−0.316,−0.179] -1.62

Table D.5: The size of the effect on the false positive rate using the SPRT algorithm as compared to the
Memory Threshold algorithm. SPRT confidence level is set at 4. The performance of the two algorithms
is indistinguishable at a 95% confidence level.

Rate Change µ[FP]MemThresh − µ[FP]SPRT (s=4) 95% HDI Effect Size
λ2 − λ1 (Cohen’s d)

-30 0.00 [−0.014, 0.0001] N/A
-20 0.00 [−0.016, 0.0001] N/A
-10 0.00 [0.000, 0.000] N/A

0 0.00 [0.000, 0.000] N/A
10 0.00 [−0.010, 0.0001] N/A
20 -0.01 [−0.018, 0.0001] N/A
30 -0.01 [−0.018, 0.00003] N/A
40 -0.002 [−0.015, 0.0002] N/A
50 -0.001 [−0.009, 0.0002] N/A
60 0.00 [0.000, 0.000] N/A

177

Table D.6: The size of the effect on the false positive rate using the SPRT algorithm as compared to the
Memory Threshold algorithm. SPRT confidence level is set at 8. The two algorithms are indistinguishable
at a 95% confidence level.

Rate Change µ[FP]MemThresh − µ[FP]SPRT (s=8) 95% HDI Effect Size
λ2 − λ1 (Cohen’s d)

-30 0.00 [0.0, 0.0] N/A
-20 0.00 [0.0, 0.0] N/A
-10 0.00 [0.0, 0.0] N/A

0 0.00 [0.0, 0.0] N/A
10 0.00 [0.0, 0.0] N/A
20 0.00 [0.0, 0.0] N/A
30 0.00 [0.0, 0.0] N/A
40 0.00 [0.0, 0.0] N/A
50 0.00 [0.0, 0.0] N/A
60 0.00 [0.0, 0.0] N/A

Table D.7: The size of the effect on the mean error using the SPRT algorithm as compared to the Memory
Threshold algorithm. SPRT confidence level is set at 2. The two algorithms are indistinguishable at a 95%
confidence level.

Rate Change µ[FP]MemThresh − µ[FP]SPRT (s=2) 95% HDI Effect Size
λ2 − λ1 (Cohen’s d)

-30 44.15 [45.683, 42.617] 56.44
-20 44.04 [45.569, 42.508] 56.41
-10 42.77 [44.343, 41.195] 53.26

0 24.08 [27.045, 21.106] 15.89
10 42.95 [44.501, 41.407] 54.42
20 35.48 [40.028, 30.927] 15.28
30 18.80 [21.248, 16.357] 15.07
40 18.74 [20.391, 17.086] 22.22
50 13.12 [14.945, 11.305] 14.14
60 2.11 [−0.150, 4.365,] N/A

178

Table D.8: The size of the effect on the mean error using the SPRT algorithm as compared to the Memory
Threshold algorithm. SPRT confidence level is set at 4. The two algorithms are indistinguishable at a 95%
confidence level.

Rate Change µ[FP]MemThresh − µ[FP]SPRT (s=4) 95% HDI Effect Size
λ2 − λ1 (Cohen’s d)

-30 49.62 [49.834, 49.409] 457.27
-20 49.50 [49.723, 49.285] 443.31
-10 48.20 [48.759, 47.648] 170.17

0 18.06 [22.923, 13.205] 7.29
10 48.41 [48.850, 47.962] 213.69
20 40.96 [45.243, 36.671] 18.73
30 24.26 [26.179, 22.346] 24.81
40 24.21 [24.850, 23.562] 73.69
50 18.60 [19.598, 17.594] 36.36
60 7.58 [9.249, 5.908] 8.89

Table D.9: The size of the effect on the mean error using the SPRT algorithm as compared to the Memory
Threshold algorithm. SPRT confidence level is set at 8. The two algorithms are indistinguishable at a 95%
confidence level.

Rate Change µ[FP]MemThresh − µ[FP]SPRT (s=8) 95% HDI Effect Size
λ2 − λ1 (Cohen’s d)

-30 50.00 [50.0, 50.0] inf
-20 49.89 [49.975, 49.807] 1167.42
-10 48.62 [49.145, 48.088] 180.34

0 0.82 [−0.771, 2.411] N/A
10 48.89 [49.266, 48.508] 252.90
20 41.34 [45.617, 37.055] 18.93
30 24.64 [26.544, 22.735] 25.35
40 24.58 [25.191, 23.977] 79.33
50 18.97 [19.953, 17.995] 37.97
60 7.96 [9.614, 6.300] 9.41

179

D.2 Experiment 2 - Effect of Delay of Change Onset

Table D.10: The average reduction in false positive rate due to using the SPRT algorithm vs the Memory
Threshold algorithm.

Change Point µ[FP]MemThresh − µ[FP]sprt 95% HDI Effect Size
(sec) (Cohen’s d)
40 0.016 [0.009, 0.022] 0.96
80 0.016 [0.011, 0.020] 1.96
120 0.017 [0.014, 0.020] 2.84
160 0.016 [0.013, 0.018] 3.13
200 0.016 [0.014, 0.018] 5.08
240 0.017 [0.015, 0.020] 4.72
260 0.017 [0.015, 0.019] 4.61
320 0.017 [0.015, 0.019] 4.94
360 0.017 [0.015, 0.019] 5.72

Table D.11: The reduction in FN rate from the Memory Threshold to the SPRT algorithm.

Change Point µ[FN]MemThresh − µ[FN]sprt 95% HDI Effect Size
(sec) (Cohen’s d)
40 0.029 [0.027, 0.031] 5.14
80 0.029 [0.026, 0.031] 4.78
120 0.028 [0.026, 0.031] 4.41
160 0.028 [0.025, 0.031] 4.18
200 0.027 [0.025, 0.030] 6.19
240 0.026 [0.022, 0.030] 2.65
260 0.025 [0.021, 0.030] 2.52
320 0.025 [0.019, 0.031] 1.57
360 0.018 [0.008, 0.027] 0.73

180

Table D.12: The effect size of the reduction in mean error as the change point is varied.

Change Point µ[MeanError]MemThresh 95% HDI Effect Size
(sec) −µ[MeanError]sprt (Cohen’s d)
40 155 [155, 157] 39.3
80 136 [134, 138] 44.4
120 115 [112, 117] 25.1
160 94.2 [91.6, 96.9] 19.1
200 73.9 [70.7, 77] 13.8
240 51.9 [49.2, 54.5] 10.4
260 42.6 [40.2, 45] 9.47
320 11.8 [9.35, 14.2] 2.81
360 16.1 [−18.9,−13.4] -3.42

D.3 Experiment 3 - Real MVP Data

D.3.1 Data Supporting ROC Curves on MVP Data

Table D.13: True positive rate and false positive rate for the SPRT algorithm on all days of the MVP data.

s TPR FPR
1.00 0.9789 0.0201
2.00 0.9263 0.0072
3.00 0.9053 0.0042
4.00 0.8737 0.0026
5.00 0.8105 0.0018
6.00 0.7474 0.0011
7.00 0.7053 0.0008
8.00 0.7053 0.0003
9.00 0.6632 0.0002

10.00 0.6105 0.0002

181

Table D.14: True positive rate and false positive rate for the Memory Threshold algorithm as the threshold
is varied.

γ TPR FPR
10.00 0.0000 0.0000
20.00 0.0000 0.0000
30.00 0.0737 0.0007
33.00 0.1474 0.0117
35.00 0.3579 0.0297
37.00 0.4737 0.0436
40.00 0.6842 0.0447
43.00 0.8421 0.0465
45.00 0.8421 0.0744
47.00 0.8737 0.1030
50.00 0.6316 0.0686
52.00 0.3474 0.0308
55.00 0.2000 0.0084
57.00 0.1474 0.0067
60.00 0.0947 0.0019
70.00 0.0316 0.0000
80.00 0.0211 0.0000
90.00 0.0211 0.0000

100.00 0.0000 0.0014
110.00 0.0000 0.0000

Table D.15: True positive rate and false positive rate for the Relative Change algorithm as the threshold
for the High Density Interval was changed.

δ TPR FPR
0.85 0.6421 0.0078
0.90 0.4842 0.0074
0.93 0.4105 0.0065
0.95 0.3368 0.0024
0.97 0.2316 0.0015
0.99 0.2211 0.0009
0.99 0.1368 0.0005
1.00 0.1158 0.0004
1.00 0.0947 0.0001

182

Table D.16: True positive rate and false positive rate for the Adaptive Threshold algorithm as the sug-
gested number of AIMs and the minimum threshold is varied. Results here for Ns = 5. We selected an
initial threshold of γB = 43 because that was the best performing threshold for the Memory Threshold
algorithm.

γB Ns γMin TPR FPR
43.00 5.00 20.00 0.8421 0.0465
43.00 5.00 25.00 0.8105 0.0438
43.00 5.00 30.00 0.7789 0.0424
43.00 5.00 33.00 0.7474 0.0421
43.00 5.00 35.00 0.6737 0.0361
43.00 5.00 37.00 0.4316 0.0263
43.00 5.00 40.00 0.2211 0.0173
43.00 5.00 43.00 0.2316 0.0122
43.00 5.00 45.00 0.2000 0.0159
43.00 5.00 47.00 0.2211 0.0185
43.00 5.00 50.00 0.2105 0.0197
43.00 5.00 53.00 0.2842 0.0232
43.00 5.00 55.00 0.3474 0.0239
43.00 5.00 60.00 0.6000 0.0360
43.00 5.00 65.00 0.7789 0.0410

Table D.17: True positive rate and false positive rate for the Adaptive Threshold algorithm as the sug-
gested number of AIMs and the minimum threshold is varied. Results here for Ns = 10. We selected an
initial threshold of γB = 43 because that was the best performing threshold for the Memory Threshold
algorithm.

γB Ns γMin TPR FPR
43.00 10.00 20.00 0.8421 0.0465
43.00 10.00 25.00 0.8105 0.0438
43.00 10.00 30.00 0.7789 0.0424
43.00 10.00 33.00 0.7474 0.0421
43.00 10.00 35.00 0.6737 0.0361
43.00 10.00 37.00 0.4316 0.0263
43.00 10.00 40.00 0.2211 0.0173
43.00 10.00 43.00 0.2632 0.0155
43.00 10.00 45.00 0.2000 0.0164
43.00 10.00 47.00 0.2211 0.0185
43.00 10.00 50.00 0.2105 0.0197
43.00 10.00 53.00 0.2842 0.0232
43.00 10.00 55.00 0.3474 0.0239
43.00 10.00 60.00 0.6000 0.0360
43.00 10.00 65.00 0.7789 0.0410

183

Table D.18: True positive rate and false positive rate for the Adaptive Threshold algorithm as the sug-
gested number of AIMs and the minimum threshold is varied. Results here for Ns = 15. We selected an
initial threshold of γB = 43 because that was the best performing threshold for the Memory Threshold
algorithm.

γB Ns γMin TPR FPR
43.00 15.00 20.00 0.8421 0.0465
43.00 15.00 25.00 0.8105 0.0438
43.00 15.00 30.00 0.7789 0.0424
43.00 15.00 33.00 0.7474 0.0421
43.00 15.00 35.00 0.6737 0.0362
43.00 15.00 37.00 0.4421 0.0265
43.00 15.00 40.00 0.2316 0.0173
43.00 15.00 43.00 0.2737 0.0164
43.00 15.00 45.00 0.2105 0.0190
43.00 15.00 47.00 0.2211 0.0198
43.00 15.00 50.00 0.2105 0.0200
43.00 15.00 53.00 0.2842 0.0232
43.00 15.00 55.00 0.3474 0.0239
43.00 15.00 60.00 0.6000 0.0360
43.00 15.00 65.00 0.7789 0.0410

Table D.19: True positive rate and false positive rate for the Adaptive Threshold algorithm as the sug-
gested number of AIMs and the minimum threshold is varied. Results here for Ns = 20. We selected an
initial threshold of γB = 43 because that was the best performing threshold for the Memory Threshold
algorithm.

γB Ns γMin TPR FPR
43.00 20.00 20.00 0.8421 0.0465
43.00 20.00 25.00 0.8105 0.0438
43.00 20.00 30.00 0.7789 0.0424
43.00 20.00 33.00 0.7474 0.0421
43.00 20.00 35.00 0.6947 0.0395
43.00 20.00 37.00 0.4526 0.0290
43.00 20.00 40.00 0.2316 0.0178
43.00 20.00 43.00 0.2737 0.0161
43.00 20.00 45.00 0.2526 0.0267
43.00 20.00 47.00 0.2211 0.0200
43.00 20.00 50.00 0.2105 0.0207
43.00 20.00 53.00 0.2842 0.0232
43.00 20.00 55.00 0.3474 0.0241
43.00 20.00 60.00 0.6000 0.0343
43.00 20.00 65.00 0.7789 0.0393

184

Table D.20: True positive rate and false positive rate for the Adaptive Threshold algorithm as the sug-
gested number of AIMs and the minimum threshold is varied. Results here for Ns = 25. We selected an
initial threshold of γB = 43 because that was the best performing threshold for the Memory Threshold
algorithm.

γB Ns γMin TPR FPR
43.00 25.00 20.00 0.8421 0.0465
43.00 25.00 25.00 0.8105 0.0438
43.00 25.00 30.00 0.7789 0.0424
43.00 25.00 33.00 0.7474 0.0421
43.00 25.00 35.00 0.7053 0.0395
43.00 25.00 37.00 0.4632 0.0291
43.00 25.00 40.00 0.2421 0.0179
43.00 25.00 43.00 0.2842 0.0180
43.00 25.00 45.00 0.2211 0.0207
43.00 25.00 47.00 0.2316 0.0217
43.00 25.00 50.00 0.2105 0.0216
43.00 25.00 53.00 0.2842 0.0232
43.00 25.00 55.00 0.3474 0.0244
43.00 25.00 60.00 0.6000 0.0343
43.00 25.00 65.00 0.7789 0.0393

Table D.21: True positive rate and false positive rate for the Adaptive Threshold algorithm as the sug-
gested number of AIMs and the minimum threshold is varied. Results here for Ns = 30. We selected an
initial threshold of γB = 43 because that was the best performing threshold for the Memory Threshold
algorithm.

γB Ns γMin TPR FPR
43.00 30.00 20.00 0.8421 0.0465
43.00 30.00 25.00 0.8105 0.0438
43.00 30.00 30.00 0.7789 0.0424
43.00 30.00 33.00 0.7474 0.0421
43.00 30.00 35.00 0.7053 0.0395
43.00 30.00 37.00 0.4842 0.0308
43.00 30.00 40.00 0.2842 0.0203
43.00 30.00 43.00 0.3684 0.0242
43.00 30.00 45.00 0.2526 0.0263
43.00 30.00 47.00 0.2316 0.0235
43.00 30.00 50.00 0.2211 0.0222
43.00 30.00 53.00 0.2842 0.0235
43.00 30.00 55.00 0.3474 0.0245
43.00 30.00 60.00 0.6000 0.0343
43.00 30.00 65.00 0.7789 0.0393

185

Table D.22: True positive rate and false positive rate for the Adaptive Threshold algorithm as the sug-
gested number of AIMs and the minimum threshold is varied. Results here for Ns = 35. We selected an
initial threshold of γB = 43 because that was the best performing threshold for the Memory Threshold
algorithm.

