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Abstract

In this thesis, we explore sampling-based trajectory planning applied
to the task of searching for objects of interest in constrained environments
(e.g., a UAV searching for a target in the presence of obstacles). We con-
sider two search scenarios: in the first scenario, accurate prior information
distribution of the possible locations of the objects of interest is available,
thus we cover this information distribution until we find the target. In the
second scenario, no or crude prior information distribution exists about the
locations of the objects of interest, thus we actively search for those objects
by updating the information distribution.

For the first search scenario we explore ergodic coverage. Ergodic cov-
erage is an approach for trajectory planning in which a robot is directed
such that the percentage of time spent in a region is in proportion to the
probability of locating targets in that region. We extend the ergodic cover-
age algorithm to robots operating in constrained environments and present
a formulation that can capture sensor footprints and avoid obstacles in the
domain. We demonstrate through simulation that our formulation easily
extends to coordination of multiple robots equipped with different sensing
capabilities to perform ergodic coverage of a domain.

For the second search scenario, we investigate palpation-based tumor
search and develop an approach that guides robots to automatically lo-
calize and find the shapes of tumors and other stiff inclusions present in
anatomies. Our approach uses Gaussian processes to model the stiffness
distribution, and active learning integrated with sampling-based trajectory
planning to direct the palpation path of the robot. Our approach provides
the flexibility to avoid obstacles in the search domain, incorporate uncer-
tainties in robot position and sensor measurements, and include prior in-
formation about the locations of stiff inclusions while respecting the robot
kinematic constraints. The proposed framework is evaluated via simulation
and experimentation on three different robot platforms: 6-DoF industrial
arm, da Vinci Research Kit (dVRK), and the Insertable Robotic Effector
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Platform (IREP). Results show that our approach can accurately estimate
the locations and boundaries of stiff inclusions while reducing exploration
time.
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Chapter 1

Introduction

Consider the scenario where a group of unmanned aerial vehicles (UAVs) are searching for
targets as shown in Fig. 1.11. The UAVs collectively maintain a belief distribution of the
locations of the targets which is overlaid in blue. We are interested in figuring out how to plan
trajectories for these UAVs in order to efficiently find the targets. In this thesis, we explore
sampling-based techniques for robot trajectory planning for the sake of finding objects of
interests in a domain. Throughout this thesis, we consider two types of search that bascially
differ in the nature of information that is available to the agents.

The first type of search applies to scenarios in which accurate prior information distri-
bution of the possible locations of the objects of interest is available and is static. Thus, in
order to find a target of interest, one would favor covering regions where the prior distribution
indicates high likelihood of locating the target. Probabilistic approaches were developed to
exploit this prior information to direct the search to take less time [1–3]. Some of these ap-
proaches incorporate a coverage metric, called ergodicity, as an objective to guide the explo-
ration with respect to a desired spatial distribution of robot trajectories [4, 5]. For example,
given a probability density function (PDF) defined over the search domain, and indicating
where targets of interest might be located, an ergodic coverage strategy directs the robots
to distribute their time searching regions of the domain in proportion to the probability of
locating targets in those regions as shown in Fig. 1.1.

The second type of search that we consider in this thesis applies to scenarios where no
or crude prior information distribution exists about the locations of the objects of interest.
Therefore, the agents actively search for those objects by collecting sensor measurements,
updating an information distribution that encodes the locations of the targets of interest, and
using this information distribution to guide the search of where to go and collect sensor
measurements next for efficient search. As a focal application, we consider palpation-based
tumor search where a robot is equipped with a force sensor and is allowed to probe an organ
and collect stiffness measurements in order to locate stiff inclusions such as tumors as shown
in Fig. 1.2. The robot is assumed to have no or crude prior information of the locations
of tumors. This is essential when performing minimally invasive surgery (MIS) where often
there is a loss of haptic understanding of the anatomy. In order to restore the lost information,
several works in literature have focused on developing miniature tactile and force sensors [6–
11]. Surgeons typically rely on palpation to develop a haptic understanding of the anatomy
[12]. They analyze the force and deflection feedback from palpation to localize tumors and

1The figure is taken from Guillaume Sartoretti’s website: http://guillaume.sartoretti.science/
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Figure 1.1: Multiple agents (aeroplanes) performing ergodic coverage to search for and locate targets
(black dots). The agents start with covering a prior distribution of the locations of targets (uniform
distribution), and update this distribution as they observe new targets. The belief distribution of the
locations of targets (which is the desired distribution to be covered by the agents) is overlaid on the
above map in cyan color.

sensitive anatomy such as nerve bundles, tendons and arteries. Information from palpation
can help surgeons in forming a better understanding of the surgical scene and in achieving
a correlation between pre-operative imaging information and the surgical scene. Thus, it is
important to devise strategies that use these sensory information in an efficient way to help
surgeons build a better understanding of the anatomy. Such strategies include methods that
guide the robot where to go and probe next for fast and efficient tumor localization, and are
referred to as active search methods [13, 14].

This thesis explores and extends techniques for ergodic coverage and active search. The
first part of the thesis develops a framework for sampling-based ergodic coverage framework
that tackles limitations of previous ergodic coverage algorithms. The second part of the thesis
presents a trajectory optimized active search framework that integrates state-of-the-art active
search methods with sampling-based trajectory planning with application on palpation-based
tumor search2.

2Supplementary videos for this thesis can be found at this link. A presentation of this thesis can be found at the following
link.

2
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Figure 1.2: Experimental setup showing the dVRK robot with a miniature force sensor attached to
the end-effector. A stereo camera overlooks the workspace of the robot. A phantom prostate with
embedded stiff inclusion is placed in the workspace of the robot.

1.1 Related Work

In this section, we present some of the work that exists in the literature involving ergodic
coverage and active tumor search.

1.1.1 Ergodic Coverage

Ergodic theory is the statistical study of time-averaged behavior of dynamical systems [15].
This useful notion has been previously used to distribute multiple agents in an exploration
domain such that agents’ trajectories cover the domain. Formally, ergodicity is measured with
respect to a given target probability distribution. For example, to equally favor all the possible
states in the exploration domain, one needs to specify the target probability distribution as a
uniform distribution.

What makes ergodic coverage useful is that it overcomes the drawbacks of alternative uni-
form coverage algorithms, such as the lawnmower algorithm in which agents scan an area by
going back and forth in parallel lines [16–19]; ergodic coverage can be easily implemented
for irregular domains and non-uniform target probability distributions. Also, it assumes per-
fect communication among agents. Agents’ motions are planned sequentially by taking into
account the motion of every other agent. Therefore, it is robust to agent failure and to adding
new agents. Furthermore, ergodic coverage is naturally multi-scale i.e., covers large scale
regions followed by smaller regions [4].

The ergodic coverage algorithm, originally formulated by Mathew and Mezić [4], applies
to simple kinematic systems and has a natural extension to centralized multi-robot systems.
The formulation, however, treats a robot as point mass, and robot’s sensor footprint is repre-
sented as a Dirac delta function for computational tractability. Additionally, previous imple-
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mentations of the algorithm in [4,5] do not consider the obstacles in the exploration domain.
To exclude the coverage of certain areas, Mathew and Mezic [4] set the value of the desired
spatial distribution of trajectories to zero in those areas. However, the robots still visit those
areas although the percentage of time spent is small. We have recently employed a potential
field-based approach to extend the formulation in [4], which considers first-order and second-
order systems, to avoid circular obstacles in a planar domain [20]. However, generalization
of the derivations for other systems and types of obstacles are nontrivial. Constraints cor-
responding to arbitrary obstacles can be non-smooth, and, as a consequence, gradient-based
optimization methods employed in aforementioned works require special differentiation to
guarantee convergence of the solution [21].

