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Abstract

The promised future filled with robots sensing and acting intelligently in the
world is near fruition, thanks in part to continuous progress in robotic percep-
tion and state estimation. However, a number of challenges remain before state
estimation systems and the robots that rely on them can be considered truly
reliable. In particular, we must consider what happens when highly complex
hardware and software systems designed and validated in laboratory environ-
ments enter the unbounded variety of reality. Will these systems fail innocuously
or catastrophically? If so, how can we avoid or eliminate these failures to achieve
reliable, robust behavior?

The premise of this thesis is that engineering constraints and human fini-
tude result in fallible systems that cannot compensate for all possible factors
and situations. We refer to the collection of uncompensated factors as the con-
text of a system, and propose that variations in context can explain why it is
difficult to make state estimation reliable at scale. Vexingly, since context is, by
nature, unknowable and unmodeled, we cannot rely on prediction and foresight
to compensate for it.

Instead, this thesis proposes that state estimation systems can adapt their
behavior after deployment to the operating site to correct for unknown con-
textual effects. An example of this is the widespread and common practice
of “parameter tuning”, typically performed by a human expert to specialize a
system to each deployment. To generalize this and other mechanisms of adap-
tation, we first develop a general theory of context in estimation and establish
a statistical definition for estimation performance. We then develop a practical
method for evaluating performance on-site without supervision, enabling esti-
mation systems to observe the effects of context during operation. Finally, we
explore automatic parameter tuning and experience-driven failure prediction as
two methods of general adaptation. We demonstrate and validate this work on
state estimation systems using offline data from an instrumented automobile as
well as online an indoor ground robot.
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Chapter 1

Introduction

Continual advances in perception have finally propelled robots to the cusp of
practicality. Leaving the safe confines of the laboratory, however, raises a num-
ber of fundamental questions, particularly with regards to the generality and
reliability of perception systems: How will a system that works well in test con-
ditions fare when deployed at scale into the real world? If the system fails, will
it be catastrophic or minor? Can we understand the cause of failure enough to
prevent it in the future?

To answer these questions we must first understand that perception does not
occur in a vacuum; everything around and within a perception system affects its
behavior. When designing a perception system, we typically think of system-
atic, environmental, and behavioral factors, such as the available computational
resources, local scene textures, and robot velocity. Much progress in perception
has come by the way of developing better techniques to estimate, model, and
compensate for these factors. Thus, it is not surprising for perception to com-
prise the bulk of complexity in a modern robotic system.

This approach of explicit compensation works well when the critical factors
are known and their quantity and variety can be controlled. An extreme exam-
ple of this is in manufacturing, where careful engineering allows some robotic
systems to operate with almost no perceptive capabilities at all. However, with
more unstructured deployments, such as in residential homes, it becomes im-
practical to predict and compensate for every possible factor. Instead, engi-
neering finitude forces us to choose between incorporating a factor as part of
the system’s belief state where it can be explicitly compensated for, or being
agnostic to a factor as part of the system’s operating context.

Ideally, context should have a negligible effect on the behavior of the sys-
tem. However, it may happen that relatively important factors are relegated to
context, either by necessity or a lack of awareness. In these cases, differences
in validation and deployment contexts may result in poor perception perfor-
mance so that a system which works perfectly in a test laboratory may still fail
catastrophically upon deployment. This sets us up for the perception engineer’s
equivalent of Pascal’s Wager, where instead of betting about the existence of
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God, we gamble on the importance of context.
As described, the context wager is a losing gamble in which every deployment

is a roll of the context failure dice. This rather negative outlook is because we
do not consider remedial actions that can be taken after deployment. In fact,
the ubiquitous mechanism of parameter tuning is intended exactly for dealing
with context, and is largely performed on-site.

From an engineering perspective, designing systems with behavior that is set
by various parameters is a natural way to enable reuse and specialization. In our
view of perception, parameter tuning can also be understood as a mechanism for
rapid adaptation to context. Instead of entirely redesigning a system for each
deployment, an engineer can simply tune parameters until the desired behavior
is achieved. The key to parameter tuning is that it is performed on-site, where
the engineer can iterate between changing the parameters and observing the
system behavior, instead of relying on pre-deployment predictions. This allows
parameter tuning to compensate for a wide variety of unpredictable context
effects.

