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Abstract— Developing software for large scale off-road robot
applications is challenging and tedious due to cost, logistics, and
rigor of field testing. High-fidelity sensor-realistic simulation
can speed up the development process for perception and state
estimation algorithms. We focus on Lidar simulation for robots
operating in off-road environments. Lidars are integral sensors
for robots, and Lidar simulation for off-road environments is
particularly challenging due to the way Lidar rays interact with
natural terrain such as vegetation. A hybrid geometric terrain
representation has been shown to model Lidar observations well
[1]. However, previous work has only been able to simulate a
single, fixed scene, and the entire scene had to be precisely
surveyed. In this work, we add semantic information to the
hybrid geometric model. This allows us to extract terrain
primitives, such as trees and shrubs, from data logs. Our
approach uses these primitives to compose arbitrary scenes for
Lidar simulation. We evaluate our simulator on a real-world
environment of interest, and show that primitives derived using
our approach generalize to new scenes.

I. INTRODUCTION

Lidars are a key technology that have helped advance
achievements in outdoor robots. As sensors, they provide
robots with observations of the environment. A large amount
of software is developed to process Lidar observations, for
example, algorithms for state estimation and recognition.
Such software should be able to deal with the noise and
scale of Lidar data, among other requirements. The reli-
able and high-quality performance of perception software
is essential for good decision making in the higher levels
of autonomy. As the scale of robot operations grows, so do
the challenges of software development. It may be difficult,
unsafe, or expensive to develop software on enough real-
world environments. Simulation has attracted attention as a
solution to these problems.

(a) Perception for off-road mo-
bile robots. Image from http:
//bit.ly/2tkR2UC.

(b) Perception for autonomous
helicopters. Image from [2].

Fig. 1: The high costs of large scale software development for
robots motivate high-fidelity off-road Lidar scene simulation.
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In this work, we focus attention on the off-road case.
We present some motivating examples for building high-
fidelity off-road Lidar scene simulators. Consider developing
software, for tasks such as terrain modeling [3] and vir-
tualized reality [4], for off-road mobile robots (see Figure
1a). Real-world development can be very expensive, with
potential delays due to unforeseen weather and hardware
issues. Further, some tests amount to repeated robot runs
under different software or hardware configurations. Such
problems are an ideal fit for solution by simulation. To be
useful, however, simulation must be high-fidelity: we would
like simulated data to challenge software development to the
same degree that real data does. Additionally, the simulator
must be flexible enough to simulate different real scenes of
interest. Another example is the use of Lidars in autonomous
helicopters, see Figure 1b. In [2], a convolutional neural
network (CNN) was trained to detect landing zones from
Lidar observations. Real data was obtained from expensive
flight tests. Synthetic data was obtained in [2] using a simple
simulator. It was noted that a priori modeling of Lidar returns
from vegetation was difficult, and that simulator evaluation
was a challenge. In this work, we build realistic Lidar
models from data. We also perform data-driven evaluation of
simulators, comparing against real data from complex scenes.
Synthetic data from the simple simulator in [2] was found
to be useful in CNN architecture selection; a high-fidelity
Lidar simulator can be of greater value in training learning
algorithms.

For Lidar simulation in urban scenes, and for objects with
planar structure, raycasting with additive noise may be good
enough. Off-road scenes, on the other hand, consist of terrain
such as uneven ground and vegetation. Effects such as pass-
throughs and mixed pixels occur. Modeling the geometry
of vegetation is an added challenge. We briefly review the
current options for off-road Lidar scene simulation. The first
is to use data logs as a simulator. In a sense, such a simulator
has the highest fidelity, since real data is simply replayed.
Of course, data logs do not generalize to new sensor poses,
which is why they are useful only in the preliminary stages
of software development. Data logs have low flexibility, as
new scenes cannot be composed. A second option is to
use a general-purpose robotics simulator, such as Gazebo
[5]. The fidelity of such a simulator is at best, untested,
and at worst, low: there exists little work in systematically
comparing simulated Lidar observations to real data. On the
other hand, such a simulator is highly flexible: new scenes
may be composed using seasoned user interfaces. A third
option is a simulator based on a hybrid geometric model, as
in [1]. The simulator in [1] used a sensor model which took
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into account the non-idealities of Lidar observations. Models
were fit to real Lidar observations, and high-fidelity simula-
tion was demonstrated. However, the simulator was fixed to
a single scene (or ‘geospecific’). Flexibility was low since
new scenes could not be composed. In this work, we use the
hybrid geometric simulator as a starting point, inheriting its
fidelity. In addition, we add semantic information to Lidar
observations. This allows us to extract scene primitives, such
as trees and shrubs, from training data. New scenes can then
be composed using the extracted scene primitives.