1.1.2 Tumor Search

One of the active search applications that we consider in this thesis is tumor search. Many
groups have looked into using surgical robots for autonomously exploring an organ with
discrete probing motion [22, 23], rolling motion [24] and cycloidal motion [25] to localize
tumors which are characterized by high stiffness compared to that of normal tissue. These
works commonly direct the robot along a predefined path that scans the entire organ or region
of interest [22, 23, 26, 27]. Some of these works [25, 28] use adaptive grid resolution to in-
crease palpation resolution around boundaries of regions of interest marked by high stiffness
gradients [25, 28].

In order to reduce the exploration time, Bayesian optimization-based approaches have
been developed for tumor localization by directing the exploration to stiff regions [12,29–32].
These approaches model tissue stiffness as a distribution defined on the surface of the organ
where each point on the surface is associated with a random variable. Bayesian optimization
is then used to find the global maxima of the stiffness distribution. The assumption is that
finding the global maxima of the stiffness distribution correspond to locating the stiff inclu-
sions, portions of the tissue that probably does not belong. Ayvali et al. [29] sequentially
select the next location to probe the organ, and predict the stiffness distribution and the lo-
cation of the global maximum after every measurement, while Chalasani et al. [30] update
after collecting several samples over finite time along a trajectory that directs the robot to the
high stiffness regions. In a more recent work, Chalasani et al. [32] incrementally estimate
local stiffness and geometry while the organ is palpated along predefined trajectories or under
telemanipulation. Garg et al. [12] direct the exploration to areas where the predicted stiffness
values are within a percentage of the current estimated maximum to favor locations around
the maximum and not just at the expected maximum.

However, none of these approaches explicitly encode the goal of extracting the bound-
ary of the stiff inclusion. The only goal that is encoded through a Bayesian optimization
framework is to find the global maximum. As a consequence, the robot ends up mainly ex-
ploring around high stiffness regions before expanding to the boundary of the inclusion and
other regions. Prior works commonly demonstrate results using a single stiff inclusion (single
maximum) [12,30]. When multiple inclusions are present (multiple global and local maxima)
the Bayesian optimization algorithm is initialized with a coarse grid to ensure exploration of
all regions [29].
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1.2 Approach and Contributions

There are two key contributions of this thesis: (1) development of a sampling-based ergodic
coverage framework that tackles the limitations of previous frameworks [33] [34], and (2)
development of a trajectory-optimized active search framework for tumor localization.

1.2.1 Ergodic Coverage in Constrained Environments

We construct a new ergodic coverage objective that can take into account the robots’ sensor
footprint. We also formulate the ergodic coverage algorithm within a sampling-based trajec-
tory planning framework that lends itself to obstacle avoidance. Our formulation allows a
robot with a wide sensor footprint to perform coarse ergodic coverage of the domain, while a
robot with narrow sensor footprint performs dense ergodic coverage of the same domain.

1.2.2 Trajectory Optimized Active Search for Tumor Localization

We develop a tumor search framework that leverages state-of-the-art active search methods
as the objective to optimize robot’s trajectories and explicitly encodes search of stiff regions
and their boundaries. Compared to the existing works on active search [13,35], our formula-
tion also incorporates constraints due to the robot’s motion model and restricted areas in the
search domain. We show experimental results with a variety of robotic platforms both using
discrete probing and palpation along a continuous path that is optimized using sampling-
based trajectory planning.

5



Chapter 2

Background

2.1 Ergodic Coverage

Mathew and Mezić [4] introduced a metric to quantify the ergodicity of a robot’s trajectory
with respect to a given PDF. They start by defining the time-average statistics distribution Γ

of a robot’s trajectory, γ : (0, t]→ X . This distribution quantifies the fraction of time spent at
a point, xxx ∈ X , where X ⊂ Rd is a d-dimensional domain, and is defined as

Γt(xxx) =
1
t

∫ t

0
δ (xxx− γ(τ))dτ, (2.1)

where δ is the Dirac delta function.
Mathew and Mezić [4] define a PDF ξ (xxx) – also referred to as the desired coverage

distribution – defined over the domain. The ergodicity of a robot’s trajectory with respect
to ξ (xxx) is then defined as

Φ(t) =
m

∑
k=0

λk |Γk(t)−ξk|2 , (2.2)

where λk =
1

(1+|k|)s is a coefficient that places higher weights on the lower frequency com-

ponents and s = d+1
2 . The Γk(t) and ξk are the Fourier coefficients of the distributions Γt(xxx)

and ξ (xxx) respectively, i.e.,

Γk(t) = 〈Γ, fk〉=
1
t

∫ t

0
fk(γ(τ))dτ

ξk = 〈ξ , fk〉=
∫

X
ξ (x) fk(x)dx

(2.3)

where fk(xxx) = 1
hk

∏
m
i=1 cos

(
kiπ
Li

xi

)
is the Fourier basis functions that satisfy Neumann bound-

ary conditions on the domain X , m ∈ Z is the number of basis functions, and 〈·, ·〉 is the inner
product with respect to the Lebesgue measure. The term hk is a normalizing factor.

We note that in the scenario where multiple robot are covering a domain, the above equa-
tions still hold with minor modifications. Consider N robots, the time average statistics dis-
tribution shared among these robots is defined as

Γt(xxx) =
1

Nt

N

∑
j=1

∫ t

0
δ (xxx− γ j(τ))dτ
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and the corresponding Fourier coefficients are calculated as,

Γk(t) =
1

Nt

∫ t

0

N

∑
j=1

fk(γ j(τ))dτ

The goal of ergodic coverage is to generate optimal controls uuu∗(t) for a robot, whose
dynamics is described by a function q̇qq(t) = g(qqq(t),uuu(t)) such that

uuu∗(t) = argmin
uuu

Φ(t),

subject to q̇qq(t) = g(qqq(t),uuu(t))

‖uuu(t)‖ ≤ umax,

(2.4)

where qqq ∈ Q is the state space and uuu ∈U denotes the set of controls. Note that Φ(t) has γ(t)
encoded in, and γ(t) is the actual robot trajectory described by the robot dynamics, which in
turn is a function of uuu(t).

Mathew and Mezić [4] mainly consider first-order, q̇qq(t) = uuu(t), and second-order systems,
q̈qq(t) = uuu(t). They derive closed-form solutions that approximate the solution to Eq. (2.4) by
discretizing the exploration time and solving for the optimal control input that maximizes
the rate of decrease of Eq. (2.4) at each time-step. Miller and Murphey [5] use a projection-
based trajectory optimization method that solves a first-order approximation of Eq. (2.2) at
each iteration using linear quadratic regulator techniques [36].

2.2 Cross-Entropy Trajectory Planning

Cross-Entropy trajectory planning is a sampling-based method that was developed by Kobi-
larov [37] for path planning. This method is based on sampling in the space of trajectories.
The idea is to construct a probability distribution over the set of feasible paths and to perform
the search for an optimal trajectory through importance sampling [38], which is an efficient
technique to estimate a complex distribution by sampling from another easy-to-sample-from
distribution.

Consider a robot whose dynamics is described by the function g : Q×U → T X , such that

q̇qq(t) = g(qqq(t),uuu(t)) (2.5)

In addition, the robot is subject to constraints such as actuator bounds and obstacles in the
environment. These constraints are expressed through the vector of inequalities

F(qqq(t))≥ 0, (2.6)

The goal is to compute the optimal controls uuu∗ over a time horizon t ∈ (0, t f ] that minimize a
cost function such that

uuu∗(t) = argmin
uuu

∫ t f

0
C(uuu(t),qqq(t))dt,

subject to q̇qq(t) = g(qqq(t),uuu(t)),

F(qqq(t))≥ 0,
qqq(0) = qqq0,

(2.7)

where qqq000 is the initial state af the robot and C : U×Q→ R is a given cost function.
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2.2.1 Trajectory Parameterization

Following the notation in [37], a trajectory defined by the controls and states over the time
interval [0,T ] is denoted by the function π : [0,T ]→U×Q, i.e. π(t) = (uuu(t),qqq(t)) for all
t ∈ [0,T ]. The space of all trajectories originating at qqq0 and satisfying Eq. (2.5) is given by

P = {π : t ∈ [0,T ]→ (uuu(t),qqq(t)) |q̇qq(t) = g(qqq(t),uuu(t)),

qqq(0) = qqq0,T > 0.}
(2.8)

Let us consider a finite-dimensional parameterization of trajectories in terms of vectors zzz ∈ Z
where Z ⊂ Rnz is the parameter space. Assuming that the parameterization is given by a
function ϕ : Z→ P according to π = ϕ(z), the (uuu,qqq) tuples along a trajectory parameterized
by zzz are written as π(t) = ϕ(zzz, t). One choice of parameterization is to use motion primitives
defined as zzz = (uuu1,τ1, ...,uuu j,τ j) where each uuui, for 1 ≤ i ≤ j, is a constant control input
applied for duration τi. Another option is to use RRT or probabilistic roadmaps (PRM) to
sample trajectories as demonstrated in [37].