γB Ns γMin TPR FPR
43.00 35.00 20.00 0.8421 0.0465
43.00 35.00 25.00 0.8105 0.0438
43.00 35.00 30.00 0.7789 0.0424
43.00 35.00 33.00 0.7474 0.0421
43.00 35.00 35.00 0.7053 0.0395
43.00 35.00 37.00 0.4842 0.0309
43.00 35.00 40.00 0.3895 0.0268
43.00 35.00 43.00 0.3579 0.0198
43.00 35.00 45.00 0.2632 0.0315
43.00 35.00 47.00 0.2632 0.0260
43.00 35.00 50.00 0.2211 0.0235
43.00 35.00 53.00 0.2842 0.0238
43.00 35.00 55.00 0.3579 0.0246
43.00 35.00 60.00 0.6000 0.0343
43.00 35.00 65.00 0.7789 0.0393

Table D.23: True positive rate and false positive rate for the Adaptive Threshold algorithm as the sug-
gested number of AIMs and the minimum threshold is varied. Results here for Ns = 40. We selected an
initial threshold of γB = 43 because that was the best performing threshold for the Memory Threshold
algorithm.

γB Ns γMin TPR FPR
43.00 40.00 20.00 0.8421 0.0465
43.00 40.00 25.00 0.8105 0.0438
43.00 40.00 30.00 0.7789 0.0424
43.00 40.00 33.00 0.7474 0.0421
43.00 40.00 35.00 0.7053 0.0395
43.00 40.00 37.00 0.5158 0.0351
43.00 40.00 40.00 0.3579 0.0248
43.00 40.00 43.00 0.3579 0.0235
43.00 40.00 45.00 0.3053 0.0326
43.00 40.00 47.00 0.2526 0.0279
43.00 40.00 50.00 0.2421 0.0252
43.00 40.00 53.00 0.2842 0.0241
43.00 40.00 55.00 0.3579 0.0246
43.00 40.00 60.00 0.6000 0.0343
43.00 40.00 65.00 0.7789 0.0393

186

Table D.24: True positive rate and false positive rate for the Adaptive Threshold algorithm as the sug-
gested number of AIMs and the minimum threshold is varied. Results here for Ns = 45. We selected an
initial threshold of γB = 43 because that was the best performing threshold for the Memory Threshold
algorithm.

γB Ns γMin TPR FPR
43.00 45.00 20.00 0.8421 0.0465
43.00 45.00 25.00 0.8105 0.0438
43.00 45.00 30.00 0.7789 0.0424
43.00 45.00 33.00 0.7474 0.0421
43.00 45.00 35.00 0.7053 0.0395
43.00 45.00 37.00 0.5158 0.0359
43.00 45.00 40.00 0.3789 0.0268
43.00 45.00 43.00 0.3789 0.0253
43.00 45.00 45.00 0.3263 0.0331
43.00 45.00 47.00 0.3053 0.0298
43.00 45.00 50.00 0.2316 0.0262
43.00 45.00 53.00 0.2842 0.0248
43.00 45.00 55.00 0.3368 0.0232
43.00 45.00 60.00 0.6000 0.0343
43.00 45.00 65.00 0.7789 0.0393

Table D.25: True positive rate and false positive rate for the Adaptive Threshold algorithm as the sug-
gested number of AIMs and the minimum threshold is varied. Results here for Ns = 50. We selected an
initial threshold of γB = 43 because that was the best performing threshold for the Memory Threshold
algorithm.

γB Ns γMin TPR FPR
43.00 50.00 20.00 0.8421 0.0465
43.00 50.00 25.00 0.8105 0.0438
43.00 50.00 30.00 0.7789 0.0424
43.00 50.00 33.00 0.7474 0.0421
43.00 50.00 35.00 0.7053 0.0395
43.00 50.00 37.00 0.5263 0.0381
43.00 50.00 40.00 0.4947 0.0376
43.00 50.00 43.00 0.4105 0.0251
43.00 50.00 45.00 0.3895 0.0366
43.00 50.00 47.00 0.3158 0.0297
43.00 50.00 50.00 0.2421 0.0283
43.00 50.00 53.00 0.3053 0.0256
43.00 50.00 55.00 0.3368 0.0232
43.00 50.00 60.00 0.6000 0.0343
43.00 50.00 65.00 0.7789 0.0393

187

Table D.26: True positive rate and false positive rate for the Adaptive Threshold algorithm as the sug-
gested number of AIMs and the minimum threshold is varied. Results here for Ns = 55. We selected an
initial threshold of γB = 43 because that was the best performing threshold for the Memory Threshold
algorithm.

γB Ns γMin TPR FPR
43.00 55.00 20.00 0.8421 0.0465
43.00 55.00 25.00 0.8105 0.0438
43.00 55.00 30.00 0.7789 0.0424
43.00 55.00 33.00 0.7474 0.0421
43.00 55.00 35.00 0.7474 0.0429
43.00 55.00 37.00 0.5053 0.0320
43.00 55.00 40.00 0.4632 0.0384
43.00 55.00 43.00 0.4421 0.0259
43.00 55.00 45.00 0.3684 0.0283
43.00 55.00 47.00 0.3263 0.0323
43.00 55.00 50.00 0.2526 0.0297
43.00 55.00 53.00 0.3053 0.0267
43.00 55.00 55.00 0.3368 0.0233
43.00 55.00 60.00 0.6000 0.0343
43.00 55.00 65.00 0.7789 0.0393

Table D.27: True positive rate and false positive rate for the Adaptive Threshold algorithm as the sug-
gested number of AIMs and the minimum threshold is varied. Results here for Ns = 60. We selected an
initial threshold of γB = 43 because that was the best performing threshold for the Memory Threshold
algorithm.

γB Ns γMin TPR FPR
43.00 60.00 20.00 0.8421 0.0465
43.00 60.00 25.00 0.8105 0.0438
43.00 60.00 30.00 0.7789 0.0424
43.00 60.00 33.00 0.7474 0.0421
43.00 60.00 35.00 0.7579 0.0438
43.00 60.00 37.00 0.5474 0.0399
43.00 60.00 40.00 0.4316 0.0394
43.00 60.00 43.00 0.5053 0.0276
43.00 60.00 45.00 0.4211 0.0417
43.00 60.00 47.00 0.3263 0.0331
43.00 60.00 50.00 0.2421 0.0310
43.00 60.00 53.00 0.3053 0.0271
43.00 60.00 55.00 0.3368 0.0215
43.00 60.00 60.00 0.6000 0.0343
43.00 60.00 65.00 0.7789 0.0393

188

D.3.2 ROC for Adaptive Threshold Algorithm as a Function of γB
To give a better exploration of the Adaptive Threshold algorithm, Fig. D.1 shows an ROC curve
with just the performance of the Adaptive Threshold algorithm and the SPRT algorithm. The
parameters for the SPRT algorithm maked by the blue circles and for the Adaptive algorithm
marked yellow squares are given in Table 4.7. For the other settings of the Adaptive Threshold
algorithm the parameters are given in Table D.28.

Table D.28: Adaptive Threshold algorithm parameters explored in Fig. D.1.

Parameter Settings
γB {40, 50, 60, 80}
Ns {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60}
γmin {20, 25, 30, 35, 40, 45, 50, 55, 60, 65}

189

0 0.01 0.01 0.02 0.02 0.03 0.03 0.04 0.04 0.05 0.05 0.06 0.06 0.07 0.07 0.08

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

Tr
ue

Po
si

tiv
e

R
at

e

Receiver Operating Curve for Adaptive Threshold Algorithm

SPRT
Adaptive (γB = 43)
Adaptive (γB = 40)
Adaptive (γB = 50)
Adaptive (γB = 60)
Adaptive (γB = 80)

Figure D.1: The Adaptive Threshold algorithm is sensitive to the initial threshold parameter,
γB , in addition to the other parameters of the algorithm. The settings of the Adaptive algorithm
which give comparable false positive rates to the SPRT algorithm have worse true positive
rates, and those settings which give comparable true positive rates have worse false positive
rates.

D.4 Experiment 4 - Effect on Performance in 2D Operations
Here we report the number of maxima in the underlying maps which were observed by the robot
using the different algorithms, as well as the number of AIMs deployed. For each map 10 trials
were run, and we report the average number and standard deviation for the different quantities
observed.

D.4.1 Results Using Fixed Parameters
Here we provide the results for the algorithms using the parameters that were either specified as
part of the MVP project. The parameters are given in Table D.29.

190

Table D.29: Parameters used to produce results in Table D.30 and Table D.31.

Algorithm Parameters Value
Memory Threshold γ 80
SPRT s 8
Relative Change δ 0.95

Adaptive
γB 80
Ns 55
γmin 53

191

Table D.30: The average number of peaks captured by the three different algorithms on each map. We
report average ± one standard deviation, n = 10.

Map No AIMs Memory Adaptive Relative SPRT
Number Threshold Threshold Change
00 10.0± 0.0 16.6± 0.3 47.4± 4.1 88.2± 4.0 42.9± 3.1
01 11.0± 0.0 11.0± 0.0 44.8± 3.4 87.4± 3.8 44.1± 2.5
02 20.0± 0.0 21.0± 0.0 48.9± 2.9 95.5± 2.9 53.5± 4.8
03 13.0± 0.0 16.6± 0.3 49.0± 2.5 95.1± 1.9 46.3± 3.3
04 15.0± 0.0 16.1± 0.7 50.5± 3.7 96.9± 2.9 54.1± 2.5
05 12.0± 0.0 13.2± 1.0 50.2± 7.1 90.4± 4.0 53.1± 3.0
06 19.0± 0.0 19.2± 0.4 49.0± 5.8 88.6± 3.3 56.9± 1.9
07 16.0± 0.0 17.4± 0.4 43.8± 5.2 88.9± 3.1 49.9± 3.0
08 12.0± 0.0 15.9± 0.4 44.7± 5.3 89.7± 3.2 48.3± 2.5
09 17.0± 0.0 18.2± 0.4 47.0± 4.4 92.3± 3.5 53.0± 2.9
10 12.0± 0.0 12.4± 0.4 43.1± 5.8 93.9± 2.6 51.0± 3.6
11 15.0± 0.0 15.1± 0.2 47.3± 3.2 93.7± 4.8 48.7± 2.0
12 18.0± 0.0 19.4± 0.4 51.1± 6.7 100.8± 2.6 53.0± 2.7
13 19.0± 0.0 19.0± 0.0 52.1± 3.1 93.1± 2.3 52.0± 1.9
14 24.0± 0.0 24.1± 0.2 51.0± 4.2 96.9± 2.5 56.9± 2.7
15 17.0± 0.0 19.1± 0.7 52.8± 3.3 97.5± 3.2 53.4± 4.5
16 19.0± 0.0 24.2± 0.4 50.1± 5.9 100.2± 4.5 59.9± 3.4
17 16.0± 0.0 16.0± 0.0 53.1± 5.1 97.2± 3.8 54.4± 2.7
18 18.0± 0.0 21.1± 1.2 48.5± 3.3 88.1± 3.2 50.3± 3.1
19 10.0± 0.0 12.3± 0.9 38.2± 3.6 92.3± 2.9 46.9± 3.2
20 22.0± 0.0 23.4± 0.4 52.5± 4.3 93.9± 2.1 56.4± 2.5
21 20.0± 0.0 21.6± 0.6 57.3± 5.4 95.1± 2.1 51.6± 2.3
22 19.0± 0.0 19.5± 0.3 55.0± 5.6 108.9± 3.2 63.5± 2.5
23 16.0± 0.0 16.4± 0.4 45.3± 3.4 89.4± 3.7 51.5± 2.4
24 18.0± 0.0 20.5± 0.7 47.8± 3.0 91.1± 3.5 56.3± 3.8
25 13.0± 0.0 15.8± 0.4 43.7± 3.9 80.2± 3.8 42.0± 1.4
26 14.0± 0.0 16.2± 0.4 49.9± 5.7 89.8± 2.1 49.4± 3.5
27 19.0± 0.0 20.6± 0.6 49.0± 2.5 94.3± 5.2 53.6± 3.2
28 22.0± 0.0 24.0± 0.5 52.5± 5.5 97.3± 4.1 55.8± 3.5
29 12.0± 0.0 12.9± 0.7 45.0± 3.5 86.0± 2.4 52.8± 2.7

192

Table D.31: The average number of AIMs deployed by the different algorithms on each map. We report
average ± one standard deviation, n = 10

Map No AIMs Memory Adaptive Relative SPRT
Number Threshold Threshold Change
00 0.0± 0.0 3.3± 0.3 60.9± 3.1 109.0± 1.7 39.9± 1.9
01 0.0± 0.0 0.0± 0.0 53.2± 1.9 107.5± 1.7 39.8± 0.7
02 0.0± 0.0 1.1± 0.2 56.5± 2.2 108.1± 0.9 43.8± 1.3
03 0.0± 0.0 5.4± 0.6 56.0± 1.8 109.8± 2.2 37.3± 1.4
04 0.0± 0.0 2.6± 0.4 56.2± 2.3 109.6± 1.1 41.9± 1.0
05 0.0± 0.0 1.0± 0.4 53.1± 2.7 108.8± 0.7 43.2± 1.5
06 0.0± 0.0 1.2± 0.4 52.2± 1.8 108.4± 1.5 38.2± 0.9
07 0.0± 0.0 2.0± 0.0 53.9± 1.9 107.6± 1.6 43.6± 2.3
08 0.0± 0.0 5.1± 0.2 54.1± 2.4 108.8± 2.1 42.0± 1.4
09 0.0± 0.0 2.2± 0.2 54.2± 2.6 109.6± 1.9 39.8± 1.2
10 0.0± 0.0 3.3± 0.3 55.4± 3.2 108.6± 1.0 42.3± 1.3
11 0.0± 0.0 1.1± 0.2 63.5± 9.5 108.7± 1.1 41.3± 1.7
12 0.0± 0.0 1.1± 0.2 54.2± 1.9 107.6± 2.2 39.5± 1.8
13 0.0± 0.0 0.0± 0.0 55.0± 1.8 107.4± 1.4 39.0± 0.8
14 0.0± 0.0 0.2± 0.2 55.0± 2.0 108.7± 2.0 40.5± 1.6
15 0.0± 0.0 2.2± 0.2 57.3± 2.4 108.7± 1.9 36.9± 1.7
16 0.0± 0.0 4.8± 0.2 57.6± 3.3 109.1± 0.9 46.1± 1.3
17 0.0± 0.0 1.0± 0.0 55.2± 2.9 107.2± 1.5 40.7± 1.6
18 0.0± 0.0 2.1± 0.6 56.2± 3.2 108.2± 1.5 41.1± 1.5
19 0.0± 0.0 3.3± 0.6 53.2± 1.2 108.3± 1.8 41.9± 1.6
20 0.0± 0.0 3.0± 0.0 57.1± 2.4 108.7± 1.5 42.0± 0.6
21 0.0± 0.0 2.0± 0.3 56.2± 2.6 110.0± 2.0 41.2± 1.2
22 0.0± 0.0 1.0± 0.0 86.3± 29.9 108.8± 1.7 46.3± 1.4
23 0.0± 0.0 0.3± 0.3 54.3± 1.7 107.9± 1.6 40.8± 0.9
24 0.0± 0.0 3.7± 0.4 52.2± 1.8 108.9± 1.3 43.9± 0.8
25 0.0± 0.0 4.8± 0.4 59.1± 5.3 108.7± 1.8 38.6± 0.7
26 0.0± 0.0 2.2± 0.2 82.4± 29.4 109.0± 1.5 43.5± 1.4
27 0.0± 0.0 2.1± 0.3 56.3± 1.8 107.1± 2.5 43.1± 0.8
28 0.0± 0.0 3.6± 0.3 59.5± 5.8 108.3± 1.9 42.4± 1.3
29 0.0± 0.0 0.7± 0.5 55.3± 2.8 108.0± 1.6 42.3± 1.6

D.4.2 Additional Settings of Adaptive Threshold Algorithm
Here we present the results for different parameter settings for the Adaptive Threshold algorithm.
These settings did not perform as well as those presented in the main body of the document. We
broke the results down into two plots with different settings of the γB parameter of the Adaptive
Threshold Algorithm. These results are shown in Fig. D.2 and Fig. D.3.