The outline of the paper is as follows. In Section II we
discuss related work. We summarize work that led up to
the hybrid geometric models for Lidar simulation. We make
connections to recent research in robot and computer vision.
Section III contains notation used in the rest of the paper.
In Section IV, we present an overview of our approach to
Lidar scene simulation, followed by details. In Section V,
we evaluate our approach with real-world experiments. We
conclude in Section VI with a discussion of the next steps
being taken in this direction of research.

II. RELATED WORK

A number of general-purpose robotics simulators [6], [7],
[5] perform Lidar simulation. Most simulate observations by
calculating the range to object models, and adding Gaussian
random noise. Such a sensor model is not appropriate for the
off-road case, where effects such as pass-throughs and mixed
pixels [8], [9] occur. The sensor model presented in [10],
and the corresponding simulator [11], account for mixed
pixels by raycasting multiple rays for each Lidar beam.
Unfortunately, this approach is expensive when simulating
observations from thin structures. In addition to a sensor
model, off-road Lidar simulation requires a terrain model.
The graphics community has paid attention to modeling
plants, such as the generative model in [12]. However, there
was no comparison to real vegetation, nor was it obvious how
the model could be tuned to fit real observations. A method
to reconstruct trees from real data was presented in [13]. In a
similar vein, [14] used domain knowledge of tree structure to
guide an iterative reconstruction from data. Neither of these
approaches considered modeling vegetation for the purpose
of simulation.

An extensive evaluation of models for Lidar simulation
was carried out in [1]. A hybrid geometric model was found
to perform well for different types of terrain. The ground
was modeled as a triangle mesh, and non-ground terrain
as a cluster of ellipsoids. The sensor was modeled jointly
with the terrain structure. Lidar effects such as pass-throughs
were modeled by associating geometric elements with a hit
probability. The models were fit to real data, and realistic
simulation was demonstrated in [1]. We will refer to the
resulting simulator as the hybrid geometric simulator. The
hybrid geometric simulator is used as a base for our work,
although, as noted in Section I, it only simulates a fixed
scene.

Simulation for perception is a timely topic that has re-
ceived interest in related communities. Simulators for testing

robot perception algorithms were presented in [15], [16].
In both, synthetic scenes were created using Unreal Engine
41. While the game engine allowed the flexible construc-
tion of simulated scenes, how closely they mapped to real
scenes was unaddressed. Simulation has long been used
in computer vision. Given the prevalence of learning-based
methods, synthetic data is useful when obtaining real data
is a challenge. This use of simulators is of greater relevance
when considering deep learning methods [17]. A synthetic
dataset for semantic segmentation was presented in [18], with
diverse urban scenes generated using the Unity development
engine2. How well they mapped to real scenes was unclear.
For the task of multi-object tracking, a Virtual KITTI dataset
was presented in [19]. For realism, virtual scenes were
seeded with annotations from the real KITTI dataset. In
our approach we evaluate simulation on real scenes. In this
sense we are similar to [20], but different in domain. The
work of [20] presented SceneNet, a synthetic dataset of
annotated indoor scenes. The simulator used realistic sensor
models[21], in combination with OpenGL3. Emphasis was
laid on creating realistic scenes in simulation, using object
co-occurrence statistics calculated from real data.