Now, we can define a cost function, J : Z→ R , in terms of the trajectory parameters as

J(zzz) =
∫ T

0
C(ϕ(zzz, t))dt (2.9)

Eq. (2.7) can be restated as finding the optimal (uuu∗,qqq∗) = ϕ(zzz∗) such that

zzz∗ = argmin
zzz∈Zcon

J(zzz). (2.10)

where the constrained parameter space Zcon⊂ Z is the set of parameters that satisfy the bound-
ary conditions and constraints in Eq. (2.7).

2.2.2 Cross-Entropy Method

In this thesis, we follow the work of Kobilarov [37] and employ the cross entropy (CE)
method to optimize the parameters of the trajectory. There are other sampling-based global
optimization methods such as Bayesian optimization [39], simulated annealing [40], and
other variants of stochastic optimization [41] that can also be used to optimize parameterized
trajectories. We use the CE method because it utilizes importance sampling to efficiently
compute trajectories that have lower costs after few iterations of the algorithm, and it has
been shown to perform well for trajectory optimization of nonlinear dynamic systems [37].

The CE method treats the optimization in Eq. (2.10) as an estimation problem of rare-
event probabilities. The rare event of interest in this work is to find a parameter z whose cost
J(z) is very close to the cost of an optimal parameter z∗. It is assumed that the parameter
z ∈ Z is sampled from a Gaussian mixture model defined as

p(z;v) =
K

∑
k=1

wk√
(2π)nz|Σk|

e−
1
2 (z−µk)

T σ
−1
k (z−µk) (2.11)

where v = (µ1,Σ1, ...,µK,ΣK,w1, ...,wK) corresponds to K mixture components with means
µk, covariance matrices Σk, and weights wk, where ∑

K
k=1 wk = 1.

8



The CE method involves an iterative procedure where each iteration has two steps: (i)
select a set of parameterized trajectories from p(z;v) using importance sampling [42] and
evaluate the cost function J(z), (ii) use a subset of elite trajectories1 and update v using ex-
pectation maximization [43]. After a finite number of iterations p(z;v) approaches to a delta
distribution, thus the sampled trajectories remains unchanged. For implementation details,
the reader is referred to [44].

2.3 Gaussian Process Regression

Gaussian process (GP) is a popular tool used to perform nonparameteric regression. Intu-
itively a GP can be viewed as a distribution over functions. By using GP, we assume a
smooth change in the latent function we are estimating (in this thesis the stiffness distribution
across the organ).

A GP is defined by its mean and covariance functions fGP and k respectively. Given a
d-dimensional search domain X ⊂ IRd, the distribution of function values at a point xxx ∈ X
is represented by a random variable, y, and has a Gaussian distribution, N( fGP(xxx),σ2(xxx))
where we abbreviate σ2(xxx) = k(xxx,xxx). Given a set of n observations ȳyy = [y1,y2, . . . ,yn]

T at
X̄ = [xxx1,xxx2, . . . ,xxxn]

T , GP regression can be used to make predictions on the distribution of
function values at a new point xxx∗ ∈ X

p(y∗|ȳyy)∼ N(KKK∗KKK−1ȳyy,k∗∗−KKK∗KKK−1KKKTTT
∗ ),

where k∗∗ = k(xxx∗,xxx∗), and KKK is the n×n covariance matrix whose elements KKKi j are calculated
using any positive definite covariance function k(xxxi,xxx j) (in this thesis, we use the squared
exponential covariance function). Similarly, KKK∗ is a 1×n vector defined as,

KKK∗ = [k(xxx∗,xxx1), . . . ,k(xxx∗,xxxn)].

2.4 Active Learning and Bayesian Optimization

In many learning scenarios, unlabeled data are plentiful and manually labeling them is ex-
pensive. The role of active learning algorithms is to efficiently find which data to label. In
this work, we leverage active learning algorithm to direct a robot where to search for tumor.
The search space is the surface of the organ and labeling data corresponds to assigning a
binary value to every point on the organ’s surface: normal tissue vs. tissue abnormality de-
pending on the measured stiffness value at that point. Thus, the active learning algorithms
guides the robot of where to go, probe, and collect stiffness next. More details are pre-
sented in Section 4.2. We consider in this work various active learning algorithms: active
area search (AAS), active level sets estimation (LSE), and uncertainty sampling (UNC), and
compare them with Bayesian optimization algorithm (BOA) which gained interest in recent
works [12, 30, 31].

2.4.1 Active Area Search

AAS discretizes the search domain into a set of regions G = {gi|i = 1 . . .N,gi ⊂ X} and
classifies each as region-of-interest (tissue abnormalities corresponding to regions that have

1A fraction of the sampled trajectories with the best costs form an elite set. See [42] for details.
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high stiffness) if the average estimated latent function (stiffness function in our case) is above
some threshold τ with high probability θ . AAS sequentially queries at a point xxx∗ ∈ X that
maximizes the expected sum of binary rewards rg defined over each region g ∈ G as,

rg =

{
1, if Tg > θ

0, otherwise

where y∗ is the observation at xxx∗, and Tg = p( fg > τ|X̄ , ȳyy,(xxx∗,y∗)). fg is the average area
integral of fGP over the region g and is defined as,

fg =
1

Ag

∫
g

fGP(xxx)dxxx

where Ag is the area of g. Thus, AAS sequentially samples the point xxx∗ that maximizes the
expected total reward, i.e.,

xxx∗ =argmax
xxx∈X

∑
g
E[rg|X̄ , ȳyy,(xxx,y)] (2.12)

=argmax
xxx∈X

∑
g

p
(
Tg > θ

)
For more details, we refer the reader to the work of Ma et al. [13].

2.4.2 Level Set Estimation

The LSE algorithm determines the set of points for which an unknown function (stiffness
map in our case) takes a value above or below some given threshold level h. LSE guides
both sampling and classification based on GP-derived confidence bounds. The mean and
covariance of the GP can be used to define a confidence interval,

Qt(xxx) =
[

fGPt (xxx)±β
1/2

σt(xxx)
]

for each point xxx ∈ X̄ , where the subscript t refers to time. Furthermore, a confidence region
Ct which results from intersecting successive confidence intervals can be defined as,

Ct(xxx) =
t⋂

i=1

Qi(xxx)

LSE then defines a measure of classification ambiguity at(xxx) defined as,

at(xxx) = min{max(Ct(xxx))−h,h−min(Ct(xxx))} (2.13)

LSE chooses sequentially queries (probes) at xxx∗ such that,

xxx∗ = argmax
xxx∈X

at(xxx).

For details and how to select the parameter h, we refer the reader to the work of Gotovos et
al. [35].
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2.4.3 Uncertainty Sampling

The Uncertainty Sampling (UNC) algorithm explores locations that have high variance in the
GP posterior distribution [45]. The algorithm is very simple; it sequentially queries (probes)
at xxx∗ such that,

xxx∗ = argmax
xxx∈X

σ(xxx).

where σ(xxx) is the standart deviation of th GP estimate of the latent function at location xxx.

