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Abstract

Robots have become increasingly adept at performing a wide variety of
tasks in the world. However, many of these tasks can benefit tremendously from
having more than a single robot simultaneously working on the problem. Multi-
ple robots can aid in a search and rescue mission each scouting a subsection of
the entire area in order to cover it quicker than a single robot can. Alternatively,
robots with different abilities can collaborate in order to achieve goals that
individually would be more difficult, if not impossible, to achieve. In these
cases, multi-robot collaboration can provide benefits in terms of shortening
search times, providing a larger mix of sensing, computing, and manipulation
capabilities, or providing redundancy to the system for communications or mis-
sion accomplishment. One principle drawback of multi-robot systems is how to
efficiently and effectively generate plans that use each of the team members to
their fullest extent, particularly with a heterogeneous mix of capabilities.

Towards this goal, I have developed a series of planning algorithms that
incorporate this collaboration into the planning process. Starting with systems
that use collaboration in an exploration task I show teams of homogeneous
ground robots planning to efficiently explore an initially unknown space. These
robots share map information and in a centralized fashion determine the best
goal location for each taking into account the information gained by other robots
as they move. This work is followed up with a similar exploration scheme but
this time expanded to a heterogeneous air-ground robot team operating in a
full 3-dimensional environment. The extra dimension adds the requirement
for the robots to reason about what portions of the environment they can sense
during the planning process. With an air-ground team, there are portions of
the environment that can only be sensed by one of the two robots and that
information informs the algorithm during the planning process. Finally, I extend
the air-ground robot team to moving beyond merely collaboratively constructing
the map to actually using the other robots to provide pose information for the
sensor and computationally limited team members. By explicitly reasoning
about when and where the robots must collaborate during the planning process,
this approach can generate trajectories that are not feasible to execute if planning
occurred on an individual robot basis.

An additional contribution of this thesis is the development of the State
Lattice Planning with Controller-based Motion Primitives (SLC) framework.
While SLC was developed to support the collaborative localization of multiple
robots, it can also be used by a single robot to provide a more robust means of
planning. For example, using the SLC algorithm to plan using a combination of
vision-based and metric-based motion primitives allows a robot to traverse a
GPS-denied region.
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Chapter 1

Introduction

Hiding underground, Knowing we’d be found
Fearing for our lives, Reaped by robot’s scythes
Jupas PriesT Metal Gods

We are in an era of amazing advances in electronics. Computers are simultaneously
getting smaller and more powerful. Sensors are becoming more capable, using less power,
and are dropping in price. As these supporting technologies continue to improve, they in turn
lead to ever more capable robots becoming more affordable and more common. As robots
proliferate and their abilities improve, they will be turned to for an increasing number and
variety of scenarios, ultimately resulting in situations where more than one robot is available
to perform a shared task. It will be beneficial for the robots to collaborate in a deliberate,
principled manner in order to provide: computational or sensing resources for each other;
information about the environment; communication relays; transportation; or other mutual
support. Multi-robot collaboration can provide benefits in terms of shortening task comple-
tion times, providing a larger mix of sensing, computing, and manipulation capabilities, or
providing redundancy to the system for communications or mission accomplishment. One
principal challenge in employing multi-robot systems is how to efficiently and effectively
generate plans that use each of the team members to its fullest extent, particularly with a
heterogeneous mix of capabilities. This thesis develops approaches to planning in two areas

of multi-robot collaboration: Exploration and Localization.



Multi-robot Exploration

When multiple robots are operating in an initially unknown environment, the most natural
form of cooperation is multi-robot exploration. Exploration of unknown environments is
a cornerstone of robotic systems attempting to operate in the real-world without requiring
constant human operator input. The ability to seek out locations to gain information about
the environment is a foundation for the coverage problem and plays a significant role in
tasks such as search and rescue, infrastructure inspections, and any other tasks requiring a
sensor to be repeatedly positioned and re-positioned so as to evaluate all possible locations
in the environment. The planning system must be capable of quickly assigning goals to the

team-members in order to efficiently cover the environment.

The first of the collaborative planners developed in this thesis uses a frontier-based
approach to generate goal assignments to a homogeneous team of ground robots in order
to explore an unknown environment with high-level guidance from an operator. As an
improvement upon existing frontier-based approaches, this algorithm allows an expert to
give broad objectives to the team as well as specific constraints such as minimum and
maximum distance between robots. The exploration algorithm can then use these objectives
and constraints when determining the trajectories of all available robots in order to efficiently

search the environment.

For more complex real-world environments containing overhangs and non-convex obsta-
cles, the planning algorithm may require modeling the environment in all three dimensions as
simple planar assumptions can lead to incomplete exploration. This in turn may require that
we reason about (and plan for) the robot’s position, not just in the three spatial dimensions,
but also accounting for the orientation of the robots as well. As a concrete example, consider
a small wheeled robot in a typical office environment. While traveling on the ground it has
difficulty seeing any items on top of a table. On the other hand, an aerial vehicle could easily

see the tops of the tables, but may have difficulty navigating to a position under a desk.

Expanding our exploration to such heterogeneous air-ground teams in this case clearly
results in improved performance. A flying robot can get a camera into some positions better
than the ground robot can. However, since aerial robots have to support all of their weight
through the expenditure of energy, they are often limited to small payloads and short mission
durations. Ground robots typically have greater power reserves and are frequently capable

of long duration missions while carrying significant amounts of payload, allowing for a
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CHAPTER 1. INTRODUCTION

wider range of possible sensors. These differences in sensing and locomotion within the
team can be significant which can not only make the team more capable than the robots are
individually, but can also place additional requirements on the planner. Looking again at the
search-and-rescue scenario we can see that both the high endurance of the unmanned ground
vehicle and the capability to traverse debris strewn environments typical of unmanned aerial
vehicles are important. In order to adequately explore a large, obstacle strewn environment,
the two robots will have to intelligently determine when is the best time and where is the best
position to employ each of them. For the environments where an aerial vehicle is required to
reach certain sections, a possible compromise is to search the accessible areas with a ground
vehicle and reserve the aerial vehicle for just those areas that require the higher vantage
point or are otherwise unviewable by the ground robot. The key is that the planner needs to
be capable of making that determination at runtime.

To address these concerns, the earlier 2-D exploration planner is expanded to allow
a heterogeneous air-ground team of robots to explore a full 3-dimensional environment
to find an object of interest. In addition, this algorithm allows for a sensor system that
is independent from the localization system. This permits the use of prior maps or other
localization methods if they are available while still enforcing complete coverage of the
environment by the designated sensor system. Similar to the 2-D planner, this algorithm

offers the ability to tune the exploration through the use of high-level user input at runtime.

Collaborative Localization

The second area of multi-robot collaboration that we explore is the ability of robots operating
as part of multi-robot teams to use other team members to help themselves localize their
positions within the environment. While an ideal robot would always know its position with
perfect certainty, this is often not the case for real-world robots. During operations as part of
a search-and-rescue scenario it is conceivable that the environmental conditions will not be
ideal and may even be adverse to some sensing modalities. For example, damaged buildings
may lack power; therefore, localization may have to occur in the dark posing difficulties to
vision-based sensors. Similarly, GPS is rarely reliable in any indoor environment limiting
potential localization techniques. With these limitations on their capability to independently
determine where they are, a robot team may have little ability to effectively determine where

to go in the environment. However, the same sensors that are used to gather information



from the environment can also be used to allow the robots to collaboratively localize using
each other. As an example, consider two robots, A and B. Assume A has a robust localization
capability while B is equipped with just a single camera. It is easy to see that A can maintain
an accurate estimate of its position using its own localization abilities. However, if B can
“see” and “hear” A, then it too could maintain an accurate estimate of its position. If A is
in B’s field-of-view, then B can use standard image processing techniques to determine its
position relative to A. Similarly, if the two robots can communicate, A can provide B with its
current global position. From A’s global position and the relative pose between the two, B
can accurately determine its global position as well. Using this collaborative localization
approach, both robots could successfully navigate through an environment even though only
one of them has the ability to determine its position independently. Again, the difficulty
shifts to the planner in order to: reason about these special abilities; generate a trajectory for
both robots that allows them to collaboratively localize when necessary; but, leaves them
free to explore independently otherwise.

Our final collaborative planning algorithm allows for different capabilities in the team
members through the combination of controller-based motion primitives with a state lattice
planner (SLC). By using controller-based motion primitives we are able to incorporate a
wide variety of sensing and control systems into the planner including controllers based
on the interaction between multiple robots (e.g., collaborative actions such as collaborative
localization). This algorithm also allows us to interrupt a controller when we receive a
perceptual trigger allowing for more complex trajectories than from a pure controller based
approach.

Summary of Contributions

In this thesis, I present a set of navigation planning algorithms that reason explicitly about
collaboration in order to allow multi-robot teams to effectively operate in complex environ-
ments. The first set of these algorithms allows for collaborative exploration between teams
of robots, while the second provides a method of conducting collaborative localization using
State Lattice Planning with Controller-based Motion Primitives (SLC) and Planning with
Adaptive Dimensionality (PAD) to handle otherwise unsolvable domains.

In summary, the contribution of this thesis includes:

4



CHAPTER 1. INTRODUCTION

2-dimensional exploration algorithm for a homogeneous team of ground robots
= Frontier-based exploration
= Allows high-level user input during execution

¢ 3-dimensional exploration algorithm using multiple heterogeneous robots

= Allows exploration of full 3-D environment

= Specifically designed for Air-Ground team of robots

= Maintains capability for user input during execution

Collaborative localization framework

= Uses State Lattice Planning with Controller-based Motion Primitives and Plan-
ning with Adaptive Dimensionality to allow an air-ground robot team to effec-

tively localize themselves

= Permits robots to operate independently as necessary

State Lattice Planning with Controller-based Motion Primitives framework

= Allows reasoning explicitly about controllers and perceptual capabilities of a

robot

= Enables robust operation in varied environments without requiring a global

metric space

= Allows termination or switching of controllers by perceptual triggers

Outline

This document is organized as follows:

e Chapter 2: A brief overview of the related work regarding multi-robot collaboration

including centralized versus decentralized planning approaches.

e Chapter 3: A detailed explanation of search-based planning algorithms such as A*

and its related algorithms.

e Chapter 4: A planning algorithm for multi-robot exploration using multi-objective util-
ity functions. This work is primarily from [Butzke and Likhachev, 2011] and [Butzke
et al., 2015].



Chapter 5: Applications of the algorithms developed in Chapter 4 to a homogeneous
team of ground robots and a heterogeneous air-ground team.

Chapter 6: A planning framework using controller-based motion primitives with

perceptual triggers. This work is primarily from [Butzke et al., 2014].

Chapter 7: Expanding the SLC framework to collaborative localization for air-ground

teams. This work is primarily from [Butzke et al., 2016].

Chapter 8: Discussion on the contributions contained in this thesis and future work in

expanding these algorithms.



Chapter 2

Related Work

If you had the time to lose

An open mind and time to choose
Would you care to take a look

Or can you read me like a book

IroN MAIDEN Caught Somewhere in Time

Planning for multiple robots involves many trade-offs in order to remain tractable.
Planners can be decentralized where each robot plans for itself using the only information
it can sense directly. this approach allows for lower computational burdens, improved
planning times, and lower inter-robot communication requirements. At the other end of the
spectrum, a single, globally knowledgeable planner can plan for all of the team members
simultaneously in a single joint state space. While this allows for globally optimal plans,
it comes at a cost of higher communication and computational requirements[Clark et al.,
2003].

The task being planned also has a significant impact on what method of planning is
used. A large swarm of ground robots operating in a large environment is not tractable as a
centralized joint planner[Li et al., 2017; Wang et al., 2009]. On the other hand, three robot
arms working together in a tight environment need to ensure that the plans are coordinated
to prevent mutual collisions [Cohen et al., 2015]. Some example tasks that can be solved
with multi-robot planners are collaborative manipulation, exploration, collision avoidance,
task scheduling, etc. [Arai et al., 2002].

In this thesis, we will develop algorithms specifically addressing collaborative explo-

ration and collaborative localization.



Collaborative multi-robot planning falls into two primary areas: centralized and decen-
tralized. Decentralized planners seek to allow each individual robot to determine its own
trajectory by making assumptions concerning the other robots. Planning in this fashion
provides a high degree of redundancy allowing for successful mission completion even
in the face of multiple robot failures [Zelenka and Kasanicky, 2014]. However, in some
environments, robots must move in locally non-optimal directions in order to allow for other

robots to reach their goal state (Fig. 2.1).
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Figure 2.1: The robots (dark blue) are attempting to get to their assigned goals (light blue). If the
circular blue robot goes straight to its goal location, the diamond and triangle robots will be unable
to get to theirs due to the narrow passage. One solution is for the triangle to take the middle goal
position (middle, left image), let the other two robots pass to the right (bottom, left image), before it
moves to its goal (green, top, right image). The circle and diamond can repeat a similar maneuver to
get them each in their goal locations (green, bottom right).

Centralized planners on the other hand assume that there is a single computational
element that is performing the planning for all team members. In this case, each robot’s
position must be passed to the centralized planner and in return the planner provides each
team member with a trajectory. This scheme can face difficulties occurring from lost or
delayed communications, and the large amounts of data to be transferred.

While centralized approaches perform planning on a single computational element,
there are two methods commonly employed [Latombe, 2012]. The first is planning in a
combined joint state space. This can result in a very high dimensional planning problem.
Due to this, the joint states space planning is typically only used for small teams of low-
dimensional robots. The benefit of joint state space planning schemes, other than the

deadlock prevention alluded to above, is that all of the individual trajectories can be fully
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synchronized eliminating collision hazards as well as being capable of producing globally
optimal paths.

The second common centralized planning approach is the distributed state space ap-
proach. In this case, the planner plans for each robot individually, but with global knowledge
of the environment and at least some knowledge of the other robot’s trajectories. The
approach is feasible for larger teams of robots, since the planning problem dimensionality
remains significantly smaller than in the joint state space approach. This comes at a loss of
global optimality and the need to develop a method to deconflict deadlock conditions.

The algorithms presented here are centralized planners and as such require a single node
to perform at least a portion of the planning effort for all robots. The exploration planners
plan in the individual state space of each robot sequentially allowing for the robots to generate
their own trajectories. The planner only determines the goal locations. The collaborative
localization planner plans in the joint state space of all involved robots. Due to this higher
dimensional state space, we use the Planning with Adaptive Dimensionality framework
to keep planning tractable. All or our work does assume that communications bandwidth
and reliability are essentially perfect. While high-bandwidth wireless communications are
reasonably robust in normal situations we have not tested their performance in realistic
disaster scenarios. We attempt to minimize the amount of data transferred between team
members and defer to the vast field of communications link-layer research to mitigate any

remaining issues.

2.1 Collaborative Exploration Planning

Before a group of robots can perform a task, they must first gain knowledge about their local
environment. This may come in the form of an a priori model of the environment or it may
have to be discovered in an online fashion. The exploration task requires that a collection of
sensor robots systematically traverse an environment in order to locate static and dynamic
obstacles. Trade-offs between the rate of exploration versus the thoroughness of exploration
must be made in order to minimize the overall search time. In addition, the algorithm must
be capable of working in any environment with a minimum set of assumptions on robot
behavior and sensing capabilities. For single robots there are a variety of approaches that

can be used to guide the robot towards unexplored areas.
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§2.1. CoLLABORATIVE EXPLORATION PLANNING

One of the most common approaches is using the concept of the boundary between
the known areas of the map and the unexplored regions. The non-obstacle portions of this
boundary are collectively known as the frontier [Yamauchi, 1997] and are used as candidate
goal points. Frontier-based exploration directs robots to this frontier to gain information via
their sensors of the unknown areas. This approach has been expanded to cover multi-robot
teams [Yamauchi, 1998; Simmons et al., 2000; Zlot et al., 2002; Burgard et al., 2005;
Visser and Slamet, 2008; Nieto-Granda et al., 2014; Colares and Chaimowicz, 2016] and
outdoor environments [Tao et al., 2007] with great success. This work is an extension of
our earlier work in this category [Butzke and Likhachev, 2011; Butzke et al., 2012, 2015].
However, most of these approaches, including some of our previous work, only deal with
2-dimensional (planar) exploration. Even the approaches that use 3-dimensional motions
tend to treat the environment more as 2.5-D (elevation- or height-map) rather than full
3-D [Sujit and Beard, 2008; Sawhney et al., 2009; Yang et al., 2013]. In particular, few of
these approaches consider the search target to be on the underside of obstacles or require
movement under obstacles in order to get into a position to see the target.

One impressive approach that does consider flying under or through obstacles is the
potential field/harmonic function approach used in [Rasche et al., 2011]. Like our approach
they use an octree to represent the environment, and a camera to explore, but where they
differ is that all of their simulated UAV’s were identical. It is unclear how easy it would be
to incorporate a heterogeneous team of robots (including ground robots) into their scenario.
Additionally, they only consider exploration of the top surface of obstacles and have no
method for finding a search target located on the underside of an obstacle.

Another work to explore in 3-D looks at underwater vehicles examining a cliff [Rathnam
and Birk, 2015]. Like our approach they allow for sensing of the environment from above,
below, or beside elements in the environment. In their case they explicitly change the pose
of the robot to provide the best sensor view possible as the robots traverse the environment.
However, their team of underwater robots is largely heterogeneous and they do not provide
any method of taking into account high-level user input unlike the approach discussed here.

There is also areas of research on methods to improve the speed of determining the
frontier through the use of better designed algorithms that work with individual laser scans
rather than parsing the entire map [Keidar and Kaminka, 2014]. Improvements such as this
can be incorporated into our approach to improve overall planning times.

When evaluating potential target points for the next goal location, most exploration
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algorithms use a combination of the information gain from sensing while traveling to the
target and the cost of moving to that point. The information gain can be specified in several
ways however, a typical method is to set the information gain for a state equal to a function
of the change in knowledge about all states visible from that state after the robot moves
into it. The information gain for a trajectory is equal to the sum of the information gain
of all the states along the trajectory. It must be recognized that as each state is entered it
may change the amount of certainty in surrounding states and thus lower the information
gain for subsequent states along the trajectory. Due to this non-Markov property, optimizing
the information gain over trajectories is computationally expensive, and many algorithms
estimate the information gain of a trajectory by using the information gain of the final
point [Zlot et al., 2002; Gonzalez Banos and Latombe, 2002; Visser and Slamet, 2008]
while a few have attempted to explicitly include the expected information gain along the
entire trajectory [Simmons et al., 2000; Sim and Roy, 2005]. Others have combined the
information gain with additional features such as communications constraints [Burgard et al.,
2005] or improved physical models such as the likelihood of specular reflection from nearby
obstacles [Grabowski et al., 2003]. When combined with other features the information gain
is generically referred to as the utility of the state. Similarly, the cost can be viewed as a
function of time, energy, or distance between the goal and the start state.

The combination of the states utility and its cost directly affect the order in which states
are selected as potential goals. This selection process can be centralized or distributed and
can be performed through the use of previous high-level information [Owald et al., 2016],
a market architecture [Zlot et al., 2002] or through a high-level task allocation scheme using
Petri Net Plans [Calisi et al., 2007]. However the most straightforward method is a greedy
assignment that selects the best robot-goal pair, assigns that to the robot, removes that robot
from further consideration adjusting the utility of all states to reflect the assignment, and
then repeats until there are no unassigned robots [Burgard et al., 2000, 2005] . This is the
method we have adopted in our implementation.

Some recent work has explored the exploration problem in the context of hazardous
environments, such as post-disaster areas [Schwager et al., 2017]. While our approach
assumes an environment that, while potentially hazardous to humans, is benign for the
robots over the time scales in question. It may be possible to include this type of analysis
into an automatically generated logical region for our approach as an area of future work.

The planning algorithm frequently has to take additional information into account, such
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as communication range limitations, sensor effectiveness and range, and terrain traversal
costs. Our approach uses a cooperative multi-robot exploration planner that utilizes a variant
of a frontier based approach with the ability to specify specific hard and soft constraints
on the robot through a central planning algorithm. While a few approaches allow for a
generalized multi-feature utility function [Amigoni and Gallo, 2005] ours differs in that
we also allow for the creation of logical areas to influence the exploration priorities. We
define these logical areas or regions as a set of states assigned to one or more robots (either
specifically or ordinally, e.g., to the “first and second to arrive”) and an associated weight
matrix. This concept can allow a higher level planning system or expert input to influence

the direction and areas of primary exploration particularly for teams of heterogeneous robots.

2.2 Collaborative Localization as Part of Planning

Localization can be handled in different ways by the planner. The planner can explicitly
model the uncertainty it has in its position or it can ignore uncertainty and assume that
there is some method of localization available at all times. Our approach takes a middle
ground. For areas of the environment that we know have poor localization characteristics
(e.g., dimly lit or featureless areas when using visual localization schemes or GPS-denied
regions when operating with GPS) we can permit the team members to collaborate. In our
case, the ground and aerial vehicles have different sensing capabilities, so it may be possible
for one of them to localize well and then assist the other with its localization.

