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Abstract

In this thesis, we explore methods of building dense depth map from
monocular video using geometry and deep convolutional networks. We
focus on a particular challenging case: small motion videos, in which
depth error grows large as camera movement reduces.

First, we introduce our multiview stereo pipeline. Our pipeline consists of
four stages: point tracking, bundle adjustment, photometric bundle ad-
justment, and densification. Here we demonstrate that using photometric
bundle adjustment helps in getting accurate depth of textured regions
from small motion video.

The traditional multiview stereo approaches rely on heuristic local smooth-
ness priors for low-texture regions. We improve the depth estimation of
low-texture region by fusing deep convolutional network predictions. We
categorize the depth fusion methods into two categories: late integration
and early integration. Late integration uses highly confident partial depth
from pure geometric methods as anchor points to refine the dense depth
map generated by deep convolutional networks. However in this case, the
network output is not guaranteed to be aligned with confident partial
depth, thus the fusion process might be problematic. To improve this
issue, we propose early integration, which uses confident partial depths
as constraints for deep convolutional networks. This method ensures the
two depth sources to be well-aligned and thus has better depth accuracy
than previous methods.
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Chapter 1

Introduction

Building depth map is a vintage problem that has been studied for many years. Depth
estimation is useful for many applications such as augmented reality (measuring object
size and distance), object recognition from 3D structure, robot motion planning
(estimating how far should robot arm moves to reach an object), and more high-level
applications.

On the other hand, high-frame-rate (HFR) camera has become a popular feature
on tier-1 mobile phones in recent years. With HFR camera, we can record small
motion video by shaking hand with little blurring and rolling-shutter effect. Shaking
and taking small motion video takes only slight effort but can gather much more
information for depth map reconstruction than taking a single-frame photo. In this
thesis, we focus on depth map reconstruction using geometrical methods and deep

convolutional networks.

1.1 Multiview Stereo for Small Motion Video

Reconstructing depth from small motion video is challenging because the depth error
grows when camera translation decreases. To solve this problem, we propose to use
photometric cues for camera pose and depth optimization, our method, as shown in
the experiments, can handle wider camera baseline range and thus gives us better
depth quality than previous method for small motion video.

Our multiview stereo pipeline consists of four parts[10]: point tracking, bundle

1



CHAPTER 1. INTRODUCTION

adjustment (BA), photometric bundle adjustment (PBA) and densification. The
point tracking step finds feature point correspondences across video sequences. And
the BA step uses the point correspondences to jointly optimize camera poses and
depth of feature points. The PBA step refines the result of BA using photometric
cues. Finally the densification step densely searches for best depth value for each

local patches[4].

1.2 Late Integration

In recent years, convolutional network has been used to predict dense depth map
and surface normal map and get good quality in varies datasets[12][2]. On the
other hand, our multiview stereo method, like all other purely geometric methods,
fails to get accurate depth estimation in low-texture regions. Since deep networks
generate dense depth map and its depth accuracy does not depend on texture as
much as purely geometric method, it would be beneficial to combine the results of
the two methods. To combine the advantages of multiview geometrical methods and
deep neural network, we propose to use surface normal prediction by convolutional
networks to fill the low-texture region where pure geometric method cannot handle.
The information from surface normal prediction improves our depth map quality
of low-texture regions, which was usually noisy in pure geometrical methods. The
experiments using synthetic and real HFR videos show that our method can fill the
missing depth in low-texture regions and outperforms previous methods in real HFR
video sequences. We categorize this kind of method as ”late integration”, for the fact

that the network part and multview stereo part are independent before depth fusion.

1.3 Early Integration

We take a forward step to think that, since we have depth from multiview stereo
available, can we use it in Convolutional Neural Network (CNN) to improve network
output quality? We categorize this type of method as ”early integration” because
it integrates sparse depth into the depth prediction process of CNN. An intuitive
way to do this is to stack sparse depth to RGB image for network input like[13].

2



CHAPTER 1. INTRODUCTION

Consider that in real world environment, the density of of multiview stereo depth
is ever-changing. It is hard to cover all the possible depth variations in training
dataset. We propose to use sparse multiview stereo depth as constraints instead of
only stacking it to network input.