2.4.4 Bayesian Optimization

Bayesian Optimization algorithm (BOA) is a sequential sampling strategy for finding the
global maxima of black-box functions [46]. A GP is used as a surrogate for the function to
be optimized. BOA uses the posterior mean, fGP(xxx), and variance, σ2(xxx), of the GP for all
xxx ∈ X , to sequentially select the next best sample as the point that maximizes an objective
function such as expected improvement (EI) [46] given by,

xxx∗ = argmax
xxx∈X

EI(xxx)

EI(xxx) =

{
( fGP(xxx)− y+)Φ(z)+σ(xxx)φ(z) if σ(xxx)> 0
0 if σ(xxx) = 0

(2.14)

where z =
(

fGP(xxx)−y+

σ(xxx)

)
, y+ is the current maximum. φ(·) and Φ(·) are the probability density

function and cumulative distribution function of the standard normal distribution, respec-
tively.
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Chapter 3

Ergodic Coverage in Constrained
Environments

In this chapter, we introduce a formulation that optimizes an ergodic coverage objective using
the cross entropy trajectory planning algorithm presented in Section 2.2. In this formulation,
which we will refer to as stochastic trajectory optimization for ergodic coverage (STOEC),
we incorporate kinematic constraints of the robot and constraints arising from obstacles in
the enivornement, and we pose ergodic coverage as a sampling-based trajectory planning
problem. We choose a sampling-based technique because it is easy to implement, it can be
used as a trajecory optimization method, it does not assume any differentiable properties of
the objective functions for which it optimizes, and it can return a solution as fast as required
by reducing the number of samples, thus giving away some accuray for speed [37]. We start
by redefining the time average statistics of a robot’s trajectory to capture the robot’s sensor
footprint. We then demonstrate that obstacle avoidance can be easily incorporated into this
framework by penalizing sampled trajectories that collide with arbitrarily-shaped obstacles
or that intersect restricted regions.

3.1 Redefinition of the Metric of Ergodicity

Let us start with two key observations. First, we note that in Eq. (2.1), it is assumed that a
robot’s trajectory is composed of Dirac delta functions. In other words, it is assumed that the
sensor footprint, which is basically the region of the domain covered by the sensors of the
robot at a given location, is negligible compared to the size of the domain. This assumption
is adopted to make the calculation of the Fourier coefficients of the distributions given by
Eq. (2.3) simple [47]. In many practical applications, the robots can be equipped with sensors
of various types (camera, lidar, ultrasonic, etc.), which cannot really be modelled using the
Dirac delta function as a footprint of the robot. Having control over the sensor footprint
opens up interesting and useful strategies for coverage: a robot equipped with a wide sensor
footprint should be able to perform a coarse ergodic coverage of the domain compared to
a robot equipped with a narrow sensor footprint. Similarly, the optimal ergodic-coverage
trajectory of a ground vehicle equipped with a forward looking ultrasonic sensor would be
different than an aerial vehicle equipped with a downward-looking sensor.

Second, as also stated in [5], the motivation in using the norm of the Fourier coefficients
is to obtain an objective function that is differentiable with respect to the trajectory. When

12



(x,y)

θ
βr

Figure 3.1: Forward looking beam sensor model (e.g. ultrasonic sensor): an example of a sensor
footprint of the robot. The variables (x,y,θ) represent the state of the robot, whereas r and β represent
the bearing measurement limits of the sensor.

a sampling-based approach is used for trajectory optimization, there is no need for a dif-
ferentiable objective function, but this comes at the expense of sub-optimal solution of the
optimization problem due to the sampling nature of sampling-based approaches. There are
many other measures used in information theory and statistics to compare two distributions.
Here, we consider Kullback-Leibler (KL) divergence, which measures the relative entropy
between two distributions defined over a domain X ,

DKL(Γ||ξ ) =
∫

X
Γt(xxx) log

(
Γt(xxx)
ξ (xxx)

)
dxxx. (3.1)

KL divergence can encode an ergodic coverage objective without resorting to the spectral
decomposition of the desired coverage distribution, whose accuracy is limited by the number
of basis functions used. This makes KL divergence faster to compute that the traditional met-
ric for ergodicity given by Eq. (2.2). Additionally, we can explicitly measure the ergodicity
of a trajectory without resorting to simplifications in the representation of a robot’s sensor
footprint.

In our formulation, the optimization problem posed in Eq. (2.10) can be solved by defin-
ing the cost function J(z) to be

J(z) = DKL(Γ||ξ ) (3.2)
where z is sampled from a Gaussian mixture model defined in Eq. (2.11).

3.2 Sensor Footprints

In this thesis, we consider two sensor footprints: (1) Gaussian sensor footprint, and (2)
forward-looking beam sensor footprint. Assuming there are N robots, let f j(.) be the sen-
sor footprint of the j-th robot. The time-average statistic, Γt(xxx), can be defined as,

Γt(xxx) =
1
t

N

∑
j=1

∫ t

0
f j(xxx− γ j(τ))dτ, (3.3)

where γ j is the trajectory of the j-th robot. A Gaussian sensor footprint is described as

f j(yyy) =
1√

(2π)d|Σ|
exp
(
−1

2
yyyT

Σ
−1yyy
)
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where Σ is the covariance of the Gaussian distribution (controls how wide the sensor footprint
is). On the other hand, the sensor footprint of a beam model is defined by a radius r, and angle
of view β , similar to an ultrasonic sensor as shown in Fig. 3.1. The sensor footprint of the
beam model is parameterized as

f j(yyy) =

{
1, if |yyy| ≤ r and θτ − β

2 ≤ arctan(y2
y1
)≤ θτ +

β

2
0, otherwise.

where θτ is the heading of the robot at time τ , and yi is the i-th element of the vector yyy.

3.3 Obstacle Avoidance

Suppose that the domain X contains p obstacles denoted by O1, ...,Op ⊂ X . We assume that
the robot at state qqq is occupying a region A(qqq) ⊂ X . Borrowing the notation in [37], let the
function prox(A1,A2) return the closest Euclidean distance between two sets A1,2 ⊂ X . This
function returns a negative value if the two sets intersect. Therefore, for an agent to avoid the
obstacles O1, ...,Op, we impose a constraint of the form of Eq. (2.6) expressed as,

F(qqq(t)) = min
i

(
prox

(
A(qqq(t)),Oi

))
, ∀t ∈ [0,∞). (3.4)

The sampled trajectories that do not satisfy the constraints of Eq. (2.6) are penalized.

3.4 Example: Dubins Car

The sampling-based trajectory planning framework that we use can be applied to any robot
whose dynamics are given as Eq. (2.5) given that we can parameterize the space of all tra-
jectories satisfying the dynamics of the robot using motion primitives. We will consider the
Dubins car model whose motion is restricted to a plane. The state space for such a model
is Q = SE(2) with state qqq = (x,y,θ), where (x,y) are the Cartesian coordinates of the robot,
and θ is the orientation of the robot in the plane. The dynamics of a dubins car is defined by,

ẋ = vcosθ , ẏ = vsinθ , θ̇ = w (3.5)

where v ∈ [vmin,vmax] is a controlled forward velocity, and w ∈ [wmin,wmax] is a controlled
turning rate. We can represent a trajectory satisfying (3.5) as a set of connected motion
primitives consisting of either straight lines with constant velocity v or arcs of radius v/w. We
define a primitive by a constant controls (v,w). The duration τ of each primitive is constant
and τ > 0. We parameterize the trajectory of the robot using m primitives, and this finite
dimensional parameterization is represented by a vector zzz ∈ R2m such that,

zzz = (v1,w1, ...,vm,wm) (3.6)

The jth primitive ends at time t j = jτ for j ∈ 1, ..,m. For any time t ∈ [t j, t j+1], the
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parameterization ϕz = (v,w,x,y,θ) is given by,

v(t) = v j+1

w(t) = w j+1

θ(t) = θ j +w j+1∆t j (3.7)

x(t) =
{

x(t j)+
v j+1
w j+1

(sin(θ(t))− sinθ j), if w j+1 6= 0
x(t j)+ v j+1∆t j cosθ j, otherwise

y(t) =
{

y(t j)+
v j+1
w j+1

(cosθ j− cos(θ(t))), if w j+1 6= 0
y(t j)+ v j+1∆t j sinθ j, otherwise

where θ j = θ(t j) and ∆t j = t − t j. The paramterization ϕz allows us to calculate the cost
function in Eq.(2.9) and then solve tehe optimization problem shown in Eq. (2.10).