We develop our state lattice planner with controller-based motion primitives (SLC)
which, while it falls in the category of search-based planning, differs from all of these works
presented in this chapter in that we allow explicit collaborative localization actions as part
of the planning process. In order to integrate that ability directly into the planning stage, we
use the planning with adaptive dimensionality framework (PAD), discussed in Section 7.2.
The PAD planner allows us to expand beyond a single robot and generate plans for a team
of robots operating in a high dimensional space while keeping planning times reasonable.

Looking at the other options for localization uncertainty, there have been approaches
that considered the uncertainty of the robot as part of the planning problem. Of these,
POMDP based approaches, even with modern approximate solvers, are slower than A*

and do not scale as well to large environments [Kurniawati et al., 2008]. An alternative to
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the full POMDP method of handling uncertainty is by augmenting the state space with an
uncertainty metric [Gonzalez and Stentz, 2007]. This approach uses detected landmarks
to reduce uncertainty as a part of the planning process. In this way the planner can prune
actions that raise the uncertainty above a threshold without incurring the overhead of solving
a POMDP. Another example is the coastal navigation algorithm [Roy and Thrun, 1999]
which models the positional probability using a Gaussian. None of our approaches explicitly
model the uncertainty in localization unlike these methods making them less general but
significantly faster due to not increasing the problem dimensionality.

Localization of aerial vehicles poses its own unique set of challenges, primarily due to the
lack of reliable odometry measurements. Coupled with the recent increase in the availability
of small, low cost aerial vehicles, in particular easy to use quadcopters, a substantial
amount of research effort has been directed at teams of air-ground robots [Lacroix and
Le Besnerais, 2011] including work that also includes elements of exploration [Burgard
et al., 2005], and collaborative localization between the team members [Rekleitis et al.,
2001]. Communications in a variety of forms has been the focus of several works in this
area [Viguria et al., 2010; Vaughan et al., 2000], although frequently these include high-
quality localization of all robots, including the use of GPS on both the ground and aerial
vehicles [Grocholsky et al., 2006]. However, some approaches rely purely on well-localized
ground vehicles [Li et al., 2011; Reardon and Fink, 2016], forcing the aerial vehicle to
update its position estimate only by visually extracting the pose of the ground vehicle. In
the case of Reardon and Fink [2016], collaborative localization is used to allow a simple
aerial vehicle to maintain an accurate position relative to the ground vehicle. However, no
independent motion of the air vehicle is allowed. Our SLC-based work, while similar to
this last approach, differs from all of these by incorporating the collaborative localization
element into a larger planning framework and allowing independent operation of the two
robots when collaborative localization is not required.

Some work has taken a more indirect approach to collaborative localization. For example,
having one robot construct an elevation map of the environment for the others to localize
with [Késlin et al., 2016]. These approaches, while useful in generating informative maps
for robots to use during navigation, does not allow the robots to act in parallel and calling
for localization assistance only when needed.

Detection and pose estimation as part of collaborative localization has been a goal of

robotics research for many years [Fox et al., 1999]. A lot of this work has been directed

13



§2.3. PLANNING FOR AIR-GROUND TEAMS

at making the detection of the other robots of a team more reliable and accurate [De Silva
et al., 2012] even for chains of robots where the farthest ones have no direct knowledge
or sensor measurements regarding any known landmarks and instead must rely entirely on
their neighboring robots [Wanasinghe et al., 2014]. Other work focuses on the challenges of
constructing the map with multiple robots and using collaborative localization to tie map
segments together [Schuster et al., 2015]. Still other approaches have focused on the sensor
integration from the data fusion side ensuring that the data is used more effectively [Song
et al., 2008]. Our SLC-based approach keeps the localization scheme simple, we use only
fiducial markers and a simple camera to determine the estimated pose of the ground vehicle
from the aerial vehicle and then, accurately knowing the ground vehicles position, we can
estimate the position of the aerial vehicle with reasonable precision. While we do not use
these other advanced techniques in this work, our algorithms are capable of incorporating
this improved data into the planning framework.

The key features that distinguish our SLC-based planners from the prior work in the field
is that we include the collaborative localization element directly in our planning process.
This allows the robots to go on separate trajectories and only meet up when required rather
than travel in a fixed formation or conversely, operate completely independently. In addition,

our planner provides guarantees on path quality and resolution completeness.

2.3 Planning for Air-Ground Teams

Within the multi-robot planning field, there have been numerous works relating specifically
to multi-robot cooperation between aerial and ground vehicles [Vidal et al., 2002; Viguria
et al., 2010; Tanner, 2007; Grocholsky et al., 2006]. Our work is based on the general
principles found in these - minimize the amount of information that has to be shared between
platforms, maximize the amount of computing that can be performed in a decentralized
manner, and reduce the load on the operator. Our systems are not decentralized, however;
they all require a globally knowledgeable planner and a centrally maintained map of the
environment. While many of these only look at general collaboration between air and ground
robots, our approach looks specifically at collaborative planning in cluttered 3-D spaces.
In Fankhauser et al. [2016], an air-ground team navigates through a pseudo-disaster

environment. In this work, the two robots share map information and are able to navigate
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without the need for an external localization source (e.g., GPS). Their scheme of using
globally identifiable landmarks could be used in conjunction with the exploration scheme
presented in Chapter 4 to make our algorithm more robust. However, in contrast with our
work, the planning algorithm presented does not coordinate motions between the flying and
the ground robots. There is no method for the ground robot to summon the flying robot to
map an area of importance or to provide landmarks in the vicinity of the ground robot for it
to localize with.

Another air-ground exploration scheme aimed at disaster response is the work in
[Michael et al., 2014, 2012]. This work uses an air vehicle initially mounted on a ground
vehicle to explore earthquake damaged buildings. While this work demonstrated the viability
of conducting exploration with a heterogeneous team of robots, the robots used in this case
were teleoperated, unlike our work where the robots are fully autonomous.

Our work is based on using heuristic graph search algorithms. Path planning approaches
based on heuristic graph searches such as A* have been popular for navigation but have
not been as widely used for planning aerial robot trajectories due to the relatively high
dimensionality of the planning problem. An early method for generating collision free
trajectories in cluttered environments was to segment the free space into intersecting spheres,
then plan through this network of spheres using A* [Vandapel et al., 2005]. This method
had the advantage of not requiring any additional collision checking during the planning
stage, and due to the reduced size of the search graph was capable of quick planning times.
The drawback to this approach was that the complete map was needed beforehand in order
to perform the segmentation, and by requiring a spherical footprint, valid trajectories were

pruned from the search graph.
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Chapter 3

Background

Lean not upon your own understanding
Ignorance is well and truly blessed
Trust in perfect love, and perfect planning
Everything will turn out for the best
Rusu Clockwork Angels

Our algorithms are based on the A* family of search algorithms as adapted for planning
navigation tasks. This chapter will present the definitions and conventions used throughout

this work as well as an overview of A*and ARA*.

3.1 Definitions, Conventions, and Abbreviations

This section contains the definitions and typeface conventions used throughout this report.
Additional details will be presented in later chapters.
Graph Variables
¢,0,¥ (Euler angles) Roll, Pitch, Yaw, respectively, of a robot.

s (State) A tuple containing all of the variable dimensions. For example,

(x,y,¥) for the x, y position and the orientation ¢ of a single robot.
X (Set of states) The set of all valid configurations.

e(x,x") (Edge) a single directed edge between states x and x’. Edge e is valid if
ecé&.

& (Set of edges) The set of all allowable transitions between states.
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G (Graph) A graph G = (X, &) for motion planning is constructed from the

XHD

XLD

XAD

8HD
SLD
SAD

gHD

gLD

QAD

©
C

T

T
T
()

set of states X and the set of valid directed edges &.

(Set of high-dimensional states) States consisting of full-dimensional

states.

(Set of low-dimensional states) States consisting of states of less than full

dimensionality.

(Set of adaptive-dimensional states) A set of both high and low dimen-

sional states.
(Set of high-dimensional edges) Edges between full-dimensional states.
(Set of low-dimensional edges) Edges between lower-dimensional states.

(Set of adaptive-dimensional edges) a subset of high and low dimen-
sional edges, EAP and EMP, as well as edges connecting states of different

dimensionalities.

(High-dimensional graph) A graph constructed using the full-dimensional

states, X¥P and edges, EMP.

(Low-dimensional graph) A graph constructed using the low-dimensional

states, X'P, and edges ELP.

(Adaptive-dimensional graph) A graph constructed using adaptive dimen-

sionality states, X4?, and edges, EAP, see Section 7.2.

(Controller) a single controller that takes local sensor readings and outputs

a motion command

(A subset of Controllers) a set of controllers

(Set of All Valid Controllers) All valid controllers for a robot
(Trigger) a perceptual input that can halt execution of a controller
(A subset of Triggers) a set of triggers

(Set of All Valid Triggers) All valid triggers for a robot

(Powerset) the set of all possible subsets of (-).

General Abbreviations

UAV

(Unmanned Aerial Vehicle) Any small autonomous aerial vehicle, also
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referred to as Micro-Aerial Vehicle (MAV).

UGV (Unmanned Ground Vehicle) Any autonomous ground vehicle.
Additional Definitions

cell a state defined only by spatial dimensions, e.g., (x, y) or {x, y, 2)

free a cell with no obstacles
Symbols

[-] a discretized value
(a,b,...,c) atuple
oA BE D script font is used to denote a set
abed bold roman font is used to denote a multi-dimensional vector

ABCD calligraphy font is used to denote a space

3.2 The A* Family of Algorithms

Fundamentally, our approach is a direct extension of the A* algorithm [Hart et al., 1968].
A* is a graph search algorithm that finds a provably optimal route between a start and goal
state on a graph. From the start state, it selects the next best state, s, to expand using the
known cost from the start state to s plus an estimated cost from s to the goal - essentially
running a Dijkstra’s Search [Dijkstra, 1959] with the added heuristic estimate of “cost to
go”. When a state is expanded, all potential successor states are placed into an ordered list
(the OPEN list) from which the next state to be expanded is selected.

3.2.1 The A* Graph

A* operates on a directed graph, G = (X, &) consisting of the states, X, and valid (i.e., colli-
sion free) directed edges, &. The states of the search graph are tuples representing individual
points in configuration space (C-space) that include all of the independent variables that
the search algorithm can search over. The search graph can have any number of spatial
dimensions and can include dimensions representing curvature, velocity, or other state
variables as well. For navigation a typical choice is (x, y, yaw) or {x, y, yaw, vel) [Likhachev
and Ferguson, 2009] for ground vehicles and (x, y, z, ¢, 6, y) for aerial vehicles [Anderson,
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2010]. The environment is discretized into a regular grid for the translational dimensions
and into a discrete set of values for other dimensions. The translational dimensions may be
discretized in 1 m, 10 cm, or any other increment depending on the environment. Variables
representing angles are typically discretized into a finite set of allowable angles such as
{0°,45°,...,315°}. This same procedure can be applied to any other variables used by the
search - velocity, energy, uncertainty - by discretizing the potential values into a finite set.
For all dimensions, smaller discretizations result in a higher fidelity model of the actual
environment at the cost of slower search times and increased memory usage.

The edges of the search graph represent allowable transitions between states. A simple
implementation is to connect each state with its immediately adjacent neighbors, e.g.,
(x,y,2) = {x,y+ 6,z) (Where ¢ is the discretization size). Another alternative is to form
edges based on the kinodynamically feasible trajectories the robot can perform. These
kinodynamically feasible trajectories are referred to as motion primitives and the resulting
graph as a state lattice. The edges of the state lattice are constructed by applying a set
of pre-computed motion primitives to each state s € X and then adding a directed edge
from s to the state s’ € X that the motion primitive ends at. The motion primitives can be
generated in a number of different ways. For example, they can be generated through an
offline optimization process [Kelly and Nagy, 2003] or by applying a feasible control signal
for a short period of time [Pivtoraiko and Kelly, 2005]. The trajectory resulting from this
control input is the motion primitive. Typically, motion primitives are picked to span the
space well and are symmetric in the space of controls. For example, for a car-like robot,
there are usually motion primitives for both left and right hand turns, and for forward and
reverse directions (see Fig. 3.1). They also need to be generated in a way that their start
and end points land on the center of cells. Typically, they are generated for every possible
orientation of a vehicle and then during planning they only need to be translated along
the linear dimensions (e.g., the (x,y, z) coordinates) to the state for which the planner is
determining successors. Since the individual motion primitives are feasible trajectories
between states, the composition of multiple motion primitives between a series of states
creates a feasible path for the robot. State lattice-based planning has been used in navigation
for aerial vehicles [Thakur et al., 2013], automobiles [Likhachev and Ferguson, 2009],
boats [Svec et al., 2013], and all-terrain vehicles [Pivtoraiko and Kelly, 2005], among others.
This last work also contains an in-depth discussion on motion primitive construction.

It should be noted that in most implementations of A* the search graph is never explicitly

20



CHAPTER 3. BACKGROUND

15 —
_initial

!heading' -

0.5

Figure 3.1: An example of motion primitives for a car-like robot

constructed completely, but instead each state and edge is constructed on-the-fly at runtime

only as needed.

3.2.2 Functions and Data Structures Used by A*

A* relies on four sub-functions Successors(-), PREDECESSORS(+), CosT(-, -), and HEURISTIC(").
The Successors(x) function returns all of the states, x’, for which the edge e from x to x" is
in &, i.e., {X'|Ve(x, x") € E}. The PrebECESsORs(x”) function is identical, except that it returns
the set of states x for which x’ is their neighbor, i.e., x" € Successors(x). This function is
not strictly required as there are alternative methods for regenerating the trajectory such as
by maintaining back pointers during the search as long as there is a method to determine the
preceding state of a given state on the trajectory 7, i.e., {x|x, X’ € mAe(x, x') € E}. Cost(x, x')!
returns the cost of the edge between x and x” and requires that the edge exists in &, returning
oo, otherwise. The heuristic function (frequently A(-)) provides an underestimate of the
“cost-to-go” and, in order to maintain the theoretical properties of A*, must be consistent
and admissible. To be admissible the heuristic must be an underestimate of the cost from the
state to the goal (which in turn implies that Heuristic(goal) = 0). Consistency governs the
rate of change of the heuristic between states. For all states x and x” the triangle inequality
must hold true:

[Heuristic(x”) — HeurisTic(x)| < Cost(x, x')

"We will also use the annotation CosT,,(x, x’) for the cost of using motion primitive m from x to x’.
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For each state in the graph, A* maintains two scalar values, f and g. The g-value of
a state x is the cost of traversing the graph from the start state to x along the best path
discovered so far. For a given path 7 between start and x, g = >, Cost(i,i + 1), Vi € m. As
the search continues, it is possible that a better path will be found to a state x” prior to it
being expanded. In this case, the new, lower g-value will reach the top of the priority queue
before the higher g-value, and thus, the lower one will be the one used (since the A-value is
the same in both cases, the order of the f-values only depends on the g-value). The f-value
is the sum of the states g-value and the value of the Heuristic function evaluated at that state.
It is this f-value that is the key for the priority queue.

There are two lists maintained by the A* algorithm during execution. First is the ordered
list OPEN that contains all of the potential states for expansion and is ordered by f-value.
The element with the lowest f-value is the one chosen at each iteration for expansion. There
is also the CLOSED list containing all states that have been previously expanded. With
an admissible and consistent heuristic it is guaranteed that once a state is placed in the
CLOSED list you will not find a better (lower cost) path to that state in the future.

3.2.3 A* Algorithm

The algorithm for A* is presented in Algorithm 1. Initially, the CLOSED list is empty while
the OPEN list is initialized with the start state after it has itself been properly initialized
(lines 1-4).

The algorithm continues to evaluate states (line 5) until there are either no more potential
states in the OPEN list, in which case there is no solution, or the goal is expanded (line 7). As
the algorithm expands each state (lines 6-19) it removes itself from the OPEN list (line 10),
adds itself to the CLOSED list (line 11), and then adds all successor states to the OPEN
list if they are not already in the CLOSED list (lines 12-18). Note: depending on the
implementation, it may be more efficient to update the existing entry in the OPEN list if one
exists rather than add additional entries. Before a state is added to the OPEN list the f- and
g- values are updated (lines 14-15).

When the while loop exits with the goal as the currently expanded state, the path is
reconstructed by traversing backwards from the goal state to the start, greedily taking the
neighbors with the lowest g-value (line 24). For some implementations, including our

approach, this PREDECEssORs function can be implemented by storing a back pointer with
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Algorithm 1 path = A*(start, goal)

1: CLOSED =@
2: start.g =0
3: start.f = HEURISTIC(Start)
4: OPEN = start
5: while OPEN # @ do
6:  CURRENTSTATE = OPEN.pop
7. if CURRENTSTATE = goal then
8: break
9: else
10: OPEN = OPEN \ {CURRENTSTATE}
11: CLOSED = CLOSED U CURRENTSTATE
12: for all s € SuccEssORS(CURRENTSTATE) do
13: if s ¢ CLOSED then
14: 5.g = CURRENTSTATE.g + COST(CURRENTSTATE, §)
15: s.f = s.g + HEURISTIC(S)
16: OPEN = OPEN U s
17: end if
18: end for
19:  end if
20: end while
21: if CURRENTSTATE = goal then
22:  while CURRENTSTATE # start do
23: path = { CURRENTSTATE; path }
24: CURRENTSTATE = min,(PREDECESSORS(CURRENTSTATE))
25:  end while
26:  return path
27: else
28:  return NULL
29: end if

23



§3.2. THE A* FAMILY OF ALGORITHMS

each state added to the OPEN list.

3.2.4 ARA*: Anytime Version of A*

An improvement to A* that allows for faster searches at the cost of sub-optimal paths is
ARA* [Likhachev et al., 2003]. By adding a weight, € > 1 to the heuristic component,

f(x) = g(x) + € - HEURISTIC(X)

the search will preferably expand states along the direction of the heuristic. This allows
fewer expansions to find a feasible path to the goal state, with a cost bounded by the € value.
For the optimal cost, Cost"(start, goal) the actual cost, Cost(start, goal), is guaranteed to

be less than e times higher.
Cost(start, goal) < € - Cost"(start, goal)

In addition, ARA™ is capable of stopping after a given period of time, saving the search
information, and returning the best path found so far. If the search is later restarted, it can
continue to decrement € as it continues to refine the search, and, if given sufficient time, will

reach the optimal solution when € = 1.
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Chapter 4

Planning for Multi-Robot Exploration
With Multiple Objective Utility

Functions

Acting like a robot, its metal brain corrodes
You try to take its pulse, before the head explodes
MEGADETH Symphony of Destruction
Collaborative exploration involves the systematic traversal of a group of robots through
an environment typically with the purpose of determining the extent of the environment or of
finding a particular element in the environment. Tasks relying on exploration are mapping,
search-and-rescue, and infrastructure inspections. When multiple robots are involved, a
key element of collaborative exploration is to determine, in a principled manner, the goal
location assignments for each team member. There have been numerous methods proposed
as discussed in Chapter 2 and Chapter 3. Our approach is an extension to the “frontier”
exploration scheme [Yamauchi, 1997]. Generally, the frontier is defined as the set of states
that are both free and known but have an unknown neighbor. For example, in a 2-D scenario,
the frontier could be the 2-dimensional points ({x, y)) that is free and known but with at least
one unknown state in an 4-connected neighborhood.
To guide the exploration process towards “better” portions of the environment we use
the concept of information gain (IG) to score the usefulness of states based on how much
new information they can provide if a robot moves to that state. All states initially start out

as unknown, and as we gain sensor readings on that state, it becomes known - independent

25



§4.1. 2-D ExpLoraATION - HOMOGENEOUS MuLTI-RoBoT TEAMS

of whether it is known to be empty (free space) or known to be an obstacle. We combine this
information gain with other factors representing exploration priority, distance the robot must
travel, etc. to determine an overall utility score for that state. One key question is whether it
1s more important to have complete coverage in the shortest amount of time, or to maximize
the rate of coverage. By adjusting the weightings of the different factors, the user can exert
this kind of high-level control on how the exploration is taking place.

Overall, the multiple objective utility function exploration algorithm operates by:

1. Finding the frontier of the unknown region
2. Determining the information gain for the states

3. Scoring states based on information gain, distance, and other user definable prefer-

ences
4. Assigning “best” state to the “best” robot

5. Repeating 1-4 until all robots have assignment

The benefits of this approach is that some of the work is easily parallelizable allowing for
different threads or even different robots to do the bulk of the computational work. Only the
final selection requires the scores from each robot (step 4). The other benefit is this scheme
allows for a rich set of operator input into the exploration strategy without compromising
any of the guarantees about performance. The operator is capable of selecting preferred
regions, assigning priorities to different areas, or to leave the system alone and allow the

robots to determine on their own where to explore.

4.1 2-D Exploration - Homogeneous Multi-Robot Teams

The first version of this algorithm is focused on exploration of a 2-dimensional environment
by a team of homogeneous ground robots. The algorithm assumes that all of the robots
are similar in terms of sensing, computation, and locomotive capabilities. In addition, the
algorithm assumes that planar ray-casting is sufficient to determine which states are visible
from a given state. While this second assumption is not required by the algorithm, by
enforcing this requirement planning times can be reduced.