To incorporate constraints in network, we propose Deep Component Analysis
(DeepCA)[15]. Instead of learning a closed-form solution like traditional networks,
in DeepCA framework, we decouple the link between network layers and form the
inference part as a optimization problem under constraints. This structure enables
us to plug in any other constraints when doing inference and thus enables us to
use sparse multiview stereo depth as constraints. Our experiment shows that early
integration achieves better depth accuracy than late integration and has significant

improvement especially when training data is not enough.
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Chapter 2

Background

Reconstructing depth map from small motion video is a an old but still challenging
problem. Many Structure-from-motion (SfM) methods have been proposed through
these years. By extracting and tracking features points across video frames, we can
reconstruct sparse point cloud using camera geometry. ORB-SLAM][14] is a symbolic
framework for large-scale sparse depth reconstruction. On the other hand, dense
mapping using direct methods also draw attentions. To the best of author’s knowledge,
DTAM][16] is the first real-time dense depth reconstruction work using monocular
camera. It minimizes photometric error across frames and use an regularization term
to enforce depth smoothness in low-texture region. Direct Sparse Odometry(DSO)[7]
proposed using direct pixel alignment for visual odometry, which is proven to be
more accurate and more robust to photometric noise. Besides, PatchMatch Stereo[4]
is proposed to solve stereo depth information with random initialization. In recent
years, some papers extend PatchMatch from stereo to multiview, however, their cost
function still rely on photometric information to estimate depth value thus suffer

from low-texture regions[10].

2.1 Multiview Stereo Methods

Pure geometric multiview stereo (MVS) methods suffer from lacking photometric
information in low-texture regions, especially in low-parallax scenario where noise and

texture become more indiscernible. To overcome this problem, previous researches
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need locally smoothness assumptions, such as regularization term [14] or piecewise
plane assumption [5], to estimate the depth of low-texture region. These methods
assume that the intensity of RGB image and depth has some correlation, for example,
homogeneous region in RGB image should also be homogeneous in depth maps. Yang
[19] proposed depth map refinement method using intensity as guidance to smooth
out noisy depth pixels, implying assumption that smooth RGB intensity leads to
frontal planar depth structure. However, those assumptions are heuristic and might
not hold on real objects , thus the accuracy is not guaranteed.

Most of previous works does not target at small baseline problem or throwing
away low- parallax frames to avoid the well-known inaccuracy issues. In [9], Ha
et al. proposed a self-calibrating bundle adjustment framework for reconstructing
depth map from small motion video clip. Photometric bundle adjustment can be
used to further improve the accuracy to sub-pixel level [10]. However, the raw depth
map from both [9] and [10] are noisy in low-texture region, and the RGB-based
depth refinement method proposed by Yang[19] used by [9] generate nice- looking

but overly-smoothed, inaccurate dense depth map.

2.2 Deep Convolutional Networks for Depth

Prediction

On the other hand, neural networks have been used to predict surface normal and
depth map from a single RGB image in recent years. Eigen et al.[6] proposed a
multiscale convolutional network for depth, surface normal, and semantic labeling
prediction. Bansal et al. proposed a framework for surface normal prediction using
VGG-16 convolution layers [3] in 2016, and its improved version using pixel sampling,
PixelNet[2], in 2017. These works demonstrate that convolutional neural networks
are capable of predicting depth and surface normal by encoding local dependencies of
image pixels. According to the experiment in [8], the accuracy of single view depth
estimation is better than multiview method in low-gradient area.

We believe that, instead of using heuristic smoothness assumption, the data-driven
surface normal prediction or depth prediction from deep neural network are better

cues for reconstructing depth in low-texture region, and can be used to fill the holes
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in dense depth map estimation. In [20], Zhang et al. proposed a method using
surface normal prediction to for robust stereo matching. We extend this concept to
multiframe instead of stereo.

All methods mentioned doesn’t use partial depth information in depth prediction.
As for early integration methods, as far as we know, the only related work is [13].
Ma and Karaman proposed to stack sparse depth signal to RGB image for network
input. Their result shows the improvement in depth accuracy than only use RGB
image. However, in reality the density of sparse depth changes a lot according to
environment and camera motion, and these changes is hard to be covered in training
set. In the later part of this thesis, we propose to use partial depth as constraints to
solve this issue.

It is worth to mention that, although we focus on monocular method in this
work, besides monocular methods, there also exists many active sensing methods
for acquiring dense depth map. However, the main disadvantage of active-sensing
on mobile devices is power consumption. Active sensors rely on light signals to get
depth information, while the light signal cannot reach far distance or cannot compete
with daylight without using large power. Large machines such as autonomous car is
capable of providing this power source, while emitting light signal drains batteries
on mobile devices and can only be used for short-distance applications, such as face

recognition on iphone8 so far.
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Chapter 3

Multiview Stereo Pipeline for
Small Motion Video

In this chapter, we introduce our multiview stereo pipeline for small motion video
[10]. We utilize the pipeline proposed in [10] to compute sparse depth. The process
of building sparse depth consists of 4 stages: first, point tracking is performed using
Kanade-Lucas-Tomasi(KLT) tracker, which localizes the corresponding feature point
positions in each frames. Then bundle adjustment (BA) and photometric bundle
adjustment (PBA) are used to estimate camera poses, camera intrinsics, and depths
of tracked points. Finally, a multivew PatchMatch (MVPM) is used to generate dense
depth map.