In either plot we can see that the algorithms produce similar trend lines, both below the
dashed line that indicates a 1:1 ratio of observations of maxima to AIMs deployed. We also see

193

that the performance of the algorithm can be varied substantially by the other parameters.
For the higher values of γB (Fig. D.3) the range of the number of AIMs deployed is larger

than for the lower values of γB (Fig. D.2). Specifically, the higher values of γB have a lower
lower bound on how many AIMs they deploy.

Additionally the number of AIMs deployed by the Adaptive algorithm employing lowever
values of γB is more densely concentrated in the range [20, 100]. The Adaptive algorithm using
higher values of γB have the number of deployed AIMs distributed across the range [10, 130],
approximately.

0 20 40 60 80 100 120 140 160 180

0

20

40

60

80

100

120

140

160

AIMs Deployed

M
ax

im
a

O
bs

er
ve

d

Maxima vs AIMs as Adaptive Threshold Parameters are Varied

Adaptive (γB = 40)
Adaptive (γB = 45)
Adaptive (γB = 50)
Adaptive (γB = 55)

Figure D.2: The individual points in the plot represent the performance of the algorithms aver-
aged over all 30 water maps. As in Fig. 4.22, the y-axis is the number of maxima observed by
the algorithm less the maxima that would be observed by following the lawnmower path without
deploying any AIMs. The dashed line has a slope of 1.

194

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

140

160

AIMs Deployed

M
ax

im
a

O
bs

er
ve

d

Maxima vs AIMs as Adaptive Threshold Parameters are Varied

Adaptive (γB = 60)
Adaptive (γB = 65)
Adaptive (γB = 70)
Adaptive (γB = 75)
Adaptive (γB = 80)

Figure D.3: The individual points in the plot represent the performance of the algorithms aver-
aged over all 30 water maps. As in Fig. 4.22, the y-axis is the number of maxima observed by
the algorithm less the maxima that would be observed by following the lawnmower path without
deploying any AIMs. The dashed line has a slope of 1.

195

D.5 Experiment Parameters

Experiment Parameter Purpose

2D Simulation

Number of Kernels Used in generating the water maps.
The kernels are location, value pairs
that control the generation of the
water map. More kernels would
mean more variable water maps.
Fewer kernels would result in maps
with less spatial variance.

Underlying Distribution Controls the values used to seed the
Kernels in the Voronoi water map
generation.

Instrument Field of View The radius of the circular field of
view of the NSS. This smooths out
the hard edges of the Voronoi water
map.

Speed The speed of the vehicle while driv-
ing. We used a speed of 10cm/s,
but changing this speed determines
how aliased the water map will be
by the

Sampling Rate The rate at which the sensor re-
ceives readings. We used a value
of 1 reading per second, as this was
the sampling rate of the NSS. Com-
bined with the speed of the vehicle,
this parameter controls how accu-
rately the subsurface is sampled.

Lawnmower Path Spacing Controls how far apart the rows
of the lawnmower path are spaced.
Increasing this number reduces
the spacing between switch-backs
along the path, and hence lengthens
the overall path.

Outer AIM Radius To execute our AIMs we followed
an Archimedean spiral with a lim-
ited outer radius. Changing this
radius changes how much of the
map is covered when an AIM is de-
ployed.

196

Algorithm Parameter Purpose
Memory Thresh-
old

Threshold - γ Sensor readings above γ are con-
sidered interesting. AIMs are de-
ployed if readings crosses γ.

Adaptive Thresh-
old

Initial Threshold - γB Readings above this threshold will
trigger an AIM.

Minimum Threshold -
γmin

Sets a level to determine whether
readings are interesting or not. If
γmin is too high, the threshold γ
will never be modified. If γmin
is too low, then patches will never
close, and the threshold will never
be modified.

Number of suggested
AIMs - Ns

Controls how readily the robot
chooses to deploy AIMs. The
higher Ns the more AIMs will be
deployed, but it does not put a limit
on how many AIMs can be de-
ployed.

Number of observa-
tions below γmin -
Nb

The adaptive algorithm requires the
identification of patches. Patches
are sequences of sensor readings
that are above γmin. The Nb is used
to determine how many contiguous
readings must be below γmin before
the patch is considered to be low-
ered.

Relative Change
High Density Interval -
δ

Sensor readings outside the high
density interval γ are considered
to indicate a change has occurred.
Lower values of δ means changes
are more likely to be detected. As
δ → 1 the likelihood of detecting a
change goes to zero.

SPRT Confidence level - s s sets the confidence level for the
SPRT algorithm. As s approaches
1 the likelihood of reporting false
positives increases. There is no up-
per bound on s, but higher values
reduce the likelihood of reporting
false positives.

197

D.6 Ergodic Planning vs AIM Deployment
In Chapter 4 we presented a prospecting algorithm which followed a pre-determined path. The
simulated robot was operating in a field of water density, like those that would drive the readings
of the neutron spectrometer onboard the Resource Prospector robot. The objective of the work
was to determine if using change detection could improve the number of maxima in that field
that were observed by the robot as the result of deploying discrete Area of Interest Manoeuvres,
called AIMs.

The change detection algorithm was agnostic of the underlying planning algorithm, and made
the conservative assumption that precursor data were not available. We used a lawnmower path
as an exemplar planner, as lawnmower paths have the advantage of being simple and thorough,
but they can be inefficient.

Determining which type of planner should be used for mission operations is outside the scope
of this thesis. However, the question remains about whether or not a different planner might make
for more efficient operations. It has been suggested to the author that a planner using an ergodic
cost function may produce the desired behaviour for this robot, and can incorporate precursor
map data.

Here we conduct a brief exploration of an approximately optimal ergodic planner using the
water density maps employed in Chapter 4. We also discuss some implications of using this
planner in a Resource Prospector-like mission scenario.

D.6.1 Method
Miller and Murphey (2013b) use an optimal planner with an ergodic cost function for producing
trajectories with high coverage, but which spend proportionally more time in high-value regions
of a map. Fundamental to the work is the recognition that trajectories which have the same
(or similar) spatial frequency components as the map being explored will produce the desired
properties of coverage while accruing high value observations.(Miller and Murphey, 2013b).

The planner is designed to minimize the ergodic error metric, defined in Eq. (D.1). The
summation in the error computation is over all possible combinations of the K frequency com-
ponents along the n different axes of the map. In our experiment n = 2, as we are operating in a
two-dimensional, rectangular map.

E =
∑

k∈[0,...,K]n

Λk |ck − µk|2 (D.1)

Where Λk = 1
(1+‖k‖2)s is a weighting term that discounts different frequency components,

with s = (n+ 1)/2. The higher frequency components are discounted proportional to the square
of the magnitude of the component vector, ‖k‖2.

The term ck (Eq. (D.2)) is the kth time-averaged component of the robot trajectory, and
µk (Eq. (D.3)) is the kth spatial frequency component of the map. µ(x) is the value of the
density map at location x in the domain, X . X is a rectangular space with sides of length
Li, i ∈ {1, . . . , n}.

198

ck =
1

T

∫ T

0

fk(x(t))dt (D.2)

µk =

∫
X

µ(x)fk(x)dx (D.3)

The expression for the Fourier basis functions, fk used to compute ck and µk is given in
Eq. (D.4). hk is a normalizing constant, given in equation 9 of (Mathew and Mezić, 2011).

fk(x) =
1

hk

n∏
ki∈k

cos(
kiπ

Li
x) where k1, . . . , kn ∈ {0, . . . , K} (D.4)

The quantities and methods for computing the cost function are discussed in detail in (Mathew
and Mezić, 2011), and the reader is referred there for greater technical detail on the ergodic met-
ric. For our density maps, µ, we use normalized versions of the water maps from Chapter 4.

Algorithms

The robot plans to visit hot spots in the water density maps that were used in Chapter 4. The
robot is given the full water map and so does not need to gain information about the environment.

Algorithm D.2 gives the algorithm we used to implement an ergodic planning algorithm.
We used a best-first search to explore to find the path for the robot. The best-first search is an
approximation of the optimal trajectory planner developed by Miller and Murphy in (Miller and
Murphey, 2013b,a; Miller et al., 2016).

Algorithm D.1 Here we note some of the global parameters and the tree node data structure used
in representing paths in the approximately optimal ergodic planner.

global K . Number of frequency components
global u . Vehicle speed
global ∆t . Simulation time step
global µ1, . . . , µK . Frequency components of map being explored

structure Node(K, x, y)
parent← NULL . Parent node pointer
ck ← 0 ∀ k ∈ {1, . . . , K} . Per-component integrated path frequency score
score← 0
pos← (x, y)
length← 0 . Length of path from root to this node.
t← 0 . Time to follow path from root to this node.

end structure

We use the strategy Miller et al. (2016) use, sequentially planning optimal paths with a limited
planning horizon, Lh. At the end of each planning round the best leaf node in the tree is selected

199

as the new root for the next round of planning. Planning loops are continued until the total path
length exceeds the overall path budget LT .

Algorithm D.2 This is a best-first search algorithm with a random expansion of leaf nodes in
the tree of possible trajectories. µ1, . . . , µK are the frequency components of the map being
explored. ∆t is the timestep for the planner. Lh is the maximum length of one planning horizon
and LT is the total path length budget. The Node data structure is defined in Algorithm D.1.

function PATH PLANNER(Lh, LT , Nchildren, Ngoals)
root := Node(K)
path length← 0
while path length ≤ LT do

goal← ergodic path search(root,, Lh, Nchildren, Ngoals)
root← goal . Start the next round of planning from the best goal with the history

needed to compute the ergodic objective function.
end while
return path(goal) . Follow parent node pointers back to root to find path

end function
function ERGODIC PATH SEARCH(root,Lh, Nchildren, Ngoals)

to expand := PriorityQueue(root)
goals := PriorityQueue(∅)
while |goals| < Ngoals do

n← to expand.pop()
children← expand(n,Nchildren) . See Algorithm D.3
for all c ∈ children do

if c.length ≥ Lh then . If new point is beyond planning horizon, add to goals
goals.add((c.score, c))

else
to extend(c)

end if
end for

end while
return goals.pop()

end function

At each step of the algorithm the approximately optimal planner selects the best node to
explore, and then expands the search tree by taking Nchildren = 5 random actions, as seen in
Algorithm D.3. The random actions were motions for the vehicle defined in Eq. (D.5) for a fixed
vehicle speed of u = 0.1m/s and an integration time ∆t = 10sec.

a = u [cos(θ), sin(θ)]T ∆t (D.5)

The direction of motion, θ, is randomly selected from a uniform distribution over [0, 2π].
Each new node in the tree is assigned a position equal to the position of its parent plus a.

We expand the search tree out to the planning horizon for Ngoals = 100 goals, at which point

200

the trajectory planner is restarted at the best goal node, with the prior history for computing ck
taken from the goal node.

Algorithm D.3 We randomly expand nodes in the tree and integrate the ergodic score for the
path up to the current node, c. fk(·) is the kth frequency basis function, and Λk is the frequency
discounting factor, as defined in equations 9 and 12 of (Mathew and Mezić, 2011).

function EXPAND(p,Nchildren)
children← List(∅)
while len(children) < Nchildren do

θ ∼ Uniform[0, 2π]
a = u [cos(θ), sin(θ)]T ∆t
pos = p.pos + a
if in map(pos) then

c := Node(K)
c.parent← p.parent
c.pos← pos
c.length← p.length + ‖a‖2
c.t← p.t+ ∆t
c.ck ← p.ck + fk(c.pos)∆t ∀k ∈ {0, . . . , K}

c.score←
K∑
k

Λk|(c.ck/c.t)− µk|2

children.append(c)
end if

end while
return children

end function

Randomly sampling the heading for the vehicle does make the assumption that the robot can
change heading instantaneously. This is not necessarily possible for many vehicles, but Resource
Prospector is an omni-directional vehicle, so it should be able to follow any path generated.

Randomly changing direction does mean that the algorithm will likely produce paths that are
not energy-efficient. Likewise, the generated trajectories may not be feasible for some robots,
even if the generated paths are feasible. We ignore these concerns here, but do note them for
future implementation.

For comparison, we also test the greedy trajectory planner described by Mathew and Mezić
(2011). The control law governing the vehicle is given in equation 26 of (Mathew and Mezić,
2011). This algorithm is included to act as a sanity check of the approximately optimal ergodic
planner, and not meant to be interpreted as a recommendation for, or discouragement against,
using the greedy planner.

Experiment

To test the performance of the ergodic planner we provided the algorithm with the water maps
from Chapter 4, which were normalized to make them density functions. The algorithms were

201

given a planning horizon of 50m and a total trajectory budget of 1000m. The total length for the
lawnmower paths used in Chapter 4 was 550m, these parameters give the algorithm additional
margin to explore the map.

We report the number of maxima that were observed by the robot following this trajectory.
We compare this performance to a robot that simply follows a lawnmower pattern (No AIMS)
and the SPRT algorithm of Chapter 4 with s = 8.

The parameters for the ergodic planning algorithms are given in Table D.32. The time step
for approximately optimal ergodic planner is much larger than that used for the greedy ergodic
planner. The larger timestep was used for the optimal planner to decrease the planning time.

Table D.32: The parameters used in the approximately optimal and greedy ergodic planners.

Parameter Optimal Ergodic Greedy Ergodic
Vehicle Speed - u 0.1m/s 0.1m/s
Number of Frequency Components - K 20 20
Time step - ∆ 10sec 1.0sec
Planning Horizon - Lh 50m 50m
Path Budget - LT 1000m 1000m
Number of Actions - Nchildren 5 N/A
Number of Goals - Ngoals 100 N/A

The number of frequency components used, K, was selected arbitrarily. In both cases the
vehicle was given a speed of 10cm/s. This parameter was chosen because it is the top speed of
the Resource Prospector robot.

D.6.2 Results
We can see in Fig. D.4 and Fig. D.5 example trajectories produced by the ergodic planners. The
greedy ergodic planner produces much smoother paths than the approximately optimal planner.
This is partially due to the smaller time step for the greedy planner, and because the approx-
imate planner randomly samples headings for each node, causing discontinuities in the path.
The roughness of the approximately optimal planner’s paths is a reflection of the fact that the
algorithm is a coarse approximation of Miller’s optimal path planner.

202

(a) Water density map 09. (b) A trajectory produced by the SPRT (s =
8) algorithm. On average ≈ 53 maxima
were observed.

(c) The trajectory produced by the greedy
ergodic planner.