The algorithm follows the general form laid out in Section 4 and can be divided into

three primary stages: pre-processing of the input map, approximate ranking of the frontier
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states based on a heuristic, and forward simulation of the most promising goal states to
determine the best assignment for each robot, as seen in Algorithm 2.

The pre-processing stage generates the coverage, cost, distance, and information gain
(IG) graphs for use in the later stages as shown in lines 2-4 and line 8 of Algorithm 2. These
graphs are used as the basis for conducting the search for a candidate trajectory.! To increase
the likelihood of choosing the optimal goal state each frontier state is placed in a sorted
list ranked by the estimated utility score divided by the cost to reach that state as part of
the second stage of the algorithm, lines 8-10. In the third stage, lines 11-22, the paths to
these states are forward simulated in rank order and the best goal state is assigned to the
corresponding robot. Since the information gain is dependent on the trajectory taken, finding
a globally optimal path is intractable for online real-time applications; instead we settle for
its approximation.

The estimated utility score is composed of the information gain per unit traversal cost
along with any bias terms related to the additional features and their associated weights. By
using the information gain per unit traversal cost to select the next path, the algorithm may
bypass isolated states while moving towards larger unexplored areas of the map. By applying
a weighting factor to the traversal cost, the ratio can be skewed to make information gain
more or less important relative to the distance. In this way the thoroughness of exploration
can be adjusted to meet the exploration requirements at execution time. The bias term
has been introduced to control robot behavior such as minimum and maximum separation
distances, and region assignments.

While our example implementation uses a two-dimensional 8-connected grid map as our
base graph for the environment, the algorithm is capable of operating on any graph based

map.

4.1.1 Stage 1: Map Processing

In the first stage of the planner, the input map is pre-processed to gather the necessary
statistics for adequate ranking. The input map is an m X n grid with values proportional to
the log probability of each state being occupied or free. The output is a set of array’s.

The cost map is the first array and it represents the environment as an m X n grid with

'In our approach, the graph is 8-connected, but we only use 4-connected frontier states to ensure sensor
visibility.
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Algorithm 2 Exploration Algorithm

—_—

// pre-process maps

2: [costMap, coverageMap] = ProcEss(map m)
3: costMap = INFLATE(costMap)
4. distMap = DuksTrAs(costMap, coverageMap)
5: RR = remainingRobots()
6: while RR.notEmpty do
7. // calculate IG and rank states
8:  IGMap = INFOGAINEsTIMATE(CcOVerageMap)
9:  bias = CaLcBias(m)
10:  frontierHeap < CarLcScore(RR, IGMap, distMap, bias)
11:  while t < planTime do
12: // forward simulate each state
13: pt « frontierHeap.pop
14: & = PLANPATH(pt)
15: score = EVALUATETRAJECTORY(E);
16: if bestScore < score then
17: bestScore « score
18: bestTraj « &
19: bestRobot « pt.robot
20: robotGoals[bestRobot] « pt

21: end if

22:  end while

23:  coverageMap « coverageMap U visible(¢)
24:  RR.pop(bestRobot);

25: end while

26: return robotGoals
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the value of each state proportional to the cost of traversing the corresponding state of the
input map, line 2. This cost value can be augmented to include other factors such as time
or energy to traverse the state. In our example implementation, the cost is proportional
to the distance moved through the environment. This cost map is augmented by a buffer
applied to each non-traversable obstacle, line 3. This artificially increases the cost associated
with traversing near obstacles; in effect forcing the robots to take slightly longer paths but
providing additional margin to collision. These parameters can be specified and updated at
any time by the higher level systems to adjust the behavior of the robot.

The m X nx r distance map is the second array generated, line 4. The m and n dimensions
are identical to those used for the cost map while r is the number of robots currently
exploring. Each m X n layer, r;;, has values corresponding to the distance in meters from
a given state to robot id as calculated using a standard Dijkstra’s search algorithm on an
8-connected grid. For our implementation we did not allow traversal of unknown areas by
setting the cost for all unknown states to +co prior to running the Dijkstra search, however
any non-negative weight can be given to unknown areas depending on the desired traversal
characteristics.

The third and final array is the m X n coverage map which provides an estimate of
the information gain possible from each cell. The information gain is derived from the
occupancy grid provided as input, line 8. As the absolute value of the information about
a state grows higher (the state is more confidently free or more confidently an obstacle),
the level of knowledge about that state increases. Each state k is assigned a value g, that is
inversely related to the level of knowledge of that state; in a state for which no doubt existed
q = 0, whereas for a completely unknown state g = 1. As the robot learns more about a state
k through sensing, the g, value decreases towards zero. Since the value of ¢, is a measure of
the confidence of the sensor reading for state k, it can be converted directly from the log
probability of occupancy (if using an occupancy grid) or derived from the sensor model.

The information gain is calculated for a state j from the coverage map by (4.1).

ig; = Z dk 4.1)

kevis(j)

The function vis(j) returns the set of states visible from a state x;. For our implementation
vis(j) assumes a horizontally mounted laser scanner capable of sensing along rays emanating

from the robot and extending out to the first obstacle taller than (and thus intersecting with)
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the plane of the sensor. This can also be a probabilistic model of the sensor suite, to account
for less accurate sensors.

If a state k is visible from two states i and j, then the information gain of i and j
become dependent on the order the two are visited. Once the robot enters state i, it will gain
knowledge of state k lowering its g value resulting in state j having a lower information
gain. Due to this interdependence between all of the available states, the information gain
for a given cell at a given time can only be estimated. Initially, we set G j .gimare to the value
for the terminal cell, ig;, assuming that the robot does not gain any information prior to
reaching state x;. This assumption leads to an over-estimation of the information gain of the

final state, but typically is an underestimate of the information gain for the route.?

4.1.2 Stage 2: Ranking Frontier States

The second stage of the algorithm is the determination of an ordered list of frontier states.
A frontier state is a state that is known (¢ = 0) and that has at least one of its 4-connected
neighbors with ¢ # 0. Each frontier state, i is ranked based on the score calculated element-
wise as in (4.2). The frontier list itself is simply a max-heap based on the score of each entry,
line 10.

(IGi,estimate)E
(Di1sTaNCE[{])(1-E

The IG .gimae and the DisTancge[-] values are taken directly from the information gain

Scorg[i] = - bias, - bias, - bias, 4.2)

and distance maps, respectively, computed in the first stage. The Z-value is a user selected
parameter that adjusts the relative importance of distance relative to information gain,
0 < Z < 1. As = approaches 1 the algorithm prefers higher information gain goals, as it
approaches 0 it prefers lower cost (shorter) paths, and when Z = 0.5 it is neutral. The final
term, bias,.4., 1s a robot specific term that is the product of three additional elements to
control the goal selection process; region bias, distance bias, and repetition reward. Since

’In free-space, this would be guaranteed to not be an overestimate of the information gain for the route,
however, since the unknown states beyond the frontier may have an obstacle just out of sensor range, the
information gain may be substantially less than predicted. In a typical office environment this lower information
gain is typically of the same magnitude as the information gained during the traversal of the route resulting in
the free space gain at the goal position being a relatively accurate estimate of the information gain for a path

terminating at that same goal state. Different sensor and environmental characteristics may require a different
estimation scheme.
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this and the pisTANCE[-] term are robot specific, a given frontier cell will be in the frontier list
as many times as there are robots exploring, line 9. Therefore, each individual entry on the

frontier list specifies a robot-goal state pair.

During exploration with heterogeneous robots, it may be desirable to have a specific
robot explore a specific subset of the environment. The algorithm handles this by allowing
two distinct types of region assignment. The first is to assign a robot id to a given region,
the other is to specify the number of robots allowed into a given region without specifying

discrete id’s.

The region bias term encodes this region information into the score of each frontier cell.
In the first case, the region has a user specified set R of robots explicitly tasked to explore
the area and a multiplier m specifying the level of attraction. For a robot numbered id the

region bias is calculated by (4.3)

m ideR
bias, = 4.3)
% otherwise

The second type of region has no specified set of robots assigned to explore it. For this
type of region the bias is calculated by (4.4). This function allows for up to n robots to be in

an area without penalty.

m  id is among the first n robot(s) in the region
bias, = 4.4)

% otherwise

Both types of regions reward robot-goal state pairs that place the robot either in their

assigned regions or into a region without too many other robots.

9

The distance bias only applies to robots in the same region (including the default, “None’
region). For these robots, a penalty is applied to any goal state evaluation that results in the
robot being either too far or too close to another robot’s assigned goal state. The distance

bias is given by (4.5).
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1 if only robot in region
. 1 Dmin < dnearest < Dmax
bias; = ., 4.5)
nDl::,,S’ ’ Penalfy dnearest < Dmin
DmllX
droarest p enalty Anearest > Dmax

D,,., and D,,;, are the maximum and minimum ranges desired between a robot and its
nearest neighbor. For our implementation, D,,,, is based on wireless coverage range, to
prevent loss of network connectivity, while D,,;, is based on maximum sensor range, to
minimize unnecessary overlap. The penalty term is used to tune the relative importance of
the distance bias term.

The final bias term provides bias, to the robot for selecting the same goal as during
the previous iteration. This term effectively requires a new goal state to be at least y times
better than the previous goal before the robot would rank it higher and thus change goal
states. With this implementation adding penalties or rewards to the utility function based on
additional features was made simple since all bias terms were multiplicative.

At the end of this stage of the algorithm, all of the frontier states are in a sorted list, once

for each robot.

4.1.3 Stage 3: Forward Simulation and Goal Assignment

The third stage of the algorithm is to forward simulate the paths to potential goal states
in order to determine a better estimate for the information gain for for a given goal-robot
pair. During this stage the highest ranked frontier state-robot pair is selected from the
frontier list, line 13 and the trajectory is forward simulated to determine which states can
be observed based on the current obstacle map, line 14. This information gain is then
used in (4.2) in place of /G, ymae to determine the actual score for the state-robot pair,
line 15. As processing time allows, additional frontier states are removed from the frontier
list and forward simulated, with the best robot-goal state pair being saved, lines 16-21. At
the conclusion of the allowed processing time, the state with the highest score is paired
with its associated robot, and that robot is removed from the list of eligible robots, line 24.
The information gain array is recalculated based on the predicted movements of the newly

assigned robot, line 23, and stage two and three are repeated for the remaining robots. This
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process repeats until the last robot receives an assignment. In this way each robot has
received the best overall assignment that it could have from the states that were forward

simulated.

4.1.4 Example
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Figure 4.1: Six robots beginning an exploration simulation. The black area to the right is unknown,
white is free space and the thick colored lines are the exploration trajectories for the next time step.
The thin line represents the trajectory history of each robot.
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Figure 4.2: After ten minutes of exploration, robot 5 has entered a building area in the upper left
corner.
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Figure 4.3: After 40 minutes of exploration. Robot 3 has now entered a building in the center right
while robot 5 has finished the upper left building and resumed exploration outside. The medium
thickness lines are exploration trajectories longer than one time step; the robot will complete the
heavy line prior to the next trajectory evaluation.

As an illustrative example, Fig. 4.1-Fig. 4.3 depict various snapshots of the exploration
process of a 200 m by 300 m area. The environment has two buildings that can be internally
explored and several other obstacles. For this sequence, six robots were used with an
effective sensor range of 7m. The Z-value was 0.5 (balancing information gain with
distance), multiplier m was 1000, penalty was 1 and D,,,, and D,,;, were 50 m and 15 m,
respectively. In Fig. 4.1, the robots have just begun their exploration routines. The robots
have separated into two groups with the spacing within each group at the lower end of the
allowable window. After 10 minutes of exploration (Fig. 4.2) robot 5 has found one of the
general exploration regions around an explorable building in the upper left corner of the
image and has begun the exploration of the interior. After forty minutes of exploration, the
map is largely complete with robot 3 surveying the other accessible building, and the other

robots cleaning up islands of unknown regions as shown in Fig. 4.3.
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4.2 3-D Exploration for Non-Homogeneous Teams

In Section 4.1 we introduced a framework for multi-robot exploration that allowed the
operator to provide general guidance to the team of ground robots while they explored an
unknown area. While the previous algorithm will work in higher dimensions, the visibility
calculation performed while forward simulating the robots motion can be computationally
expensive. In this section we expand the previous algorithm to account for the added
complexity of performing a search in a full 3-dimensional environment using an air-ground
team, as well as allow for an exploration sensing system that is independent from the
localization sensors.

The 3-D exploration algorithm provides goal locations for the robots to survey in an
effort to minimize search time and overlap between robots. One key change from the 2-D
algorithm is that the frontier points themselves are not chosen as goal states, but rather the
algorithm selects from all states that can sense the frontier. By selecting goals in this way,
it is possible to gain information about multiple portions of the frontier simultaneously.
As an example, given a 3-D environment with a frontier both above and below a desktop,
it would be ineflicient to direct a robot to one or the other. Instead, the robot should be
directed to a location a few meters away and facing the desktop so that it can simultaneously
sense the frontier both above and below the desktop. By evaluating all states rather than
just the frontier states, the algorithm can reason about the locations providing the maximal
information gain.

A second difference is that individual robot trajectories are not set by the planner. The
navigation computations are left to the individual robots to determine so only the goal
selection is performed in a centralized manner. In practice, one of the robots of the team
performs the exploration computations alleviating any need for a separate ground station.

The algorithm follows the same general steps outlined in Section 4.

1. Generate distance to accessible states,
2. Determine frontier cells from map,

3. Accumulate the total number of frontier cells that are capable of being sensed from

each state,
4. Score the states based on the counts, distance, and any user-defined inputs,

5. Select the best state and assign it to the applicable robot,
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6. Repeat until each robot has an assignment.

While our example implementation only uses a two-robot pair, the algorithm is extensible

to n independent robots and has been used in past work with up to eight robots.

4.2.1 Exploration Algorithm for Air-Ground Teams

The planner relies on a combined map produced from an independent map merger module.
This combined map identifies each cell as clear, obstacle or free (or some probabilistic
combination, e.g., an occupancy grid) as well as seen/unseen. This last label informs the
planner whether the cell has been sensed by the exploration sensor and forms the basis for
generating the frontier cells.® The algorithm is shown in Algorithm 3 and is a modification
of the algorithm presented in Section 4.1. Of note, the subscript following variable names
indicates the dimensionality of the data where 3 indicates the three spatial dimensions,

(x,y,z) and 4 indicates the three spatial dimensions plus a heading dimension, {x,y, z, ¥).

Algorithm 3 G4[-] = GetGoal(poses p4[-], robots r[-])

1: Global: maps, NumRobots

2: for all i in NumRobots do

3 CountMapy[-] =0

4:  InflatedMapy|-] = INFLATEMAP(maps, r[i])

5:  CostMapy[-] = DukstrA(In flatedMapy, plil)
6 FrontierPts;[-] = FINDFRONTIER (ma p;, r[i])

7 for all f; in FrontierPts;[-] do

8 ViewPts4[-] = ViEws(FrontierPts;[ f], r[i])
9: for all v, in ViewPts4[-] do

10: CountMapy[v4]++

11: end for

12:  end for

13:  for all pt4 in CostMap,[-] do

14: scorey4[ p] = ScorePT(CountMaps|[pts], CostMap,| pt], G)
15:  end for

16:  Guli] = argmax,ccosimap, (SCOres)

17: end for

18: return Gy[-]

3For our implementation, we use a LIDAR type sensor for localization and map building and a vision
system to explore the environment
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During each planning iteration the exploration planner will generate new goals to all
robots (that are ready to accept new goals) based on the current map. In practice, we transmit
a goal to each robot as soon as the goal is determined and repeat the loop continuously. The
inputs to the GETGoaL function are the (x, y, z, ) poses p of all of the robots and a parameter
list r providing the footprint, nominal altitude (= O for a ground vehicle), sensor field of
view, and sensor position and orientation relative to the robot body frame, for each robot.

The planner first inflates the obstacles in the combined map to account for the footprint
of the robots (line 4). Because of having possibly non-circular robots, the inflated map has
the robot heading ¢ as a dimension. The inflation is followed by a Dijkstra search starting
from the current location of the robot to determine the cost to each accessible state in the
environment (line 5). Once these two initial processing steps are completed, the map is
parsed to determine all of the frontier cells. In the 2-D algorithm we defined “frontier” as
a known, free cell directly adjacent to an unknown cell. For the 3-D algorithm we modify
that definition to be an unknown cell directly adjacent to a known, free cell. For our system
we define “directly adjacent” to mean cells that differ along only a single dimension by one
unit, i.e., {x,y,z) and {(x,y + ¢, z) for a discretization size ¢, are adjacent but (x,y, z) and
(x + 0,y + 6,7) are not. Note: frontier cells are not defined by any heading information. We
also modify the definition of frontier in that we consider a visually cleared cell as known,
and all others, even if we have laser data on that cell, as unknown (line 6). Using these
definitions, we generate a second category of cells, the view-points. These view-point cells
are any cell that can sense a frontier cell and then from the set of all view-points, we select
our goal cells. By using this approach, we can guarantee that the algorithm will fully explore
the environment, given sufficient battery and permissible obstacle configuration,* as it will
maneuver to all view-points and thus eventually sense all unknown but not blocked cells
within the environment.

Since our goal is to determine information about the map, selecting goal points with
higher information gain is beneficial. Similar to the 2-D algorithm, we approximate the
total information gain accrued by traversing to a given 4-dimensional state by the number of
frontier cells visible from that terminal state. To accomplish this, for each frontier cell we
determine the 4-dimensional set of states that the robot could be at in order to successfully
sense the frontier cell. This requires knowledge of the robot sensing model including the

“The obstacles are considered in a permissible configuration if the robot can maneuver to aim the exploration
sensor at all desired locations.
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field of view, mounting location, and maximum effective range (lines 8-11). The sensing
model is used to ray-trace within the field of view of the sensor from the robot out to the
nearest obstacle and to subsequently annotate the intervening states as obstacle-free and

seen.

By only reasoning about the terminal state, it is possible that the robots could generate
a trajectory to that state that if modified slightly would result in a significantly higher
information gain enroute. Computing the total information gain for all possible paths to all
possible points in the environment is intractable. In most closed environments (indoors, for
example), the few directions that have sightlines greater than the sensor range are also the
directions of possible exploration. The result is that the robot typically travels in a direction
normal to the visible frontier viewpoints. Thus, reasoning about the terminal points in these
situations results in identical behavior. Different methods of determining the information

gain may be warranted for environments that do not follow this characteristic.

Finally, each potential state in the reachable space receives a score based on how many
frontier cells are visible from that state, the distance the potential goal state is from the
current state, and a penalty term. This is analogous to the score calculated in (4.2) with
count replacing information gain and cost representing a more general form of distance. The
distance and count terms are weighted by a user-defined parameter, 0 < = < 1 that adjusts
the propensity to move farther to get a higher information gain or to select a nearby but
not very lucrative state (4.6). For = = 1 the planner will select the state with the highest
information gain, ignoring the distance term. Conversely, setting Z = 0 will result in the

planner selecting the lowest cost state without regard to the information to be gained.

count[i]*

st * biasti (4.6)

scoreli] =

The bias term can incorporate a wide range of user preferred behavior. For our system,
this term was constructed to downgrade states that are in close proximity to any other robots
goal state. In addition, this term also penalized very short range motions that are harder
to execute (4.7). The threshold; and threshold, values are set by the user. The Length
threshold; duplicates to some extent the = parameter. The difference being that threshold;
is an absolute value - the bias is applied independent of the information gain - while the =

parameter only changes the relative importance of cost vs. information gain.

39



§4.2. 3-D ExpLorATION FOR NON-HOMOGENEOUS TEAMS

bias[i] = LENGTH(i) - min (PROXIMITY(i, G( j))) 4.7
J

Ji#]

CostMapr(a) > threshold;

LenGTH(Q) =
¢ (Ll) CostMaP(a)

hrosholdy otherwise

dist(a, b) > thresholdp
Proxmiry(a, b) = st

throsholdy otherwise

Due to the UAV’s limited flight time, we provide a further enhancement to maximize
the UAV’s value. When determining the frontier points on line 6, the exploration planner
first considers only those points that are not visible to the UGV. In this way, the planner will
first send the UAV to cover portions of the environment the UGV cannot sense. Once it has
exhausted the UAV-only points without finding any candidates, it will reevaluate based on
all frontier points. This process may transition multiple times between UAV-only and all

frontier points as the environment is explored and new obstacles discovered.

In order to determine which states are or are not visible to the UGV, we ray-cast from
the potential target state to the set of states that the UGV sensor could be located in (taking
into account orientation and obstacles). If all rays encounter obstacles then the state is not
visible. In all other cases there exists at least one viable configuration of the UGV that will

allow the target state to be sensed.

For the non-homogeneous version we use the same greedy assignment scheme detailed
in Section 4.1.3. However, this scheme may introduce sub-optimal behavior when used
with heterogeneous robots with significantly different capabilities. For example, given two
robots, one with a sensing range of 1 m and the other with a sensing range of 100 m, and an
environment with a large number of overlooks’, the second robot will need to visit many
locations, independent of whether the first robot has visited them or not. In this case, it
would be better if the first robot went to the areas where it could clear on its own (i.e., ,
narrow hallways). This non-optimal behavior is not typical, however, and in practice the

robot assignments were in line with what an outside observer would assign.