3.5 Simulation Results

In this section, we first compare our algorithm with the implementation of Mathew et al. [33]
in an unconstrained environment. In Section 3.5.2, we demonstrate that our formulation can
capture coordination of multiple robots equipped with different sensing capabilities. It is also
straightforward to encode additional tasks besides ergodic coverage. In Section 3.5.3, we
present an example in which a robot is directed to reach a destination in a desired time while
performing ergodic coverage.

3.5.1 Comparisons

We first compare the coverage performance of three different implementations of the ergodic
coverage algorithm: (i) We generate a trajectory using the method presented in Mathew et
al. [33], which will be referred to as spectral-multiscale coverage (SMC) algorithm. (ii) We
use STOEC to optimize the trajectory such that Eq. (2.2) is minimized. This implementation
will be referred as Ergodic-STOEC. (iii) We use STOEC to optimize the trajectory such that
Eq. (3.1) is minimized. This will be referred as KL-STOEC.

We perform numerical simulations for each of the aforementioned implementations. We
define the desired coverage distribution ξ (xxx), as a Gaussian mixture model1 as shown in
Fig. 3.2. For visualization, ξ (xxx) is normalized such that the maximum value of the desired
coverage distribution takes the value of 1. The initial position of the robot is randomly se-
lected. The robot is assumed to have bounded inputs v ∈ [0.1,5] m/s and w ∈ [−0.2,0.2]
rad/s. For SMC, the total simulation time is T = 1000 sec, and the time step is 0.1 sec. For
STOEC, we run 20 stages of the algorithm. A single stage of the algorithm corresponds to
generating a trajectory using 5 primitives where the duration of each primitive is τ = 10 sec
by optimizing Eq. (2.9) . Therefore, the full trajectory is 1000 sec. STOEC is seeded with 40
sampled-trajectories.

The results are shown in Fig. 3.2. Since the metric for ergodicity and KL divergence
both measure similarity between two distributions, we need to choose another metric to com-
pare between ξ (xxx) and Γt(xxx) of the trajectory optimized by KL-STOEC, and to compare

1There are no restrictions on the choice of representation for ξ (xxx).
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Table 3.1: Comparison of the computation time

Method
Computing

1 stage (50 sec)
Computing the

full trajectory (1000 sec)

KL-STOEC 0.5 10.0
Ergodic-STOEC 1.2 24.0
SMC 1.7 35.0

Figure 3.2: Ergodic coverage results for three different implementations: (a) Ergodic-STOEC: mini-
mizing Eq.(2.2), (b) KL-STOEC: minimizing Eq.(3.1), (c) SMC implementation in Mathew et al. [33].
Ergodic coverage performance is assessed through plotting the Bhattacharyya distance between the
coverage distribution ξ (xxx) and the time-average statistics distribution Γt(xxx) in (d) for the different im-
plementations. Notice that (a) and (b) have similar decay rates, while the decay rate of (c) is smaller.

betweebetween ξ (xxx) and Γt(xxx) of the trajectory optimized by Ergodic-STOEC. To assess
the coverage performance of the algorithms, we use Bhattacharyya distance which is a well
known metric that is used to measures the similarity of two probability distributions. The
Bhattacharyya distance is defined as,

DB(Γ,ξ ) =− ln
(∫

X

√
Γt(xxx)ξ (xxx)dxxx

)
. (3.8)

Table 1 shows the computation time2 for each algorithm for the example in Fig.3.2. We
2The code runs on MATLAB 2016a in Windows 10 on a laptop with i7 CPU and 8 GB RAM.
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Robot trajectories Time-average statistics

robot 1

robot 3
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obstacle
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(a) time=200 sec

(b) time=400 sec

Desired coverage distribution

Figure 3.3: Ergodic coverage results for three robots with Dirac delta sensor footprint. The left figures
show the robots trajectories, and the right figures show the corresponding time-average statistics. The
results are shown for two different instants of the KL-STOEC.

should mention that the computational time of STOEC varies depending on the number of
trajectory samples that are seeded to the algorithm and the number of primitives. With around
40 sampled trajectories, the algorithm converges to a solution more quickly than SMC. It is
also important to note that STOEC plans over a finite time horizon as opposed to the greedy
approach in SMC. The metric for ergodicity, given by Eq. (2.2), gives higher weights to the
low frequency components. Therefore, the algorithm favors large scale exploration of the
coverage distribution.

3.5.2 Sensor Footprints

In this section, we demonstrate that our framework can capture multi-agent systems with dif-
ferent sensing capabilities. It is important to note that the formulation of the ergodic coverage
algorithm assumes that robots have perfect communication, thus have access to the trajectory
plans of other robots. The robot trajectories are sequentially optimized by taking into account
the time-average statistics of every robot’s trajectory. Trajectory optimization also assumes
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robot 1
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(a) time=200 sec
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Figure 3.4: Ergodic coverage results for three robots with wide Gaussian sensor footprint. The left fig-
ures show the robots trajectories, and the right figures show the corresponding time-average statistics.
The results are shown for two different instants of the KL-STOEC.

deterministic motion models.
Fig. 3.3 shows the ergodic coverage of a desired distribution using KL-STOEC assuming

a Dirac delta sensor footprint. We run 10 stages of the algorithm using 5 primitives where
the duration of each primitive is τ = 8 sec. The robot is assumed to have bounded inputs
v ∈ [0.1,5] m/s and w ∈ [−0.2,0.2] rad/s. Although the coverage focuses on the regions
where the measure of the desired coverage distribution, ξ , is greater than 0, the algorithm
needs a much longer time for time-average statistics to converge to the desired distribution.
Fig. 3.4 demonstrates results with a wide Gaussian sensor footprint using the same parame-
ters. Fig.3.5 shows the errors measured using the Bhattacharyya distance. The computational
time for these two scenarios in Fig. 3.3 and Fig. 3.4 are 0.7 sec/stage and 1.7 sec/stage, respec-
tively. Fig. 3.6 shows another example where there are three robots equipped with different
sensing capabilities. The sensor footprint of each robot is shown in Fig. 3.6 (c).

Note that, in these examples, the robots can continue to perform ergodic coverage of the
domain indefinitely. That is, once the time-average statistics converge to the desired distri-
bution, any new motion will result in a difference between the two distributions, Γt(xxx) and
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Figure 3.5: Ergodic coverage performance comparison for the robots with narrow vs. wide Gaussian
footprints.
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Figure 3.6: Ergodic coverage results for three robots equipped with a forward-looking beam sensor
footprint, a Dirac delta sensor footprint, and a wide Gaussian sensor footprint, respectively. The result-
ing trajectories of the robots using KL-STOEC implementation are shown in (a) for 25 concatenated
segments. The time-average statistics is shown in (b). The different footprints of the three robots are
shown in (c). Finally, (d) shows the Bhattacharyya distance between the coverage distribution ξ (xxx)
and the time-average statistics distribution Γt(xxx) as a function of the number of stages.

ξ (xxx). The trajectory planner then drives robots to continue covering the domain such that
Γt(xxx) again converges to the desired distribution ξ (xxx). This is a very useful trait for surveil-
lance applications, where the robots need to continuously monitor a region while spending
more time in regions that have high values marked by the desired coverage distributions.
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Figure 3.7: The robot starts at S:start and is supposed to reach point G:goal in 500 seconds using a
maximum of 10 primitives.