(d) The trajectory produced by the ap-
proximately optimal ergodic planner. The
jagged path is due to the approximations
of the search algorithm described in Algo-
rithm D.2

Figure D.4: Trajectories produced by the different planning algorithms for the water map where
the optimal ergodic planning algorithm achieved its highest score, which was map 9. We can
see that the ergodic planners either get near to or cross all of the major hot spots in the map.

Fig. D.4 shows the generated trajectories for the water map, map 09, where the approximately
optimal ergodic planner had its best score. Fig. D.5 shows the trajectories generated by the
algorithms for the water map, map 5, where the approximately optimal ergodic planner had its
lowest score.

203

(a) Water density map 05. (b) Trajectory produced by SPRT algorithm
on water map 5. On average ≈ 53 maxima
were observed.

(c) Greedy ergodic planner on water map
5.

(d) Approximately optimal ergodic planner
on water map 5. The generated trajectory
crosses all the major hotspots in the map.

Figure D.5: The trajectories of the different planning algorithms for the water map where the
optimal ergodic planning algorithm had its worst performance, which was map 5. Even though
this is the worst performing map, the approximately optimal ergodic planner crosses all of the
bright yellow regions of the map, which are the major hotspots.

The number of maxima observed by the different algorithms is given in Table D.33. These
data show that the ergodic planners don’t observe as many maxima as the SPRT algorithm, but
they do observe more maxima than the lawnmower path alone. This is the point of intelligent
planners, that they make more efficient use of resources than uninformed planners, so this result
is expected.

204

Table D.33: The number of peaks in the water maps that were observed by the different algorithms.

Map No AIM Optimal Ergodic Greedy Ergodic SPRT (s = 8)
00 10 30 34 42.9± 3.1
01 11 35 40 44.1± 2.5
02 20 31 31 53.5± 4.8
03 13 37 42 46.3± 3.3
04 15 35 39 54.1± 2.5
05 12 25 34 53.1± 3.0
06 19 35 30 56.9± 1.9
07 16 29 36 49.9± 3.0
08 12 37 42 48.3± 2.5
09 17 30 41 53.0± 2.9
10 12 28 37 51.0± 3.6
11 15 29 28 48.7± 2.0
12 18 37 46 53.0± 2.7
13 19 32 34 52.0± 1.9
14 24 25 37 56.9± 2.7
15 17 33 33 53.4± 4.5
16 19 35 55 59.9± 3.4
17 16 31 33 54.4± 2.7
18 18 30 36 50.3± 3.1
19 10 41 36 46.9± 3.2
20 22 32 40 56.4± 2.5
21 20 34 38 51.6± 2.3
22 19 35 39 63.5± 2.5
23 16 26 35 51.5± 2.4
24 18 32 44 56.3± 3.8
25 13 30 30 42.0± 1.4
26 14 34 43 49.4± 3.5
27 19 37 43 53.6± 3.2
28 22 38 36 55.8± 3.5
29 12 26 42 52.8± 2.7

In Fig. D.6 we report the number of maxima obtained by the different algorithms, averaged
over all maps. We do see that the SPRT algorithm observes statistically significantly more max-
ima in the maps than the ergodic planners at a 95% confidence level.

The size of the effect of using the SPRT algorithm is d = 3.21 and d = 2.33, using Cohen’s
d, relative to the approximately optimal and greedy planners, respectively. Both these values are
very large. The performance difference between the approximately optimal and greedy planners
was not statistically significant at a confidence level of 95%.

205

**

**

0

5

10

15

20

25

30

35

40

45

50

55

60
M

ax
im

a
O

bs
er

ve
d

SPRT (s = 8) Optimal Ergodic Greedy Ergodic

Figure D.6: The SPRT (s = 8) algorithm captures more maxima in the water maps than either
ergodic planner with statistical significance. The performance of the greedy and approximately
optimal ergodic planners are not statistically significant at a confidence level of 95%. Error bars
represent one standard error. The effect size of the difference between SPRT algorithm and
the approximately optimal ergodic algorithm was d = 3.21. The effect size of the difference
between the SPRT algorithm and the greedy ergodic planner was d = 2.33.

D.6.3 Discussion
Saying whether or not ergodic planning, or indeed any other path planner, is the right planner
to use for a given mission is beyond the scope of this thesis. However, having conducted this
experiment, we do make some observations.

First, it is important to stress that our approximately optimal ergodic planner is not guaranteed
to be optimal. It is a coarse approximation of the algorithm used by Miller and Murphy, used to
explore the utility of ergodic planning. The performance of the optimal ergodic planner should
be at least maintained, and almost certainly improved, by using a direct implementation of the

206

planner of Miller and Murphy.
Second, the AIMs that the SPRT algorithm conducted to collect more information represent

additional path length that the ergodic planner was not assigned. From the results above we can
conclude that the ergodic planner makes more efficient use of its path budget than the SPRT and
No AIMs algorithms. Again, this is to be expected with a planner that is aware of and makes use
of information about the environment. That being said, there is no reason that something like
the ergodic planner couldn’t be complimented by the SPRT-based change detection algorithm
presented in Chapter 4. Indeed, that is one of the benefits of using a planner agnostic algorithm.

Third, the ergodic planner is good for coverage planning. In this experiment we used density
maps that had more complex structure than those used in either (Miller et al., 2016) or (Mathew
and Mezić, 2011). The results are in-keeping with the claims made in those works, showing that
ergodic planning is useful in complex environments.

However, when there is a burden of validating the system, the benefit of a planner must
warrant the costs of the required validation and verification process. There are scenarios where
complex planners are warranted, but there may also be operational conditions where simply
following simple, pre-determined coverage paths is the overall better option.

A fourth consideration is that in the absence of prior knowledge the planner must take steps to
learn what the map looks like. At this point all unmapped regions are equally valuable, so there is
a question of whether or not an information gathering planner might be more appropriate, or even
simple approaches like lawnmower paths or frontier exploration. Once that initial knowledge has
been acquired, however, the ergodic planner can again become useful.

In the particular case of the scenario presented in Chapter 4, the ergodic planner is especially
well-suited because it doesn’t need to choose to deploy discrete actions like AIMs, which the
SPRT algorithm does. Because the ergodic planner attempts to spend more of its time in regions
where the density map has higher values it accomplishes the purpose of the AIM deployment
without needing to reason about the deployment of AIMs.

Removing the notion of AIMs from the robot’s suite of actions simplifies the planning pro-
cess. This is largely possible because, even though the AIMs are discrete actions the robot can
take, they are executed by driving a path, and the benefits of a particular AIM can be folded into
a path cost function.

A reduction in complexity is always welcome in flight missions. But the ergodic trajectory
cost function doesn’t address situations where robots must take distinct actions that cannot be
executed by following a path, such as drilling for soil samples. In this case robots will need some
representation of discrete actions and will need to reason about the value and risks of taking those
actions. Discrete actions can be encoded in cost functions, and ergodicity may be a part of that
cost function, but ergodicity by itself does not address this problem.

Finally, there is the matter of the shape of the generated paths. The trajectories produced
by the unconstrained ergodic planner involve a considerable amount of doubling back, which,
in the author’s experience, seems unlikely to be palatable to mission operators. Backtracking is
especially concerning when planned operations that cover long distances.

The concept of operations in the Resource Prospector mission involves travelling long dis-
tances, on the order of kilometers, only stopping to gather more localized, dense mapping data
when sensor readings draw the attention of the remote science team. In this case, something like
the ergodic planner is not a viable tool for mission-level trajectory generation, as the backtracking

207

is antithetical to the mission operations.
It is possible that the planner could be further constrained to reduce the amount of backtrack-

ing generated by the planner to increase the generated paths’ alignment with mission operations.
However, at this point, one would have to ask whether or not the utility of an ergodic planner is
being overpowered by the mission constraints.

That is not to say that an ergodic planner, or any other planner, has no place in such a mis-
sion. In Chapter 4 we designed AIMs as blindly driven spiral paths. It seems that, for example,
an ergodic planner would be an excellent tool to use to design AIMs, especially as they can in-
corporate precursor data. As we have seen, the ergodic planner produces better results than the
lawnmower path, and lawnmower and spiral paths are typically, in the author’s experience, used
to conduct Area of Interest Manoeuvres.

To summarize, when one has prior knowledge of the world, informed planners can make
much better use of resources than uninformed planners. Further, the ergodic planner is particu-
larly suited to the problem setting discussed in Chapter 4. Even then, the ergodic planner could
be augmented by the change detection algorithms we had discussed there.

However, the ergodic cost function alone is not panacea in space exploration missions. A
planner which seeks to minimize the ergodic cost of a trajectory may need to be augmented to
deal with more complex decision spaces and mission constraints. While a promising tool for
planning trajectories, it will still need to be worked into mission operations on a case-by-case
basis.

208

Appendix E

Falsification Sampling Supplemental
Material

E.1 Belief Distributions
This section gives the belief distributions learned by the algorithms for the different settings of
error and sampling budget. Most important to note across all settings of hypotheses quality and
sampling budget is that once the probability of having a sensor error is greater than 0.2 then
neither algorithm is capable of reliably identifying the best hypothesis.

E.1.1 Experiment 1 - All Good Hypotheses
Fig. E.1to Fig. E.10 give the final belief distributions of the two algorithms. We can see that as
the noise level increases, the ability to distinguish the best hypotheses decreases.

209

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 025, P (Error) = 0.0

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 025, P (Error) = 0.01

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 025, P (Error) = 0.05

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 025, P (Error) = 0.1

Domain Mutual Information Falsification

Figure E.1: All good hypotheses. Belief distributions learned by the Domain Mutual Informa-
tion and Falsification sampilng algorithms. Budget = 25, P (Error) ∈ {0, 0.01, 0.05, 0.1}. Both
algorithm select the correct hypotheses. Initially the performance of the algorithms does not
vary much as noise as increased.

210

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 025, P (Error) = 0.2

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 025, P (Error) = 0.3

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 025, P (Error) = 0.4

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 025, P (Error) = 0.5

Domain Mutual Information Falsification

Figure E.2: All good hypotheses. Belief distributions learned by the Domain Mutual Infor-
mation and Falsification sampilng algorithms. Budget = 25, P (Error) ∈ {0.2, 0.3, 0.4, 0.5}. As
noise increases the performance of the algorithms converges, and it becomes more difficult to
distinguish the correct hypothesis.

211

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 050, P (Error) = 0.0

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 050, P (Error) = 0.01

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 050, P (Error) = 0.05

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 050, P (Error) = 0.1

Domain Mutual Information Falsification

Figure E.3: All good hypotheses. Belief distributions learned by the Domain Mutual Informa-
tion and Falsification sampilng algorithms. Budget = 50, P (Error) ∈ {0, 0.01, 0.05, 0.1}. Both
algorithm select the correct hypotheses. Initially the performance of the algorithms does not
vary much as noise as increased.

212

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 050, P (Error) = 0.2

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 050, P (Error) = 0.3

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 050, P (Error) = 0.4

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 050, P (Error) = 0.5

Domain Mutual Information Falsification

Figure E.4: All good hypotheses. Belief distributions learned by the Domain Mutual Infor-
mation and Falsification sampilng algorithms. Budget = 50, P (Error) ∈ {0.2, 0.3, 0.4, 0.5}. As
noise increases the performance of the algorithms converges, and it becomes more difficult to
distinguish the correct hypothesis.

213

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 100, P (Error) = 0.0

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 100, P (Error) = 0.01

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 100, P (Error) = 0.05

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 100, P (Error) = 0.1

Domain Mutual Information Falsification

Figure E.5: All good hypotheses. Belief distributions learned by the Domain Mutual Informa-
tion and Falsification sampilng algorithms. Budget = 100, P (Error) ∈ {0, 0.01, 0.05, 0.1}. Both
algorithm select the correct hypotheses. Initially the performance of the algorithms does not
vary much as noise as increased.

214

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 100, P (Error) = 0.2

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 100, P (Error) = 0.3

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 100, P (Error) = 0.4

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 100, P (Error) = 0.5

Domain Mutual Information Falsification

Figure E.6: All good hypotheses. Belief distributions learned by the Domain Mutual Informa-
tion and Falsification sampilng algorithms. Budget = 100, P (Error) ∈ {0.2, 0.3, 0.4, 0.5}. As
noise increases the performance of the algorithms converges, and it becomes more difficult to
distinguish the correct hypothesis.

215

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 150, P (Error) = 0.0

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 150, P (Error) = 0.01

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 150, P (Error) = 0.05

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 150, P (Error) = 0.1

Domain Mutual Information Falsification

Figure E.7: All good hypotheses. Belief distributions learned by the Domain Mutual Informa-
tion and Falsification sampilng algorithms. Budget = 150, P (Error) ∈ {0, 0.01, 0.05, 0.1}. Both
algorithm select the correct hypotheses. Initially the performance of the algorithms does not
vary much as noise as increased.

216

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 150, P (Error) = 0.2

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 150, P (Error) = 0.3

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 150, P (Error) = 0.4

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 150, P (Error) = 0.5

Domain Mutual Information Falsification

Figure E.8: All good hypotheses. Belief distributions learned by the Domain Mutual Informa-
tion and Falsification sampilng algorithms. Budget = 150, P (Error) ∈ {0.2, 0.3, 0.4, 0.5}. As
noise increases the performance of the algorithms converges, and it becomes more difficult to
distinguish the correct hypothesis.

217

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 200, P (Error) = 0.0

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 200, P (Error) = 0.01

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 200, P (Error) = 0.05

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 200, P (Error) = 0.1

Domain Mutual Information Falsification

Figure E.9: All good hypotheses. Belief distributions learned by the Domain Mutual Informa-
tion and Falsification sampilng algorithms. Budget = 200, P (Error) ∈ {0, 0.01, 0.05, 0.1}. Both
algorithm select the correct hypotheses. Initially the performance of the algorithms does not
vary much as noise as increased.

218

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 200, P (Error) = 0.2

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 200, P (Error) = 0.3

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 200, P (Error) = 0.4

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 200, P (Error) = 0.5

Domain Mutual Information Falsification

Figure E.10: All good hypotheses. Belief distributions learned by the Domain Mutual Infor-
mation and Falsification sampilng algorithms. Budget = 200, P (Error) ∈ {0.2, 0.3, 0.4, 0.5}. As
noise increases the performance of the algorithms converges, and it becomes more difficult to
distinguish the correct hypothesis.

E.1.2 Experiment 2 - Mixed Quality Hypotheses
Fig. E.11to Fig. E.20 give the final belief distributions of the two algorithms. We can see that as
the noise level increases, the ability to distinguish the best hypotheses decreases.

219

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 025, P (Error) = 0.0

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 025, P (Error) = 0.01

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 025, P (Error) = 0.05

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 025, P (Error) = 0.1

Domain Mutual Information Falsification

Figure E.11: Mixed quality hypotheses. Belief distributions learned by the Domain Mutual
Information and Falsification sampilng algorithms. Budget = 25, P (Error) ∈ {0, 0.01, 0.05, 0.1}.
Both algorithm select the correct hypotheses. Initially the performance of the algorithms does
not vary much as noise as increased.

220

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 025, P (Error) = 0.2

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 025, P (Error) = 0.3

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 025, P (Error) = 0.4

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 025, P (Error) = 0.5

Domain Mutual Information Falsification

Figure E.12: Mixed quality hypotheses. Belief distributions learned by the Domain Mutual
Information and Falsification sampilng algorithms. Budget = 25, P (Error) ∈ {0.2, 0.3, 0.4, 0.5}.
As noise increases the performance of the algorithms converges, and it becomes more difficult
to distinguish the correct hypothesis.