SWe define “overlook” in this context to be positions from which the robot can sense regions of the
environment, but is unable to move closer to some portions.
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4.3 Exploration Summary

We have presented two algorithms to perform multi-robot collaborative exploration in
complex environments. By incorporating the idea of the multiple objective utility functions,
we allow for high-level user input during exploration to modify the priorities of the robots.
Our algorithm can perform the bulk of the computational effort in a decentralized manner,

only requiring the final goal assignment to be done in a centralized fashion.
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Chapter 5

Applications of the Multi-robot
Exploration Planner with Multiple
Objective Utility Function

A call from the heart to the god of love,
Send us an angel, a sign from above.
All of the damned and a silent scream,

Save us and damn the machine
Gamma Ray Damn the Machine

In this chapter we will present some applications of the algorithms developed in Chap-
ter 4.

5.1 Exploration with a Homogeneous Robotic Ground Team

Our first application is of the 2-D exploration algorithm developed in Section 4.1 and
implemented with a team of homogeneous ground robots both in simulation and in real-

world testing.

5.1.1 Simulation of 2-D Homogeneous Exploration Planner

The algorithm was run on a series of randomly generated 2-dimensional grid maps similar
to Fig. 5.1. For each test, 5 robots were run on maps of 1000 x 1000, 2000 x 2000, and
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3000 x 3000 cells at 0.1 m per cell. During testing the minimum distance was set to the
sensor range we saw in practice while the maximum distance was based on achievable
communications ranges. A range of values was tried for all other user adjustable values and
validated during subsequent real-world testing. The final values used for all of the tests were
= set to 0.5, and bias, to 1000 and 0.001 for the first and subsequent robots, respectively.
The distance bias penalty was set to 1 and D,,;, = 20m and D,,,, = 50 m. The robot was
given a sensing radius of 10m and was allowed up to 0.3 s of planning time during the
forward simulation stage, resulting in an overall system replan every 10s. The robots were
also assumed to have a top speed of 1 m/s allowing 10 m maximum between replans. The
results can be seen in Fig. 5.2 displayed as the fraction of the accessible space explored
versus number of time steps. In addition, a combined indoor/outdoor map was generated
to show the effect of logical area assignments and a hard inter-robot distance constraint, as
shown in Fig. 5.3 and Fig. 5.4.

1000 T 1

0 200 400 600 gon

00t — , - :
200 41 E - L m -
' I
100 |
1
Figure 5.1: Example of the randomly generated map used to test the algorithm

5.1.2 Real Robot Results: MAGIC2010 Challenge

This algorithm was put to use on the University of Pennsylvania’s team for the Multi-
robot Autonomous Ground International Challenge 2010 (MAGIC2010) held in Adelaide,
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Figure 5.2: Exploration versus Time Step (10 second increments) for a 2000 x 2000 cell map at
0.1 m resolution and comprised of ~ 11% obstacle cells. Solid line represents the average fraction of
free cells that have been detected while the error bars represent the maximum and minimum over the
five random maps. Similar results were obtained for the 1000 x 1000 and 3000 x 3000 maps with a
corresponding change in number of time steps.

Australia in November 2010. For the main competition, a team of robots were required
to enter an area comprised of indoor and outdoor environments, explore it, identify five
different types of Objects of Interest (OOI’s) and provide a detailed map with the objects
locations pinpointed. In addition, for two types of objects, a specific sequence of actions had
to be performed before a robot could move past the OOI. Two of the OOI types were mobile,
while the rest were stationary. The 3 areas used ranged from 20.000 m? to 30.000 m2. A
second competition using a similar set of rules, but without any mobile OOI’s and conducted
entirely indoors was also held (Fig. 5.5 and Fig. 5.6).

In the main competition, the team took 2"¢ place. Unfortunately, unrelated mapping
issues prevented the gathering of useful data regarding the exploration algorithm. However
for the second competition, the exploration algorithm was able to completely map a space
approximately 3600 m? with 5 robots in under 35 minutes, identifying 9 of 12 OOI’s in the

process and garnering a first place for the team. For this implementation the algorithm was
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Figure 5.3: Comparison between coverage rate with and without regions for the case with no inter-
robot distance constraints. When the robots are free to wander they perform about the same in both
cases.

given five seconds total to process before having to provide an assignment for each of the
robots. Computation occurred on a 2.80 GHz quad-core 17 running Ubuntu 10.04. Eight

threads were spawned to evaluate the frontier cells and perform other tasks concurrently.

5.1.3 2-D Exploration Application Conclusions

In this section I have presented applications demonstrating our extension of the frontier-
based approach to multi-robot exploration that allows for the incorporation of multiple
objective utility functions. This extension enables the operator to adjust the exploration
priorities both for the individual robots and the group as a whole. The algorithm was
implemented on a team of five physical robots that took first place at the Old Ram Shed
Challenge and second place at the MAGIC2010 main competition, both devoted to search

and rescue operations.
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Figure 5.4: With distance constraints there is a clear advantage to specifying regions for exploration.

5.2 Air-Ground Robotic System for 3-D Exploration

In this next section I will demonstrate the 3-D variant of the exploration algorithm presented

in Section 4.2.

5.2.1 Overview of Air-Ground Robotic System

We concentrate on the problem of autonomous exploration for the purpose of finding an
object of interest (OOI) within an initially unknown environment. The robotic team will
have minimal human input: the human operator will initiate the exploration, concur with
launching the UAYV, and concur with any OOI detections, but will not provide any other
direction or guidance to the robots.! Therefore, all other navigation, sensing, and decision
making must be done on-board. To achieve this, we developed several modules to guide the
robots through the environment as shown in Fig. 5.8.

Our system uses two primary components: a team of robots executing their own software
for localization, navigation, object detection, and other local processes; and a set of high-
level software modules that combine the individual robot maps, select goal locations for

I As part of a separate line of research regarding the User Interface, we imposed the constraint that the

human would have to confirm OOI detections. Because of this, we included a decoy object in the environment
during testing.
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Figure 5.5: One of the University of Pennsylvania’s MAGIC2010 robots. The robots used two laser
range scanners, an omni-directional camera, and a panning camera to gather information about the
environment. An on-board Mac Mini provided computational power, and a 802.11 antenna provided
the data link with the ground control station (GCS). (Photo © 2010 Paul Vernaza)

each robot, and interface with the user.

The first part is our two robots: an Unmanned Aerial Vehicle (UAV) and an Unmanned
Ground Vehicle (UGV) (Fig. 5.7). The UGV has a large battery capacity (sufficient for 3-4
hours of operation), substantial on-board computing power, and is very stable. On the other
hand, the UAV has a limited flight time (10 minutes maximum) and computing power, but
can traverse terrain that the UGV cannot. In addition, it can move vertically allowing it to
get a better vantage point of the environment and “see” areas the UGV cannot. The robots
are detailed in Section 5.2.2 and their on-board software in Section 5.2.3.

The second part of the system is the high-level modules which are responsible for
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Figure 5.6: The team of exploration robots. The two neutralization robots are not shown.

coordinating activities between the two robots and can be executed from any available
computing platform.? To perform their coordination function, the high-level executive has
access to a map merge capability and the exploration planner. The map merger receives
map updates from the two robots and forms a global map. Using this map, the exploration
planner determines appropriate goals for each robot and provides them to the executive
module for transmission to the robots. In addition, the high-level software incorporates a
mechanism for providing feedback to, and input from, the human operator. The high-level

software modules are discussed in Section 5.2.4.

5.2.2 Robot Platforms
Melvin the Segbot

The ground vehicle component of our system is Melvin the Segbot. Melvin is a custom
designed robot built on a Segway RMP 200 base. Attached to this base are two computers,
two 30 m Hokuyo scanning laser range finders, and a Logitech webcam (see Fig. 5.9a).

The computing power is split between two distinct hardware components. The first is

2In practice, the high-level systems were all executed on the UGV computers.
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Figure 5.7: UAV mounted on UGV.

the controller computer. This machine is responsible for the direct planning and control of
Melvin and is a 3.0 GHz 15 with 8 GB RAM. This machine handles all hardware interfaces
including the motion interface to the base. The second computer is a dual quad-core
Xeon server with 16 GB of RAM that executes all of the high level planning including the

exploration planner and map merger nodes.

Hexacopter

The Hexacopter serves as the aerial component of the exploration team. Like Melvin, it
is equipped with two 30 m Hokuyo scanning laser range finders, a Logitech webcam, and
its own computer. The computer is an 17-2660 with 16 GB of RAM that runs all of the
automation on-board. The body of the Hexacopter is a modified Mikrokopter Hexa XL
frame with custom sensor and computing mounts, power distribution electronics, and blade
guards (see Fig. 5.9b).
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UGV (Segbot): UAV (Hexacopter):
Hardware Interface Hardware Interface
Localization Localization
Navigation Navigation
OOl detection OOl detection

4

Figure 5.8: Overview of system. The Robots both have sufficient computing capability and sensors
to move through the environment based on higher-level goals without further guidance.

5.2.3 Local Software

General Software & Communication

All of the computers run Kubuntu 12.04 with ROS Groovy. Each robot has its own instanti-
ation of a roscore with an additional roscore for the exploration planner and map merger,
and one for the user interface. Both of these additional roscores are physically executed
on the UGV server computing system. For the few messages that needed to be passed
between systems, we used the ROCON software package to transfer standard ROS messages
to multiple roscores. This setup was made to allow for movement of the high-level modules
to any available computing system. By having its own roscore, all that was necessary was to

update the ROCON links if we ran it on a different physical machine.

Localization

Both robots were fully capable of independent autonomous behavior and only used the
executive for coordinating goal locations. To achieve this, each machine ran its own SLAM
subsystem based on the Hector SLAM package [Kohlbrecher et al., 2014]. The SLAM
system only maintains a 2-D map for determining the x, y, ¥ position and heading of the
robot. A 2-D SLAM system was used as it provided adequate positional accuracy with
significantly lower computational load compared to a full 3-D system. For the UAYV, there
was an independent system that used the vertically oriented panning lidar to determine
the ground plane. Since the UAV was initially mounted on top of the UGV, and during
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(a) UGV (b) UAV

Figure 5.9: Robots used for experiments. a) UGV - Large box on right is main battery pack. Upper
gray box is server, lower gray box is controller computer. Hokuyos and camera are mounted on
structure on left. b) UAV - closeup showing bottom panning vertical Lidar, upper fixed horizontal
Lidar, and forward facing camera.

operation it was allowed to fly over obstacles, the height estimation system could not update
the absolute height with every received lidar scan. On initialization, the height estimator
would analyze several scans in order to determine its initial height. Then, while flying, it
would filter scan points that deviated more than expected from the current estimate in order
to maintain an accurate height and allow operation over obstacles. To backup this system,
there was an emergency system that would automatically reset the height estimate if the
perceived height exceeded a threshold even if the estimate did not. Knowing that we were

operating indoors, this system ensured that we did not inadvertently collide with the ceiling.

Navigation

Each robot was responsible for its own navigation to the provided goal positions. We
used a 3-D state lattice-based planner [MacAllister et al., 2013] running AD* to generate
kinodynamically feasible trajectories for the UAV and a simple 2-D planner for the UGV.
Upon receiving a goal, the on-board planner would perform a search on the local obstacle
map to generate a trajectory from the current reported position (from the SLAM subsystem)
to the goal state. In the event the robot was unable to generate a feasible trajectory (for

example, if the goal was too close to an obstacle) the system would time-out and receive an
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updated goal from the exploration planner. The states used for planning are tuples consisting
of a discretized translation in two or three dimensions, and a rotation in one dimension.
The UGV planned using planar spatial coordinates and heading, (x, y, ), with 10 cm cells®
and 16 discretized headings, while the UAV planned in (x, y, z, ) with 5 cm cells and 16
discretized headings. The UAV was provided with a user defined “nominal height” that it
would preferentially fly at during transits, but would deviate from as necessary. In addition,
the exploration planner was provided this same height and would preferentially select goal
locations at this altitude. This setup allowed the planner to construct full 3-D trajectories
going over, below, or around obstacles while maintaining a preferred height for the UAV to
operate at.

Once the robot had a feasible trajectory, it would use the local controller to generate
motor inputs to follow the trajectory. For the UGV this was performed using a trajectory
roll-out scheme that estimated different motions based on a small finite set of short-time
horizon control inputs and selected the input that provided an endpoint closest in position
and orientation to the desired trajectory. The UAV controller used a PID control for position
to generate its control inputs based on the measured error between its current location and
the next way-point along the desired trajectory. Altitude and yaw were handled by separate

PID controllers in a similar fashion.

Object Detection

Besides the motion control subsystems, each robot performed its own analysis of the video
feed in an effort to detect the OOI. This subsystem was based around an existing vision
detection system CM Vision [Bruce et al., 2000]. This system was trained to detect a specific
colored object; for our experiments it was a green tablet case (Fig. 5.10). Like many
other color based object detection systems, recalibration was required for different lighting
conditions. Color-only detection was selected in order to keep the processing requirements
minimized. Even so, this sub-system required the largest percentage of computing power
used. When a robot detects a possible OOI, it will transmit a still image to the user (Fig. 5.11,
right image - OOl is bottom center), pause exploration, and hold position until it receives

either confirmation or rejection of the reported OOL.

3In this chapter, we use the term “cell” to refer to 3-dimensional discretized locations defined by a
center-point, (x,y, z). We use the term ‘“state” to refer to a 3- or 4-dimensional discretized pose, {x,y, (2), ¥).
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Figure 5.10: The OOL.

5.2.4 High-Level Software
High Level Executive

The high-level executive is responsible for coordinating the robots. As part of this function,
it provides the interface between the map merger / exploration planner module, the user

interface module, and the robots.

User Interface

The human user only has a a few inputs to the system during runtime. The two chief inputs
from the user are to start and concur with the completion of exploration. The only other
input is concurrence on launching the UAV which is included for safety considerations. All
three of these inputs are handled via the User Interface module, Fig. 5.11. This module
displays a dynamic web page to the user with zero to four buttons: accept OOI, reject
OOI, and commence exploration, for two robots plus enter area for the UGV, of which a
maximum of four are ever available at a given time. In addition, when one of the robots has a

possible OOI detection, the best image of the OOI is forwarded to the user for confirmation.
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If the user confirms the OOI, the executive directs both robots to cease exploration (and
presumably return to a home location and land, as appropriate). If the user denies the OOI
detection, whether it is due to a false positive or other reason, the executive will direct the
detecting robot, who had paused, to resume exploration. This setup reduces the cognitive
load of the human operator requiring them only to judge whether the provided image is
indeed of the OOL.

The interface can be accessed with any HTML browser on any device with a WiFi
connection. During our testing we verified that a tablet, an Android smart-phone, and a laptop

were all able to provide the high-level commands and receive the images, satisfactorily.

Figure 5.11: The user interface. On the right, the UAV has detected an OOI and sent the image to the
operator for confirmation (green tablet bottom center). Two buttons are visible along the top in green.

Map Merging

The map merging algorithm seeks to generate a unified 3-dimensional map of the environ-
ment by taking into account the offset between the two robots starting position. The global
map was tracked in three spatial dimensions, (x, y, z), with 10 cm cells and was stored as an
occupancy grid [Elfes, 1987] using an Octomap [Hornung et al., 2013]. When the system
initially starts, it attempts to align the two existing maps. It starts with a rough estimate
of the offset between the two robots, and iterates through a finely discretized set of points
around the initial estimate. This process checks for deviations in translation, {x,y, z), as

well as angular deviations in heading, ¢ (it assumes no roll or pitch errors, ¢,6). Once
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the initial transform between the two maps is determined, this value is no longer modified.
This does have the potential to cause drift errors over longer runs as the on-board SLAM
system accumulates errors, however, in our testing, both robots had insignificant deviations
from the global map at the time they found the OOI. Approaches such as [Jessup et al.,
2014] or [Schuster et al., 2015] may alleviate this accumulated SLAM error if it becomes
substantial.

During runtime, the map merger module uses the fixed starting transform to place new
data into the global map. This data is characterized as either obstacle or free space and is
represented as an occupancy grid where we store the log likelihood that the cell is either
free or occupied with the middle value indicating unknown. In addition we track which
cells have been viewed by the camera. To accurately annotate which cells have been seen
by the camera, we must first determine which ones are free. The panning scanning laser
rangefinder generates information about a wedge shape projecting from the center-line of
the robot in its direction of motion. By ray-casting out towards each laser scan echo, we
can identify free space between the robot and the nearest obstacle. In conjunction, with
the receipt of each image, we ray-cast from the location of the camera in the direction of
each camera pixel up until we reach either an unknown or an obstacle cell, or we reach the
maximum effective detection range of the OOI subsystem. The set of cells traversed by the
camera ray are marked as visually cleared. In this way we can positively track which cells
are guaranteed to not contain the OOI in 3-D space (see Fig. 5.12).

We assume that a valid goal configuration contains a state accessible from the starting

state and from which the OOI may be sensed.

Exploration

The exploration module is responsible for analyzing the environment and determining where
to send each of the robots next. This module is capable of adding or removing robots from
the assignment list during each iteration, if necessary, to accommodate dynamic teams or,
in our case, the launching and landing of a UAV. This module can assign goal locations at
any point in 3-D space to position a robot to view a particular location taking all known
obstacles into account. In addition, this module is capable of differentiating which cells
are visible from ground versus aerial robots and preferentially assigning those cells to the

respective robot types. Technical details of the exploration planner are found in Section 4.2.
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Figure 5.12: Combined map. Blue objects are obstacles, green objects are cells that have been
visually cleared. Free and Unknown cells are not shown.

By using the ability to determine the existence of cells not capable of being sensed by
the UGV the exploration algorithm could be used to determine when to launch the UAV.
This determination could be based on a large number of factors including number of these

un-sensable cells, the size or arrangement of these cells, or other parameters.

5.2.5 3-D Exploration Experiments
Setup

Our experiments aimed to validate our entire approach to exploration by having the robot
team search a previously unknown area attempting to locate a particular tablet (our OOI)
identified by its unique color. The operator stood outside the area and issued the allowed
commands with no other interaction with the robots. We defined a successful run if either of
the robots were able to identify the tablet before the UAV depleted its battery. Depending

on the length of time spent airborne, and to a lesser extent the amount of processing load
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Figure 5.13: Overhead view of exploration planner goals. Dark Blue is current position of the UGV,
Magenta is UGV goal, Green is UAV position, and Yellow is UAV goal. The UAV has been tasked to
explore the top of the desk (dark object bottom center) while the UGV is exploring a corner that has
not been explored yet. In this 2-D projection, the lighter areas indicate less uncertainty in the vertical
column at that point.

and time spent operating while mounted to the UGV, the UAV is limited to between four
and ten minutes of flight, compared to several hours of exploration time for the UGV. An
unsuccessful run was one in which after conducting a search the robots were not able to find
the tablet before a low battery forced the UAV to land. The land action was automatic and
occurred when battery voltage under load averaged less than 13.8 V for 10 s. Furthermore,

runs terminated due to a mechanical failure of a robot were not counted in the results.

We conducted our experiments in an enclosed indoor area measuring approximately
30m X 10 m X 5 m of which the upper 2 m to 3 m were occupied with pipes and conduit. The
area was partitioned into sections with movable walls and objects such as a desk and filing
cabinet were placed inside the area. This resulted in approximately 400,000 cells capable of
being detected and analyzed, depending on obstacle placement and room configuration. The

robots started from the same location for all tests near the edge of the search area and had a
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predetermined first goal located 5 m into the exploration zone that the UGV moved to when
commanded to ‘“enter the area”.

We had different people place the OOI during our experiments to rule out any bias in
selecting locations that were particularly easy or hard for the system. The direction provided
to the person placing the OOI was to place it so that the OOI would only be visible to the
UAV once it was airborne. This was done by placing the OOI in a location not visible from
the UAV prior to it taking off from the UGV and not visible to the UGV. Separate tests were
performed to verify the UGV was capable of also detecting the OOI, and it was successful
on all runs.

The test environment had one object that had an identical color as the OOI and served
as a decoy for the detection system by causing a false positive. In the event the decoy
was detected, the operator rejected the classification and resumed the exploration. Decoy
detection was not deemed to be a failure but the time spent pausing and waiting for the

operator to reject the OOI was counted towards the completion time.

=titted curve

ce Takeoff (1)

Explored States (2)

Explared States sin

o 5 100 50 200 250 30 3 400 480 o 5 100 189 200 250
Tine (s)

Tine since Takeoff (s)

(a) Full Run (b) Prior to Takeoff (c) After Takeoff

Figure 5.14: Percentage of cells explored over time (based on full volume of search area). Heavy
magenta line indicates best fit.

Since the exploration algorithm has several user selectable parameters, we set them as
follows: To achieve balance between distance traveled and information gain, we set Z = 0.5,
to facilitate the robots spreading out, we set threshold, = 5, and to discourage very short
range goals, we set threshold, = 1.2 for all runs. In addition, while the map merger process
can determine when to launch the UAV based on detecting unreachable frontier states, for all
of the test runs, we had the UAV launch at the first opportunity after 2 minutes 30 seconds
of UGV only exploration.* The 2:30 takeoff time was based on prior experiments that

4There was one area of the environment that the overhead obstacles were too low to allow for the UAV to
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indicated a reasonable percentage of the UGV accessible space was explored by that point
on average (for an example, see Fig. 5.14b for the case where the UAV took off late - the
UGYV exploration progress plateaus at approximately 2:30).