III. NOTATION

The world state is denoted by x. We consider all informa-
tion in the world that affects sensor observations as part of x,
not just the sensor pose. The sensor pose is qsensor. Noting that
the real world state x is never exactly recreated in simulation,
we explicitly denote the world state in simulation by x̂.
The sensor observation is z ∈ Rdz . The true observation
distribution is p(z|x). Our model of this quantity, p̂(z|x̂), is
called the sensor model. Note that the sensor model depends
on the simulator world state. Samples drawn from the sensor
model, ẑ ∼ p̂(z|x̂), are simulated observations. For a Lidar,
the observation z consists of range measurements of the
environment, collected in some scanning pattern. A range
measurement transformed to a point in the world frame,
using the sensor pose qsensor and intrinsics, is denoted by
y ∈ R3. A set of points in the world frame , possibly derived
from multiple observations, will be called a point cloud,
Y = {yj}. Simulated observations, similarly transformed
to points in the world frame, constitute a simulated point
cloud Ŷ = {ŷj}. Parameters of the simulator are denoted by
θ. The quality of simulation with parameters θ is measured
by comparing the real and simulated point clouds using a
loss function l(Y, Ŷ , θ). Our approach is data-driven, and
we assume the availability of datasets, such as Dtrain =
{(qsensor,i, zi)} to train the simulator.

The building block of a simulated scene is a scene element
e = (ρ, ω). We jointly model the terrain structure and the
sensor. A scene element consists of the element geometry
ρ, and sensor model parameters ω. The simulator world
state x̂ = (S, qsensor) consists of a scene S and the sensor
pose qsensor . A scene S = {ok} is a set of objects. An

1https://www.unrealengine.com/
2https://unity3d.com/
3https://www.opengl.org/
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object o = (c,M, qobject) consists of an object class c, model
M , and pose qobject. The object class c is a categorical
variable, and functions as an identifier. The object model
M = {ei} is a set of scene elements. An object with its
pose set to identity is a scene primitive π = (c,M). We
omit writing the pose in the tuple of a primitive. The unique
set of scene primitives is the primitive set, Π = {πj}. The
scene annotation a = {(ck, qobject,k)} is the just the set of
object class and pose information. Intuitively, for a new
scene, objects are constructed given the scene annotation and
primitive set.

IV. SCENE SIMULATION

We first present an overview of our approach to simu-
lation. Various steps, including implementation details, are
discussed in subsections that follow. Our simulator is written
in C++, and we use MATLAB for labeling and scene
generation.

Approach overview

We assume the availability of a training dataset Dtrain =
{(qsensor,i, zi)} consisting of sensor poses and observations.
This may be collected, for example, by driving a robot
with a Lidar in a real scene, and logging observations (see
Figure 2). Using the sensor poses and intrinsics, we transform
the range measurements to points in the world frame, to
obtain a point cloud Ytrain. The point cloud is segmented into
ground and non-ground points. We then fit scene elements
{ej} to each segment separately (hence the name, hybrid
geometric simulator). To ground points, we fit a triangle
mesh; the element geometry ρ is therefore a triangle. On
the non-ground points, we perform a clustering; ρ in this
case is an ellipsoid. Once the geometry of the point cloud
has been obtained, we find the sensor model parameters
ω for each element. These include hit probabilities and
range variances. Having modeled the training scene, we can
simulate observations by querying a Lidar pose qsensor. We
obtain a simulated point cloud Ŷtrain by querying the sensor
poses in the training data log Dtrain. A point cloud error
metric is used to compare Ŷtrain and Ytrain. The simulator
parameters θ are tuned to minimize this error metric.

The procedure outlined above leads to a Lidar simulator
which has been optimized to simulate observations in the
fixed training scene. This is exactly where the work of
[1] terminates. At this point, the scene elements {ej} are
blind to objects semantics. Therefore, we perform object
segmentation and labeling in the point cloud Ytrain, from
which the annotation a = {(ck, qobject,k)} is derived. The
segmentation also allows us to group elements into an object
model, Mk = {ej | ej ∈ segmentk}. These pieces of
information are combined into scene objects {ok}, ok =
(ck,Mk, qobject,k). Finally, we transform objects to identity
(as a reference pose), thereby extracting a set of primitives
Π = {πi}, πi = (ci,Mi) from the training scene. The
approach is summarized in Figure 2.

For a test (or new) scene, we collect data in a similar
manner as for the training scene, resulting in the dataset Dtest.

In this case, however, we do not fit scene elements to the
point cloud Ytest, since we want to evaluate the generalization
of the scene primitives obtained from the training data.
The cloud Ytest is segmented and labeled, resulting in an
annotation a = {(ck, qobject,k)}. This annotation for the
test scene is combined with the scene primitives, from the
training scene, to result in objects. Having constructed a
simulated test scene, we can simulate Lidar observations at
query sensor poses qsensor. We evaluate our scene simulator
by comparing the simulated point cloud Ŷtest with Ytest.