221

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 050, P (Error) = 0.0

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 050, P (Error) = 0.01

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 050, P (Error) = 0.05

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 050, P (Error) = 0.1

Domain Mutual Information Falsification

Figure E.13: Mixed quality hypotheses. Belief distributions learned by the Domain Mutual
Information and Falsification sampilng algorithms. Budget = 50, P (Error) ∈ {0, 0.01, 0.05, 0.1}.
Both algorithm select the correct hypotheses. Initially the performance of the algorithms does
not vary much as noise as increased.

222

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 050, P (Error) = 0.2

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 050, P (Error) = 0.3

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 050, P (Error) = 0.4

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 050, P (Error) = 0.5

Domain Mutual Information Falsification

Figure E.14: Mixed quality hypotheses. Belief distributions learned by the Domain Mutual
Information and Falsification sampilng algorithms. Budget = 50, P (Error) ∈ {0.2, 0.3, 0.4, 0.5}.
As noise increases the performance of the algorithms converges, and it becomes more difficult
to distinguish the correct hypothesis.

223

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 100, P (Error) = 0.0

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 100, P (Error) = 0.01

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 100, P (Error) = 0.05

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 100, P (Error) = 0.1

Domain Mutual Information Falsification

Figure E.15: Mixed quality hypotheses. Belief distributions learned by the Domain Mutual
Information and Falsification sampilng algorithms. Budget = 100, P (Error) ∈ {0, 0.01, 0.05, 0.1}.
Both algorithm select the correct hypotheses. Initially the performance of the algorithms does
not vary much as noise as increased.

224

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 100, P (Error) = 0.2

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 100, P (Error) = 0.3

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 100, P (Error) = 0.4

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 100, P (Error) = 0.5

Domain Mutual Information Falsification

Figure E.16: Mixed quality hypotheses. Belief distributions learned by the Domain Mutual
Information and Falsification sampilng algorithms. Budget = 100, P (Error) ∈ {0.2, 0.3, 0.4, 0.5}.
As noise increases the performance of the algorithms converges, and it becomes more difficult
to distinguish the correct hypothesis.

225

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 150, P (Error) = 0.0

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 150, P (Error) = 0.01

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 150, P (Error) = 0.05

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 150, P (Error) = 0.1

Domain Mutual Information Falsification

Figure E.17: Mixed quality hypotheses. Belief distributions learned by the Domain Mutual
Information and Falsification sampilng algorithms. Budget = 150, P (Error) ∈ {0, 0.01, 0.05, 0.1}.
Both algorithm select the correct hypotheses. Initially the performance of the algorithms does
not vary much as noise as increased.

226

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 150, P (Error) = 0.2

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 150, P (Error) = 0.3

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 150, P (Error) = 0.4

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 150, P (Error) = 0.5

Domain Mutual Information Falsification

Figure E.18: Mixed quality hypotheses. Belief distributions learned by the Domain Mutual
Information and Falsification sampilng algorithms. Budget = 150, P (Error) ∈ {0.2, 0.3, 0.4, 0.5}.
As noise increases the performance of the algorithms converges, and it becomes more difficult
to distinguish the correct hypothesis.

227

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 200, P (Error) = 0.0

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 200, P (Error) = 0.01

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 200, P (Error) = 0.05

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 200, P (Error) = 0.1

Domain Mutual Information Falsification

Figure E.19: Mixed quality hypotheses. Belief distributions learned by the Domain Mutual
Information and Falsification sampilng algorithms. Budget = 200, P (Error) ∈ {0, 0.01, 0.05, 0.1}.
Both algorithm select the correct hypotheses. Initially the performance of the algorithms does
not vary much as noise as increased.

228

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 200, P (Error) = 0.2

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 200, P (Error) = 0.3

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 200, P (Error) = 0.4

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 200, P (Error) = 0.5

Domain Mutual Information Falsification

Figure E.20: Mixed quality hypotheses. Belief distributions learned by the Domain Mutual
Information and Falsification sampilng algorithms. Budget = 200, P (Error) ∈ {0.2, 0.3, 0.4, 0.5}.
As noise increases the performance of the algorithms converges, and it becomes more difficult
to distinguish the correct hypothesis.

E.1.3 Experiment 3 - All Bad Hypotheses
Fig. E.21to Fig. E.30 give the final belief distributions of the two algorithms. We can see that as
the noise level increases, the ability to distinguish the best hypotheses decreases.

When the noise level hits an error rate of 0.2, both algorithms begin to select one of the
incorrect hypotheses as the best hypothesis. However, in this case both algorithms select the
least-bad of the proposed hypothesis, H1.

229

H0 H1 H2 H3

0

0.2

0.4

0.6

0.8

B
el

ie
f

N = 20, T = 025, P (Error) = 0.0

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 025, P (Error) = 0.01

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 025, P (Error) = 0.05

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 025, P (Error) = 0.1

Domain Mutual Information Falsification

Figure E.21: All poor hypotheses. Belief distributions learned by the Domain Mutual Informa-
tion and Falsification sampilng algorithms. Budget = 25, P (Error) ∈ {0, 0.01, 0.05, 0.1}. Both
algorithm select the correct hypotheses. Initially the performance of the algorithms does not
vary much as noise as increased.

230

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 025, P (Error) = 0.2

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 025, P (Error) = 0.3

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 025, P (Error) = 0.4

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 025, P (Error) = 0.5

Domain Mutual Information Falsification

Figure E.22: All poor hypotheses. Belief distributions learned by the Domain Mutual Infor-
mation and Falsification sampilng algorithms. Budget = 25, P (Error) ∈ {0.2, 0.3, 0.4, 0.5}. As
noise increases the performance of the algorithms converges, and it becomes more difficult to
distinguish the correct hypothesis.

231

H0 H1 H2 H3

0

0.2

0.4

0.6

0.8

B
el

ie
f

N = 20, T = 050, P (Error) = 0.0

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 050, P (Error) = 0.01

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 050, P (Error) = 0.05

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 050, P (Error) = 0.1

Domain Mutual Information Falsification

Figure E.23: All poor hypotheses. Belief distributions learned by the Domain Mutual Informa-
tion and Falsification sampilng algorithms. Budget = 50, P (Error) ∈ {0, 0.01, 0.05, 0.1}. Both
algorithm select the correct hypotheses. Initially the performance of the algorithms does not
vary much as noise as increased.

232

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 050, P (Error) = 0.2

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 050, P (Error) = 0.3

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 050, P (Error) = 0.4

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 050, P (Error) = 0.5

Domain Mutual Information Falsification

Figure E.24: All poor hypotheses. Belief distributions learned by the Domain Mutual Infor-
mation and Falsification sampilng algorithms. Budget = 50, P (Error) ∈ {0.2, 0.3, 0.4, 0.5}. As
noise increases the performance of the algorithms converges, and it becomes more difficult to
distinguish the correct hypothesis.

233

H0 H1 H2 H3

0

0.2

0.4

0.6

0.8

B
el

ie
f

N = 20, T = 100, P (Error) = 0.0

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 100, P (Error) = 0.01

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 100, P (Error) = 0.05

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 100, P (Error) = 0.1

Domain Mutual Information Falsification

Figure E.25: All poor hypotheses. Belief distributions learned by the Domain Mutual Informa-
tion and Falsification sampilng algorithms. Budget = 100, P (Error) ∈ {0, 0.01, 0.05, 0.1}. Both
algorithm select the correct hypotheses. Initially the performance of the algorithms does not
vary much as noise as increased.

234

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 100, P (Error) = 0.2

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 100, P (Error) = 0.3

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 100, P (Error) = 0.4

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 100, P (Error) = 0.5

Domain Mutual Information Falsification

Figure E.26: All poor hypotheses. Belief distributions learned by the Domain Mutual Informa-
tion and Falsification sampilng algorithms. Budget = 100, P (Error) ∈ {0.2, 0.3, 0.4, 0.5}. As
noise increases the performance of the algorithms converges, and it becomes more difficult to
distinguish the correct hypothesis.

235

H0 H1 H2 H3

0

0.2

0.4

0.6

0.8

B
el

ie
f

N = 20, T = 150, P (Error) = 0.0

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 150, P (Error) = 0.01

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 150, P (Error) = 0.05

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 150, P (Error) = 0.1

Domain Mutual Information Falsification

Figure E.27: All poor hypotheses. Belief distributions learned by the Domain Mutual Informa-
tion and Falsification sampilng algorithms. Budget = 150, P (Error) ∈ {0, 0.01, 0.05, 0.1}. Both
algorithm select the correct hypotheses. Initially the performance of the algorithms does not
vary much as noise as increased.

236

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 150, P (Error) = 0.2

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 150, P (Error) = 0.3

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 150, P (Error) = 0.4

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 150, P (Error) = 0.5

Domain Mutual Information Falsification

Figure E.28: All poor hypotheses. Belief distributions learned by the Domain Mutual Informa-
tion and Falsification sampilng algorithms. Budget = 150, P (Error) ∈ {0.2, 0.3, 0.4, 0.5}. As
noise increases the performance of the algorithms converges, and it becomes more difficult to
distinguish the correct hypothesis.

237

H0 H1 H2 H3

0

0.2

0.4

0.6

0.8

B
el

ie
f

N = 20, T = 200, P (Error) = 0.0

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 200, P (Error) = 0.01

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 200, P (Error) = 0.05

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 200, P (Error) = 0.1

Domain Mutual Information Falsification

Figure E.29: All poor hypotheses. Belief distributions learned by the Domain Mutual Informa-
tion and Falsification sampilng algorithms. Budget = 200, P (Error) ∈ {0, 0.01, 0.05, 0.1}. Both
algorithm select the correct hypotheses. Initially the performance of the algorithms does not
vary much as noise as increased.

238

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 200, P (Error) = 0.2

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 200, P (Error) = 0.3

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 200, P (Error) = 0.4

Domain Mutual Information Falsification

H0 H1 H2 H3

0

0.2

0.4

0.6

B
el

ie
f

N = 20, T = 200, P (Error) = 0.5

Domain Mutual Information Falsification

Figure E.30: All poor hypotheses. Belief distributions learned by the Domain Mutual Informa-
tion and Falsification sampilng algorithms. Budget = 200, P (Error) ∈ {0.2, 0.3, 0.4, 0.5}. As
noise increases the performance of the algorithms converges, and it becomes more difficult to
distinguish the correct hypothesis.

E.2 Statistical Significance Data
In this section we present in tabular form the data which supports the plots in Chapter 5. Positive
values of Cohen’s d mean that the falsification algorithm has superior performance. Negative
values means the mutual information algorithm is better.

239

E.2.1 Experiment 1 - All Good Hypotheses

Table E.1: Change in belief in the best hypotheses as sensor noise changes, all good hypotheses,
sampling budget = 25.

P (Error) ∆P (H∗) Cohen’s d
0.0 0.001 N/A

0.01 0.002 N/A
0.05 0.003 0.66
0.1 0.003 0.80
0.2 0.001 N/A
0.3 0.002 N/A
0.4 0.000 N/A
0.5 0.0 N/A

Table E.2: Change in belief in the best hypotheses as sensor noise changes, all good hypotheses,
sampling budget = 50.

P (Error) ∆P (H∗) Cohen’s d
0.0 0.001 N/A

0.01 0.002 N/A
0.05 0.002 N/A
0.1 0.002 N/A
0.2 0.002 N/A
0.3 0.002 N/A
0.4 0.000 N/A
0.5 0.0 N/A

Table E.3: Change in belief in the best hypotheses as sensor noise changes, all good hypotheses,
sampling budget = 100.

P (Error) ∆P (H∗) Cohen’s d
0.0 0.001 N/A

0.01 0.002 N/A
0.05 0.002 N/A
0.1 0.002 0.65
0.2 0.001 0.70
0.3 0.001 N/A
0.4 0.000 N/A
0.5 0.0 N/A

240

Table E.4: Change in belief in the best hypotheses as sensor noise changes, all good hypotheses,
sampling budget = 150.

P (Error) ∆P (H∗) Cohen’s d
0.0 0.001 N/A

0.01 0.002 N/A
0.05 0.001 N/A
0.1 0.002 0.63
0.2 0.001 0.93
0.3 0.001 0.70
0.4 0.000 N/A
0.5 0.0 N/A

Table E.5: Change in belief in the best hypotheses as sensor noise changes, all good hypotheses,
sampling budget = 200.

P (Error) ∆P (H∗) Cohen’s d
0.0 0.002 0.67

0.01 0.002 0.73
0.05 0.002 0.70
0.1 0.001 0.68
0.2 0.001 1.09
0.3 0.000 N/A
0.4 0.000 N/A
0.5 0.0 N/A

E.2.2 Experiment 2 - Mixed Quality Hypotheses

Table E.6: Change in belief in the best hypotheses as sensor noise changes, mixed quality hypotheses,
sampling budget = 25.

P (Error) ∆P (H∗) Cohen’s d
0.0 -0.017 -1.03

0.01 -0.013 -0.82
0.05 -0.010 -0.79
0.1 -0.002 N/A
0.2 -0.000 N/A
0.3 -0.001 -0.87
0.4 -0.000 N/A
0.5 0.0 N/A

241

Table E.7: Change in belief in the best hypotheses as sensor noise changes, mixed quality hypotheses,
sampling budget = 50.

P (Error) ∆P (H∗) Cohen’s d
0.0 -0.013 -1.54

0.01 -0.010 -1.22
0.05 -0.005 -0.87
0.1 0.001 N/A
0.2 0.001 N/A
0.3 -0.001 N/A
0.4 0.000 N/A
0.5 0.0 N/A

Table E.8: Change in belief in the best hypotheses as sensor noise changes, mixed quality hypotheses,
sampling budget = 100.

P (Error) ∆P (H∗) Cohen’s d
0.0 -0.006 N/A

0.01 -0.004 N/A
0.05 -0.002 N/A
0.1 0.001 N/A
0.2 0.001 N/A
0.3 0.000 N/A
0.4 0.000 N/A
0.5 0.0 N/A

Table E.9: Change in belief in the best hypotheses as sensor noise changes, mixed quality hypotheses,
sampling budget = 150.

P (Error) ∆P (H∗) Cohen’s d
0.0 -0.005 -0.69

0.01 -0.003 N/A
0.05 -0.002 N/A
0.1 0.001 N/A
0.2 0.001 N/A
0.3 0.000 N/A
0.4 0.000 N/A
0.5 0.0 N/A

242

Table E.10: Change in belief in the best hypotheses as sensor noise changes, mixed quality hypotheses,
sampling budget = 200.

P (Error) ∆P (H∗) Cohen’s d
0.0 -0.001 N/A

0.01 0.000 N/A
0.05 0.000 N/A
0.1 0.002 0.63
0.2 0.000 N/A
0.3 0.000 N/A
0.4 0.000 N/A
0.5 0.0 N/A

E.2.3 Experiment 3 - All Bad Hypotheses

Table E.11: Change in belief in the best hypotheses as sensor noise changes, all poor hypotheses,
sampling budget = 25.

P (Error) ∆P (H∗) Cohen’s d
0.0 0.131 2.55

0.01 0.113 2.19
0.05 0.050 1.40
0.1 0.014 N/A
0.2 -0.006 -0.79
0.3 -0.004 -0.90
0.4 -0.000 N/A
0.5 0.0 0.0 N/A

Table E.12: Change in belief in the best hypotheses as sensor noise changes, all poor hypotheses,
sampling budget = 50.