The cameras used on both robots were identical Logitech C310 webcams that provided
images at 1280 x 720 pixels at 25 Hz. The UGV camera was mounted approximately 20 cm
from the ground along the vehicle center-line with the camera axis parallel to the ground.
The UAV camera was mounted on the UAV forward axis and tilted downward by 10° from
horizontal. With the UAV nominal flying height set to 1.65 m, the camera typically was at
1.6m.

3-D Exploration Results

Table 5.1: Experimental Results for Multi-Robot Exploration.

Run Detect Detect % of Env. Time to Time Since
OOI Decoy Explored Detect OOl UAV Launch
1 v b 4 55.6 7:08 2:23
2 v v 63.3 5:51 3:21
3 v v 57.9 4:49 2:19
4 vV X 50.5 4:01 1:31
5 v X 45.6 3:48 1:08
6 v X 49.3 3:50 1:21
7 v b 4 45.3 3:56 1:26
8 X X 60.5 - -
9 v X 58.5 6:20 3:50
10 v X 56.2 5:02 2:32

We made 10 complete runs with the results as shown in Table 5.1. Only 1 run failed
to find the OOI within the time allowed due to the UGV exploring the particular corner
containing the OOI (but at too low an altitude) prior to the UAV launch. Since the area
was already predominately explored, the UAV did not return to verify the small remaining
unknown area during the available time. Two runs detected the decoy initially, but after the
operator rejected the false positive, they both successfully found the actual OOL.

launch which caused the takeoff to be delayed on two occasions - once by 10 seconds (run 5) and once by 2:25
(run 1).
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Using 400,000 as an approximation of the number of detectable cells® in the environment
we can estimate the percentage of the environment covered prior to discovery of the OOI,
Fig. 5.14. For all of the runs we cover 80-90% of the environment prior to detection of
which 40-60% is discovered by the UGV prior to the UAV taking off. As can be seen in
Fig. 5.14b, the UGV progress has already begun to plateau by this point. The UAV continues
to make progress as it explores areas inaccessible to the UGV accounting for an additional
10-30% before detecting the OOI or landing, Fig. 5.14c. The values in Fig. 5.14c are a
combination of both UAV and UGV information, however, since we know that there are
significant portions of the map that are inaccessible to the UGV, and the pre-launch data is
plateauing, we surmise that the majority of the gain post-launch is from the UAV.

Since the UAV preferentially visits locations that the UGV is incapable of exploring, it
detected the OOI within the first few goals (1:30 of flight) almost half of the time.

Demonstration of Algorithm

The 3-D exploration algorithm was demonstrated to the US Marine Corps Warfare Devel-
opment Laboratory and reporters from the CBS television program “60 Minutes” [Martin
et al., 2017]. For this demonstration, the environment consisted of eight 3m X 3m X 3 m
cubes with openings in the lower or upper portion of half of them (Fig. 5.15) in an area of
approximately 500 m2. The goal for the robots was to search around and inside the buildings,

and around trees attempting to locate a specific person.’

5.2.6 3-D Exploration Application Conclusions

Our contribution in this section is two-fold: we have introduced an air-ground robotic system
capable of operating autonomously and an algorithm for performing exploration in cluttered
3-D environments. With our experiments, we have shown how planning for heterogeneous
teams of robots can be an effective method of exploring environments that either robot
alone would be unable to explore. Our results show that the system is capable of entering,
exploring, and detecting an OOI within the time constraints imposed by the limited battery
life of a UAV.

>The remainder being internal to obstacles.
®Facial recognition system was run on our robots but was developed by a separate group for this project.
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Figure 5.15: Example obstacle. The opening occurred either in the lower half, or the upper half of
the building. A person was able to either sit or stand inside the building for the UGV and/or UAV to
find.

The exploration algorithms introduced in this chapter and the preceeding one allow the
exploration of large environments by teams of robots, allow for the user to provide high-level
input to guide the exploration process, and can operate in full 3-dimensional environments.

One area that requires additional research is the relationship between discretization size
on the individual robots and the central map. Due to stability issues, our UAV required a
map discretized into 5 cm cells, while the UGV and central map both used 10 cm cells. We
saw no ill effects from this slight difference in map resolution, but it is conceivable that
different discretizations could result in paths that were not deemed feasible by the robot or
assignments that were not given due to inaccurate path length assumptions by the planner.
In particular this may become a significant issue if the environment has numerous narrow

passages that are rendered untraversable at certain discretization levels.

62



Chapter 6

State Lattice Planning with
Controller-based Motion Primitives
(SLO)

Sail on till you reach the promised land,

We all drown in the fifth dimension

The ninth wave, I can feel it’s coming, The ninth wave
Brino Guarpian The Ninth Wave

In this chapter we present our algorithm: State Lattice Planning with Controller-based
Motion Primitives (SLC). The SLC planner allows for robust navigation using a wide
variety of sensors including in areas with no or limited high-quality localization information
and is based on standard graph search algorithms such as A* [Hart et al., 1968] and
ARA* [Likhachev et al., 2003]. It also allows the execution of controllers similar to
the sequential composition of controller approaches [Burridge et al., 1999][Conner et al.,
2011][Kallem et al., 2011] combined with the functionality of switching between controllers
based on external perceptual triggers similar to the Linear Temporal Logics [Kress Gazit
et al., 2007].

The SLC planning framework is a modification of a search-based planner implementing
a state lattice graph. State lattices are typically constructed of simple motion primitives
connecting one state to another. There are situations where these metric motions may not
be available, such as in GPS-denied areas. In many of these cases, however, the robot may

have some additional sensing capability that is not being fully utilized by the planner. For
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example, if the robot has a camera it may be able to use simple visual servoing techniques
to navigate through a GPS-denied region. Likewise, a LIDAR may allow the robot to
skirt along an environmental feature even if there is not enough information to generate an

accurate pose estimate.

Controller-Based \\&\V %
Motion Primitive ‘

ST Metric Motion
Primitive

Figure 6.1: Example of controller based motion primitive. From start state, s, we construct the
motion primitive lattice. Metric motions that result in states inside the denied region are considered
invalid, as the robot would become hopelessly lost if it entered this area. However, state A is a valid
state and is sufficiently close to the wall on the left to allow a controller-based motion primitive
(using a wall-following motion) to generate state B on the far side of the denied region. From B the
standard metric motion primitives can generate a path to the goal, .

A state lattice-based planner uses a regular lattice constructed from motion primitives
to form the search graph, G = (X, &) as shown in the lower half of Fig. 6.1. In a typical
planner, the edges, &, are formed by applying fixed motion primitives at each state, x € X.
These metric motion primitives carry the implicit assumption that the robot has sufficient
localization ability to be able to execute the motion and to determine the stopping point. In
some environments, however, there may exist regions where the robot is unable to execute
the typical motion primitives or they provide poor performance. For example, Fig. 6.1
depicts an environment with a large GPS-denied region between the start and the goal. If
the robot is relying purely on GPS data in order to navigate, then there is not a valid path to

the goal state as it would become hopelessly lost when attempting to transit the GPS-denied
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region. On the other hand, if, in addition to our normal suite of sensors, we had the ability
to follow a wall the robot could then use that ability to successfully cross the GPS-denied
region. Similarly, as shown in Fig. 6.2, while motion primitives are well suited for use in a
parking lot, on the roads it is more common and practical to use lane-following controllers.
By adding additional directed edges to the search graph based on forward simulating (either
online or offline) different types of controllers, the planner is capable of finding trajectories
through areas that were impassable using only metric-based motion primitives. These
controller-based motions rely solely on the capabilities of the controller independent of the
robots ability to localize. From the first example, the wall following controller does not
know where in the environment it is with any degree of precision at any point during its
trajectory along the wall, however, by executing this controller to its natural stopping point

(i.e., the end of the wall) the robot ends up in a known (and repeatable) position.

Controller-Based
Motion Primitive

MetI'IC MOtIOﬂ

1 o kz: Prlm|t|ve

an -\
S w e Car

Figure 6.2: The state lattice is sufficient to navigate in the parking lot area, however, once on the
roadway, the lane-following controller is used.

We present SLC operating on a single robot, to demonstrate a few basic controllers
as well as validate the theoretical properties of the framework. The SLC framework is
expanded in Chapter 7 to include a collaborative localization ability for an air-ground robot

team, allowing them to traverse portions of an environment they could not have individually.
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§6.1. NAVIGATION PLANNING BACKGROUND

6.1 Navigation Planning Background

There are a wide variety of approaches to navigation; two common methods are the use of a
planner to determine a trajectory through the environment coupled with a controller to subse-
quently guide the robot along the determined path, and controller only based approaches that
react to the environmental stimulus as they move. The controller-based approach to naviga-
tion can directly encode sensing capabilities, such as the wall following assumption found in
the simplistic, but effective, Bug2 and its related derivatives [Lumelsky and Stepanov, 1986],
and the “go to goal” sensing ability inherent in potential field approaches [Khatib, 1985] and
navigation functions [Connolly et al., 1990]. Navigation functions generate a gradient that
directs the robot away from obstacles and towards the goal. By carefully constructing this
gradient, local minima can be eliminated, ensuring convergence to a goal state. These how-
ever, are difficult to construct for arbitrary environments being traversed by arbitrary-shaped
robots [Masoud, 2009; Arkin, 1989] and typically do not perform any explicit path cost
minimization. For speed considerations these gradient approaches can be implemented as
hierarchical planners [Scherer et al., 2007] with both a local and global planning component.
However, since these methods do not evaluate the orientation of the robot while generating
the gradient field for the global planner they are restricted to using the circumscribed circle
of the vehicle as their footprint. This limitation means that environments requiring traversal
of narrow passages cannot be completed. In addition, having two separate planners of
different dimensionality can lead to inconsistencies between the two resulting in sub-optimal
trajectories or failing to find a solution when the two disagree [Zhang et al., 2012].

One alternative to the navigation functions and potential field approaches is the sequential
composition of controllers. By covering the valid states with a series of controllers that each
moves the robot along to the next controller, this approach can alleviate the need to find
a single globally attractive control law. Specific controllers are activated by a planner in
order to approximate an arbitrary navigation function [Burridge et al., 1999; Conner et al.,
2011; Kallem et al., 2011]. In one case, standard motion primitives were implemented
with controllers and used with A* to generate trajectories [Nagarajan, 2012]. While these
functions are easier to construct than a single navigation function covering the entire domain,
there is still some computational overhead. More importantly, they cannot react to arbitrary
perceptual triggers. In other words, they typically cannot come up with plans that say “follow

the wall, until a doorway is detected on the left”. By using the controller-based motion
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primitives in combination with perceptual triggers, we are able to construct these types of
strategies. It should be noted that the controllers developed in these other approaches can be
used within the SLC framework to provide additional controller-based motion primitives.

Hybrid approaches seek to overcome the limitations that pure behavior-based systems
exhibit. Sensor-based planning schemes using temporal logics to create an automaton
or finite-state machine are capable of integrating sensor functionality into the planning
scheme [Kress Gazit et al., 2007]. These planners also allow the robot to change its high-level
behavior based on sensor inputs. However, these systems do not use any cost-minimization
techniques to choose between controllers during the planning cycle. Instead they generate
fixed controllers and select between them at runtime, typically shifting controllers when a
higher level process detects a lack of progress towards the goal [Arkin and Balch, 1997], and
so do not incorporate the controllers into the planning process. Our SLC-based planner can
use the same library model and shares many of the same elements, but since we maintain an
A* based search, we can likewise retain guarantees on performance.

Partially observable Markov decision processes (POMDP) can be used for navigation
planning. However, these approaches are significantly more computationally expensive than
other approaches and do not scale well to large environments [Kurniawati et al., 2008]. One
improvement that is similar to our SLC work is the use of macro-actions in POMDPs [He
et al., 2010] or temporal abstraction in MDPs [Sutton et al., 1999]. Macro-actions, like our
controller-based motion primitives, seek to connect more distant states to the start state but
fundamentally are a concatenation of shorter existing motion primitives. On the other hand,
the controller-based motion primitives constitute wholly new motions directly dependent on
sensor feedback and basic controllers.

The second common method to navigation is the use of planners to determine the
trajectory through the environment then use a controller to attempt to follow it. A variety
of different planners can be used in this application from sampling-based planners such
as Probabilistic Road-maps (PRM) [Kavraki et al., 1996] and Rapidly-exploring Random
Trees (RRT) [Lavalle, 1998; Kuftner Jr. and LaValle, 2000; Sucan and Kavraki, 2012;
Karaman and Frazzoli, 2010] to heuristic search-based approaches such as A* [Hart et al.,
1968], ARA* [Likhachev et al., 2003], and Field D* [Ferguson and Stentz, 2005]. Of this
latter class, one approach is the use of lattice-based graphs. They are commonly used for
robotic path planning for aerial vehicles [Thakur et al., 2013], automobiles [Likhachev and
Ferguson, 2009], boats [Svec et al., 2013], all-terrain vehicles [Pivtoraiko and Kelly, 2005],
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etc.. These state lattices are constructed by applying a set of motion primitives to each state
expanded during the search in order to generate valid successor states. By doing this, they
generate edges in the search graph between the (possibly non-adjacent) discretized states
which serve as the graph nodes. Any of the graph search algorithms, such as A*, can act on
this lattice to generate a trajectory consisting of a sequence of motion primitives between the
start and goal state. The advantage of using a motion primitive vice simple 4- or 8-connected
grids is that the motion primitives can more accurately model the kinematic constraints of
the robot. For example, a car-like robot is unable to move directly sideways, but it can curve
to the left and right as well as travel forward and in reverse. In this case a small set of motion
primitives encoding those maneuvers is typically sufficient for planning motions in a plane.

As an alternative to pre-defined motion primitives, we use available controllers to gener-
ate navigation trajectories. A typical robot is usually equipped with a suite of controllers
that utilize on-board sensors, for example, common controllers include visual servoing
towards a landmark using a camera [Agin, 1979], direct-to-goal navigation using a GPS sen-
sor [O’Connor et al., 1995], and range maintaining actions using a radar [Choi and Hedrick,
1995]. Another example of planning integrated with control is the corner-localization
scheme proposed by [Lewis and O’Kane, 2013]. This approach uses only a minimal set
of poor accuracy sensors but can still provably reach a desired goal location under certain
conditions. Controllers such as these operate well in real-world conditions due in part to
their tight coupling of sensor information and actuation, specifically due to their ability to
utilize the strengths of a given sensor system. For example, visual servoing works well
in part due to the relatively large field-of-view and high angular accuracy of cameras. By
using the SLC planner we can incorporate these controllers and thus add additional motion
primitives into our planner augmenting the state lattice.

One approach that does use planning to choose between available controllers is [Mellinger
and Kumar, 2010]. Their planner chooses between two controllers with two speeds available
for each along the individual discretized path segments. By selecting the controller and
speed best suited to the terrain, the planner can trade execution speed for safety. However,
they require accurate localization information in order to execute the desired trajectory,
relying on a VICON or LIDAR-based system to determine track error.

For our SLC planner, we use the extended definition of state lattice supporting all
available controllers and search the resulting graph using the ARA* heuristic graph search

algorithm. This allows us to provide guarantees on completeness and (sub-)optimality while
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constructing trajectories not available using other planners. In addition, we are able to
use SLC to incorporate collaborative localization directly into our planner (the multi-robot
expansion to SLC is discussed in more detail in Chapter 7).

The SLC planner has been utilized in other non-navigation domains as well. In [Kim
and Likhachev, 2017], SLC is used to perform parts assembly with robot arms; using motion
primitives derived from physics-based simulations to develop trajectories in the presence of

uncertainty.

6.2 State Lattice Planning with Controller-based Motion

Primitives

6.2.1 Overview

A state lattice planner uses predefined motion primitives to generate, as required, a graph,
G = (X, &) spanning the environment. Motion primitives are short kinematically feasible
motions that are designed to connect one state with another nearby state and form the set of
edges, &, of the search graph. This graph is traversed by a graph search algorithm such as A*
or ARA* in order to find the minimal cost path from the start state x;,;, to the goal state X,q,
where Xj,it, Xg0a1 € X. During the planning cycle, the graph generation and planning process
are interleaved so that only those elements of the graph that are required for the search
algorithm are explicitly constructed. The SLC planner [Butzke et al., 2014] modifies this
construct by adding additional directed edges to G that correspond to executing a controller
c from a given set of controllers C, each terminated by a perceptual trigger, 7, from a set of
triggers 7, at a given start state. These new edges are formed by forward simulating the
desired controller and trigger from a given state, x;, in order to determine the end state, x;,
and thus forming a new edge, e(x;, x;), which is added to the set of edges in the search graph,
& =EJ"e,then G = (X, E).

6.2.2 Definitions

Definition 6.1 (Configuration Space (X)) An n-dimensional space X C R" such that a
robot is fully defined by a single point in X. If the robot and environment are in a feasible,
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collision free pose, x, then x € X fye., otherwise X € Xops. XfreeUXops = X and X preeN&Xops =
@ [Lozano-Perez, 1983].

Assumption 6.1 The initial state, Xiniy € X free, Of the robot is known without error.

Definition 6.2 (Action (a)) Comprised of a controller and trigger pair, a = {c,T), Cc €

C,t € T. Executing an action, a,, at a state x, results in the robot moving to one (possibly
identical ') of a set of states, ®(x;,a,) :~ X1 € P(X).

O(x,a;) : XXCXT - PX)
The © function can also provide the cost of executing the action.
O(x,a,) : XXCXT - P(X)XR

We assume the initial position of the robot is known without error, so uncertainty in
position only grows from errors in motion and sensing. Therefore, given a start state x, an
action {c, T) produces a distribution of endstates, 2, rather than a single state.

When the action function is provided a set vice a single start state, the output is the

union of the goal sets from the individual start states.

D(Z ,a) = U O(xj,a) Vxje &

Assumption 6.2 Actions are deterministic based on their start state.

Definition 6.3 (Domain (Z}(c, 1))) The set of points, 2, such that executing a given con-
trollerftrigger pair, {c, T), results in all of the goal sets of ®(x;,c,7),Vx; € X being located

within some ball, B, of radius r € R" (where n is the dimensionality of X) and center B,
20, 7): CXT x X XR" - P(X)

20, 1) =YX € Xpree | Yxj € D(x,¢,7), |lx; — B || <r

O(x;,c, ) UD(xj,c,T)U---UD(x,,¢,7) C B, & x;Ux;U---Ux, C Z(c,1)
For example, if the selected controller is of the type “Go to X”, and “X” is not currently in view of the

robot, the robot will remain in the same state it was in initially. During planning, the same thing occurs - when
the planner evaluates an action that has no meaning at the current state, the function returns the initial state.
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Definition 6.4 (Path (£)) A continuous set of points in X between configurations X,;; and
%oal’ Xinit € Xfreea %oal c Xfree-

‘f(-xinit’ %oal) : [O, T] - P(X)

such that & = Xjyi and & € Zgoa. A path is collision free if and only if & & Xops V1,0 <
t < T (or conversely & € Xypee V1,0 < t < T). A path can also be specified by the sequence
of actions taken to generate the path starting at x;,; for a path length €.

f(xinit’ %oal) : (C X T)[ - P(X)

From this &(Xinir, Zgoa) = {{C0, T0) »{C1,T1) > .-, {Ce, T}
Definition 6.5 (Cost (c(x, a) or ¢(Z, a))) A function that maps a state/action pair onto a

real number.

c(Z,a) :PX)yxCxT - R

Typically, a function of the distance moved by the action, energy consumed, time elapsed, or
some similar metric. For a set of states, the cost can be the average, maximum, minimum,

weighted by start state probability, etc..
Definition 6.6 (Policy (7)) A mapping specifying which action should be executed for a

given state.
n: X—>CXxXT

By following policy n, a path from the initial state is generated. The cost of a policy is the

accumulated cost of all of the actions taken between the initial state and the goal state.

goal

cm = )" c(xi,a))
i=init
Definition 6.7 (Optimal Policy (%)) A policy, ¥, such that there are no other lower cost
policies Vi, nm; € I1.

e(w) = min c(m)

T
rg;;lzo (i€ T) .1 X(0) = Xy DT, (1), 7(T)) € Lo
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6.2.3 Controllers and Triggers

In order to incorporate controllers and triggers into the planning process, we introduce two

new functions. The first function,
C(Z) :P(X) — PO

provides us with a set of available controllers, %', from the powerset of all controllers, P(C),
available at a state x € X where C is the set of all controllers available to the robot. In other
words, for any given state x, C(x) returns all of the controllers which can be executed at that
state. In the absence of motion and sensing errors, each controller would result in a single
end state given a start state. However, when accounting for the inherent errors in execution,
the result is a distribution of states as discussed in “Action” defined in Section 6.2.2. The
controller function will only return a controller c as a valid controller if it is valid for all

states within the input set, .2;,. In other words,

c,eC(X)ec;eClx) VxeX

The successors relationship only holds if the goal set of the prior controller/trigger pair

is a subset of the domain of the following controller/trigger pair.
(Cir Ti)x < (), 7))y &= P(x,¢;,T3) € D (c, 7))

Similar to the available controller function, the second function,
T):C - PT)

provides a set of available triggers, .7, based on the given controller, ¢ € C. 7 is the set
of all triggers available to the robot, such as the ability to detect doors, intersections, etc..
Controller-based motions need to have a stopping condition as they are not necessarily
fixed length or duration. To this end we introduce the notion of a perceptual trigger. A
controller-trigger pair {c, T) represents the execution of a controller ¢ € C until either a
perceptual trigger T € 7 or an intrinsic trigger (explained below) is detected. Different

controllers may have different triggers. For example, a controller for FoLLowLEFTWALL
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may have a trigger OPENINGONLEFT, whereas that trigger may not be valid for a controller

performing VisuALSERVOTOLANDMARK.”