Parameter tuning’s efficacy speaks to the flexibility of easily-changeable
parametric perception behavior, but also to the power of adaptation driven by
empiricism. We do not claim that our field has reached the limits of modeling
and forecasting, but rather propose that adaptation is underutilized. More gen-
erally, this thesis seeks to develop and explore mechanisms, such as parameter
tuning, that enable perception systems to adapt to their deployment contexts.
In particular, we study adaptation for state estimation systems, a subset of
general perception systems. Formally, the thesis of this work is:

State estimation systems can mitigate the effects of context on per-
formance by adapting their behavior after deployment.

Perception and state estimation are both expansive topics, and while our
work is developed to be as general as possible, we restrict our validation demon-
strations and experiments to a few tasks and systems for practicality. Specifi-
cally, we consider the task of state estimation on ground vehicles operating in
somewhat structured 2D environments, but propose that this work can gener-
alize to more complex systems with a few implementation extensions. More
details about our experimental systems can be found in Chapter 2

1.1 Challenges Addressed and Overall Approach

There are a number of technical challenges in compensating for context through
adaptation, certainly beyond the scope of a single work. This thesis focuses on
the following core challenges to establish a basis for future work on this subject.

Unavailability of feedback and supervision

Feedback and supervision quantifying performance is crucial for meaningful
adaptation. A number of techniques exist for measuring performance in lab-
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oratory settings, but rarely are these practical for use on-site. For instance, it
is unlikely that motion capture systems or human labelers will be available to
provide ground truth in a real deployment.

To address this challenge, we first develop a formal treatment in Chapter 3 of
perception performance by borrowing concepts from reinforcement learning and
estimation theory. In Chapter 4, we then propose a statistical technique utilizing
the outputs of Bayesian estimators, already commonplace in perception, for
quantifying perception performance without ground truth by using empirical
trials.

Limited data and computational resources

As part of a robotic deployment, we desire that adaptation take as little time
as possible, as it is simply impractical to require days of data collection for
adaptation before the system can be used. Similarly, an adaptation scheme will
have to operate largely onboard, or at least on-site. This restricts the scale of
computational resources we can use, as most robots are not mobile datacenters.

To respect these constraints, we rely on models learned from data collected
on-site to intelligently drive adaptation. Primarily, we use models as a way
to generalize experiences such that we can seek out trends resulting in good
performance and avoid correlations with bad performance. In the case of tuning
parameters, discussed in Chapter 5, we use a model to predict performance for
different parameter values. This allows us to focus time searching promising
areas of the parameter space. For the failure prediction approach in Chapter 6,
we use a model to generalize past failure instances and detect future failures.

Complex and stochastic behavior

As discussed in the previous challenge, we desire a reasonably good model that
can predict the effect of different actions on system performance. However,
modeling perception system behavior is challenging due to the large number
of relevant factors and tunable parameters, compounded by stochasticity from
noisy sensors and random algorithms. As an example, Dequaire et al. [2016]
showed that it is possible to predict visual odometry performance with respect
to a range of outdoor lighting conditions. Extending that same model to include
the effects of various system parameters in an indoors setting, however, is quite
challenging.

We observe that many factors can be considered constant when adapting on-
site. Specifically, we can imagine limiting contextual variation and stochasticity
to focus on the effect of parameters, or fix the parameters to build a model
for context and stochasticity. For instance, the approach for efficiently tuning
parameters in Chapter 5 relies on a model that predicts performance for different
parameter values using an evaluation method that limits contextual variation
and stochasticity. Similarly, the approach for predicting future performance
from sensor data in Chapter 6 fits a model for a particular set of parameter
values.
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1.2 Contributions

In summary, the primary contributions of this work are:

1. A general theoretical framework for thinking about context in perception
and its effect on performance

2. A practical and general technique for evaluating perception performance
without ground truth

3. An application of stochastic black-box optimization algorithms to efficient
automated parameter tuning

4. Local-learning approaches for predicting stochastic perception performance
using on-site experiences

5. Extensive validation on multiple real world systems
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Chapter 2

Experimental Systems

Throughout this thesis we demonstrate and validate our approaches by applying
them to state estimation systems operating on two different experimental plat-
forms. We describe our core state estimation system and each of the platforms
in detail below.

2.1 Test Platforms

In order to test the efficacy of our approaches in compensating for context, we
must experiment with systems that actually interface with the real world. We
use two such experimental platforms throughout this work, one a physical robot
and the other a dataset collected from an instrumented vehicle. It is particu-
larly illustrative to run online experiments in a wide variety of environments on
the physical robot, but also quite time consuming. As such, we perform most
of our comparative studies on the dataset system and perform validation and
demonstration on the physical robot.