P (Error) ∆P (H∗) Cohen’s d
0.0 0.104 2.67

0.01 0.091 2.43
0.05 0.043 1.51
0.1 0.017 1.14
0.2 -0.002 N/A
0.3 -0.001 N/A
0.4 0.000 N/A
0.5 0.0 N/A

243

Table E.13: Change in belief in the best hypotheses as sensor noise changes, all poor hypotheses,
sampling budget = 100.

P (Error) ∆P (H∗) Cohen’s d
0.0 0.071 3.01

0.01 0.061 2.58
0.05 0.025 1.33
0.1 0.010 1.03
0.2 -0.001 N/A
0.3 -0.000 N/A
0.4 0.000 N/A
0.5 0.0 N/A

Table E.14: Change in belief in the best hypotheses as sensor noise changes, all poor hypotheses,
sampling budget = 150.

P (Error) ∆P (H∗) Cohen’s d
0.0 0.044 2.88

0.01 0.037 2.77
0.05 0.015 1.95
0.1 0.006 1.09
0.2 -0.001 N/A
0.3 -0.000 N/A
0.4 0.000 N/A
0.5 0.0 N/A

Table E.15: Change in belief in the best hypotheses as sensor noise changes, all poor hypotheses,
sampling budget = 200.

P (Error) ∆P (H∗) Cohen’s d
0.0 0.037 4.05

0.01 0.031 4.19
0.05 0.014 2.85
0.1 0.007 1.91
0.2 0.001 N/A
0.3 0.000 N/A
0.4 0.000 N/A
0.5 0.0 N/A

244

Bibliography

Bruce Abramson. The expected-outcome model of two-player games. 1987. 4.2

Ryan Prescott Adams and David JC MacKay. Bayesian online changepoint detection. arXiv
preprint arXiv:0710.3742, 2007. 4.2, 4.3.2

Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit
problem. In COLT, pages 39–1, 2012. 5.1

Pablo F Alcantarilla, Simon Stent, German Ros, Roberto Arroyo, and Riccardo Gherardi. Street-
view change detection with deconvolutional networks. In Robotics: Science and Systems,
2016. 4.2

Alnur Ali, Rich Caruana, and Ashish Kapoor. Active learning with model selection. In AAAI,
pages 1673–1679, 2014. 5.1

Daniel R Andrews, Anthony Colaprete, Jacqueline Quinn, Donald Chavers, and Martin Picard.
Introducing the resource prospector (rp) mission. In AIAA SPACE 2014 Conference and Ex-
position, page 4378, 2014. 1.2.2, 3, 4.1, A.2

Akash Arora, P Michael Furlong, Robert Fitch, Terry Fong, Salah Sukkarieh, and Richard Elphic.
Online multi-modal learning and adaptive informative trajectory planning for autonomous ex-
ploration. In Field and Service Robotics, pages 239–254. Springer, 2018. 2.3, 5.5

RE Arvidson, RG Bonitz, ML Robinson, JL Carsten, RA Volpe, A Trebi-Ollennu, MT Mel-
lon, PC Chu, KR Davis, JJ Wilson, et al. Results from the mars phoenix lander robotic arm
experiment. Journal of Geophysical Research: Planets, 114(E1), 2009. 2.1, 5.5

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. The Journal of
Machine Learning Research, 3:397–422, 2003. 3.1.2, 4.5

Peter Auer and Ronald Ortner. Ucb revisited: Improved regret bounds for the stochastic multi-
armed bandit problem. Periodica Mathematica Hungarica, 61(1-2):55–65, 2010. 3.1.2

Josep Aulinas, Yvan R Petillot, Joaquim Salvi, and Xavier Lladó. The slam problem: a survey.
In CCIA, pages 363–371. Citeseer, 2008. 2.3

Rasmus Bååth. Bayesian first aid: A package that implements bayesian alternatives to the clas-
sical *.test functions in r. In UseR! 2014 - the International R User Conference, 2014. 5.3

Maria-Florina Balcan, Alina Beygelzimer, and John Langford. Agnostic active learning. In
Proceedings of the 23rd international conference on Machine learning, pages 65–72. ACM,
2006. 3.1.2, 5.1

John E Bares and David S Wettergreen. Dante II: Technical description, results, and lessons

245

learned. The International Journal of Robotics Research, 18(7):621–649, 1999. 2.1

MohammadHossein Bateni, MohammadTaghi Hajiaghayi, and Morteza Zadimoghaddam. Sub-
modular secretary problem and extensions. In Approximation, Randomization, and Combina-
torial Optimization. Algorithms and Techniques, pages 39–52. Springer, 2010. 2.2.2, 3.1.1

Carl W Baum and Venugopal V Veeravalli. A sequential procedure for multihypothesis testing.
IEEE Transactions on Information Theory, 40(6), 1994. 4.5

Jan Beirlant, Edward J Dudewicz, László Györfi, and Edward C Van der Meulen. Nonparamet-
ric entropy estimation: An overview. International Journal of Mathematical and Statistical
Sciences, 6(1):17–39, 1997. 5.2.2

Asher Bender, Stefan B Williams, Oscar Pizarro, and Michael V Jakuba. Adaptive exploration
of benthic habitats using gaussian processes. In OCEANS 2010, pages 1–10. IEEE, 2010. 2.3

Dean Bergman, Brian J Glass, Thomas Stucky, Kris Zacny, Gale Paulsen, and Chris McKay.
Obtaining vibration data for autonomous health monitoring of interplanetary drills. In AIAA
SPACE 2016, page 5485. 2016. 5.4

Jean-Loup Bertaux, Thomas Widemann, Alain Hauchecorne, VI Moroz, and AP Ekonomov.
Vega 1 and vega 2 entry probes: An investigation of local uv absorption (220–400 nm) in
the atmosphere of venus (so2 aerosols, cloud structure). Journal of Geophysical Research:
Planets, 101(E5):12709–12745, 1996. 2.1

Jeffrey J Biesiadecki, P Chris Leger, and Mark W Maimone. Tradeoffs between directed and
autonomous driving on the mars exploration rovers. The International Journal of Robotics
Research, 26(1):91–104, 2007. A.3

Brian Bingham, Brendan Foley, Hanumant Singh, Richard Camilli, Katerina Delaporta, Ryan
Eustice, Angelos Mallios, David Mindell, Christopher Roman, and Dimitris Sakellariou.
Robotic tools for deep water archaeology: Surveying an ancient shipwreck with an au-
tonomous underwater vehicle. Journal of Field Robotics, 27(6):702–717, 2010. 2.1

Space Studies Board, National Research Council, et al. Vision and voyages for planetary science
in the decade 2013-2022. National Academies Press, 2012. 5

Rodney A Brooks. Intelligence without representation. Artificial intelligence, 47(1-3):139–159,
1991. 1

F Thomas Bruss et al. Sum the odds to one and stop. The Annals of Probability, 28(3):1384–
1391, 2000. 3.1.1

Apostolos N Burnetas and Michael N Katehakis. Optimal adaptive policies for markov decision
processes. Mathematics of Operations Research, 22(1):222–255, 1997. 3.1.2

Richard Camilli, Brian Bingham, Michael Jakuba, Hanumant Singh, and Jean Whelan. Inte-
grating in-situ chemical sampling with auv control systems. In OCEANS’04. MTTS/IEEE
TECHNO-OCEAN’04, volume 1, pages 101–109. IEEE, 2004. 2.2.2

Alberto Candela, David Thompson, Eldar Noe Dobrea, and David Wettergreen. Planetary robotic
exploration driven by science hypotheses for geologic mapping. In Proc. of IEEE/RSJ IROS,
2017. 2.3

246

Rudolf Carnap. Testability and meaning. Philosophy of science, 3(4):419–471, 1936. 5

Rebecca Castano, Tara Estlin, Robert C Anderson, Daniel M Gaines, Andres Castano, Benjamin
Bornstein, Caroline Chouinard, and Michele Judd. Oasis: Onboard autonomous science in-
vestigation system for opportunistic rover science. Journal of Field Robotics, 24(5):379–397,
2007. 2.2.1, 3.1, 3.1.4, 5.1

Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. In Advances in
neural information processing systems, pages 2249–2257, 2011. 5.1

Eric L Charnov. Optimal foraging, the marginal value theorem. Theoretical population biology,
9(2):129–136, 1976. 3.1.3

Benjamin Charrow, Sikang Liu, Vijay Kumar, and Nathan Michael. Information-theoretic map-
ping using cauchy-schwarz quadratic mutual information. In Robotics and Automation (ICRA),
2015 IEEE International Conference on, pages 4791–4798. IEEE, 2015. 2.3, 3.1.4

Steve Chien, Rob Sherwood, Daniel Tran, Rebecca Castano, Benjamin Cichy, Ashley Davies,
Gregg Rabideau, Nghia Tang, Michael Burl, Dan Mandl, et al. Autonomous science on the
eo-1 mission. 2003. 2.2.1

Steve Chien, Rob Sherwood, Daniel Tran, Benjamin Cichy, Gregg Rabideau, Rebecca Castano,
Ashley Davis, Dan Mandl, Bruce Trout, Seth Shulman, et al. Using autonomy flight soft-
ware to improve science return on earth observing one. Journal of Aerospace Computing,
Information, and Communication, 2(4):196–216, 2005. 2.2.1, 5.1

Steve A Chien, Russell Knight, Andre Stechert, Rob Sherwood, and Gregg Rabideau. Using
iterative repair to improve the responsiveness of planning and scheduling. In AIPS, pages
300–307, 2000. 2.2.1

Sanjiban Choudhury, Ashish Kapoor, Gireeja Ranade, Sebastian Scherer, and Debadeepta Dey.
Adaptive information gathering via imitation learning. arXiv preprint arXiv:1705.07834,
2017. 2.3

Jacob Cohen. Statistical power analysis for the behavioral sciences. Academic press, 2013. 3.4

P. Coyle. Probabilistic Programming and PyMC3. ArXiv e-prints, July 2016. 4.3.2

Nichael Lynn Cramer. A representation for the adaptive generation of simple sequential pro-
grams. In Proceedings of the First International Conference on Genetic Algorithms, pages
183–187, 1985. 2.4

Carroll Croarkin, Paul Tobias, Chelli Zey, et al. Engineering statistics handbook. NIST iTL,
2002. 2.3

Jnaneshwar Das, Julio Harvey, Frédéric Py, Harshvardhan Vathsangam, Rishi Graham, Kanna
Rajan, and Gaurav S Sukhatme. Hierarchical probabilistic regression for auv-based adaptive
sampling of marine phenomena. In Robotics and Automation (ICRA), 2013 IEEE International
Conference on, pages 5571–5578. IEEE, 2013. 2.2.2, 2.3

Jnaneshwar Das, Frédéric Py, Julio BJ Harvey, John P Ryan, Alyssa Gellene, Rishi Graham,
David A Caron, Kanna Rajan, and Gaurav S Sukhatme. Data-driven robotic sampling for
marine ecosystem monitoring. The International Journal of Robotics Research, 34(12):1435–
1452, 2015. 2.2.1, 2.2.2, 3.1.4, 4.2, 4.5

247

Lorraine Daston and Peter Galison. Objectivity. Zone Books, 2007. 1.1

Anca D Dragan Dorsa Sadigh, Shankar Sastry, and Sanjit A Seshia. Active preference-based
learning of reward functions. In Robotics: Science and Systems (RSS), 2017. 5.1

David Duvenaud, James Robert Lloyd, Roger Grosse, Joshua B. Tenenbaum, and Zoubin
Ghahramani. Structure discovery in nonparametric regression through compositional kernel
search. In Proceedings of the 30th International Conference on Machine Learning, June 2013.
2.4

Tara A Estlin, Benjamin J Bornstein, Daniel M Gaines, Robert C Anderson, David R Thompson,
Michael Burl, Rebecca Castaño, and Michele Judd. Aegis automated science targeting for the
mer opportunity rover. ACM Transactions on Intelligent Systems and Technology (TIST), 3(3):
50, 2012. 2.2.1, 2.2.1, 3, 3.1.4, 5.1

Linda Neuman Ezell. Nasa historical data book. volume 2: Programs and projects 1958-1968.
1988. 2.1

Thomas S Ferguson. Who solved the secretary problem? Statistical science, pages 282–289,
1989. 2.2, 3.1.1, 4.2

Gabriele Ferri, Michael V Jakuba, and Dana R Yoerger. A novel trigger-based method for hy-
drothermal vents prospecting using an autonomous underwater robot. Autonomous Robots, 29
(1):67–83, 2010. (document), 2.2.2, 4, 4.2, 4.2, 4.1, 4.2, 4.2, 4.3.1, 4.3.1, 4.3.1, 4.3.1, 4.3.3,
4.3.4, 4.4.2, 4.4.4, 4.4.4

Greydon Taylor Foil. Efficiently sampling from underlying physical models. 2016. 3.1.4

Andrew Frank and Arthur Asuncion. Uci machine learning repository [http://archive. ics. uci.
edu/ml]. irvine, ca: University of california. School of Information and Computer Science,
213, 2010. 2.2.1

Luigi Freda, Giuseppe Oriolo, and Francesco Vecchioli. An exploration method for general
robotic systems equipped with multiple sensors. In Intelligent Robots and Systems, 2009.
IROS 2009. IEEE/RSJ International Conference on, pages 5076–5082. IEEE, 2009. 2.3

Paul Furgale, Timothy D Barfoot, Nadeem Ghafoor, Kevin Williams, and Gordon Osinski. Field
testing of an integrated surface/subsurface modeling technique for planetary exploration. The
International Journal of Robotics Research, 29(12):1529–1549, 2010. 2.1

P Michael Furlong. Adaptive sample selection for hypothesis falsification. 2017. 5.1

P Michael Furlong and David Wettergreen. Sequential allocation of sampling budgets in un-
known environments. In Robotics and Automation (ICRA), 2014 IEEE International Confer-
ence on. IEEE, 2014a. 3.1.4

P Michael Furlong and David S Wettergreen. Budgeting samples for exploration in unknown
environments. i-SAIRAS, 2014b. 3.1.4, 3.2.1

Daniel M Gaines, Tara Estlin, Steve Schaffer, Rebecca Castano, and Alberto Elfes. Robust and
opportunistic autonomous science for a potential titan aerobot. 2010. 2.2.1

Martha S Gilmore, Rebecca Castaño, Tobias Mann, Robert C Anderson, Eric D Mjolsness,
Roberto Manduchi, and R Stephen Saunders. Strategies for autonomous rovers at mars. Jour-

248

nal of Geophysical Research: Planets (1991–2012), 105(E12):29223–29237, 2000. 2.2.1

Yogesh Girdhar and Gregory Dudek. Modeling curiosity in a mobile robot for long-term au-
tonomous exploration and monitoring. Autonomous Robots, 40(7):1267–1278, 2016. 2.2.2,
4.2

Yogesh Girdhar, Philippe Giguere, and Gregory Dudek. Autonomous adaptive underwater ex-
ploration using online topic modelling. In International Symposium on Experimental Robotics
(ISER), 2012. 2.2.2

Yogesh Girdhar, Philippe Giguère, and Gregory Dudek. Autonomous adaptive exploration us-
ing realtime online spatiotemporal topic modeling. The International Journal of Robotics
Research, page 0278364913507325, 2013a. 2.2.2

Yogesh Girdhar, Philippe Giguere, and Gregory Dudek. Autonomous adaptive underwater ex-
ploration using online topic modeling. In Experimental Robotics, pages 789–802. Springer,
2013b. 3.1.4