3.5.3 Point-To-Point Planning

Our framework can be extended to encode additional tasks beside ergodic coverage. We
present an example in which the robot reaches a desired state in a given time while perform-
ing ergodic coverage along the way. This task is easily performed by adding a term to the
objective function, Eq. (3.1), that penalizes the error between the state of the robot at the end
of the trajectory (assuming a trajectory of duration T), qqq(T ), and the desired state of the robot
qqqd . Thus, the cost function can be defined as,

C(zzz,qqq) = DKL(Γ||ξ )+α‖qqq(T )−qqqd‖2. (3.9)

where α ≥ 0 is a weighting parameter, chosen heuristically, which specifies how hard the
constraint of reaching a desired state at time T is. As α increases, the robot is guaranteed
to reach its final desired state. We simulate an example of such a scenario in Fig. 3.7. The
robot is assumed to have bounded inputs v ∈ [0.1,5] m/s and w ∈ [−0.2,0.2] rad/s. How to
systematically choose the parameter α is an open question and is left as a future work.
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3.6 Contribution

The contributions from this chapter include

1. The construction of a new ergodic coverage objective that can take into account the
robots’ sensor footprint.

2. The formulation of the ergodic coverage within a stochastic trajectory optimization
framework that lends itself to motion constraints of the robot, and constraints arising
from arbitrary-shaped obstacles.

3.7 Published Work

Material from this chapter has appeared in the following publications

1. Hadi Salman, Elif Ayvali, Howie Choset,“Multi-agent Ergodic Coverage with Obstacle
Avoidance”, In the proceedings of the Twenty-Seventh International Conference on
Automated Planning and Scheduling (ICAPS), Pittsburgh, USA, June 2017.

2. Elif Ayvali, Hadi Salman, and Howie Choset, “Ergodic Coverage In Constrained Envi-
ronments Using Stochastic Trajectory Optimization”, IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), Vancouver, Canada, September 2017.
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Chapter 4

Trajectory Optimized Active Search for
Tumor Localization

Ergodic coverage is one strategy to search for tumors in anatomies [31]. Given a prior dis-
tribution of the location of tumors, using a CT scan for example, a robot can be directed
to ergodically cover the organ by focusing on areas where the distribution is denser. How-
ever, Ayvali et al. [31] showed that while ergodic coverage succeeds in locating tumors, other
methods, such as Bayesian optimization, perform better in terms of how quickly it locates
tumors. Furthermore, the work of Chalasani et al. [30] demonstrates how using continuous
plapation, such as the sweeping palpation motion used by surgeons, can offer useful informa-
tion that can be used to simultaneously search for tumors and estimate the geometry of the
organ. Yet, this work does not consider any robot constraints, and it assumes that the robot is
capable of execting those continuous plapation trajectories.

This directed us to explore GP-based active search methods and reformulate them in a
framework of continuous palpation that takes into account the motion constraints of the robot,
in addition to any undesired regions which should not be traversed during palpation.

In this chapter, we build on top of the work of Ayvali et al. [31], and we explore more
recent active search methods. We then integrate these active search methods with a sampling-
based trajectory planner that takes into account constraints associated with the motion model
of the robot. Finally, we demonstrate that obstacle avoidance can be easily incorporated into
this framework by penalizing the sampled trajectories that collide with arbitrarily-shaped
obstacles or that pass through restricted regions.

4.1 Modelling the Stiffness Map

In our work, we utilize Gaussian processes (GPs) to model the distribution of stiffness of the
organ. By using GP, we assume a smooth change in the latent function we are estimating
which is the stiffness distribution across the organ. We also assume that every point on the
organs’s surface can be mapped in a 2D grid, thus, the domain of search used is X ⊂ IR2. The
measured force and deflection after probing the organ by the robot at position xxx provides the
stiffness estimation represented by y. The set {(xxx111,y1),. . . ,(xxxN ,yN)} contains the data points
that are used to train the GP as discussed in Section 2.3, where N is the number of probed
points.

The motivation behind choosing a GP to model the stiffness map of the organ is that a
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GP estimates the mean and covariance of the stiffness function at each point in the search
space. This covariance represents the uncertainty of the value estimated by the GP at each
point. Therefore, we obtain an uncertainty bound for the stiffness estimates across the organ
which can be used to direct the search as we will discuss in Section 4.2.

Before moving on, we present a comparison between GP and a variety of regression
methods. This comparison shows that, in addition to offering a confidence bound for the
stiffness map, a GP leads to lower RMSE of estimation compared to other regression methods
when estimating a latent function in a low dimensional space

(
R2) and with few training

data ((xxx,y) tuples of probed points on the organ). We consider the following state-of-the-art
regression methods,

• Gaussian Process regression (GPR)

• Kernel ridge regression

• Support vector regression (SVR)

• k-nearest neighbors (k-NN)

• Decision tree

• Ensemble method (Adaboost)

• Neural network

• Random forest

In addition to these methods, we consider cubic interpolation as a method to estimate
the stiffness map given samples from the true function. We randomly sample 50 datapoints
{(xxx111,y1), . . . , (xxx50,y50)} from a ground truth stiffness map. We use the same 50 datapoints to
train each of the aforementioned regression methods. The results are shown in Fig. 4.1 and
4.2. The GP outperforms other regression methods in estimating the ground truth stiffness
map.

Note that we choose only 50 points to train each method because in applications such
as tumor localization, it is crucial to be able to detect tumors in the least number of probes
possible. Also, we note that as the number of data points increases, all the regression methods
tend to give similar estimates. Furthermore, for other applications that are characterized with
high dimensional space or huge amounts of data, GP might not be the best option, and neural
networks, for example, can be more suitable.

4.2 GP-based Active Search

In Section 4.1, we presented how we model and estimate the stiffness map assuming we
are given a set labelled data points {(xxx111,y1), . . . , (xxxN ,yN)}. In this section, we discuss how
we can collect these data points (where to probe and collect stiffness values) in an efficient
sequential fashion.

We assume that a robot is equipped with a force sensor attached to its end-effector, and
the robot is supposed to move, probe, and measure stiffness at a certain location of the organ.
In this work, we leverage state-of-the-art active search methods to guide the robot where to
go and probe next includeing active area search (AAS), level sets estimation (LSE), and un-
certainty sampling (UNC), in addition to Bayesian optimization algorithm. These algorithms
are described in Section 2.4.
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Figure 4.1: The estimated stiffness map using various regression methods. Each method is trained
using 50 randomly sampled points from the ground truth stiffness map shown in the upper left cor-
ner. Given the few data points that are used to fit a function, GP qualitatively outperforms the other
methods. For quantitative analysis check Fig. 4.2.

Figure 4.2: The RMSE error between the ground truth stiffness map and the estimated stiffness map
using various regression methods. We use 50 randomly sampled data from the ground truth stiffness
map to train each of the methods. GP results in the closest estimated stiffness map to the ground truth.

4.3 Objective Function for Active Search

In this section, we introduce the objective function for which we optimize. We use the
sampling-based trajectory planning framework presented in Section 2.2.
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Algorithm 1 Discrete Palpation
1: Initialize the GP with zero mean and squared exponential covariance function
2: xxx∗← random . random initialization of probed point
3: while TRUE do
4: Probe at xxx∗

5: Calculate stiffness at probed points
6: Update GP using the stiffness estimate
7: Update acquisition function ξacq using GP
8: xxx∗← argmaxξacq

Algorithm 2 Trajectory-Optimized Continuous Palpation
1: Initialize the GP with zero mean and squared exponential covariance function
2: zzz∗← random . random initial trajectory in the space of motion primitives
3: while TRUE do
4: Execute trajectory zzz∗

5: Collect stiffness measurements along the trajectory
6: Update GP using the stiffness estimate
7: Update acquisition function ξtotal using GP . (4.2)
8: zzz∗← argminzzz∈Zcon

J(zzz) . (4.1)

The problem of finding the location and shape of the stiff inclusions (objects of interest in
an organ, such as tumors) while considering various inherent constraints can be modeled as
an optimization problem. However, an exact functional form for such an optimization is not
available in reality. Hence, we maintain a probabilistic belief about the stiffness distribution
and define an “acquisition function” to determine where to sample next.