3.1 Point Tracking

We use ShiTomasi corner detector to extract feature point positions and use KLT
tracker for point tracking. The Shi-Tomasi corner detector computes the eigen values
of the Harris matrix of local image patch [17], if both eigen values are larger than a
threshold, we label this patch as a corner. The KLT tracker uses spatial intensity
information to direct the search for the position that yields the best match [18].
Compared with point-based feature detectors like SIFT and ORB, KLT is more
suitable for small motion videos for it’s sub-pixel accuracy.

We pick the first image in our small motion video as reference image and track

9



CHAPTER 3. MULTIVIEW STEREO PIPELINE FOR SMALL MOTION VIDEO

Figure 3.1: Two-frame point tracking example using KLT tracker. We use blue and
red colors to represent good and failed tracked points.

the points using the local patches of first image. Second, we compute bidirectional
error for each tracked point, and we judge it as failure tracking if the error is larger

than 0.1 pixels. An example of point tracking result is shown in Figure 3.1.

3.2 Bundle Adjustment

With the point correspondences, we use BA to get camera poses and depth values.
Notices that, instead of using triangularization method for initialization like ORB-
SLAM [14], we simply initialize the depth values to be values close to one and camera
poses to be small values, and then solve bundle adjustment using Gauss-Newton
method. We found that this method works smoothly for small motion videos.
Consider that the camera distortion and intrinsic parameters can drift overtime
and are different from module to module, besides camera poses and depth values, we
also optimize camera distortion parameter and focal length. The camera distortion

function « is defined as:
alx) =1+ l<:1||x||2 + k:2||x||4 (3.1)

where k1 and ko are the first and second order radial distortion coefficients. Let f
represents the focal length, w,t € R? represents camera rotation and translation with

respect to reference frame, and d represents inverse depth, the warping function from
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reference frame to target frame, containing camera pose parameters is defined as
7(x,w,t,d) = (R(w)N(x) + dt) , (3.2)

where N (x) and R(w) are defined as follows:

1
1 —W, Wy
Rw)=| w, 1 —w, (3.4)
—Wy Wy 1

Here we use N to make homogeneous coordinates and R to represent rotation
matrix with small angle approximation. The small angle approximation is reasonable
for small motion videos.

We use angle bracket to represent the projection from 3D point to 2D image plane:

(R

z
Finally, we define the loss function for bundle adjustment. Given point correspon-

[SENSIRNN ]

dence across frames and initialization for camera poses and point depths, bundle
adjustment minimizes reprojection error, which is the distance between originally
tracked point and projected point on image. We represent the cost function of BA

JEpa, by:

Ny P

Esa =Y > lrilh (36)

i=1 j=1

where Fpa minimizes point reprojection error of the N, points across Ny frames.

The error function r;; is defined as:

Tij = Xz‘ja(%xzj) — fr(Xo5,wi, t5). (3.7)

11
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Notice that we use huber loss ||7;]|, for system robustness to outliers.

3.3 Photometric Bundle Adjustment

We use BA to generate initial camera poses, inverse depth of tracked points with
respect to reference frame, camera distortion parameters, and camera intrinsics. Then
perform PBA for refinement, which leads to better, sub-pixel accuracy. The cost

function of photometric of Epgya is represented by:

Ny Np

Eppa = Z Z Z ||rij||w (3.8)

i=1 j=1 xeP;
Tij = ]z‘(fW(%Xj; Aw;, At;, Ad;)) — Io(x;), (3.9)

where Fpga minimizes the local intensity error of the points between the reference
image I and target frame I;. P; is the local patch around point j and ||.||, represents

Huber norm. The warping function W is defined by camera poses:

For small-motion video, PBA provides significant improvement in depth quality
for following reasons:
e It can handle lower texture level than BA because it does not require every

point to be a tracked feature point.
¢ [t interpolates image patches and thus can reach sub-pixel accuracy.

e It is more robust to photometric noise as demonstrated in [7] thus is suitable
for small-motion video scenario where camera motion is small so image noise is
significant.

One can use direct point tracker for BA to get sub-pixel accuracy, but in this
case, the image patch tracking and camera pose optimization are independent, so if a
patch is not tracked accurately(for example, a patch with local 3D structure far from
fronto-planar), the error in tracking cannot be fixed in BA.

In reality, optimizing all the available tracked points might make BA and PBA

12
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slow. Thus we keep the number of tracking points low in BA and PBA when doing
camera pose estimation. Afterwards, we use the multiview PatchMatch described in
[4] for finding inverse depth map. For example, for image sequences with resolution
640x480, we only need about 500 successfully tracked points to perform robust BA
and PBA, while generally speaking, in textured environments, confident high gradient

points can be numbered up to more than 10%.

3.4 Densification

For densificatoin, we extend PatchMatch Stereo [4] to multiview form. We keep the
camera poses from PBA stage and densely search for best depth value for each local
patches. The best depth value is judged by photometric loss.