Yogesh Girdhar, David Whitney, and Gregory Dudek. Curiosity based exploration for learning
terrain models. In Robotics and Automation (ICRA), 2014 IEEE International Conference on,
pages 578–584. IEEE, 2014. 2.3, 5.1

John Gittins, Kevin Glazebrook, and Richard Weber. Multi-armed bandit allocation indices.
John Wiley & Sons, 2011. 5.1

Christian Gourieroux and Alain Monfort. Statistics and econometric models, volume 1. Cam-
bridge University Press, 1995. 2.3

R.B. Grosse, R. Salakhutdinov, W.T. Freeman, and J.B. Tenenbaum. Exploiting compositionality
to explore a large space of model structures. In Uncertainty in Artificial Intelligence, 2012.
2.4

Ian Hacking. Representing and intervening: Introductory topics in the philosophy of natural
science. Cambridge University Press, 1983. 1, 5

Eric Hand. Philae probe makes bumpy touchdown on a comet. Science, 346(6212):900–901,
2014. 2.1

MH Hecht, SP Kounaves, RC Quinn, SJ West, SMM Young, DW Ming, DC Catling, BC Clark,
WV Boynton, J Hoffman, et al. Detection of perchlorate and the soluble chemistry of martian
soil at the phoenix lander site. Science, 325(5936):64–67, 2009. 3

Hank Heidt, Jordi Puig-Suari, Augustus Moore, Shinichi Nakasuka, and Robert Twiggs. Cube-
sat: A new generation of picosatellite for education and industry low-cost space experimenta-
tion. 2000. A.1

JL Heldmann, A Colaprete, A Cook, T Roush, M Deans, R Elphic, D Lim, JR Skok, NE Button,
S Karunatillake, et al. Mojave volatiles prospector (mvp): Science and operations results
from a lunar polar rover analog field campaign. In Lunar and Planetary Science Conference,
volume 46, page 2165, 2015. 4.1

Geoffrey A Hollinger and Gaurav S Sukhatme. Sampling-based robotic information gathering
algorithms. Int. J. Robot. Res., 33(9):1271–1287, 2014. 2.3

249

Geoffrey A Hollinger, Brendan Englot, Franz S Hover, Urbashi Mitra, and Gaurav S Sukhatme.
Active planning for underwater inspection and the benefit of adaptivity. Int. J. Robot. Res., 32
(1):3–18, 2013. 2.3

Guang-Bin Huang, Dian Hui Wang, and Yuan Lan. Extreme learning machines: a survey. Inter-
national journal of machine learning and cybernetics, 2(2):107–122, 2011. 6.3

M Jakuba and D Yoerger. Autonomous search for hydrothermal vent fields with occupancy grid
maps. In Proc. of ACRA, volume 8, page 2008, 2008. 2.1

Tackseung Jun. A survey on the bandit problem with switching costs. De Economist, 152(4):
513–541, 2004. 3.1.2

Pentii Kanerva, Jan Kristoferson, and Anders Holst. Random indexing of text samples for latent
semantic analysis. In Proceedings of the Cognitive Science Society, volume 1, 2000. 6.3

Ross D King, Kenneth E Whelan, Ffion M Jones, Philip GK Reiser, Christopher H Bryant,
Stephen H Muggleton, Douglas B Kell, and Stephen G Oliver. Functional genomic hypothesis
generation and experimentation by a robot scientist. Nature, 427(6971):247–252, 2004. 2.4,
3.1

Ross D King, Jem Rowland, Wayne Aubrey, Maria Liakata, Magdalena Markham, Larisa N
Soldatova, Ken E Whelan, Amanda Clare, Mike Young, Andrew Sparkes, et al. The robot
scientist adam. Computer, 42(8), 2009a. 2.4

Ross D King, Jem Rowland, Stephen G Oliver, Michael Young, Wayne Aubrey, Emma Byrne,
Maria Liakata, Magdalena Markham, Pinar Pir, Larisa N Soldatova, et al. The automation of
science. Science, 324(5923):85–89, 2009b. 2.4

S Knight, Gregg Rabideau, Steve Chien, Barbara Engelhardt, and Rob Sherwood. Casper: Space
exploration through continuous planning. IEEE Intelligent Systems, 16(5):70–75, 2001. 6.2

Nils Kolling, Timothy EJ Behrens, Rogier B Mars, and Matthew FS Rushworth. Neural mecha-
nisms of foraging. Science, 336(6077):95–98, 2012. 3.1.3

SM Krimigis, TP Armstrong, WI Axford, CO Bostrom, CY Fan, G Gloeckler, and LJ Lanzerotti.
The low energy charged particle (lecp) experiment on the voyager spacecraft. Space Science
Reviews, 21(3):329–354, 1977. 2.1

SM Krimigis, JF Carbary, EP Keath, TP Armstrong, LJ Lanzerotti, and G Gloeckler. General
characteristics of hot plasma and energetic particles in the saturnian magnetosphere: Results
from the voyager spacecraft. Journal of Geophysical Research: Space Physics, 88(A11):
8871–8892, 1983. 2, 2.1

Anurag Kumar and Bhiksha Raj. Classifier risk estimation under limited labeling resources.
arXiv preprint arXiv:1607.02665, 2016. 5.1

Clayton Kunz, Chris Murphy, Richard Camilli, Hanumant Singh, John Bailey, Ryan Eustice,
Michael Jakuba, Ko-ichi Nakamura, Chris Roman, Taichi Sato, et al. Deep sea underwa-
ter robotic exploration in the ice-covered arctic ocean with auvs. In Intelligent Robots and
Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, pages 3654–3660. IEEE,
2008. 2.1

Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Advances

250

in applied mathematics, 6(1):4–22, 1985. 2.3, 3.1.2, 5.1

Pat Langley, Herbert A Simon, Gary L Bradshaw, and Jan M Zytkow. Scientific discovery:
computational explorations of the creative process. 1987. 2.4

Steven M LaValle. Planning algorithms. Cambridge university press, 2006. 2.1

Michael Lee, Matthew Hanczor, Jiyang Chu, Zhong He, Nathan Michael, and Red Whittaker. 3-
d volumetric gamma-ray imaging and source localization with a mobile robot. arXiv preprint
arXiv:1802.06072, 2018. 4.2

Leonid A Levin. Universal sequential search problems. Problemy Peredachi Informatsii, 9(3):
115–116, 1973. 2.4, 2.4

Leonid A Levin. Randomness conservation inequalities; information and independence in math-
ematical theories. Information and Control, 61(1):15–37, 1984. 2.4

James Lind. A Treatise on the Scurvy: In Three Parts, Containing an Inquiry Into the Nature,
Causes, and Cure, of that Disease. A. Millar, 1757. 1

Dennis V Lindley. On a measure of the information provided by an experiment. The Annals of
Mathematical Statistics, pages 986–1005, 1956. 1, 2.3, 3.2.1, 5.1

Mark W Lipsey, Kelly Puzio, Cathy Yun, Michael A Hebert, Kasia Steinka-Fry, Mikel W Cole,
Megan Roberts, Karen S Anthony, and Matthew D Busick. Translating the statistical represen-
tation of the effects of education interventions into more readily interpretable forms. National
Center for Special Education Research, 2012. 5.2.4, 5.3

James Robert Lloyd, David Duvenaud, Roger Grosse, Joshua B. Tenenbaum, and Zoubin
Ghahramani. Automatic construction and Natural-Language description of nonparametric re-
gression models. In Association for the Advancement of Artificial Intelligence (AAAI), 2014.
2.4

Ralph D Lorenz, Tetsuya Tokano, and Claire E Newman. Winds and tides of ligeia mare, with
application to the drift of the proposed time time (titan mare explorer) capsule. Planetary and
Space Science, 60(1):72–85, 2012. A.2

Daniel L Ly and Hod Lipson. Learning symbolic representations of hybrid dynamical systems.
Journal of Machine Learning Research, 13(Dec):3585–3618, 2012. 2.4, 2.4

Omid Madani, Daniel J Lizotte, and Russell Greiner. Active model selection. In Proceedings
of the 20th conference on Uncertainty in artificial intelligence, pages 357–365. AUAI Press,
2004. 5.1

Mark Maimone, Andrew Johnson, Yang Cheng, Reg Willson, and Larry Matthies. Autonomous
navigation results from the mars exploration rover (mer) mission. In Experimental robotics
IX, pages 3–13. Springer, 2006. 1.3, A.3

Roman Marchant, Fabio Ramos, Scott Sanner, et al. Sequential bayesian optimisation for spatial-
temporal monitoring. In UAI, pages 553–562, 2014. 4.2

George Mathew and Igor Mezić. Metrics for ergodicity and design of ergodic dynamics for
multi-agent systems. Physica D: Nonlinear Phenomena, 240(4-5):432–442, 2011. 4.2, D.6.1,
D.6.1, D.3, D.6.1, D.6.3

251

Lauren M Miller and Todd D Murphey. Trajectory optimization for continuous ergodic explo-
ration on the motion group se (2). In Decision and Control (CDC), 2013 IEEE 52nd Annual
Conference on, pages 4517–4522. IEEE, 2013a. 4.2, D.6.1

Lauren M Miller and Todd D Murphey. Trajectory optimization for continuous ergodic explo-
ration. In American Control Conference (ACC), 2013, pages 4196–4201. IEEE, 2013b. 4.2,
D.6.1, D.6.1

Lauren M Miller, Yonatan Silverman, Malcolm A MacIver, and Todd D Murphey. Ergodic
exploration of distributed information. IEEE Transactions on Robotics, 32(1):36–52, 2016.
2.3, 3.1.4, 4.2, 4.2, 5.1, D.6.1, D.6.1, D.6.3

Philippe Morere, Roman Marchant, and Fabio Ramos. Sequential bayesian optimization as a
pomdp for environment monitoring with uavs. In Robotics and Automation (ICRA), 2017
IEEE International Conference on, pages 6381–6388. IEEE, 2017. 4.2

Mark EJ Newman. Power laws, pareto distributions and zipf’s law. Contemporary physics, 46
(5):323–351, 2005. 3.3.2

Pedro A Ortega and Daniel A Braun. A minimum relative entropy principle for learning and
acting. Journal of Artificial Intelligence Research, pages 475–511, 2010. 3.1.2, 5.1

Gerhard Paar, Mark Woods, Christiane Gimkiewicz, Frédéric Labrosse, Alberto Medina, Lau-
rence Tyler, David P Barnes, Gerald Fritz, and Konstantinos Kapellos. Proviscout: a planetary
scouting rover demonstrator. Proc. SPIE Vol. 8301–IS&T/SPIE Electronic Imaging 2012: In-
telligent Robots & Computer Vision, 2012. 5.1

Gerhard Paar, Laurence Tyler, Dave Barnes, Mark Woods, Andy Shaw, Konstantinos Kapellos,
Tomas Pajdla, Alberto Medina, Derek Pullan, Andrew Griffiths, et al. The proviscout field tri-
als tenerife 2012–integrated testing of aerobot mapping, rover navigation and science assess-
ment. In Proc. 12th Symposium on Advanced Space Technologies in Robotics and Automation
(ASTRA 2013), 2013. 2.2.1, 3.1.4

G Paulsen, S Yoon, K Zacny, D Wettergreeng, and NA Cabrol. The lita drill and sample delivery
system. In AGU Fall Meeting Abstracts, 2013. 3

Charles Sanders Peirce and Joseph Jastrow. On small differences in sensation. 1884. 1

Peter Pirolli and Stuart Card. Information foraging. Psychological review, 106(4):643, 1999.
3.1.3

Karl Popper. The logic of scientific discovery. Routledge, 2005. 1, 5

Kevin S Pratt and Robin R Murphy. Protection from human error: Guarded motion methodolo-
gies for mobile robots. IEEE Robotics & Automation Magazine, 19(4):36–47, 2012. A.3

Ernst L’vovich Presman and Isaac Mikhailovich Sonin. The best choice problem for a random
number of objects. Teoriya Veroyatnostei i ee Primeneniya, 17(4):695–706, 1972. 3.1.1

Jose C Principe. Information theoretic learning: Renyi’s entropy and kernel perspectives.
Springer Science & Business Media, 2010. 2.3, 6.3

Da Qi, Ross D King, Andrew L Hopkins, G Richard J Bickerton, and Larisa N Soldatova. An on-
tology for description of drug discovery investigations. Journal of Integrative Bioinformatics

252

(JIB), 7(3):156–168, 2010. 2.4

Paul Raeburn. Uncovering the secrets of the Red Planet: MARS. National Geographic, 1998.
2.1

Frank P Ramsey. Truth and probability (1926). The foundations of mathematics and other logical
essays, pages 156–198, 1931. 5

Hadi Ravanbakhsh and Sriram Sankaranarayanan. Learning lyapunov (potential) functions from
counterexamples and demonstrations. arXiv preprint arXiv:1705.09619, 2017. 5.1

Herbert Robbins. Some aspects of the sequential design of experiments. Bulletin of the American
Mathematical Society, 58(5):527–535, 1952. 2.2, 3.1.2, 5.1

Amy L Rocha. The infinite secretary problem with recall. The Annals of Probability, pages
898–916, 1993. 4.2

Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: an efficient alternative
to sift or surf. In Computer Vision (ICCV), 2011 IEEE International Conference on, pages
2564–2571. IEEE, 2011. 2.2.2

RZ Sagdeev and VI Moroz. Project vega first stage-missions to venus. Pisma v Astronomicheskii
Zhurnal, 12:5–9, 1986. 2.1

Christoph Sawade, Niels Landwehr, Steffen Bickel, and Tobias Scheffer. Active risk estimation.
In Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages
951–958. Citeseer, 2010. 5.1, 5.1, 5.2, 5.2.2

Jeffrey D Scargle. Studies in astronomical time series analysis. v. bayesian blocks, a new method
to analyze structure in photon counting data. The Astrophysical Journal, 504(1):405, 1998.
4.2, 4.2

Jeffrey D Scargle, Jay P Norris, Brad Jackson, and James Chiang. Studies in astronomical time
series analysis. vi. bayesian block representations. The Astrophysical Journal, 764(2):167,
2013. 4.2

Jürgen Schmidhuber. Discovering solutions with low kolmogorov complexity and high general-
ization capability. In Machine Learning: Proceedings of the Twelfth International Conference,
pages 188–196. Citeseer, 1995. 2.4, 2.4

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data.
science, 324(5923):81–85, 2009. 2.4

Mac Schwager, Philip Dames, Daniela Rus, and Vijay Kumar. A multi-robot control policy
for information gathering in the presence of unknown hazards. In Robotics Research, pages
455–472. Springer, 2017. 2.3

Gideon Schwarz et al. Estimating the dimension of a model. The annals of statistics, 6(2):
461–464, 1978. 2.4

Julie A Shah, Joseph H Saleh, and Jeffrey A Hoffman. Analytical basis for evaluating the ef-
fect of unplanned interventions on the effectiveness of a human–robot system. Reliability
Engineering & System Safety, 93(8):1280–1286, 2008. A.1

Andy Shaw, Mark Woods, Ehsan Honary, Philip Rendell, Derek Pullan, Dave Barnes, Steve

253

Pugh, and Derek Long. Crest robotic scientist. Towards Autonomous Robotic Systems
(TAROS), 2007. 2.2.1