We classify triggers into two categories: intrinsic or extrinsic. Intrinsic triggers result
from the natural completion of a controller. Intrinsic triggers are not selectable - they are
always in effect. When following a wall, the robot must stop when the wall stops - there
is no option to continue following a now non-existent wall. To account for these types
of intrinsic triggers algorithmically, we do not individually include them in 7 and thus
they are never returned as an element from the function T(c). Instead, a single universal
trigger, COMPLETION, is used to signify execution of a controller until its natural conclusion.’
Compared to intrinsic triggers, extrinsic triggers are not directly related to the current
controller, but instead result from some independent perceptual signal. When following a
wall for example, an extrinsic trigger could be sighting a door on the left or an opening on
the right.

6.2.4 Formal Problem Description
Shortest Path Problem

Given a robot R, operating in a configuration space X, equipped with a set of con-
trollers C, and triggers 7, we want to determine the optimal policy from x;,; t0 Zgou
(Xinit € Xfrees Z C Xpree), if One exists or indicate no valid path if one does not (i.e., the
completeness property). We assume the initial position of the robot is known without error,

so uncertainty in position only grows from errors in motion and sensing.

Algorithm 4 outlines the general approach to solving this problem. Starting from the
initial state (line 1), all possible controllers and triggers are evaluated (lines 8-12) and added
to the queue (line 13). The queue is sorted such that the lowest cost element is always the
one removed for evaluation (line 3, line 7, and line 16). When a subset of the goal set is
retrieved from the queue (line 4) the full path is reconstructed (line 20). If no path is found

before all possible points have been evaluated than NULL is returned (line 2 and line 22).

2We use relatively simple controllers in order to more clearly demonstrate the method of constructing the
search graph. As such, the controllers and triggers listed are only a small subset of controllers and triggers that
one can construct. For example, a wide collection of behavior based controllers are described in [Arkin, 1998].
3Some controllers have more than one intrinsic trigger.
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Algorithm 4 path = FindPath(x;,;;, 2 z0a1)

1: vector(set,real) ENDPOINTS = (x;,;;, 0)
2: while ENDPOINTS # @ do
3:  (CurrentSET, cost)y = ENDPOINTS.pop //get least cost element

4:  if CURRENTSET C 2,4 then

5: break

6: else

7: ENDPOINTS = ENDPOINTS \ {{CuURRENTSET, cost)}

8: % = C(CURRENTSET)

9: for all c in % do

10: T =T(c)

11: for all 7 in .7 do

12: (X, cost,) = O(CURRENTSET, ¢, T)

13: ENDPOINTS = ENDPOINTS U {{Z, cost, + cost)}
14: end for

15: end for

16: SorT(ENDPOINTS) //sort on increasing cost
17:  end if

18: end while

19: if CURRENTSET C 2, then

20:  return REecoNsSTRUCTPATH(X;,;, CURRENTSET)
21: else

22:  return NULL

23: end if

Relaxation of the Problem

In order to generate feasible solutions in a reasonably short time for a real-world

environment we make a few relaxations of the base problem.

Our first relaxation is to loosen the requirement for completeness. In the general problem,
we want to find a path if any such path exists. To keep planning times tractable, we instead
opt for resolution completeness. Resolution completeness is the property of finding a path
on a discretized version of the environment if such a path exists rather than on the underlying
continuous space. By controlling the discretization size, we can trade improved planning

times for increased environmental fidelity.

This relaxation changes our definitions from integrals over continuous-valued fields

to discrete summations. A path, &(Xiit, Xgoa) : [0, 7] — X is no longer defined on the
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Algorithm 5 path = DiscreteFindPath(x;;, 2 0a1)

1: vector(set, real) CLOSED = @

2: vector(set, real) OPEN = ([x;,;], 0)

3: while OPEN # @ do

4:  (CuUrrenTSET, cost) = OPEN.pop //get least cost element

5:  if CURRENTSET C 2, then
6: break
7.  else
8: OPEN = OPEN \ {(CURRENTSET, cost)}
9: CLOSED = CLOSED U {{(CURRENTSET, cost)}
10: % = C(CURRENTSET)
11: for all ¢ in ¥ do
12: T =T(c)
13: for all 7 in .7 do
14: (Z, cost,) = O(CURRENTSET, ¢, T)
15: if [27] ¢ CLOSED then
16: OPEN = OPEN U ([Z"], cost, + cost)
17: end if
18: end for
19: end for
20: SorT(OPEN) //sort on increasing cost
21:  end if

22: end while

23: if CURRENTSET C 2,4, then

24:  return ReconsTRUCTPATH([X;,;;], CURRENTSET)
25: else

26: return NULL

27: end if
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interval [0, T'] but instead only over a discrete sequence of cells, {xo, x;,...,X,}. In turn,
E((Xinit> Xgoar) = {ao, a1, . .., a,} remains valid given that the actions result in a discrete cell
(or set of cells). Executing action {c, T) results in a discretized x vice continuous-valued x.
This last fact can be used to dramatically reduce computation requirements. An example
implementation is shown in Algorithm 5.

By keeping track of the finite number of discretized states that have been evaluated (line 1
and line 9), if we receive an already evaluated endpoint (from line 14) it can be discarded if
it has a higher cost, otherwise it is added to the queue (lines 15-17). By selecting from the
OPEN queue in an intelligent manner, we can also guarantee that when a discretized state is
evaluated, there will not be a lower cost path to that state in the future.* All states added
to the OPEN list are discretized first (line 2 and line 16, where [-] indicates the discretized
value) and the list is maintained sorted based on increasing cost (line 20).

We make one additional assumption when adopting this relaxation:

Assumption 6.3 A discretized state, [x], is only considered to be in the domain of a con-
trollerjtrigger, Z%(c, 1), if the entire neighborhood of continuous-valued states, x, assigned

to that discretized state are in the domain.
[x] € Zi(c, T) &= x€ D (c, T) Vxel[x]

By using this conservative approximation for inclusion in a domain we can guarantee if a
controller results in an endpoint within a particular discretized state, we only need to track
that discretized state to determine allowable follow-on controllers.

When determining the discretization size, it is helpful if the goal sets of the controllers
are approximately the same size as the cells. Since the algorithm tracks which sets have
been visited, keeping the set size low minimizes space requirements for the CLOSED list,
and minimizes the number of elements analyzed from the OPEN list.

A second relaxation is applied to how uncertainty in motion and sensing are handled. One
option is to ignore these uncertainties, assume deterministic motion and sensing, and only
track the most-likely cell (Assumption 6.4). In this case, we make the explicit assumption
that any error in motion or sensing is tightly bounded such that the end point of executing
a motion is always within the domain of the following controller, without requiring any

additional checks (i.e., @(:, -, -) evaluates to a single cell). While this approach works in

4Algorithms such as A* operate in this manner to provide provably optimal paths.
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practice with many controllers, it is straightforward to imagine situations where a bifurcation
may occur in the environment such that small errors in either motion or sensing can result in

significantly different paths taken.

Assumption 6.4 The controllers, triggers, and/or the environment do not cause multi-modal
goal-sets when executing actions. Therefore, the planner can plan for the most-likely position
and the small errors in motion and sensing will remain within the domain of attraction for

any follow-on controller.
or

Assumption 6.5 The controllers, triggers, andfor the environment may cause multi-modal
goal-sets when executing actions. Therefore, the planner must explicitly evaluate whether
the resulting positions from executing an action are members of the follow-on controllers

domain before determining if that follow-on controller is a viable successor.

A second option is to assume that executing a controller/trigger pair results in a relatively
small grouping of end states a high percentage of the time (Assumption 6.5). For those
actions that are multi-modal at a frequency higher than a user-defined value, the actions are
disallowed. More formally, for an action a comprised of controller ¢ and trigger 7, and an
initial position xo, if xo € Z}(c, T), then x,, is a valid transition if and only if x,, is within
the goal-set, ®(xy, ¢, 7) C X, When 7 is observed with probability p > puyresh. Pinresh
should be set high enough such that the overall probability of success of a trajectory remains
satisfactory (e.g., if each action is successful with p = 0.998, then the overall probability of
successfully completing 50 consecutive actions is > 90%).

We can also replace line 14,
(Z, cost,) = O(CURRENTSET, ¢, T)

with
(X, costy) = a(CURRENTSET, ¢, T)

where the function @ provides an estimate of the goal set for the current action being
evaluated. This information could be an offline pre-calculated goal set, or generated by
running multiple trials using empirically derived or model-based noise in the execution of
motions and sensing. Assuming those noise values adequately portray real-world noise, the

planner will converge to the true probability of completion of a controller given sufficient
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Algorithm 6 path = SLCFindPath(xi;, Z0a1)

1:

vector(set, real) CLOSED = @

2: vector(set, real) OPEN = ([x;,;], 0)
3: while OPEN # @ do

4.

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

R N

(CurreNTSET, cost) = OPEN.pop //get least cost element
if CURRENTSET C 2, then
break
else
OPEN = OPEN \ {(CURRENTSET, cost)}
CLOSED = CLOSED U {{(CURRENTSET, cost)}
% = C(CURRENTSET)
for all ¢ in ¥ do
T =T(c)
for all 7in .7 do_
(Z, cost,) = O(CURRENTSET, ¢, T)
if [[27] 2 Z;, ¥VZ; € CLOSED then
OPEN = OPEN U ([Z"], cost, + cost)
end if
end for
end for
SorT(OPEN) //sort on increasing cost
end if
end while
if CURRENTSET C 2, then
return REcoNSTRUCTPATH([ x;,;;], CURRENTSET)
else
return NULL
end if
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samples.

Another modification would occur with line 15 changing from
if [Z"] ¢ CLOSED then

to
if[Z2]2 Z:, YZ; € CLOSED then

Since the successor relationship must hold for all elements of the evaluated set, we can
exclude any set that is a superset or equal to a previously evaluated set since the earlier

evaluated set would have a lower cost.

While this option results in higher computational loads than the purely deterministic
variant, it still allows for evaluation of the robustness of a path in the presence of typical
errors in motion and sensing. In addition, running multiple trials in an online fashion remains
computationally tractable compared to tracking the entire belief state across all possible

configurations.

One limitation of this approach is the requirement that the goal-set from one con-
troller/trigger must be small enough in size to fit entirely into the domain of a follow-on
controller. Because of this, selecting controllers requires more effort from the user than
selecting simple metric motion primitives to guarantee acceptable performance. A badly
constructed controller will never be able to position the robot consistently enough to allow
the planner to select a suitable follow-on controller. See [Nagarajan, 2012] for a more

detailed discussion on chaining controllers.

A possible addition to alleviate this would be to construct plans without this requirement
but with the capability of determining which branch was taken at a later point. For example,
if a GoToGoaL control was executed and the resulting goal state was not in the domain of a
single FoLLowWALL controller but rather in two different FoLLowWAaLL controllers, a policy
could be constructed that used subsequent sensor inputs to differentiate which of the two
controller domains the robot was actually in. This approach would require significantly
more processing particularly as the environment had more bifurcations like this. Whether
this planner could be implemented and provide solutions within reasonable time constraints

remains for future work.
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6.2.5 Controller-Based Motion Primitives

With this description of the elements of the SLC planner, we can now modify how the state

lattice is being constructed. The problem is formally a 6-tuple,
G ={X,C.T,C(), T(), (-, -, )}

used to produce the graph, G. Typically, when constructing a graph, there needs to be a
function that returns all of the successors of any state x together with the corresponding
edge costs. Let us call this function Successors(x), shown in Algorithm 7. This function
incorporates lines 10-14 of Algorithm 6 into a separate function. During planning, a planner
repeatedly calls this function to construct whatever portion of the graph it needs. Typically,
the planner only calls this function for states that it expands. In this way, the full lattice is
never explicitly constructed beforehand, but rather each edge and node is constructed as

needed during the planning instance.

Algorithm 7 succs = Successors(set 2;,)

1: vector(set, cost) succs = @
2. € = C(Zin)

3: for all ¢ in € do

4 T =T(c)

5. foralltin 7 do
6 <%ucc’ costy) = CD(,%", c, T)

7 succs = succs U {[ Zueel, costy)
8 end for

9: end for

10: return succs

Besides the Successors(x) function (Algorithm 7), the test for the goal state (Algo-
rithm 6:line 5), and the test for elements in the CLOSED queue (Algorithm 6:line 15), the
remainder of the planning process remains identical to the typical search-based planning
algorithm implementation such as in [Likhachev, 2012] or as described above in Algorithm 1
(Section 3.2).

To see an example of a lattice incorporating controller-based motion primitives, con-
sider the environment shown in Fig. 6.3a. Suppose we are given a set of controllers C =

{FoLLowLEFTWALL, FoLLowRIGHTWALL} with an intrinsic trigger of COMPLETION correspond-
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(a) (b)

Figure 6.3: (a) Environment and (b) segment of graph G based on the SLC with
C = {FoLLowLerrWaLL(fL), FoLLowRIGHTWALL(fR)} and triggers 7 = {CompLETION(End),
OPENINGLEFT(0L), OPENINGRIGHT(0OR)}.

ing to the end of the wall, and a set of extrinsic triggers 7~ = {OPENINGLEFT, OPENINGRIGHT}.
Consider a state S, indicated by the square in the lower right corner and suppose both
controllers are available at S. From state S there is an edge to A corresponding to the
controller FoLLowLErFTWAaALL, fL, and trigger CoMPLETION, End, as shown in the portion of
G shown in Fig. 6.3b. Likewise, with controller FoLLowRIGHTWALL, fR, and trigger End,
the edge goes from S to D. However, if the trigger were OPENINGLEFT, oL, then the edge
would have been from S to C. Note, unlike the typical implementation of A*, it is possible
for multiple controller/trigger combinations to connect two nodes. For example, B — C is
formed by the (fL, End) pair in the graph, however B — C is also connected by the pair
(fR, oL) (which is not depicted). Also note that the relative costs of these controllers may
vary independently across the environment so that from some states following a wall may
be easier (and thus cheaper) than going to a landmark, while in other states it may be the

opposite.

6.2.6 Cost Function

As with any graph search-based planning, the edges in graph G need to have costs associated
with them. These costs can represent an arbitrary cost function that includes such factors

as distance, risk, closeness to obstacles and other factors. For controller-based motion
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primitives the cost can also incorporate the reliability of different controllers and the risk of
relying on the detection of perceptual triggers.

Since the State Lattice Planning with Controller-based Motion Primitivesis capable of
working with non-metric maps or with mixed metric and non-metric motion primitives, extra
care needs to be taken when developing the cost function. For example, when operating
with a WaLLFoLLow controller and a conventional metric controller, the cost function must
approximate the distance the robot will travel while performing the WaLLFoLLow lest the
controller under-represent the true cost for long walls or over-represent the cost for short
walls. This becomes more difficult for situations where there is no metric map. In these
cases, it would be easy to under-represent the cost to follow a long wall compared to taking
another action, if the cost function was meant to purely represent time or distance. The
appropriate choice of cost function in these cases would be a cost based on the reliability or
robustness of the different actions. With no metric information to base a plan on, the planner

would instead produce the most robust path through a space.

6.2.7 Output of the SLC Planner

When a planner runs on a state lattice, the typical output is an ordered list of poses for the
path-follower to execute. With the introduction of controller-based motion primitives the
output of the planner becomes an ordered list of controllers together with the associated

triggers.

6.2.8 Theoretical Properties

We evaluate the planner on feasibility, completeness, and optimality looking at both a
fully deterministic planner without any errors in motion nor sensing, as well as a planner
following Assumption 6.5 with small errors. In addition, where applicable, we compare the

relaxation of using a discretized space with the underlying continuous state space.

Feasibility

The feasibility of trajectories produced by the planner reflects the ability of the robot to
follow the generated paths successfully. We look at both feasibility in the absence of motion

and sensing errors, and with typical errors found in real-world environments.
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Theorem 6.1 If a sequence & of controllers terminated by triggers is returned by the
discretized or continuous planner, it is feasible for the robot to execute in the absence of any

MOtion Or Sensing errors.

By construction each individual action along a path is feasible for the robot to execute
from the start state of that action.
The succession of individual actions is also feasible by construction. If we look at a path

& and two sequential elements &; = (c;, ;) and §; = <c j 'r.,-> on that path, we have:
O(xi, &) C D, () & ¢, € CNT; €T

% = C(x;)
T = T(CJ)

for some user-specified radius, r.’

The available controllers and triggers determined by the C(x) and T(c) functions (from
line 10 and line 12, respectively, of Algorithm 6), take into account the domain and goal set
of the applicable controllers. Therefore, we can guarantee that the transition between two

controllers is feasible by construction.

Theorem 6.2 If a sequence & of controllers terminated by triggers is returned by the
discretized planner, it is feasible for the robot to execute with probability at least p(€) in the

presence of motion and sensing errors.

By construction, the successor actions <c.,-, T j> are feasible if the predecessor action
resulted in the robot ending up in the goal-set, ®(x, c;, 7;) C .@yr (cj, 7;). By definition, the
robot will end up in that goal-set with probability p;. If the robot is in the goal-set, the suc-
cessor is guaranteed to be feasible. If the robot is not in the goal-set, there may be a non-zero
probability of it remaining in the domain depending on domain configuration and controller
failure mode. This results in an lower bound on feasibility of an individual transition of
p:- Overall, the probability of feasibility of the entire trajectory can be determined by the

product of the transition probabilities:

p® 2 [ | p(@. &) € 75, €.)
i
SThe radius is user-specified, but the controller must be constructed to meet the specification.
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Completeness

Completeness is the ability of a planner to discover a path through an environment if
such a path exists. We evaluate completeness of the discretized planner with respect to the
underlying continuous space, as well as the discretized planner with respect to the discretized
space. For the latter, we look at both deterministic as well as stochastic environments (with

noise in the execution of actions and sensing of the environment).

Theorem 6.3 Even if there exists at least one sequence, &, of controllers terminated by trig-
gers that move the robot from its starting position to the goal in the continuous environment,

the discretized planner may not return a valid solution.

If the discretized state is not fully in the domain of a required controller along the viable
path, then the C(s) and T(s) functions (from line 2 and line 4 of Algorithm 7, will not return
the required controller and trigger pair for evaluation, even if the majority of the discretized

state is in the domain by Assumption 6.3 (Fig. 6.4).

o>

i—1Ti—1

N

k L/ g;(éifi)

Figure 6.4: Example of a path that is valid in the continuous space, but is not in the discretized
space. At the cell coordinates, marked by the “+”, the C(x) and T(c) functions do not return (¢;, 7;)
since it is outside their domain shown in light gray (i.e., the dotted path from action (c;, 7;) is not
a viable successor). However, in the continuous domain, (;, 7;) is available at the end state, x;, of
the preceding action, annotated with the “x” since the ball, Bt is fully contained in the domain
Di(Ci, 1i). The goal set, d(x;_1, €;—1, Ti—1) is shown in dark gray.
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Theorem 6.4 If there exists at least one sequence, &, of controllers terminated by triggers
that move the robot from its starting position to the goal in a discretized environment without

uncertainty, then the SLC planner will return a valid solution.

Assume £ 1s a sequence of controllers terminated by triggers that moves the robot from
start to the goal and that (c;, 7;) is the controller/trigger pair closest to the start of & that is
not evaluated by the planner. Thus, the preceding action in &, {c,_1, 7;_1) is evaluated by the
planner and results in an end state of x;.

From state x;, one of the following must be true:

1. x; ¢ Z%(c;, 1;) If x; is not in the domain of (c;, 7;), then {c;, 7;) is not a viable successor

of (¢,_1,Ti_1), contradicting the assumption that & was a viable path.

2. x; € D(c;, ;) If {c;, T;) were viable successors, they would have been added to the
OPEN list by Algorithm 6:line 16 or would have already been evaluated and would be
in the CLOSED list by line 15.

¢ If x; € OPEN, then before the algorithm finishes, the state will be expanded and
¢; and 7; will be evaluated by line 3 unless a lower or equal cost path is found

first in line 7.
¢ If x; € CLOSED, then state x; has already been expanded by lines 8-9.

In either case, state x; will be expanded and c¢; and 7; will be evaluated or a lower cost

path will be found prior to the algorithm completing without a path contrary to our
assumption that this action was not evaluated.

Thus, by contradiction, if there is a valid sequence of controllers terminated by triggers

in the discretized environment then the planner must return it or another sequence of equal

or lower cost.