Searching for the best value for each patch is time- consuming. PatchMatch
utilizes a belief propagation trick to accelerate the optimization process. First, we
initialize the depth values randomly (the hope is that at least one pixel of the region
carries a depth value that is close to the correct one). Then for local patches, we look
for the depth value with least photometric error and propagate this best depth value
to other pixels. In our implementation, it only take 3 to 4 iterations for the whole

depth image to converge.

3.5 Experimental Results

In this experiment,we compare our method with the most recent work for small
motion videos [9]. We evaluate our method and previous method using synthetic and

real videos.

3.5.1 Synthetic dataset

In order to get ground truth of camera trajectory and depth map, and consider that
there is no available online dataset for small motion video for now, we synthesize our
own dataset.

In this experiment, we compare the quality of the depth map using a spectrum of

different baselines and number of frames. In practical cases, there is no way to restrict

13
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users when taking videos, so a good system should achieve stable performance across
the spectrum. With BlenderTM (ver. 2.78) we render a realistic image sequences and
generated ground truth depth maps and camera poses. The resolution of our rendered
image is 1280 x 720. The sequences are synthesized over a spectrum of baselines and
number of frames. The motions are constant velocity with total distances ranging
from 1 to 150 millimeters. Figure3.3 visualizes baselines by average images of the
sequences.

Considering the real distance in common use case, we visualize the heat map
to show the percentage of depth map pixels within an error of 0.015m!, which
corresponds to less than 5cm at the mean depth in our scene (1.79m), where failure
cases are represented by dark blue. Errors larger than 5cm are considered invalid.

To determine the relative depth scale to ground truth, we compute initial relative
scale by minimizing least squares error between camera pose and ground truth camera
pose extracted from Blender. Then we perform exhaustive search for the scale which
leads to maximum number of pixels with inverse depth error less than 0.015m!' The
result show an improved tolerance to baselines and number of frames when using
our method over [9], which fails when the baseline is too small (failed to estimate
from image difference) and drops performance when baseline is larger (failed to find
correct point correspondences). We also note a trend that using more frames within
a fixed baseline helps increase the accuracy of the depth map. For a more detailed
view of the depth map errors, we visualize the cumulative error curve for two cases
in Figure 3.2. We also tested OpenMVS + OpenMVG pipeline, which is a popular,
open-source multiview stereo tool but is not comparable to other methods in this

test. It can only cope with larger baseline and fails in most cases.

3.5.2 Real dataset

We run our method using the small motion video sequences provided by [9]. Without
ground truth, it’s hard to compute quantitative error. We show the depth map in
Figure3.4 for visual comparison. This experiment demonstrate that our depth map

has less noisy points and better overall visual quality.

14
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100 1 100
20 920
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inverse depth error

Figure 3.2: Heat map visualization for depth map accuracy. The color of heat map
visualizes percentage of pixels with inverse depth error less than 0.015m!. Example
cumulative error curves for two of the sequences show the percentage of pixels with
inverse depth error less than the corresponding threshold; the solid line is for the
sequence with 7bmm baseline and 70 frames, the dashed line is for the sequences with
75mm baseline and 10 frames.

(a)Baseline = 5 mm ) Baseline = 60.7 mm

(c) Baseline = 130.4 mm ) Baseline = 200 mm

Figure 3.3: Averaged image of sequences with different baselines
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Figure 3.4: Depth map comparison for real video sequences
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Chapter 4

Monocular Depth from Small
Motion using Surface Normal

Prediction

In this section, we introduce our method for generating dense depth map from
small-motion videos. We use surface normal prediction from deep convolutional
network to estimate depth value of low-texture region. Here we choose surface normal
instead of depth as the cue for reconstruction depth map, which provides better shape
details and does not need real scale to integrate. Our experiments demonstrate that,
comparing with the smoothness assumption used in traditional multiview pipelines,
this method achieves better overall depth accuracy. An example of our result is shown

in Figure4.1.

4.1 System Overview

Our system is composed of four main modules: 1) surface normal prediction, 2)
multiview stereo for sparse depth, 3) occlusion detection, and 4) final optimization
process for generating dense depth map. We use the first frame of input video as
reference frame in multiview stereo and as the input of surface normal prediction
network. Then we reconstruct sparse depth map and occlusion mask from video

sequences. We show our system block diagram in Figure 4.2.

17
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a7

(b) Multiview PatchMatch [10]

(c) Sparse Depth (d) Ours

Figure 4.1: Depth reconstruction from small-motion videos. Traditional methods
give noisy depth estimation in low-texture regions as (b). We use surface normal
prediction to fill the holes in sparse depth map in (c¢) and improve depth estimation
accuracy in low-texture region as shown in (d)

We choose PixelNet [2] as our surface normal prediction method. It utilizes
VGG-16 multilevel convolutional layers to encode multiscale image features and then
form a hypercolumn descriptor. The descriptor is sent to fully-connected multilayer
perceptrons to generate output class labels. In our case, the class labels represent
surface normal data.