Kirstine Smith. On the standard deviations of adjusted and interpolated values of an observed
polynomial function and its constants and the guidance they give towards a proper choice of
the distribution of observations. Biometrika, pages 1–85, 1918. 1.1, 2.3, 3.1, 5, 5.1

Trey Smith. Probabilistic Planning for Robotic Exploration. PhD thesis, Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA, July 2007. 2.3

Andrew Sparkes, Wayne Aubrey, Emma Byrne, Amanda Clare, Muhammed N Khan, Maria
Liakata, Magdalena Markham, Jem Rowland, Larisa N Soldatova, Kenneth E Whelan, et al.
Towards robot scientists for autonomous scientific discovery. Automated Experimentation, 2
(1):1, 2010. 2.4

Shannon V Spires and Steven Y Goldsmith. Exhaustive geographic search with mobile robots
along space-filling curves. In Collective robotics, pages 1–12. Springer, 1998. 2.1

Mark Steyvers and Scott Brown. Prediction and change detection. In Advances in neural infor-
mation processing systems, pages 1281–1288, 2006. 4.2, 4.2

Ellen Stofan, Ralph Lorenz, Jonathan Lunine, Edward B Bierhaus, Ben Clark, Paul R Mahaffy,
and Mike Ravine. Time-the titan mare explorer. In Aerospace Conference, 2013 IEEE, pages
1–10. IEEE, 2013. 2.1, A.2

Yi Sun, Faustino Gomez, and Jürgen Schmidhuber. Planning to be surprised: Optimal bayesian
exploration in dynamic environments. In Artificial General Intelligence, pages 41–51.
Springer, 2011. 3.1.4

Yu A Surkov, LP Moskalyova, VP Kharyukova, AD Dudin, GG Smirnov, and S Ye Zaitseva.
Venus rock composition at the vega 2 landing site. Journal of Geophysical Research: Solid
Earth, 91(B13), 1986. 2.1, A.2

Wennie Tabib, Red Whittaker, and Nathan Michael. Efficient multi-sensor exploration using
dependent observations and conditional mutual information. In Proc. of IEEE SSRR, pages
42–47, 2016. 2.3, 3.1.4, 5.5

Tong Tao, Yalou Huang, Fengchi Sun, and Tingting Wang. Motion planning for slam based
on frontier exploration. In Mechatronics and Automation, 2007. ICMA 2007. International
Conference on, pages 2120–2125. IEEE, 2007. 2.3

David R Thompson. Intelligent Mapping for Autonomous Robotic Survey. PhD thesis, Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA, August 2008. 2, 2.3, 3.1.4, 5.1, 5.1, 5.2

David R Thompson, Trey Smith, and David Wettergreen. Information-optimal selective data
return for autonomous rover traverse science and survey. In Robotics and Automation, 2008.
ICRA 2008. IEEE International Conference on, pages 968–973. IEEE, 2008. 4.2

David R Thompson, David S Wettergreen, and Francisco J Calderóon Peralta. Autonomous
science during large-scale robotic survey. J. Field Robot., 28(4):542–564, 2011. 2.3

David R Thompson, Nathalie A Cabrol, Michael Furlong, Craig Hardgrove, Bryan Kian Hsiang
Low, Jeffrey Moersch, and David Wettergreen. Adaptive sensing of time series with appli-
cation to remote exploration. In Robotics and Automation (ICRA), 2013 IEEE International

254

Conference on, pages 3463–3468. IEEE, 2013. 2.2.2, 3.1.4, 4.2, 4.5

David R Thompson, David T Flannery, Ravi Lanka, Abigail C Allwood, Brian D Bue, Benton C
Clark, W Timothy Elam, Tara A Estlin, Robert P Hodyss, Joel A Hurowitz, et al. Automating
x-ray fluorescence analysis for rapid astrobiology surveys. Astrobiology, 15(11):961–976,
2015a. 3.1.4

David Ray Thompson, David Wettergreen, Greydon T Foil, P Michael Furlong, and Anatha Ravi
Kiran. Spatio-spectral exploration combining in situ and remote measurements. In Twenty-
Ninth AAAI Conference on Artificial Intelligence, pages 3679–3685, 2015b. 2.3, 5.1

DR Thompson, AC Allwood, DL Bekker, NA Cabrol, T Fuchs, and KL Wagstaff. Texturecam:
Autonomous image analysis for astrobiology survey. In Lunar and Planetary Institute Science
Conference Abstracts, volume 43, page 1659, 2012. 2.2.1

William R Thompson. On the likelihood that one unknown probability exceeds another in view
of the evidence of two samples. Biometrika, pages 285–294, 1933. 3.1.2, 5.1

Fabio Lorenzo Traversa, Chiara Ramella, Fabrizio Bonani, and Massimiliano Di Ventra. Mem-
computing np-complete problems in polynomial time using polynomial resources and collec-
tive states. Science advances, 1(6):e1500031, 2015. 6.3

VM Vakhnin. A review of the venera 4 flight and its scientific program. Journal of the Atmo-
spheric Sciences, 25(4):533–534, 1968. 2.1

R. J. Vanderbei. The optimal choice of a subset of a population. Mathematics of Operations
Research, 5(4):481–486, 1980. doi: 10.1287/moor.5.4.481. URL http://dx.doi.org/
10.1287/moor.5.4.481. 3.1.1

John Vickers. The problem of induction. In Edward N. Zalta, editor, The Stanford Encyclopedia
of Philosophy. Metaphysics Research Lab, Stanford University, spring 2016 edition, 2016.
2.4, 5

Arnoud Visser, Merlijn Van Ittersum, Luis A González Jaime, Laurenţiu A Stancu, et al. Beyond
frontier exploration. In Robot Soccer World Cup, pages 113–123. Springer, 2007. 2.3

Michael D Wagner, Dimitrios Apostolopoulos, Kimberly Shillcutt, Benjamin Shamah, Reid Sim-
mons, and William Red Whittaker. The science autonomy system of the nomad robot. In
Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on,
volume 2, pages 1742–1749. IEEE, 2001. 2.2.1, 3.1, 3.1.4

Kiri L Wagstaff, Nina L Lanza, David R Thompson, Thomas G Dietterich, and Martha S
Gilmore. Guiding scientific discovery with explanations using demud. In AAAI, 2013. 2.2.1,
6.3

Abraham Wald. Sequential tests of statistical hypotheses. The Annals of Mathematical Statistics,
16(2):117–186, 1945. 3.2.1, 4, 4.2, 4.3.1

Kimberley A Warren-Rhodes, Kevin L Rhodes, Stephen B Pointing, Stephanie A Ewing,
Donnabella C Lacap, Benito Gómez-Silva, Ronald Amundson, E Imre Friedmann, and
Christopher P McKay. Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial
ecology in the hyperarid atacama desert. Microbial Ecology, 52(3):389–398, 2006. 3

Kimberley A Warren-Rhodes, Jennifer L Dungan, Jennifer Piatek, Kristin Stubbs, Benito

255

http://dx.doi.org/10.1287/moor.5.4.481
http://dx.doi.org/10.1287/moor.5.4.481

Gómez-Silva, Yong Chen, and Christopher P McKay. Ecology and spatial pattern of cyanobac-
terial community island patches in the atacama desert, chile. Journal of Geophysical Research:
Biogeosciences (2005–2012), 112(G4), 2007. 3

David Wettergreen, Nathalie Cabrol, James Teza, Paul Tompkins, Chris Urmson, Vandi Verma,
Michael Wagner, and William Whittaker. First experiments in the robotic investigation of life
in the atacama desert of chile. In Robotics and Automation, 2005. ICRA 2005. Proceedings of
the 2005 IEEE International Conference on, pages 873–878. IEEE, 2005. 3

MA Wiering and Jürgen Schmidhuber. Solving pomdps with levin search and eira. 1996. 2.4

Troy Wilson and Stefan B Williams. Adaptive path planning for depth-constrained bathymetric
mapping with an autonomous surface vessel. Journal of Field Robotics, 2017. 2.1, 4.2, 4.2,
6.3

Mark Woods, Andy Shaw, Phil Rendell, Ehsan Honary, Dave Barnes, Steve Pugh, Dave Price,
Derek Pullan, and Derek Long. Crest autonomous robotic scientist: Developing a closed-
loop science exploration capability for european mars missions. In i-SAIRAS: International
Symposium on Artificial Intelligence, Robotics and Automation in Space, 2008. 2.2.1

Mark Woods, Andy Shaw, Dave Barnes, Dave Price, Derek Long, and Derek Pullan. Au-
tonomous science for an exomars rover–like mission. Journal of Field Robotics, 26(4):358–
390, 2009. 2.2.1

Mark Woods, Andy Shaw, and Philip Rendell. High-level autonomy and image prioritisation
for long distance mars rovers. In Proc. 11th Symposium on Advanced Space Technologies in
Robotics and Automation, ESA/ESTEC, The Netherlands, pages 12–14, 2011. 2.2.1

Hauke Worpel and Axel D Schwope. Background subtraction and transient timing with bayesian
blocks. Astronomy & Astrophysics, 578:A80, 2015. 4.2

Brian Yamauchi. A frontier-based approach for autonomous exploration. In Computational Intel-
ligence in Robotics and Automation, 1997. CIRA’97., Proceedings., 1997 IEEE International
Symposium on, pages 146–151. IEEE, 1997. 2.3

Dana R Yoerger, Albert M Bradley, Barrie B Walden, Marie-Helene Cormier, and Wfiam BF
Ryan. Fine-scale seafloor survey in rugged deep-ocean terrain with an autonomous robot. In
Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE International Conference on,
volume 2, pages 1787–1792. IEEE, 2000. 2.1, 4.2

Dana R Yoerger, Michael Jakuba, Albert M Bradley, and Brian Bingham. Techniques for deep
sea near bottom survey using an autonomous underwater vehicle. The International Journal
of Robotics Research, 26(1):41–54, 2007. 2.2.2, 4.2

A Steven Younger, Emmett Redd, and Hava Siegelmann. Development of physical super-turing
analog hardware. In International Conference on Unconventional Computation and Natural
Computation, pages 379–391. Springer, 2014. 6.3

256

	1 Introduction
	1.1 Why Automate Science?
	1.2 Thesis Statement
	1.2.1 Opportunistic Sampling of Discrete Objects (Foraging) - Chapter 3
	1.2.2 Opportunistic Sampling In a Scalar Field (Prospecting) - Chapter 4
	1.2.3 Global Planning for Hypothesis Falsification - Chapter 5

	1.3 Scope of Work
	1.4 Summary

	2 Related Work
	2.1 Passive Sampling
	2.2 Opportunistic Sampling
	2.2.1 Opportunistic Sampling of Discrete Objects (Foraging)
	2.2.2 Opportunistic Science in Fields - Prospecting

	2.3 Informative Path Planning
	2.4 Hypothesis Generation
	2.5 Summary

	3 Opportunistic Sampling of Discrete Objects (Foraging)
	3.1 Prior Work
	3.1.1 The Secretary Problem
	3.1.2 Multi-armed bandits
	3.1.3 Optimal Foraging
	3.1.4 Opportunistic Science

	3.2 Method
	3.2.1 Algorithms

	3.3 Experiments
	3.3.1 Experiment 1 - Uniform Arrival Distribution, Different Underlying Distributions
	3.3.2 Experiment 2 - Skewed Arrival Distribution with Identical Underlying Distributions
	3.3.3 Experiment 3 - Skewed Arrival Distribution with Distractor Object
	3.3.4 Experiment 4 - Skewed Arrival Distribution with Random Underlying Distributions
	3.3.5 Experiment 5 - Distribution Change

	3.4 Results
	3.4.1 Experiment 1 Results - Uniform Arrival Distribution, Different Underlying Distributions
	3.4.2 Experiment 2 Results - Skewed Arrival Distribution, Identical Underlying Distributions
	3.4.3 Experiment 3 Results - Skewed Arrival Distribution with Distractor Object
	3.4.4 Experiment 4 Results - Skewed Arrival Distribution with Random Underlying Distributions
	3.4.5 Experiment 5 Results - Underlying Distribution Change

	3.5 Discussion
	3.6 Summary

	4 Opportunistic Sampling in a Scalar Field (Prospecting)
	4.1 The Mojave Volatiles Prospector Project
	4.2 Prior Work
	4.3 Method
	4.3.1 Algorithms
	4.3.2 Execution Time Comparison of SPRT to MCMC-Bayesian Change Detection
	4.3.3 Experiments
	4.3.4 Performance Metrics

	4.4 Results
	4.4.1 Experiment 1 Results - Effect of Magnitude of Change in the Underlying Distribution
	4.4.2 Experiment 2 Results - Effect of Delay of Change Onset
	4.4.3 Experiment 3 Results - Real MVP Data
	4.4.4 Experiment 4 - Effect on Performance in 2D Operations

	4.5 Discussion
	4.6 Summary

	5 Global Planning for Hypothesis Falsification
	5.1 Prior Work
	5.2 Method
	5.2.1 Belief in Hypotheses
	5.2.2 Site Selection Algorithm
	5.2.3 Map Generation
	5.2.4 Experiments

	5.3 Results
	5.3.1 Experiment 1 Results - All Good Hypotheses
	5.3.2 Experiment 2 Results - Mixed Quality Hypotheses
	5.3.3 Experiment 3 Results - All Bad Hypotheses

	5.4 Deployment in Chile
	5.5 Discussion
	5.6 Summary

	6 Conclusion
	6.1 Contributions
	6.2 Limitations
	6.3 Future Work

	Appendices
	A When is autonomy appropriate?
	A.1 Factors In Selecting Autonomy Algorithms
	A.2 One Analysis of the Design Space
	A.3 Assessing Complexity of Autonomy
	A.4 Summary

	B List of Terms
	C Opportunistic Sampling of Discrete Objects (Foraging) Supplemental Material
	C.1 Experiment 1 - Uniform Arrival Distribution, Different Underlying Distributions
	C.2 Experiment 2 - Skewed Arrival Distribution with Identical Underlying Distributions
	C.3 Experiment 3 - Skewed Arrival Distribution with Distractor Object
	C.4 Experiment 4 - Skewed Arrival Distribution with Random Underlying Distributions
	C.5 Experiment Parameters

	D Opportunistic Sampling in a Scalar Field (Prospecting) Supplemental Material
	D.1 Experiment 1 - Change in Underlying Distribution Rate
	D.2 Experiment 2 - Effect of Delay of Change Onset
	D.3 Experiment 3 - Real MVP Data
	D.3.1 Data Supporting ROC Curves on MVP Data
	D.3.2 ROC for Adaptive Threshold Algorithm as a Function of B

	D.4 Experiment 4 - Effect on Performance in 2D Operations
	D.4.1 Results Using Fixed Parameters
	D.4.2 Additional Settings of Adaptive Threshold Algorithm

	D.5 Experiment Parameters
	D.6 Ergodic Planning vs AIM Deployment
	D.6.1 Method
	D.6.2 Results
	D.6.3 Discussion

	E Falsification Sampling Supplemental Material
	E.1 Belief Distributions
	E.1.1 Experiment 1 - All Good Hypotheses
	E.1.2 Experiment 2 - Mixed Quality Hypotheses
	E.1.3 Experiment 3 - All Bad Hypotheses

	E.2 Statistical Significance Data
	E.2.1 Experiment 1 - All Good Hypotheses
	E.2.2 Experiment 2 - Mixed Quality Hypotheses
	E.2.3 Experiment 3 - All Bad Hypotheses

	Bibliography