Given our approach, note that it is possible to construct
arbitrary scenes, which is a common use case for a simulator.
For example, we may want test perception software in
a densely forested environment. All that is needed is to
supply the framework with an annotation for the desired
scene. However, an important aspect of our work is that the
annotations are derived from real data. This allows us to
make claims about the fidelity of simulation for new, real-
world scenes of interest.

Ground segmentation

Ground segmentation is performed on the point cloud Y =
{yj} obtained from the training data, and is a preprocessing
step before scene elements are fit to Y . Ground segmentation
is a routine step in point cloud processing, and we use a
simple procedure based on geometric features, as in [1]. The
spherical variance φ(y) of a point y is calculated as follows.
For points in a ball of radius dφ, centered at y, the covariance
is computed. If the eigenvalues of the covariance matrix
are λ1 ≤ λ2 ≤ λ3, then φ(y) = λ1

λ1+λ2+λ3
. If there are

less than Nmin,φ neighbors, a default value is assigned. The
spherical variation is a measure of the ‘flatness’ of the local
neighborhood. Classification of a point is ground if φ(y) <
φthresh, and non-ground otherwise. Before classification, the
features may optionally be smoothed in some neighborhood
of y. The parameters used in ground segmentation are tuned
on a manually segmented point cloud.

Scene elements

Once an input cloud is segmented into ground and non-
ground, we jointly model the terrain and sensor by fitting
scene elements to the point cloud. A lesson for Lidar simu-
lation, from the work of [1], was that surface elements are
appropriate for terrain with planar structure, while volumetric
elements are appropriate for terrain with irregular structure.
Working with this insight, we model ground points by a
triangle mesh (see Figure 3). We fit a regularized surface to
the points using the fast RBF interpolation utility in ALGLIB
[22]. We then Delaunay triangulate the surface using CGAL
[23]. Ray-triangle intersections are also queried using CGAL.
Therefore, each ground element ej = (ρj , ωj) has a triangle
for its geometry ρj . The sensor model parameter ωj =
(σ2

ground, phit,j) consists of the range variance σ2
ground, and

a hit probability phit,j . Suppose that a ray hits a triangle
element, and the nominal range is r. The simulator adds
noise independently sampled from the Gaussian distribution
N (0, σ2

ground) to r. Note that we use the same variance for
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Fig. 2: An overview of the approach, in pictures.
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Fig. 3: Hybrid geometric scene elements. Ground points are
modeled by a triangle mesh. Non-ground points are clustered
into ellipsoids. The red markers are real Lidar range data.
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Fig. 4: Elements are associated with a hit probability, accord-
ing to which a ray intersecting an element may pass through.
On the left, the ray first strikes the ellipsoid element shaded
in red. It may pass through, and intersect the element shaded
in red, on the right.

all ground elements. It is calculated from the training data
once the triangle mesh has been fit.

Non-ground points for off-road terrain in our case corre-
spond to Lidar observations from trees, shrubs, and other
vegetation. To model their irregular structure, we fit ellip-
soids to these points (see Figure 3). We first run FLANN’s
[24] hierarchical clustering on the points. Each cluster is a
scene element. The geometry ρj = (µj ,Σj) of the element
is an ellipsoid, whose mean and covariance are calculated
as µj = 1

n

∑
k yk, Σj = 1

n−1
∑
k(yk − µj)(yk − µj)T . The

index k runs over points yk belonging to cluster j. The sensor
model parameters in this case are ωj = (µj ,Σj , phit,j). Note
that the same mean and covariance are used for a Gaussian
distribution. If a ray hits an ellipsoid element ej , then
the simulated observation is a sample from the distribution
N (µj ,Σj). Sampling in this manner smears observations,
taking into account some of the mixed pixel effects. The
hit probability is a parameter that models pass-throughs in
Lidar data. When a ray intersects an element ej , a Bernoulli
random variable is sampled with probability phit,j . If the
value is 0, the ray passes through. The ray may intersect
another element ek, in which case phit,k is sampled (see
Figure 4). The hit probability is calculated from data as
phit = #hits

#hits+#misses , where #hits is the number of rays
which hit an element, and #misses is the number which
missed the element, conditioned on the fact that the rays
intersected the element. Ray-ellipsoid intersections can be
calculated in closed-form [1]. The hit probability for surface
triangle elements is used, and is calculated in, exactly the
same manner.