For occlusion boundary extraction, we use the method proposed in [1]. The
occlusion mask is used to avoid from applying normal constraints and gradient
regularization to pixels with depth discontinuity.

Our overall cost function consists of three terms: 1) orthogonality 2) anchor sparse

depth points 3) gradient regularization. We introduce each term in detail in the

18
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ﬁ 3 - : >
P / Surface Normal _>-9r' —
Prediction ’
Y _ »
A 3 )
Referer}ce frame Normal map
AA
’ - Depth map
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Figure 4.2: System block diagram

following sections.

4.2 Orthogonality Term

We utilize orthogonality characteristics of surface normal vectors for orthogonality

term. Let n represents normal vector:

n= [nx ny nz} (4.1)

and K represents camera intrinsic matrix:

fo 0 ¢
K=|0 f ¢ (4.2)
0 0 1

where f, and f, stands for focal lengths and ¢, and ¢, are camera image center
coordinate. Let P;j(X;,Y;, Z;) be the 3D coordinate of pixel i with reference to

reference frame. The index 7 increases in row-major order. Following orthogonality

in row direction on image, we can write:

n’(P, — Piy) = 0 (4.3)
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because there is no corresponding depth difference in Y direction in 3D space along

image row direction, we can write:

Ny Zi — Zina

n, B _Xi — Xit1
Zi — Zip (4.4)

(@7 — Cx)% — (@i — ) }:1

We rewrite the orthogonality term for each pixel as:

M7 Zi = M Zigy = 0 (4.5)
where
T nl /
M} = . (2 = c2) + 1 (4.6)

In vertical direction, we follow the same way to rewrite orthogonality term as:

szZz - Miy+wZi+w =0 (47)

where w is image width. Then we can collect the coefficients of each pixel and

write the multiplication form as follows:

M,Z =0 (4.8)

Let N be the number of pixels excluding boundaries. Notice that M is actually a

sparse matrix with size 2N x N an Z is a N x 1 vector. The structure of M is:

My =Mz
My —Mj
M, =| , (4.9)
MY ~MY,,
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(b) (o) () (¢)

Figure 4.3: Inverse depth map comparison (a)MVPM (b) Ha et al. [9] (c)
MVPM+Yang [19] (d)Naive depth reconstruction without occlusion and gradient
weights (¢) MVPM + Deep Normals

4.3 Gradient Regularization Term

To regularize depth gradient in potentially noisy sparse depth regions, we define

another differential matrix M, in similar form as M,

M, = 5 (4.10)

The gradient regularization weighting W, represents the strength of local depth
smoothing. We design this term to compensate for sparse depth uncertainty. It is
well-known that the uncertainty of depth estimation error is proportional to square of
depth. If we use uncertain sparse depth points as anchor points, they might corrupt
depth map. As a result, W, is designed as wyw,(1 — w,)Z;® to avoid occlusion
boundary and reduce strength in high gradient region, where w, is a tuning parameter
and w, and w, are weighting values of pixel ¢ in W,, and W,. We apply larger w,

when environment is planar or when noisy is larger.

4.4 Depth Optimization

Our overall cost function consists of three terms: 1) orthogonality 2) anchor sparse

depth points 3) gradient regularization:
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Eaepth = [[WaMLZ|[3 + [[Wi(Z = Zparse) |2 + [[W M Z| |3 (4.11)

where W,,, W, and W, are diagonal weighting matrices for surface normal, sparse
depth, and gradient terms. The surface normal weight matrix W, sets pixels on
occlusion edge to zero and other pixels to 1. The sparse depth term simply enforces
the depth to be aligned with sparse point from multivew stereo. The sparse depth
weight Wy is a zero-and-one mask multiplied by a tuning weight scalar, used to select
only pixels with available sparse depth for optimization.

Our result of applying occlusion mask is shown in Figure 4.3. Without occlusion
mask, the foreground and background are connected and the depth discontinuity
pixels are smoothed like Figure 4.3(d). After the optimization process, we apply
a iterative bilateral filter to fill out missing depths for pixels in occlusion. In our
implementation, we use a local variance threshold(= 0.01) to filter out noisy sparse

depth pixels before applying to optimization.

4.5 Experiments

We compare our method with Ha et al. [9], the most recent small motion work, and
Yang [19], the depth refinement method used in [9], which uses intensity image as a
guidance to refine depth map. The experiments show that our method has better
performance than [9] in synthetic and real sequences. Besides, given same camera
poses, our depth reconstruction method is also better than [19]. We use "MVPM” to
indicate the multiview version of PatchMatch[10] . These three methods are noted as
"MVPM + Deep Normals” (ours), "Ha” [9], and "MVPM + Yang” [19] in following
figures.

As far as the authors know, there is no available HFR dataset for object depth
reconstruction available online, or the collected video have no ground truth depth. We
evaluate using the synthetic dataset provided by [9]. Besides, we collected HFR video
using mobile devices with laser range finder ground truth to evaluate our method in
real user application condition.