We define the cost function J(zzz) that we use to optimize the plapation trajectory of the
robot as,

J(zzz) =−
∫

φ(zzz)
ξtotal(qqq)dqqq (4.1)

where zzz is sampled from a Gaussian mixture model defined in Eq. (2.11), φ(zzz) is the sampled
trajectory that is parameterized by the motion primitive zzz, and ξtotal is total acquisition that is
to be maximized by each sample trajectory, and is defined by,

ξtotal(qqq) = η
(
ξacq(qqq)+α(t)ξprior(qqq)

)
(4.2)

where ξacq is a normalized acquisition function defined by any one of the active learning
algorithms described in Section 2.4. ξacq is defined as the expected total reward from Eq. 2.12
when using AAS, the ambiguity at from Eq. 2.13 in the case of LSE, the uncertainty in the
GP posterior distribution when using UNC1 , and the EI as shown in Eq. 2.14 in the case of
BOA. ξprior(qqq) is a normalized distribution capturing the prior on the locations of the tumors,
and it decays as search progresses by means of a decay function α(t). Note that the effect of
this term has been studied in detail in our previous work [48]. In this work, we only focus on
the effect of ξacq. Finally, η is a normalizing constant.

1This uncertainty is associated with the estimated stiffness map produced by the GP and should not to be confused by
the uncertainty in the robot’s position or force measurement.
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(a)

(b)

(c)

Figure 4.3: (a) 6 DoF industrial robot arm with a force sensor attached to its end effector. (b) Ground
truth stiffness map generated by densely probing a silicone phantom organ. (c) A contour map showing
various stiffness levels.

After defining the objective function for which we would like to optimize, we summarize
the active search for tumor process by the pseudocode shown in Algorithm 2.

4.4 Obstacle Avoidance

In some surgical scenarios, one may want to avoid palpating certain regions of the organ’s
surface such as a bony region or regions occupied by other instruments etc. In order to handle
such scenarios, our framework can also account for obstacles while searching following the
formulation presented in Section 3.3.

4.5 Simulation Results

In this section, we present and compare simulation results for discrete probing and continuous
probing scenarios using the various active search algorithms presented in Section 2.4.

4.5.1 Discrete Probing

We start by comparing four different sequential probing algorithms which we adopt in this
thesis as efficient methods to guide our tumor search. This section considers discrete probing
scenarios, that are described in Algorithm 1, where it is assumed that the robot can reach any
point in the search domain.

The robot has no prior knowledge of the locations of the stiff regions. The starting point
of the robot is chosen randomly in the 2D seach domain. The robot then sequentially decides
where to go and probe next such that the acquisition function ξtotal associated with each
algorithm is maximized. For example, for the LSE algorithm, the robot chooses the point
with the highest ambiguity in its classification at each step and goes and probes there. We
test the four different algorithms listed in Section 2.4 in a simulated experiment. We use
a ground truth of a silicone phantom organ obtained by doing a raster scan using a 6 DoF
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10 0.5

Figure 4.4: Discrete probing using (a) AAS, (b) LSE, (c) UNC, and (d) EI algorithms with only 30
probed points. We discretize the search space into regions (squares) as shown in the figures at the
bottom: regions whose average estimated stiffness is above a certain threshold are marked as with
tumor and are marked with a red tick. Otherwise, the regions are marked with green cross signifying
normal tissue regions.

industrial robot as shown in Fig. 4.3. The results of this simulation are shown in Fig. 4.4. We
will discuss the results of this experiment in Section 4.5.32.

To assess the performance of the different algorithms, we report the recall since it is a
suitable performance measure for regions-of-interest detection problems. The recall is widely
used in the machine learning community as a performance measure for similar problems
[13]. In order to calculate the recall, we discretize the search space into regions (squares) as
shown in Fig. 4.4; regions whose average estimated stiffness is above a certain threshold are
considered as containing a tumor and are marked with a red tick. Otherwise, the regions are
marked with green cross signifying normal tissue regions. The recall is then calculated as the
ratio of the number of regions that are marked with red ticks (contain tumor) over the total
number of regions that truely contain tumor.

We perform 100 simulations with same parameters of the GP but with randomly generated
ground truths. Then we perform another 100 simulations on a fixed ground truth but with
random initial probed points. The average of the recall across each 100 simulations as a
function of the number of probed points for the different algorithms is reported in Fig. 4.5.

2Note that through out this thesis, we normalize the estimated stiffness map. This is because we are more interested in
revealing the position and boundaries of a tumor rather than its actual stiffness.
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Figure 4.5: The top plot shows the average of the recall as a function of the number of the palpated
points across 100 simulations of discrete palpation (Algorithm 1) with randomly generated ground
truths for the stiffness map. The mean and the covariance of each of the four algorithms considered in
this thesis is reported. The bottom plot shows the average of the recall for 100 repeated simulations
for tumor localization over a fixed ground truth but with random starting probing point locations.

4.5.2 Continuous Probing

Discrete probing does not impose a constraint on the next location to be probed. A robot
may not be able to reach the next desired point due to motion constraints. Further, the robot
can benefit from collecting information along an optimized path to improve the predictions
of tumor location and boundaries.

We perform continuous palpation experiments in simulation on the same dataset used in
the previous section and shown in Fig. 4.3. The results are shown in Fig. 4.6 and discussed
in Section 4.5.3. Similar to Section 4.5.1, we repeat this simulation 100 times with same
parameters of the GP but with randomly generated ground truths. Then we repeat 100 simu-
lations on a fixed ground truth but with random initial starting positions. The average of the
recall across each 100 simulations as a function of the number of fixed-frequency-sampled
measurements along the palpation path for the different algorithms is reported in Fig. 4.7.

4.5.3 Discussion

The Bayesian optimization algorithm is designed to focus on finding the global maxima of a
function. Therefore, once a point with high stiffness is detected, the algorithm collects more
samples around it instead of moving out from that region and discerning the boundary. This
is clearly observed in both Fig 4.4-d as well as Fig. 4.6-d.

LSE algorithm is designed to direct search around an predefined level set3 corresponding
to tumor boundaries and, as a result, can find the boundaries of the tumors fairly well. How-

3This level set can defined as a percentage of the maximum estimated stiffness value so far.

28



Figure 4.6: Continuous palpation for tumor localization using (a) AAS, (b) LSE, (c) UNC, and (d) EI
acquisition functions in a trajectory optimized search framework represented by Algorithm 2.

ever, when each tumor boundary lies on a different level set, the algorithm may spend too
much time finding one boundary instead of exploring for other tumors. This is evident from
Fig. 4.4(b), where the shape of one tumor is estimated correctly, but in the given number of
probings, the second tumor was not detected.

AAS provides a good balance between finding the boundaries of the tumors and finding
the location of multiple tumors as the algorithm searches all areas where the average of the
unknown function (stiffness distribution) over the region exceeds the implicit threshold. Both
in the case of discrete as well as continuous palpation, the AAS outperforms all the other
approaches. The UNC approach has the worst performance since the algorithm is blind to the
value of the predicted stiffness distribution.

Table 1 shows the computation time4 for each algorithm required to generate a 30-sec
robot-trajectory. LSE, UNC, and EI have comparable average computation times of around
0.5 sec, whereas AAS has an average computation time of around 0.85 sec. Notice that AAS
sacrifies some computation speed for more accurate results. Yet the computation time of the
four algorithms is sufficient for real-time applicability.

Fig. 6 shows simulation results for a case where there are restricted regions in the do-
main that should be avoided. The trajectory planner, using the AAS algorithm, succeeds in
avoiding the obstacle while still localizing both tumors.