The algorithms used for fitting scene elements, such as
those for finding a regularized surface, clustering, etc., in
turn have parameters. These are part of the overall simulator
parameters θ.

Scene segmentation and labeling

In this work, segmentation and labeling is manual. We first
segment the Lidar data corresponding to a scene using the
tools in CloudCompare [25]. The segments are then labeled
using a custom MATLAB tool, visualized in Figure 7. We
consider the following label classes: small shrub, medium
shrub, large shrub, small tree, medium tree, large tree. While
the spatial extent of trees are often distinct, shrubs may be
spread over a large, irregular region, which we refer to as a
patch. We deal with patches by dividing them into cells, see
Figure 5. During training, primitives in each cell are stored
as primitives. During test, each cell in a patch is populated
using a cell primitive.



Fig. 5: In off-road terrain, shrubs often occur in extended
sections. We deal with such patches by dividing them into
cells, as shown on the left. Like trees, shrubs also occur in
isolated instances, with examples on the right.

Scene objects and primitives

Having obtaining scene elements and labeled segments, we
combine the pieces of information to obtain scene objects.
For each segment with label c containing points {yj}, we
find the pose qobject. The translation is the centroid of the
points. We assume rotation along the z-axis only, and find
the orientation using the principal axes in the x-y plane of
the segment points. For the object model, a bounding box
oriented along the 2D principal axes is fit to the segment
points. The object model then consists of scene elements in
the box interior, M = {ej | ej ∈ object bounding box}.
Using the pose qobject, we then transform the object model
M to identity, and store the result as a scene primitive π =
(c,M). The primitives together constitute the primitive set
Π.

For a new scene, we use an annotation a =
{(ck, qobject,k)}, consisting of object classes and poses, to
populate the simulated scene. For a pair (ck, qobject,k), we
pick a primitive πi = (ci,Mi) such that ci = ck. In
our implementation, the annotation for a new scene is also
derived from a semantic segmentation. In that case, the
annotation for a scene object includes a bounding box. We
use the heuristic of selecting the primitive whose bounding
box most closely matches the bounding box of the scene
object. For the metric between bounding boxes, we use the
euclidean norm of the box extents. The primitive model Mi

is then transformed to the pose qobject,k, resulting in object
ok. The annotation a can correspond to arbitrary scenes. In
this work, when evaluating simulation for a real scene, the
annotation is derived from a segmentation and labeling step.

Simulator baseline and evaluation

We implemented a baseline simulator in which object
models were open-source 3D mesh models. The sensor
model consisted of raycasting with the object models, fol-
lowed by adding Gaussian noise to the nominal range. This
baseline is representative of what can be implemented in
current general-purpose robotics simulators. We created a
primitive set for the baseline simulator, using mesh models
from TurboSquid4. We briefly note that the number of models

4https://www.turbosquid.com/

we worked with was limited due to: scarcity of freely
available mesh models of natural terrain; use of proprietary
file types; large-size (> 10MB) mesh models. The raw mesh
models were transformed, scaled and sorted into appropriate
classes. Example baseline primitives are shown in Figure
8. Given an annotation, scene objects are constructed from
mesh model primitives for the baseline in the same way as
for our hybrid geometric scene simulator.

In our case, a sensor observation z is a packet of Lidar
data. Each packet consists of returns from rays fired at
different directions, from a common sensor pose qsensor. Some
of the rays result in hits, and others in misses. For a simulated
observation ẑ, we compute the packet error,

lpack(z, ẑ) =
1

# true hits

∑
j∈ true hits

‖yj − ŷj‖. (1)

Where y is the 3D point corresponding to a range return.
Given n packets, the mean packet error is 1

n

∑n
i l

pack(zi, ẑi).
We also compute the F1 score over packets, 2∗precision∗recall

precision+recall ,
using

precision =
#true hits

#true hits + #false hits
(2)

recall =
#true hits

#true hits + #false misses
(3)