We run experiment using Macbook Air wiht 1.6GHz IntelTM Core i5 CPU and
8Gb of RAM. Total time cost depends on the choice of camera pose tracking and
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(d) (e) (f)

Figure 4.4: Results for synthetic dataset (a) RGB image for reference frame (b)
Surface normal map (¢) MVPM (d)Ha et al. [9] (¢) MVPM + Yang [19] (f) MVPM
+ Deep Normals

occlusion methods. Without particular speedup, the time need for densification is

around 30 seconds for images with 640x480 resolution.

4.5.1 Synthetic Video Clip

We evaluate our method and previous methods using the synthetic video clip provided
in [9]. The input RGB image, surface normal map and inverse depth map results are
shown in Figure 4.4. We can see that the inverse depth depth map of MVPM is noisy
in low-texture regions. The provided ground truth is scaled to 0-255 instead of real
depth. We scaled the ground truth average to 2 for better numerical comparison(
which corresponds to 0.5m, a common distance when taking object video).

The accumulative error curve is shown in Fig. 4.5. The x-axis in Fig. 4.5 shows
depth error range 0 to 0.1 (which corresponds to 0 10cm depth error). The y-axis
shows the percentage pixels with inverse depth error less than x-axis values with
respect to all valid ground truth pixels.

For this dataset, all three methods give similar accuracy in dense depth evalua-
tion(MVPM+Yang is slightly better). This video has small baseline while is full of
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Ha ==#-MVPM_sparse =+=MVPM+Yang === MVPM-+Deep Normals

—
o
T

0 0.04 0.08
inverse depth error

Figure 4.5: Error curves for synthetic dataset

texture, which helps all methods to estimate the sparse depth accurately for a many

of pixels. The weighting parameter w, is set to 10 in this comparison.

4.5.2 Mobile Phone Sequences

We evaluate our method using real HFR video recorded by mobile devices. We
collected 6 objects with laser ground truth. The HFR videos are collected by iphone6
in 240fps, with Optical Image Stabilization(OIS) and auto focus disabled. We also
use laser range finder (Konica Minolta VIVID910) to capture scans around object and
perform ICP registration to generate accurate object model. The collected objects
are with diverse of texture and appearance, shown in Fig. 4.7

The accmulative error curves are shown in Fig. 4.6. We perform Iterative Cloest
Point(ICP) registration to align each point cloud to ground truth point cloud, with
an exhaustive search for scale which minimize root mean square error of ICP inliers.
The error curve are computed by the distance between ICP inliers. Higher error
curve means more ICP inliers has distance less than the threshold distance in x-axis,
considered as valid pixels. The y-axis shows the percentage of valid pixels with respect
to all points in ground truth laser model. Here we align the depth map to one side to

ground truth model. The weighting parameter w, is set to 0.2 in this comparison.
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(d)toy01 (e)toy03 (f) toy03
= \\/PM+Deep Normals === MVPM+Yang == = MVPM_sparse = Ha

Figure 4.6: Accumulative error curves for real video sequences, the higher the better.
Notice that Ha et al.[9] fails in paperbag and toy03 sequences, generating unreasonable
depth estimation and unable to be aligned by ground truth, which are represented by
Zeros.

Visualization of inverse depth maps are shown in Fig. 5.3. We can observe that
MVPM fails to construct depth in low-texture regions due to lack of photometric cue.
Ha et al.’s and MVPM+Yang’s method seem to generate nice depth map with sharp
boundary, while the error curve is worse than our method. It is because the failure
of frontal-planar assumption used in these methods, which causes over-flatten depth

estimation result, as shown in Fig. 4.8.

25



CHAPTER 4. MONOCULAR DEPTH FROM SMALL MOTION USING
SURFACE NORMAL PREDICTION

¢

(a) flower01 (b)manekin (c)paperbag

(e)toy03

Figure 4.7: Results for real sequences. From top to bottom is RGB image, surface
normal map, MVPM, Ha et al [9], MVPM+Yang [19], Ours. The results of toy02 has
been shown in Figure 4.2 and 4.3
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Figure 4.8: Over-flatten depth shape caused by Yang [19] leads to less accuracy
in depth map evaluation. (a) ground truth laser scan (b) MVPM+Yang [19] (c)
MVPM+Deep Normals
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Chapter 5

Constrained Convolutional
Network

This chapter describes how we use Deep Component Analysis (DeepCA) to build
constrained deep network[15]. Here we focus on DeepCA for depth reconstruction

application. For more discussion about DeepCA, please refer to [15].

5.1 Deep Component Analysis

In many previous researches, people use deep neural convolutional networks to learn
a closed-form solution. However, the quality of closed-form solution strongly depends
on training dataset and has no guaranteed error bound. We noticed that fortunately
we already have robust partial information of the network output in many cases, and
the network should utilize the partial information to do inference. For multiview
3D reconstruction, we have the partial depth from lidar or multiview stereo, which
are usually more robust and accurate than learnt depth map, especially in unknown
environment.