Theorem 6.5 If a path ¢ consisting of controllers terminated by triggers exists in the
discretized state space with a probability of successfully transitioning from action &; to
&j (e, O(x;, &) € Zy(cj, 1)) of pi then the planner will return a path with probability
p = [l:p:

While we do not evaluate across a full belief state, we can track the probabilities
of successfully entering a goal-set by modeling motion and sensor noise. Under these
conditions, the planner trajectories are always feasible, but it becomes complete only

probabilistically in the number of trails evaluated if the goal-sets are generated by sampling.
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This forms a lower bound on the probability of generating a complete path, since while the
controller may fail to reach the goal-set a percentage of the time, it is possible that it may

still end up in the domain of the follow-on controller.

Optimality

The SLC is just a graph. Therefore, by running an optimal search such as A* on it we can

guarantee optimality with respect to the discretization and given controllers:

Theorem 6.6 If there exists a sequence of controllers c; € C terminated by triggers T, € T
that move the robot from its starting position to the goal in the discretized environment
without uncertainty, then the planner will return a solution and it will be an optimal sequence

of controllers/triggers with respect to the cost function used.

Since the algorithm is not complete when compared to the continuous version, there
are no absolute optimality bounds. However, in environments with sufficiently small
discretization, the discretized optimality bound is very close to the continuous optimality
bound [Kim and Hespanha, 2003].

6.3 Vision-Based Micro Aerial Vehicle (MAV) Navigation

Example

To demonstrate the SLC planner and develop controllers to use when the MAV is operating
independently, we performed a series of flight tests using a low-cost AR.Drone 2.0 by
Parrot. This quadcopter comes with 2 cameras, one forward and one downward looking, an
ultrasonic and barometric altitude capability, a compass, on-board WiFi for interfacing and
an ARM A8 micro-controller to perform low level controls. An off-board laptop running
ROS-Fuerte performed the planning and control calculations as well as acting as the user
interface to the robot. We added a 4.5 mW laser line projector to provide depth information

using the forward looking camera (Fig. 6.5).

6.3.1 Controllers and Triggers for Single Robot SL.C Planning

The MAV was equipped with a laser line generator and a camera as its sole means of

gathering information about its surroundings. The laser line allowed the AR.Drone to calcu-
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(a) (b)

Figure 6.5: The AR-Drone 2.0 with a laser line generator attached above its camera (a) and during
flight (b).

late the distance to nearby objects within the field of view of the camera via triangulation
(Fig. 6.6). Due to the drop-off in horizontal brightness associated with using a cylindrical
lens, the distance information was only reliable over the central two-thirds of the image, or
approximately 30° — 40°. Once calibrated, it proved fairly accurate and very consistent out
to 1.5 m. In addition to processing the laser line from camera images, the vision pipeline was
also trained to identify door jambs in the environment. Using color filters, and geometric
reasoning, the door detection algorithm was able to provide the controller with the angular

position, height, and width of any door jambs located in the image (see Fig. 6.7).

Figure 6.6: Example of Laser Line. Range in millimeters to wall with pillar on right hand side.
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(a) Heatmap - lighter areas are (b) After thresholding and (c) Red star indicates
more likely door jambs based blurring. Highlighted ares are jambs based on geometric
on color. potential door jambs. constraints.

Figure 6.7: Door jamb detector in cluttered environment.

The platform was incapable of prolonged metric path following due to its highly im-

precise localization system. As a result, translational metric motion primitives had to be

disabled. Instead, using the laser line and the forward camera, we implemented both a

FoLLowTHEWALL[LEFT|RIGHT] controller and a GoToLLANDMARK visual servo controller in

addition to metric turn-in-place motion primitives. The only extrinsic trigger we used was

DoorDEeTECTED Which would halt execution of a controller when a new door was discovered

in the camera image.

These four controllers worked for all tested door goal locations in our facility and their

implementation details are presented here:

FoLLow THEWALL[LEFT|RIGHT]

GoToLaNDMARK(/)

Follow the wall in the [Left|Right] direction (the robot
attempted to remain pointed at the wall), see Fig. 6.8.
Our implementation uses the laser line projector to op-
tically determine the distance to the wall and to detect
when there is an opening or door. The controller simply
attempted to keep both ends of the calculated laser line
distances the same, yawing as necessary to correct er-
rors. The MAV kept a constant velocity in the direction
of travel (to the left or right). The intrinsic trigger is
activated when the sensor detects the end of the wall
due to either a sharp increase in the range or loss of the

laser from the image.

For this controller we implemented a detector to pick
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Figure 6.8: Example of a FoLLow THEWALLLEFT controller. The robot is coming from a start off the
left side and proceeding to the right, facing the wall as it travels. The thick segment where it is
executing the FoLLow THEWALLLEFT controller. It stops when the wall ends due to the intrinsic trigger.

METRICTURN[CW|CCW]

out the door jambs from each image. If there was a
visible and in-range door jamb /, the MAV would then
move in a straight line towards the jamb, turning as
appropriate along the way, see Fig. 6.9. In the event
multiple jambs were identified, the system would use the
range and angle to consistently proceed to the correct
one. This controller has an intrinsic trigger when it
reaches the landmark - in practice it stops just prior to
the door jamb due to the anti-collision intrinsic trigger
that is always present. It will additionally trigger if the
landmark becomes occluded or lost enroute, however,
in practice this was rare. We use door frames as our
landmarks since they are visible both with the door open
and shut, can be seen from either side, and are important

for determining locations to transition between rooms.®

Performs a turn-in-place of 30° in either the clockwise or
counter-clockwise direction. The robot uses the IMU for
the intrinsic trigger when within 3° of the desired head-
ing. Since the doors were indistinguishable from each
other, the planner used this controller to re-orient itself

to point at the next desired landmark/door when tran-

®As a convenient side effect, they were also how people gave oral directions on the floor.
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Figure 6.9: Example of the planner executing a generic GoToLANDMARK controller (used for any
fiducial marker based landmark, not necessarily a door in this example). The start is off to the left and
the goal to the bottom-right. The thick line goes directly to the landmark at the far right, terminating
when reaching the landmark.

sitioning between wall following and landmark based
navigation. This effectively allowed the controller to
reliably transition to any adjacent door on the wall in
front of it, or, by executing four turns (£120°), a door

to the right or left on the opposite wall.

6.3.2 Single Robot Flight Test

In our experiments, we had the AR.Drone fly in a typical indoor environment consisting
of a hallway with multiple doors along it. The MAV navigates from one area of the indoor
environment to a specific door at the far end without running SLAM or generating any form
of metric map. Fig. 6.10 shows an example of the plan encoding the sequence of controllers
terminated by the perceptual triggers, namely the detected doors.

The cost function used for these experiments was distance traveled plus a value pro-
portional to the time to perform each maneuver. By making the cost proportional to time,
turn-in-place motions that do not have any translational component still had a positive cost.

There were 20 flights conducted which consisted of a series of GOTOLANDMARK 0,
controller phases intermixed with long FoLLow THEWALL[LEFT|R1GHT] controller execution
phases, each terminated by the door detection trigger. Between these two types were an
appropriate number of METRICTURN[CW|CCW] to align the MAV.

This experiment demonstrates the ability to use the SLC-based planner in situations
where conventional planning is not feasible. Since the test MAV does not have the localiza-
tion capability to translate reliably, typical search or sampling-based planners would not be

able to construct a feasible trajectory. Pure controller-based approaches would be able to
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Figure 6.10: Floor plan of map traversed with start and goal positions and a portion of the search graph.
Green lines are GOToLANDMARK 4,,,, Magenta circles are METRICTURN, Blue lines are FoLLow THEWALL
controllers with an extrinsic trigger of DoorRDETECTED, while the Red lines are the same controllers
with only the intrinsic completion trigger. The final path from the planner was GoToLANDMARK 4,0
— FoLLow THEWALLRIGHT — METRICTURNCW (X4) — GoT0LANDMARK ;o — FOLLOWTHEWALLLEFT
until DoorRDETECTED (X3) — at goal (yellow highlight).

use the same controllers that were used here, but would not be able to shift based on the
perceptual triggers received to terminate the execution of a controller prior to reaching its
goal-set. It also demonstrates the practical ability to navigate using a relatively simple set of
controllers and triggers [Kerr, 2012].

6.4 Implementations of SLC

The SLC framework was used to find trajectories for a simulated K-Max helicopter navigat-
ing through a GPS-denied area. The simulation used the full vehicle dynamics to enforce

constraints such as minimum turning radius, airspeed, etc.. The controllers available were:

® 13 metric motions - turn and straight combined with changes in altitude up and down.

® GotoLAKE - similar to a GoroLaNDMARK type controller, if a lake was identified in the

visual range of the helicopter, it could proceed directly towards it.

¢ ForLowRoaD - when close to on top of a road, the helicopter could follow the road in
either direction.
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A

Figure 6.11: An example route showing GoroL.AkE, METRICMoTION, and ForLowRoaD controllers
while operating in GPS-denied environment.

Coupled with these controllers, the helicopter had triggers for SEENEwLAKE and CompLE-
TIoN. The CompLETION trigger when following a road was triggered at each intersection.

The overall environment was 10 km X 6 km and consisted of forests, cleared areas, and
numerous roads. An example path is shown in Fig. 6.11.

The elements of the SLC framework have been implemented in two additional domains.
The first is the Mitsubishi Humanoid Project entry from Carnegie Mellon University. The
planner for this entry was developed by Andrew Dornbush and Karthik Vijayakumar [Dorn-
bush et al., 2017]. The project goal was to maneuver a 4-legged humanoid robot through
a complex 3-D environment to accomplish several tasks. The environment included low
areas that would force the robot to crawl on all four limbs, ladders and stairs the robot had
to climb, and other terrain. The planner used BirEpaL, QUADRAPEDAL, CRAWL, and CLIMB
controllers and only a distance and the intrinsic triggers.

Some of the controllers actions were pre-computed and stored, much like a typical
metric motion primitive. Others were calculated during execution, for example, a inverse
kinematic solver was used to transition between controllers at runtime. An example trajectory
generated by the algorithm is shown in Fig. 6.12 showing a series of BipEDAL, DISTANCE
controller/trigger pairs moving to the base of a ladder, followed by a CrLiMB, COMPLETION
controller ascending the ladder.

The second implementation is in the landmark-based routing realm. This work was
performed by Kalyan Vasudev Alwala, Margarita Safonova, and Maxim Likhachev [Alwala

et al., 2017]. The goal of this work was to develop an efficient way of determining plans
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Figure 6.12: Planner expanding states using the BipEbaL controller followed by the Crims controller
to direct the robot up the ladder on left.

given the possibility of missing the sighting of a landmark. The navigation system consists
of selecting straight, or one of the available left or right hand turns at a series of road
intersections with a preference to select “Straight” unless the robot has just sensed a

landmark.

This implementation allows plans of the form “Go straight until you see the library then
turn left at the next intersection; if you miss the library turn left when you see the post
office...”. This extension accounts for the possibility of missing a landmark and the actions

to take based on that occurrence. An example route and policy is shown in Fig. 6.13.
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Figure 6.13: (a) Policy and (b) instructions for landmark based routing with safety nets.

6.5 Experimental Analysis of Runtime and Quality of Sin-
gle Robot SLC

6.5.1 Simulation Setup

While the first experiment showed that the SLC-based planner could successfully generate
executable plans in domains where conventional planning could not, this series of tests
was performed to demonstrate that for those domains where conventional methods do work
SLC-based planning was also competitive in terms of planning time and path length. All
tests were performed on an 2.6 GHz i7 processor with 8 GB RAM running ROS-Electric on
64-bit Kubuntu 11.04. The three planners we compared ours against were the lattice-based
weighted-A* search from the SBPL package [Likhachev, 2012], and RRT-Connect and
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RRT* from the OMPL package [Sucan et al., 2012]. We ran the four planners on seven maps;
four indoor and three outdoor. The indoor maps, shown in Fig. 6.14, were generated from
building floor-plans,” converted laser scan data’, and a custom drawn map. The outdoor
maps, shown in Fig. 6.15 were a park’, a set of buildings in a city, and a randomly generated
map. None of the maps contained any regions that disallowed metric motions in order to
not provide any advantage solely to the SLC. On each map, each planner was tasked with
finding solutions between 100 randomly selected pairs of points (each planner was given
the same set of (start, goal) pairs). The planners planned in R® = {x,y,¢}. In addition,
each planner was given approximately 10 seconds of total processing time, including any
post-generation smoothing (smoothing was performed on all trajectories generated by the
RRT*, and RRT-Connect planners). Each pair of points was planned from scratch with the
planner being restarted each time. While several planners can efficiently reuse data between
plans, we only compared initial planning times since we did not allow for mid-execution
replanning and we were interested in measuring the time before the robot could initially
begin to execute a plan. For the SLC-based planning we used weighted-A* to search the
graph constructed from the SLC. For the weighted-A* search running on both the normal
lattice and the SLC the heuristic inflation (€) weighting was fixed at 2.0. The heuristic was
computed as the 2-D distance to the goal while accounting for obstacles. It was computed
by running a single Dijkstra’s search backwards from the goal, which was included in the
planning times. The cost function used for these experiments was proportional to the time

and distance traversed for each motion.

6.5.2 Controller-based Motion Primitives

For these experiments, in addition to WaLLFoLLowiNG and generic GoToLLANDMARK con-
trollers described in Section 6.3.1, we have also introduced a larger set of metric motion
primitives and a GoToGoaL controller, as well as a new perceptual trigger based on the

distance traveled. The controller details are presented here:

ExecuteMortioNPrRIMITIVE(m) m € {forward, turnLeft, turnRight, reverse, reverseRight,
reverseLe ft}: Execute a motion primitive m, from a set con-

taining: a left and right arcing motion and a straight motion,

fSome of the maps were obtained from the Robotics Data Set Repository (Radish) [Howard and Roy,
2003]. Thanks go to Ashley Tews, Richard Vaughan, and Dieter Fox for providing this data.
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Figure 6.14: Indoor Maps

all in both forward and reverse direction, and a turn-in-place
motion. This controller has an intrinsic trigger terminating
control when the robot reaches the end of the motion primitive.
Use of this controller requires that the robot have sufficient
localization capability to follow the motion primitive and

therefore should be penalized if localization is imperfect.

GoToGoaL(g) g =goal coordinates. It incorporates the obstacle-avoidance
and goal-seeking controllers to navigate towards the goal g
while avoiding obstacles. The goal acts as an attractive force

while obstacles supply a repulsive force for a limited range
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Figure 6.15: Outdoor Maps

similar to a modified potential fields approach. The force
vectors are weighted and summed up to obtain a net vector
for movement, Fig. 6.17. This controller is available for a
GPS-equipped robot trying to reach a goal at a known GPS
coordinate while using local sensors to remain clear of ob-
stacles. This controller is terminated if the net motion vector
is less than a given magnitude (at or near a local minima)
or is directed away from the goal (too close to an obstacle).
The GoToGoaL controller was only used on the outdoor maps

since it was implemented as an example of a GPS capable
Sensor.
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Figure 6.16: An example of the ExecuteEMotioNPrRIMITIVE controller moving down to the left. The
thick sections in the center do not have an adequate wall or landmark near by, so the planner uses
several of the standard motion primitives to avoid the obstacles. Note: the line is drawn thicker than
the robot footprint for clarity; the robot trajectory remains collision free.

We also provided two selectable triggers available with all controllers:

None only stop due to an intrinsic trigger. This trigger allows the planner to
execute a controller until its natural conclusion, when it will stop due to
an intrinsic trigger. As part of the intrinsic trigger is the capability to halt

a controller immediately before collision with an obstacle.

Distance(d) activates after a short fixed distance d is traveled. The distance trigger
enables the planner to switch between controllers in the middle of their
execution in order to find more optimal paths. This trigger also relies
on measuring distance d. Therefore, the edge that corresponds to any
controller terminating with this trigger should be penalized if measuring d

accurately is difficult.
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Figure 6.17: Example of the GoToGoAL controller. The two obstacles repel the robot while the goal
G attracts the robot resulting in the path shown by the dashed line.

Figure 6.18: An example of a distance trigger. The “Go to Landmark” action (thick diagonal action
on left) is going towards the landmark (dark gray dot in lower right), but is triggered after traveling

2m.

6.5.3 Simulation Results
The results from the 3500 planning attempts are shown in Table 6.1. Since the results
across all of the indoor maps and all of the outdoor maps were similar, i.e., no one map was
significantly better or worse than the others for any planner within each group, they were
each combined into a single entry. Planning time was the wall time for the planner to run
from when it is given the (start, goal) pair until a solution is returned. The Average Planning
Time Ratio takes the planning time for a single (start, goal) pair and divides it by the time it
takes the SLC-based planner for the same (start, goal) pair, then averages it across all runs
from that map. Average Path Length Ratio is calculated in the same way comparing the path
length from each individual run to the path length returned by the SLC-based planner.
For some of the (start, goal) pairs, not all planners were able to find a solution. This
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percentage is reported under the Plan Failure percentage column. The weighted A* row

refers to running weighted A* on a normal lattice while SLC refers to the SLC-based

planner.
Table 6.1: Experimental Results for SLC Simulation.
. AvgPlan Std AvgPlan Std Avg Path Std  Planning
Map Algorithm Time (s) Dev Time Ratio Dev Length Ratio Dev Failure (%)
Weighted-A* 0.32 0.21 0.94 0.40 0.89 0.06 0
All Tnd RRT* 1.59 2.32 4.41 5.99 1.06 0.31 0
NeO%T RRT-Conmect 056 072 169 1.3 1.09 0.29 0
SLC 0.42 0.42 1 - 1 - 0
Weighted-A* 1.00 0.40 0.74 0.26 0.92 0.05 0
All Outdoor RRT* 10.25  0.34 8.73 4.22 0.94 0.09 15.6
RRT-Connect 0.33 0.64 0.22 0.38 1.14 0.26 27
SLC 1.50 0.85 1 - 1 - 0

As can be seen from this table, the planning time for the SLC planner is comparable
to the other planners and produces paths that are similar in length. The small increase
in average path length compared to the A* results is principally due to the SLC making
wider turns around corners and both planners having € > 1. While the A* heuristic drives
expansions right against the obstacles, the SLC’s frequent use of the wall following and
goal directed controllers resulted in many paths maintaining a larger standoff from the
wall on one or both sides of a corner. The results of both tests indicate that incorporating

controller-based motion primitives has only a minimal impact on planning time.

6.6 State Lattice Planning with Controller-based Motion

Primitives Framework Conclusions

In this section we introduced our implementation of SLC-based planning. The SLC has the
important feature that, by taking into account the specific sensing capabilities of the robot
and any controllers already instantiated on the robot, it can use the corresponding additional
motion primitives in instances when metric motion primitives are not available with only a
minimal impact to planning times. Our primary contribution is this ability to seamlessly
integrate controller-based motion primitives along with perceptual triggers into the existing

state lattice planning framework due to our method of constructing the search graph.
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Chapter 7

Planning for Air-Ground Collaborative

Localization using SLC

Unholy metal machine
It’s close to midnight and He’s barking at the moon

I’m a metal machine
SasaroN Metal Machine

7.1 Multi-Robot SLC Planner for Air-Ground Teams

One particularly challenging aspects of planning for multi-robots is determining at what
points the robots should collaborate and when they should operate independently. We
have extended our SLC planner to the multi-robot domain to demonstrate one method
of solving this question. Typically, joint configuration space planning is only practical
for small workspaces. However, when we combine the Planning with Adaptive Dimen-
sionality (PAD)[Gochev et al., 2011] framework we can achieve tractable search times in
high-dimensional spaces. We will provide some background on the PAD framework as well

as our implementation in Section 7.2 followed by our experimental results in Section 7.3.

7.2 Planning with Adaptive Dimensionality

A key component to our collaborative planner is the use of the planning with adaptive dimen-

sionality framework (PAD). This framework builds on the fact that many high-dimensional
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path planning problems have lower-dimensional projections that represent the problem
very well in most areas. For example, path planning for a non-holonomic vehicle needs
to consider the planar position of the vehicle (x, y), but also the heading angle, ¥, to en-
sure that system constraints, such as minimum turning radius, are obeyed. However, a
two-dimensional representation of the problem, only considering the planar position of the
vehicle (x, y), can work well in many areas of the state-space (Fig. 7.1).

With a free flying aerial robot the state space has six degrees of freedom, (x,y, z, ¢, 0, ).
When the aerial robot is combined with the ground robot the overall state space increases to
9 states - position and orientation of the ground vehicle, (x, y, ), plus the six aerial vehicle
states. It is well known that this high dimensionality coupled with a large environment greatly
increases planning times to the point that they become infeasible for on-the-fly computation.
By planning with adaptive dimensionality, we can plan in only those dimensions that are
critical at a given point. One example from our previous work, is to set the high-dimensional

states to be the full planning state space <(x, Vs Duavs (X, Y, 1p)ugv> while the low-dimensional

states is just the UAV position, {x, y, z)

[ ]

uav*

Figure 7.1: Example trajectory for a non-holonomic vehicle with minimum turning radius constraints.
Planning for the heading of the vehicle is needed in areas that require turning in order to ensure
constraints are satisfied (circles). Planning for the heading of the vehicle is unnecessary for areas that
can be traversed in a straight line. A: start location; B: goal location; gray boxes: obstacles.