Apart from an observation-level error, we also compare
the real point cloud Y with the simulated point cloud Ŷ .
The asymmetric point cloud error is

l̃pcd(Y, Ŷ ) =
1

n′

n′∑
j=1

‖ynearest(j) − ŷj‖, (4)

where, for each point ŷj in cloud Ŷ , ynearest(j) is the closest
point in cloud Y . Using the above, we compute the symmet-
ric point cloud error,

lpcd(Y, Ŷ , θ) =
1

2
(l̃pcd(Y, Ŷ ) + l̃pcd(Ŷ , Y )). (5)

V. EXPERIMENTS

(a) Data collection platform.
The Lidar is at the top of the
sensor head.

test scenetraining scene

(b) Data collection site. The vehi-
cle path is marked in black. Test
and training scenes are marked in
red.

Fig. 6

In our experiments, data was collected using a custom
ground vehicle mounted with a Velodyne-32 Lidar5, see

5http://www.velodynelidar.com/hdl-32e.html
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Parameter name Selection method Value
Modeling ellipsoid elements
(hit count prior, miss count prior) hand (0, 1)
clusters per point optimization 0.042
maximum Mahalanobis distance for hit optimization 3.5
Modeling triangle elements
(hit count prior, miss count prior) hand (1, 2)
range variance fit to data 0.07m2

maximum residual for hit optimization 0.75m

TABLE I: Hybrid geometric simulator parameter values

Figure 6a. Lidar packets, each consisting of hit and miss
returns, were received at 20 Hz. Each packet constituted
an observation z. Vehicle pose was provided by a Novatel
SPAN6 pose system. After post-processing, pose informa-
tion was available at sub-centimeter position accuracy, at a
frequency of 2E2 Hz. The sensor pose qsensor was calculated
from the vehicle pose, and the fixed relative pose of the
Lidar with respect to the vehicle. Data was collected in an
off-road site nearby Pittsburgh, depicted in Figure 6. Lidar
packets were logged as the vehicle was driven manually, at
an average speed of 0.4 m/s. Modeling and evaluation steps
of the simulator were conducted offline. We selected one
scene for training and one for test, as marked in Figure
6. We ran the hybrid geometric modeling steps on the
training scene, resulting in a representation of the scene as
a combination of surface triangles and volumetric ellipsoids.
Values for simulator parameters θ are summarized in Table
I. Parameters were optimized (using NLopt [26]) on a 10 sec
slice of the training scene. The objective was minimization
of the mean packet error+2(1 − F1 score). Parameters for
certain other steps, such as filtering points to remove outliers,
are not listed due to space constraints.

x

y

z

50m

Fig. 7: Segmentation and labeling for the training scene. The
test scene is processed in the same way.

The semantic segmentation of the training scene is shown
in Figure 7, and example primitives obtained for each class
are shown in Figure 8. Clearer visualizations of the semantic
segmentation can be found in the accompanying video. The
test scene, which was longer than the training scene, was
then constructed in simulation, see Figure 9a. Lidar data
from the test scene was used to obtain the annotation, but the
simulated objects were constructed entirely from the training

6https://www.novatel.com/products/
span-gnss-inertial-systems/
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Fig. 8: Examples from the primitive set. The top figure
shows primitives obtained from the training data. The bottom
figure shows primitives obtained from freely available mesh
models.

scene primitives. A simulated scene was also constructed us-
ing the baseline simulator, see Figure 9b. More visualizations
of the simulated test scenes are in the accompanying video.
From the data collection step, we obtained the test dataset
of sensor poses and observations, Dtest = {(qsensor,i, zi)}.
Given the dataset, we could directly model the test scene for
simulation. Our aim, however, was to evaluate simulation of
complex, new scenes using primitives from training scenes.
By querying the simulated scenes at the sensor poses in
the test dataset, we obtained the simulated sensor obser-
vations, {(qsensor,i, ẑi)}. Evaluation results of simulation are
summarized in Table II. Our simulation approach, based on
data-driven terrain primitives, is quantitatively better than the
baseline, based on open-source mesh primitives.