We propose DeepCA to incorporate constraints in deep networks. In DeepCA
formulation, a network layer output does not have to be the same as the multiplication
of weighting matrix and previous layer output passed nonlinear function. Instead, it
solves a constrained optimization problem for each layer. Each layer output is forced

to be as close as possible to the multiplication of weighting matrix and previous layer
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output, under some nonlinear constraints.

One layer of feedforward network and DeepCA can be represented by:

Feed-Forward: a; = gb(B;!—aj_l) = DeepCA: Bjw; ~ w,_; s.t. w; €C; (5.1)

where a; represents network layer output, B, represents network parameter matrix,
¢ is nonlinear function such as ReLU or Sigmoid, w; represents the latent variable in
DeepCA which is subject to constraint C;. This structure enables us to plug in depth
constraints to the constraint set C; easily.

We can then rewrite above equation to multilayer DeepCA form of optimization

problem:

l

.f*(w) = al"{g H]l}an% ij',l — ijng -+ CIDj(wj) s.t. wg==x (52)
w j=1

5.2 Optimization Approach

According to [15], we can optimize our DeepCA loss function using Alternating Direc-
tion Method of Multipliers (ADMM). ADMM is an optimization method for solving
complex convex optimizations, which breaks the problem into easier subproblems and
solve the subproblems iteratively.

What we want to solve is:

l
arg mlnz % ||Zj_1—Bj’lUj||§ + (I)j(Zj) S.t. Wy = T, Vj . ’(Uj = Zj (53)

{wj,z;} j=1

where z is the auxiliary variable for decoupling layer outputs and @ is the network

input. Rewriting the constraints using Lagrange multiplier, the loss function becomes:

l
2 2
L= 3z = Bywjlly + () + A (w; — 2;) + & ||lw; — 2] (54)
j=1
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We then perform ADMM to optimize this loss funcion. The ADMM for DeepCA

has following steps:

1. Update wj :
wg.tJrl]argminﬁp(’wj,ZEtJrll], ]t]:A[t) <55)
= (BB, +pI) " (B2l 4+ pzl — Al
2. Update z;:
IR £ (wtY ol A\ 5.6
] gmln p(wi w25, A (5-6)
t+1
= ¢J(p+1BJ+1w£'}f‘1 + o (w; AR 1)‘[]))
2oy (w1 + L)
3. Update A;:

[t+1] 4 [1] (41 _[t+1]
AT p(wy T =z (5.7)

Notice that although the original ADMM repeats this process until convergence,
in our implementation, we fix the number of iteration, and implement the weight
multiplications as convolutional and transposed convolutional layers. In this way
the DeepCA optimization process becomes a recursive network, which can simply be

trained using backward propagation like traditional feed-forward networks.

5.3 Experiments

We demonstrate the result applying DeepCA with ADMM iterations for full-size
depth map prediction. In [13], Ma and Karaman have shown that stacking sparse
depth information to RGB image as network input can achieve better depth prediction
performance than only using RGB.

We aim to demonstrate the advantage of using sparse depth information as
constraints. Here we subsampled ground truth depth map to simulate sparse depth

information. In practical cases, the sparse depth can be acquired from lidar or
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bilinear
ResNet upsample upsample upsample upsample 3x3 conv upsample

4@ 1024@ 512@ 256@ 128@ 64@ 1@ 1@
256x256 8x8 16x16 32x32 64x64 128x128 128x128 256x256

_______________________________________ bilinear
ResNet i upsample upsample  3x3 conv i upsample  upsample  3x3 conv 3x3 conv upsample

4@ 1024@ 256@ 128@ 1@ 128@ 64@ 64@ 1@ 1@
256x256 8x8 16x16 32x32 32x32 64x64 128x128  128x128  128x128 256x256

ADMM iterations

Figure 5.1: Network Structures. We adopt an encoder-decoder structure like [13],
which consists of using ResNet [11] encoders and upsampling layers. The upper block
diagram shows our baseline, using the same upsampling layers as [13], and the lower
layer shows our DeepCA network structure.

structure-from-motion algorithms whose depth measurements are usually sparse but
more accurate and robust to unknown environmental conditions. We compare our
method with [13], which contains a ResNet [11] encoder and upsampling layers as
decoders. The upsampling layers consist of four transposed convolutional layers, one
3x3 convolutional layer ,and a bilinear upsampling layer. To apply constraints to
decoders, we first subsampled the sparse depth map from 256x256 to 32x32 using
max-pooling, running ADMM iterations at 32x32 resolution scale, and then apply
upsampling layers to go back to normal size. We found that, instead of doing ADMM
iterations on full-size images, this strategy helps to eliminate discontinuities around
sparse constraints and is faster to train. We use ResNet-18 and ResNet-10 as encoders
(our ResNet-10 is the ResNet-18 without repeating each convolution blocks [11]). Our
network structures are shown in Figure 5.1.