Note that the recent work of Chalasani et al. [32] uses continuous palpation to estimate the
stiffness and the geometry of an organ. The palpatation is done along predefined trajectories
or under telemanipulation. Thus, we expect their method to perform poorly compared to ours

4The code runs on MATLAB 2016a in Windows 10 on a laptop with i7 CPU and 8 GB RAM.
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Figure 4.7: The top plot shows the average recall as a function of the number of the palpated points
repeated over 100 simulations of continuous palpation (Algorithm 2) with randomly generated ground
truths for the stiffness map. The mean and the covariance of each of the four algorithms considered
in this thesis is reported. The bottom plot shows the average recall for 100 repeated simulations for
tumor localization over a fixed ground truth but with random starting probing point for the algorithms.

Figure 4.8: (a) The trajectory of the robot overlaid on the predicted stiffness function of the search
domain. (b) The ground truth of the stiffness function. The white region is an obstacle. The green
points along the trajectory are the points which we used to update the GP (probed points). The AAS
algorithm is used.

as their method do not encode an active search objective as we do to reduce palpation time.
Furthermore, their method do not take into account constraints resulting from obstacles in the
search domain, or from the kinematic model of the robot.
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Table 4.1: Comparison between the algorithms for computing a 30 sec robot trajectory

Method AAS LSE UNC EI
Mean computation time (sec) 0.85 0.55 0.49 0.52

4.6 Robot Experiments

We validate our results by performing experiments on three different robots (6 DoF industrial
robot, dVRK, and IREP) to do autonomous palpation and search for tumors. The experimen-
tal studies are all performed on phantom silicone organs with embedded stiff inclusions. We
observe that continuous palpation using AAS produces best results as previously observed in
simulation. Therefore, we only use the AAS algorithm in all the robot experiments.

4.6.1 6-DoF Industrial Arm

We use a 6-DoF industrial arm as a platform to verify our simulation results and show that
our framework runs real-time (See Fig. 4.3). A commercial force sensor, ATI Nano25 F/T,
was attached at the end effector of the robot. As the robot is commanded to move along a
trajectory, we continuously collect force measurements from the sensor and position mea-
surements from the kinematics. We employ a linear stiffness model and use the slope of the
line that best fits the force-displacement profile similar to [27] to find a scalar stiffness value
at every location on the organ.

Figure 4.9: Result of the experiments performed using the 6-DoF Industrial Arm. Left: Top view
of the silicon phantom organ showing two stiff inclusions. Right: Stiffness map as estimated by our
approach. The palpation trajectory is superimposed on the stiffness map.

Fig. 4.9 shows the stiffness map as estimated by using our framework to palpate the organ
along a continuous trajectory. The estimated stiffness map clearly reveals the location and the
shape of the stiff inclusions without wasting time exploring the softer regions of the organ.

4.6.2 da Vinci Research Kit

We use the open source da Vinci Research Kit (dVRK) [49] for evaluating our approach on
silicone tissue samples. The dVRK serves as a realistic surgical platform for evaluating the
efficacy of tumor search algorithms. In order to perform palpation, we attach a custom 3D
printed spherical-head tip to the 8mm needle driver tool of the robot. The silicone tissue
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Figure 4.10: (a) Experimental setup showing da Vinci Research Kit (dVRK), equipped with a spherical
tool tip. (b) Silicone phantom organ with embedded stiff inclusions. (c) Stiffness map as estimated
by our approach using active area search and continuous palpation. The estimated stiffness map
accurately reveals the location and shape of the two embedded stiff inclusions.

sample with embedded stiff inclusions (see Fig. 4.10) is placed on top of an ATI Nano25
F/T sensor. Fig. 4.10 shows the stiffness map as estimated by our approach as well as the
superimposed palpation trajectory. The stiffness map accurately reveals the stiff inclusions
without wasting time exploring the softer regions in the bottom half of the tissue sample.

4.6.3 Insertable Robotic Effector Platform (IREP)

The IREP is a two-segment, four-backbone continuum robot actuated with push-pull nitinol
wires designed for single port access surgery [50]. The IREP has an architecture which
is very different from conventional rigid link robots. Hence, IREP provides a challenging
platform to demonstrate our approach which can take into account the kinematic constraints
of the robot. The experimental set up is similar to the one used with dVRK and is shown in
Fig. 4.11. While this type of robot architecture is compatible with intrinsic force sensing as
in [7], the integration of trajectory optimization with intrinsic force sensing on the IREP and
the accompanying challenges of uncertainty estimation of pose and force are part of ongoing
research.

Fig. 4.11(b) shows the ground truth stiffness map as generated by densely probing the
organ surface using the IREP over a grid of 330 points. Fig. 4.11(c) shows the stiffness
map as estimated by our approach as well as the superimposed palpation trajectory. In this
experiment, we do not perform continuous palpation with the robot, but instead use the data
obtained by densely probing with IREP to simulate continuous palpation. The estimated
stiffness map qualitatively confirms with the ground truth stiffness map.
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Figure 4.11: (a) Experimental setup consisting of an Insertable Robotic Effector Platform (IREP),
probing a silicone phantom organ which is placed on top of a force sensor. (b) Ground truth stiffness
map generated by densely probing the organ. (c) Stiffness map as estimated by continuous palpation
using AAS. The estimated stiffness map confirms well with the ground truth.
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4.7 Contribution

The contribution from this chapter is the formulation of a tumor search framework that lever-
ages state-of-the-art active search methods as the objective to optimize robot’s trajectories
and explicitly encodes search of stiff regions and their boundaries.

4.8 Published Work

Material from this chapter has appeared in the following publications

1. Nicolas Zevallos, Rangaprasad Arun Srivatsan, Hadi Salman, Lu Li, Jianing Qian,
Saumya Saxena, Mengyun Xu, Kartik Patath and Howie Choset, “A Surgical System
for Automatic Registration, Stiffness Mapping and Dynamic Image Overlay”, Robotics:
Science and Systems (RSS), Pittsburgh, PA, USA, June 2018.

2. Hadi Salman, Elif Ayvali, Rangaprasad Arun Srivatsan, Yifei Ma, Nico Zevallos, Rashid
Yasin, Long Wang, Nabil Simaan, and Howie Choset, “Trajectory-Optimized Sensing
for Active Search of Tissue Abnormalities in Robotic Surgery”, IEEE International
Conference on Robotics and Automation (ICRA), Brisbane, Australia, May 2018.

3. Nicolas Zevallos, Rangaprasad Arun Srivatsan, Hadi Salman, Lu Li, Jianing Qian,
Saumya Saxena, Mengyun Xu, Kartik Patath and Howie Choset, “A Surgical System
for Automatic Registration, Stiffness Mapping and Dynamic Image Overlay”, Interna-
tional Symposium on Medical Robotics (ISMR), Atlanta, USA, March 2018.
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Chapter 5

Conclusion and Future Work

This thesis extended the ergodic coverage algorithm presented in [4] to robots operating in
constrained environments. The sampling-based trajectory planner presented in this work
allows obstacle avoidance by penalizing sampled trajectories that collide with arbitrarily-
shaped obstacles or that cross restricted regions. We demonstrated that Kullback-Leibler
divergence can also be used to encode an ergodic coverage objective without resorting to
spectral decomposition of the desired coverage distribution, whose accuracy is limited by
the number of basis functions used. We believe, our formulation will be of interest to the
wider robotics community because it captures sensor footprints, avoids obstacles, and can
be applied to nonlinear dynamic systems. Our framework has some limitations related to its
centralized nature. Therefore, any communication failure or limited range communication
between the agents can affect the performance of our framework. Future work will focus on
decentralization of the ergodic coverage algorithm to address this issue.

This thesis also introduced an approach for active search of stiff inclusions, such as tumors
and arteries, in tissues by means of forceful palpation. We incorporated three different active
learning objectives, namely active area search, level sets estimation and uncertainty sampling,
into a sampling-based trajectory planning framework that respects the robot’s kinematic and
workspace constraints. One limitation of our framework is that it assumes that the user has a
prior knowledge of which kernel to use for the GP based on the shape of the stiff inclusions
that the robot is searching for. Automatic choice of the kernel is left for future work. Accurate
modelling of the interaction between the tissue and and continuum robots, and accurate force
sensing remains to be significant challenges in this domain and will be a focus of future work
as well.
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