In this section we will provide a brief overview of the algorithm for Planning with
Adaptive Dimensionality. For a more detailed explanation of the algorithm, we refer the
reader to the original work on Planning with Adaptive Dimensionality [Gochev et al.,
201T][Gochev et al., 2012]. We will use the notation £g(x;, x;) to denote a path from state
x; to state x; in a graph! G = (X, &) with a vertex set X and edge set & The cost of

'The SLC output is a graph, however, since the graph construction and planning are interleaved, & is
generated online from {C, 7, C(:), T(-), ®(-, -, -)} as defined in Section 6.2
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an entire path £ will be denoted by Cost(¢). We will use £;(x;, x;) to denote a least-cost
(optimal) path and &5 (x;, x;) for € > 1 to denote a path of bounded cost sub-optimality:
COST(f;(x,', xj) <e€- COST(fg(x,-, x;)).

7.2.1 Graph Construction and Projection Function

The algorithm for Planning with Adaptive Dimensionality considers two graphs as defined
by their corresponding state-spaces and transition sets—a high-dimensional graph G7P =
(XHP EHDY with dimensionality h, and a low-dimensional graph G = (XLP, ELP) with
dimensionality /, where X is a projection of X*” onto a lower dimensional manifold
(h > [,|XHP| > |XEP|) through a projection function A.

A1 X — XD

The projection function A~! maps low-dimensional states to their high-dimensional pre-
images:
R e A

and 1s defined as
AT(XMP) = (X e X™Plax) = X*P)

where P(XHP) denotes the power set of X#P.

Each of the two state-spaces may have its own transition set. However, in order to
provide path cost sub-optimality guarantees, the algorithm requires that the costs of the

transitions be such that for every pair of states x; and x; in X*?,
Cost (g (xi, x;)) 2 Cost (&un (A, A(x)))) (7.1)

In other words, it is required that the costs of least-cost paths in the low-dimensional state-
space always underestimate the costs of the least-cost paths between the corresponding

states in the high-dimensional state-space.
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7.2.2 PAD Algorithm

The algorithm for Planning with Adaptive Dimensionality iteratively constructs and searches
a hybrid graph G*P = (X4P, EP) consisting mainly of low-dimensional states and transi-
tions. The algorithm only introduces regions of high-dimensional states and transitions into
the hybrid graph where it is necessary in order to ensure the feasibility of the resulting path
and maintain path cost sub-optimality guarantees. Each iteration of the algorithm consists
of two phases: planning phase and tracking phase.

In the planning phase, the current instance of the hybrid graph G*? is searched for a

path n;f?)“(start, goal). Any graph search algorithm that provides a bound on path cost

€plan
algorithm, we used the weighted A* graph-search algorithm.

sub-optimality can be used to compute . Similar to the original implementation of the

In the tracking phase, a high-dimensional tunnel T (a subgraph of G"?) is constructed
around the path found in the planning phase. Then T is searched for a path &r(start, goal)
from start to goal. If CosT(é1) < Egack * Cost(&Pn

gAD
by the algorithm. If no path through T is found or Cost(ér) does not satisfy the above

), then &7 is returned as the path computed

constraint, the algorithm identifies locations in GAP, where the search through T got stuck
or where large cost discrepancies between f;'fzn and &t are observed. The algorithm then
introduces new high-dimensional regions in G*? centered at the identified locations. For
more details on how the locations of new high-dimensional regions are computed and how
high-dimensional regions are introduced in GA?, please refer to [Gochev et al., 2011][Gochev

et al., 2012]. The algorithm then proceeds to the next iteration.

7.2.3 Theoretical Properties

If the high-dimensional state-space X is finite, the algorithm for Planning with Adaptive
Dimensionality is complete with respect to the underlying graph G? encoding the search

problem and is guaranteed to terminate. If a path & is found by the algorithm, then & satisfies

COST(‘f) < €plan * Etrack ° ‘f;HD(Start, goal)

In other words, the cost of a path returned by the algorithm is bounded by €yian * €irack times
the cost of an optimal path from szart to goal in the high-dimensional graph G, where €an

and €,k are user-specified parameters. These theoretical properties are proven in [Gochev
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et al., 2011].

7.2.4 PAD Application to Multi-Robot State-Lattice Planning

In the particular application considered in this work, the task was to navigate a UAV
with limited self-localization capabilities to a desired target location with the assistance
of a UGV with good localization capability. The aerial vehicle is able to localize itself
relative to the ground vehicle, when the ground vehicle is visible from the UAV’s posi-
tion. The full-dimensional system state was represented by 6-dimensional state-vectors:
<(x, Vs Zuavs (X, Y, l//)ugv> The transitions available for each state consisted of pre-computed
motion primitives (metric motions) for both vehicles, and controller-based motion primitives
for the aerial vehicle. The cost of each transition was proportional to the cumulative distance
traveled by each vehicle during the transition and an additional modifier based on controller
accuracy and robustness for the controller-based motion primitives on the UAV. The roll
and pitch of the UAV, ¢ and 6, were derived variables from the desired velocity and error
and were calculated by the controllers to meet the desired trajectory points. The heading
(yaw), ¢, of the aerial vehicle was also not a free variable and was determined by the
specific controller used in a transition, with the exception being the yaw controller explicitly
controlling yaw when transitioning between other controller types. For example, when
executing a WaLLFoLLOWING transition, the heading is kept parallel to the direction of the
wall, and for transitions using the ground vehicle for localization (LANDMARKNAvp,,), the
heading is kept facing the ground vehicle. We assume that in many areas of the environment
the aerial vehicle is capable of autonomous navigation by using the independent controllers
(following walls or going around corners, for example), and the localization assistance of
the ground vehicle is needed only in rare occasions, when these independent controllers
are unavailable or cost prohibitive to the UAV and metric motions need to be performed.
Thus, the low-dimensional representation of the system used for Planning with Adaptive

Dimensionality was a 3-dimensional state-vector (x, y, 7)., only considering the position

uav>
of the aerial vehicle. The costs of transitions in the low-dimensional space satisfies the
requirements of PAD as shown in equation (7.1) as only the cost of moving the aerial vehicle
is considered. High-dimensional regions are introduced in the hybrid graph only in areas
of the environment where ground vehicle localization assistance is needed. The obvious

downside to this approach is that the UGV sits idle if it is not needed by the UAV (in practice,
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it would move to its next localization position as soon as the UAV was finished with it, and

since it moved slower than the UAV, it did not end up waiting significantly).

7.2.5 Output of the Planner

A state lattice with controller-based motion primitive planner generates trajectories that are
defined as a series of controllers to execute. For this collaborative planner we expand that
to include at each time step the appropriate controller for all robots in the team. When the
robots are operating independently, the trajectory execution finite state machine of each
robot independently tracks where it is in the plan. When a robot reaches a planner step
that requires another robot to be at a specific location, the first robot will pause and hold
position until the other one finishes its controller sequences preceding that point. When
the two are back in sync, both will be allowed to continue executing their controllers. In
practice, the UAV rarely has to wait for the UGV with the one common occurrence being
using LANDMARKNAVp,, motion that went behind a pillar. The UAV would move as far as it
could and still see the UGV, which would then make a quick motion to the side to allow the

UAV to continue on.

7.3 SLC Planning for Air-Ground Teams

The experiment using SLC was to incorporate a collaborative localization controller into the
planning process. Since this would require multiple robots, and the corresponding increase
in the size of the joint state space, we turned to the PAD algorithm in order to keep planning
times tractable for real-world robots. The system was implemented with an air-ground
robot team operating in an environment where neither robot individually could accomplish
the navigation tasks due to inaccessibility for the UGV and lack of sufficient localization
capability for the UAV.

7.3.1 Air-Ground Team Details

For our testing we used two robots: a Segway-based ground robot named Melvin (Fig. 7.2a),
and a Pixhawk/DJI-based aerial robot (Fig. 7.2b). All of the computers ran Kubuntu 12.04
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and ROS Groovy with the exception of the computer on the aerial vehicle which runs
Xubuntu 14.04 and ROS Indigo.

Melvin the UGV is a relatively large indoor robot with a significant payload capacity
and high endurance. With a normal operating load, Melvin is capable of operating for 3+
hours running two independent computer systems, and carrying all required communications
infrastructure. The first computer system is used as the low level controller and consists of
an i3 3.4 GHz processor with 8 GB of RAM. This system is used for all navigation, sensing,
and interfacing with the Segway base. The second system is a general purpose computer
equipped with a dual processor Xeon with 8 physical cores and 16 GB of RAM. The planner
and plan execution agent are both run on this computer. In addition, this computer is used to
run the processor intensive tasks of the UAV such as AR marker detection/extraction and
all of the mid-level controllers (the wall following controller, the metric motion controllers,
and the landmark controllers). Melvin is also equipped with two Hokuyo scanning laser
sensors mounted on tilt mounts for a full 3-dimensional scanning capability, and a web
camera for visual sensing. To assist the UAV with collaborative localization, the UGV has
six AR markers arranged in a horizontally aligned hexagon so that the UAV can detect and
accurately determine orientation of the UGV even in the presence of some low obstacles.

Unlike the UGV, the UAV is relatively spartan in terms of sensing and computing power.
The airframe itself is a DJI Flamewheel 450 with a Pixhawk flight control computer and
an ODROID XU3 supplemental computer. A standard web camera is used for landmark
detection, while 6 Sharp IR sensors with 1.5 m range are arranged around the perimeter
to provide obstacle detection and wall following capabilities. The ODROID captures the
images and transmits them to the UGV for processing, then receives the output from the

mid-level controllers and translates them into the required format for the Pixhawk to execute.

7.3.2 Controllers and Triggers Implemented for Air-Ground Teams

In order to use the SLC planner, a set of available controllers and triggers were constructed.
For the UAV, we implemented WALLFoLLowING, LANDMARKNAv, METRICTURN, and METRIC-
Step controllers. The UGV had high-quality localization data from its two scanning laser
range finders and so was only given a MeTrRicMoTION controller.

The WaLLFoLLowING controller on the UAV used two IR range sensors mounted on each

side of the UAV in order to maintain a flight path parallel to, and a specified distance from,
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Figure 7.2: (a) Segway-based UGV. 2 scanning laser range finders, high gain antenna, webcam,
general purpose server. (b) Pixhawk-based quadcopter UAV. Laser Altimeter, 6 IR range sensors,
standard webcam.

any given wall in the environment. It was given two intrinsic triggers: the ability to trigger
when the wall ended (CompLETION) and when an obstacle was within a certain distance of
the front or back of the UAV (OBSTACLE).

For this experiment we used fiducial markers and a simple detector algorithm running
on our vision processing pipeline. Due to this, our landmarks gave more than just the
directional information we used in Section 6.3 and Section 6.5. We instead had a full
3-D pose of the UAV which we could then use to execute arbitrary trajectories. For our
implementation we used six motion primitives based on the landmarks allowing motion
in the +x, +y, and +z directions while using the landmark. We also allowed two different
instantiations of the LanpmMARKNAv controller. The first (LANDMARKNAvg,,;) used static
landmarks in the environment that the UAV could detect with its onboard camera system
and knowing the position and orientation of the landmark, could determine its own position.
The second controller (LaANDMARKNAvp,,) used fiducial markers on the ground robot for the
same purpose. However, this then requires that during the planning cycle the UAV and UGV
positions are both considered simultaneously in order for the collaborative localization to
occur (see Section 7.2.4). In other words, LaAnpMARKNAvp,, could only be exercised while
the UGV was close enough and within line-of-sight of the UAV.
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Since the UAV does have an IMU and optical flow system there are locations within the
environment that it is capable of generating short range metric motions. We used two such
motions, an ability to yaw to a desired heading, and the ability to move a set distance forward.
The two metric controllers were always used in groups to turn corners: METRICSTEP(0.5 m)
— METRICTURN(£90°) — METRICSTEP(1.0 m). The other use of metric motions was when
shifting between the Lanpmark and WaLLFoLLowING controllers, the metric yaw controller
would orient the UAV. The accuracy of the IMU and optical flow system did not allow
for continuous metric motion without receiving some external sensor information so the
planner limited the allowable locations during planning time by imposing a high cost on

these motions.

7.3.3 The Output of the Planner

A state lattice with controller-based motion primitive planner generates trajectories that are
defined as a series of controllers to execute. For this collaborative planner we expand that
to include at each time step the appropriate controller for all robots in the team. When the
robots are operating independently, the trajectory execution finite state machine of each
robot independently tracks where it is in the plan. When a robot reaches a planner step
that requires another robot to be at a specific location, the first robot will pause and hold
position until the other one finishes its controller sequences preceding that point. When
the two are back in sync, both will be allowed to continue executing their controllers. In
practice, the UAV rarely has to wait for the UGV with the one common occurrence being
using LANDMARKNAVp,, motion that went behind a pillar. The UAV would move as far as it
could and still see the UGV, which would then make a quick motion to the side to allow the

UAV to continue on.

7.3.4 Air-Ground Team Experiments
Environment

Our test environments are meant to replicate a standard indoor office environment (see
Fig. 7.3). We used one area that consisted of two large conference rooms, an outdoor patio
area, and a few hallways with small offices. The other test area was comprised of a cluster

of cubicles, boxes, equipment, and office furniture in half the area, while the other half is a
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set of featureless hallways. For our experiments, we restricted the UGV to operate only in
the room portions of the environments by placing obstacles at each hallway entrance. The
UAV was free to operate throughout the map with different areas performing better with
different controllers. For example, since the hallways had no features and the UGV was
unable to enter them, the LANDMARKNAV controllers were not usable (for both static and
dynamic landmarks). On the other hand, the crowded, erratically configured cubicle area

did not feature any navigable straight walls.
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Figure 7.3: Maps of two testing environments.

Test Setup

To test our planners performance in real-world scenarios, we randomly selected start and
goal points throughout the environment for the UAV and start points only for the UGV. This
allowed us to construct plans where the two robots started near each other but allowed the
UAV to operate independently if required. The planner would allow the UGV to move as
necessary to support the UAV motion to get to the goal.

The cost function used for these experiments was proportional to the time and distance

traversed for each motion.
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Table 7.1: Experimental Results for Multi-Robot SLC with Collaborative Localization.

Planning Time (s) Num. Iter. Num. Expans. Path Cost Final Eps. Success Rate

Algorithm Avg.  Std. Dev. Avg. Avg. Avg. Avg. (%) @10min

PAD MR SLC 13.87 20.04 1.41 2405 13754 1.25 100

Full-D ARA* MR SLC 30.19 76.84 n/a 5388 14069 1.35 67.5
Test Results

Overall the system was able to generate plans that would not be solvable without using the
controller-based motion primitives due to the lack of an adequate localization capability
of the UAV operating alone. In addition, the adaptive dimensionality planner played a
key role in making these plans computationally feasible given the high dimensionality of
the combined state space. Planning times for 40 randomly generated start-goal pairs on
several indoor environments are shown in Table 7.1. The planning time is the time to
the first solution with each planner initially starting at an € = 1.35. The performance of
our collaborative localization algorithm (labeled PAD MR SLC, Planning with adaptive
dimensionality using multi-robot state lattices with controller-based motion primitives) is
compared against a full-dimensional ARA* algorithm running on the multi-robot SL.C.
The results shown in Table 7.1 are averaged over the 27 scenarios that both planners were
able to solve successfully. The full-dimensional ARA* planner was unable to solve the 13
most difficult scenarios within 600 s, which was considered a planning failure, whereas the
maximum time that our approach took to solve a scenario was 112.4 s. As can be seen, using
adaptive dimensionality reduction we are able to produce significantly better paths quicker

than using the full-dimensional ARA*.

An example of a generated plan is shown in Fig. 7.4. The plan initially has both robots
near each other in the open portion of the operating area. The UAV is tasked to move to a
location at the end of one of the hallways, then to return the the cubicles and land. During
the return flight along the upper corridor, the UGV repositioned by going around the left
side of the map to the top of the cubicle area. From here, it could provide localization to the
UAV as it re-entered this region. Other testing used random start and goal locations on this

and similar environments.
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(a) (b)

Figure 7.4: (a) Portion of plan showing the UAV starting at the lower left and using LANDMARKNAVDyy
motions to get into the hallway. Once in the hallway, the UAV uses WaLLFoLLowING and metric
motions to reach the goal position in the upper right. The UGV is the magenta rectangle near the
UAV start. The start and goal configurations have a blue circle around them. (b) The return flight to
the cubicle region. The UGV repositions along the left side of the map to provide localization to the
UAV at the end of its trajectory.

7.3.5 Air-Ground Team Results

State lattice-based planning using controller-based motion primitives combined with an
adaptive dimensionality planner provides a method of solving complex, high-dimensional
navigation problems that cannot be solved using existing methods. This is due to the
computation requirements of planning in a high-dimensional space and the inherently
limiting assumption that most planners use on the existence of sufficient localization ability
of the target robots. We did discover that our existing controllers were insufficient to reliably
pass through a standard doorway (which provides less than 20 cm clearance total around our

UAV) and this remains an area for further development.
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Chapter 8

Discussion and Future Work

And I will force you to be free,
Turn on the light so you can see
Your perception - just reflections on the wall
Turisas For your own Good

8.1 Contribution

As we have discussed in the previous chapters, multi-robot collaboration is a key technology
to allow robots to participate in real-world environments. The first step of this was to
coordinate the exploration behavior of the participating robots. By generating trajectories
encapsulating the aggregate knowledge of the search team, we were able to show that total
exploration times were improved while simultaneously allowing for higher fidelity control
of the exploration.

The second primary method of collaboration discussed is the ability to provide support
for collaborative localization. Robots that are capable of using other robots in order to better
position themselves can greatly expand the types of environments the team can successfully
operate in. By not requiring each team member to have all of the sensor capabilities that may
be required, the team can specialize, and since these capabilities operate over a distance, they
can allow navigation even in areas that would not otherwise be navigable to an individual
robot. It is this higher level of assistance and collaboration that we present here.

In the preceding chapters we have presented these collaborative planning algorithms and

their contributions are summarized here:
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The exploration planners developed allow:

¢ Exploration of teams of robots in large cluttered environments
* Ability to incorporate high-level user input at runtime such as:
= Logical regions to guide exploration
= Inter-robot distances to account for sensor and communication limits

¢ Exploration in 3-dimensions to include looking at the underside of obstacles if required

Our collaborative localization planner provides:

* Ability for a air-ground team of robots to localize if and when required while allowing
independent operations otherwise

¢ Allowing operation in terrain otherwise non-traversable using conventional planning
and localization schemes

In addition, we presented the State Lattice Planning with Controller-based Motion
Primitives framework that can be used on teams or individual robots allowing for:
¢ Controller-based motion primitives that can use full sensing and locomotion capabili-

ties of a robot

¢ Perceptual triggers allow for changing current active controller at any time as well as
forming implicit counters

¢ The framework can operate without any explicit localization

¢ Can combine both metric motion controllers as well as funnel type controllers

¢ This framework has been put to use in other domains such as landmark based routing

and humanoid planning

8.2 Future Work

While the algorithms presented in this work are capable in their current forms there are a
few areas that exist for potential future work.

First, the exploration and localization algorithms are independent. An open question
remains as to whether these two algorithms can be combined to allow for a team of robots
to not only use each other for localization, but do so in an initially unknown environment.

In order to expand our earlier exploration framework to include the ability for robot team
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members to collaboratively localize there are a few obstacles that must be overcome. The
first of which is the high-dimensional joint state space when dealing with a team that includes
aerial vehicles. The extra dimensionality makes standard trajectory planning approaches
untenable for real-time, real-world operation. Through the use of PAD we can limit the
dimensions that must be handled in the majority of environment if we can determine an
appropriate low-dimensional manifold on which to conduct the bulk of the planning. In the
work presented, we plan for just the aerial vehicle as the ground vehicle has no independent
goal that it is attempting to reach. In a combined exploration mission, there is a trade-off
to be made: help another robot at the cost of not performing any additional independent
exploration plus the cost of traveling to and from the location of the team member. A
possible approach to solving this problem is to modify the utility of a potential goal position
by accounting for the loss of information gain accrued by the assisting robot.

The second major obstacle lies with the directed nature of most controllers. Starting at a
position A and moving towards a landmark can consistently get you from a region of the
environment to a single repeatable point in that environment. However, there is no clear
inverse action. Starting at the landmark and backing away is unlikely to result in the robot
ending up at position A. Without this inverse action capability, exploration using controllers
may result in robots reaching regions of the environment that they are unable to extricate
themselves without outside assistance. This assistance, like collaborative localization, is a
benefit in that it prevents permanent loss of a robot, unfortunately, it still has a cost in terms
of overall exploration efficiency. There will need to be some analysis of how long should a
robot explore while “lost” before being rescued by another robot. In addition, what method
the second robot uses to reach the first also needs to be determined (since the first robot is
“lost” it does not have a global coordinate to pass to its rescuer).

Another area of future work is in the development of more advanced controllers for
the SLC framework. As presented, only collaborative localization controllers have been
developed but there exists a wide range of other collaborative efforts that may benefit from

this approach.
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