We use NYUDepthV2 dataset for evaluation. For testing set, we use the official
split, which contains 654 images. For training set, we first sampled images with even
interval from NYUDepthV2 raw data, skipping the categories in testing set, and
randomly selected 60000 and 1000 images as training datasets. All ground truth depth
maps are pre-processed using official tool box to fill in missing pixels. Afterwards,
we randomly sampled 200 points from ground truth depth map to simulate sparse
depth input. For all experiments, we use batch size=8 and learning rate 3 x 107,
which decreases to 1 x 1075 after 20y, epoch, 3 x 107 after 80, epoch, and 1 x 10~7
after 150, epoch. Our platform is a 28-core Intel(R) Xeon(R) CPU E5-2660 v4 @
2.00GHz machine with ubuntu 16.04 and GeForce GTX TITAN X graphics cards.
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Table 5.1: Using ADMM iterations to fix constraints

Item Param  RMSE Rel 01 09 03

Resnet18 1.5 x 10" 0.541 0.159 79.2 94.7 99.4
Resnet18 (T = 10) 1.2 x 107 0.277 0.061 95.5 99.4 99.9
Resnet10 8.8 x 10 0.555 0.157 79.8 94.6 99.4
Resnet10 (T = 10) 6.5 x 109 0.235 0.045 97.3 99.6 99.9
Resnet50 [13] 3.4 x 10" 0.230 0.044 97.1 99.4 99.8

The error metrics are listed as follows [13]:

1
RMSE —\/ﬁ ;(di —g)?

1 |di —9i|
[ =— _
Re NXZ-: 7

where g; represents ground truth depth value and d; represents network output.
And & is the percentage of predicted pixels where the larger relative error in both
directions is within a 1.25°. We rescaled our results back to the NYUDepthV2

resolution (480x640) before comparison.

5.3.1 Applying Sparse Output Constraints

We compare the depth prediction result with and without sparse output constraint.
For this experiment, the models are trained using 60000 training images for 52 epochs.
The results are shown in Table 5.1 and Figure 5.2 . Notice that our networks sizes
for NYUDepth-V2 are much smaller than [13]’s, which uses ResNet-50 instead.

5.3.2 Train with insufficient data

In this experiment, we show that using sparse depth as constraints has significant
advantage when training data is insufficient. In this case, fixing constraints (which
is actually known information and holds in both training and testing) helps to
significantly improve the result. This implies that our method should be more robust

in unknown environments. The models are trained using 1000 images for 296 epochs.
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Ground truth sparse
depth depth

ResNet-18

=10)

ResNet-18
(T

ResNet-10

=10)

ResNet-10
(T

ResNet-18

(T=10)

ResNet-18

ResNet-10

ResNet-10
(T=10)

Figure 5.2: Visualization of results(trained with 60000 samples). From top to bottom
are: RGB image, sparse depth , ground truth depth map, predicted depth maps,
and absolute predicted depth error maps, which are overlaid with location of sparse
Epths(gray points). From the results, we can observe that fixing sparse constraints
elps to minimize error values in the neighborhood of sparse constraints. Notice that
depth error maps are normalized and sparse point size are enlarged for clear visibility.
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Table 5.2: Using insufficient training data (1000 samples)

Item Param  RMSE Rel 01 09 03

Resnet10 8.8 x 10% 0.820 0.292 55.9 85.2 96.0
Resnet10 (T = 10) 6.5 x 10 0.545 0.172 76.9 94.8 98.8
Resnet10 (T = 20) 6.5 x 10° 0.348 0.081 92.7 98.6 99.7

Our results are shown in Table 5.2 and Figure 5.3 .
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Ground truth sparse
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Figure 5.3: Visualization of results using insufficient training data (1000 samples).
From top to bottom are: RGB image, sparse depth, ground truth depth map, predicted
depth maps, and absolute predicted depth error maps, which are overlaid with location
of sparse depths(gray points). Without constraints, even though the sparse depth
values are stacked to network input, predicted depth map does not align with sparse
depth, especially when training data is insufficient. Notice that depth error maps are
normalized and sparse point size are enlarged for clear visibility.
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Conclusions

In this thesis, we look into the depth reconstruction problem from small motion
video. We examined the traditional multiview stereo method and the usage of deep
convolutional priors, including late and early integration methods. We proposed
DeepCA, a early integration method which enables us to use sparse depth as constraint
for deep networks. It achieves better depth accuracy and robustness than previous
late integration method.

We believe that there are still many open questions and possibilities in this field.
We are interested in examining failure cases of multiview stereo to make our depth
fusion method more robust in real environments. In addition, here we only used sparse

depth as constraints, while there are many other possible constraints to explore.
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