Simulator Point cloud error Mean packet error Precision Recall F1
Our approach 0.48m 2.9m 0.57 0.85 0.68
Baseline 0.55m 3.11m 0.58 0.75 0.65

TABLE II

(a) Simulated objects with the
hybrid geometric elements.

(b) Simulated objects with the
mesh model simulator.

Fig. 9: Simulated test scenes.
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There are also qualitative ways in which our approach is
better. For example, compared to the mesh model primitives,
the data-driven primitives better approximate the shape of
vegetation. Lidar returns from trees at the off-road site tended
to be distributed over the entire volume. This is reflected in
the data-driven tree primitives, see Figure 8. The mesh model
trees, on the other hand, often have a well-defined stem.
Other qualitative instances, with explanations, are shown in
Figure 10. On the other hand, a failure mode of our approach
was that the clusters were not fine-grained enough. This
led to large ellipsoids in some cases, with corresponding
Gaussian distributions of high variance. Intersection with
these ellipsoids, in turn, resulted in false hits. This is why the
precision of our approach is lower than that of the baseline,
see Table II. This failure mode suggests that we include the
FLANN clustering parameters in the simulator optimization,
a step not currently performed.

VI. CONCLUSION

For the purpose of Lidar simulation, we have shown
that data-driven object models derived from our approach
generalize from a training to a new test scene better than
open-source mesh models. Our approach can also benefit
efforts to create point cloud maps of off-road geographical
sites. A detailed data log can be gathered in a representative
section, and then extrapolated to other sections. To conclude,
we mention steps which we believe will further improve
simulation. First, we used a fixed clustering density to obtain
ellipsoids. A different density for each class might be more
appropriate. Second, we are working on automating scene
generation, using well-studied tools for semantic segmenta-
tion of point cloud data [27], [28]. In this work, segmentation
and labeling was manual, which serves as ground truth for
future work.

One could conceive of entirely different approaches to
Lidar scene simulation. For example, we could divide the
full scene into voxels, and use graphical models for learning
and inference, as in [3]. Or we could use deep learning
methods, given their success in learning to generate objects,
as in [29]. While these directions may have merit, we believe
that the most valuable next step is software-level simulator
evaluation. In this work, we evaluated simulation at the level
of sensor observations. However, simulation is closely tied
to software developed on it. We are working on a general
method to quantify the utility of simulation for software
development, agnostic to the simulation approach.
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(a) This example illustrates the benefit of the volumetric ellipsoids
of our approach, over the surface triangles of the baseline. The ray
origin is on the left. In our approach, the ray intersects ellipsoids, and
the simulated point is close to the real point. In the baseline, the ray
misses the mesh triangles close to the real point. The simulated point
instead is much farther down the ray, where it intersects another
mesh. Note the difference in length scale in the two figures.
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(b) This example illustrates the benefit of using permeable ellipsoids
over opaque surface triangles. The ray origin is on the left, and the
ray strikes a tree. The real point is in the interior of the tree. The
simulated point from our approach is also in the interior, as the ray
can pass through ellipsoids. The simulated point from the baseline,
however, terminates at the surface of the tree. The baseline tree is
visually realistic, but the hybrid geometric tree is sensor-realistic.
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(c) This example illustrates another benefit of data-driven primitives
over open-source primitives. The ray origin is at the top right. A
number of shrubs are in the path of the ray. The shape of data-driven
primitives better match the scene objects, compared to the baseline
primitives. In our approach, the simulated point is close to the real
point. In the baseline, however, the simulation result is a false miss,
depicted as a red cross.
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(d) This example illustrates a weakness of our approach. The ray
origin is at the top right. Low shrubs are in the path of the ray. The
clustering in this case is coarse relative to the size of the shrubs,
visible as some large ellipsoids. This causes the simulated point in
our approach to have large variance. This problem is not present in
the baseline, however, and the simulated point is close to the real
point. The real point is behind meshes, and therefore not in view.

Fig. 10: Examples of Lidar simulations from the test scene. Results from our approach and the baseline are shown. The
real ray is depicted as a dashed blue line, and the simulated ray as a dashed red line. The real observation is a blue point,
and the simulated observation is a red point. Simulated scene objects in the neighborhood of the rays are also shown. In
our simulator, these are green ellipsoids. In the baseline, these are green meshes. Ground triangles, shown in brown, are
common to both simulators.
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