2.1.1 Intelligent Mobile Robot (IMR)

Our hardware system is a custom-built indoor ground robot used for industrial
automation projects with an omnidirectional “mecanum” wheel drivetrain, and
is shown in Fig. 2.1. The robot is able to move at up to 1.0 m/s and can operate
for approximately 1 h continuously. Being sized to fit through a standard door-
way, the IMR is a relatively mobile platform, so we are able to run experiments
in a wide variety of environments around the Carnegie Mellon campus. How-
ever, these experiments are time-intensive, so we use this platform primarily for
demonstrative and validation experiments.

The IMR has a variety of sensors to support reliable odometry and local-
ization in different environments. This work focuses primarily on the odometry
systems, using a downward-facing monocular camera, an upward-facing stereo
camera, and two side-facing planar laser rangefinders. The downward-facing
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camera is an IDS UI-3140CP USB 3.0 camera capturing 400 × 400 resolution
frames at 200 frames per second. We employ high-intensity lighting under the
robot with low camera exposure times to minimize the effect of motion blur. The
stereo camera is a StereoLabs ZED camera mounted on the front of the robot
facing directly upward. The camera outputs synchronized VGA (640 × 480)
resolution image pairs at 120 Hz. The laser rangefinders are two Hokuyo URG-
04LX-UG01 planar rangefinders primarily for collision avoidance, but which are
also used for laser odometry. The rangefinders are located on opposite corners
of the robot and each scans 240◦ at 10 Hz with a maximum range of 5.6m.
Example data from these sensors can be seen in Figure 2.2. We also have an
Invensense MPU-6050 IMU onboard providing 3-axis acceleration and angular
velocity data at 50 Hz.

Computation is spread throughout the robot subsystems. The robot base has
one Intel Core i5-4250U 2-core computer interfacing with the motion controllers
and running control and planning software, and another dedicated to processing
the visual and laser odometry sensors. The stereo camera is processed by a
larger Intel Core i7 4-core computer. All onboard computers are connected over
ethernet to an onboard WiFi router.

In a portion of our experiments we use a four camera Vicon Bonita motion
capture setup for ground truth1. The system provides pose data at 100 Hz,
which we differentiate to produce ground truth body velocities at 10 Hz. A
dedicated laptop computer runs the motion capture processing software and
broadcasts the pose data across WiFi to the robot where it is timestamped
upon reception. This introduces a small amount of latency in the ground truth
velocity signal that we do not compensate for, as it is negligible on the scale of
the robot dynamics.

1http://www.vicon.com
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Figure 2.1: The Intelligent Mobile Robot (IMR) platform

16



(a) Example image from downward camera

(b) Example image from upward camera

(c) Example laser scan

Figure 2.2: Example data from the IMR odometry sensors.
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2.1.2 KITTI Vision Benchmark Dataset

Our second platform is the ubiquitous KITTI dataset, named for the Karlsruhe
Institute of Technology (KIT) and Toyota Technological Institute (TTI) Geiger
et al. [2013]. This dataset consists of sensor data sequences recorded from a car
driving around the streets of Karlsruhe, Germany, and is commonly used as a
benchmark of vision and laser-based odometry algorithms. We playback data
from the dataset in real-time to simulate state estimation on the vehicle, since
this highlights computational constraints that are not apparent in a completely
offline setting. We run this system on a desktop computer with an 8-core Intel
Core i7 processor and 16 GB of RAM. Examples of the dataset are shown in
Figure 2.3.

We use the forward-facing stereo cameras, the laser rangefinder, and the IMU
data from the dataset. The stereo cameras each output undistorted grayscale
1242× 375 resolution images over a wide horizontal field of view at 10 Hz. The
laser is a Velodyne HDL-64E spinning laser rangefinder that outputs approx-
imately 1.3 million points per second. The laser output is preprocessed into
motion-corrected 130, 000-point scans at 10 Hz, synchronized to the camera
frames. The IMU is part of an onboard OXTS RT 3003 localization system
and provides 3D linear acceleration and angular velocity measurements, also
synchronized and at 10 Hz. Finally, highly accurate ground truth velocities are
available from the OXTS system, which incorporates the IMU with GPS and
GLONASS satellites with RTK corrections.

18



(a) city frame

(b) city scan

(c) road frame

(d) road scan

Figure 2.3: Frames and scans from the two odometry dataset contexts used in
our KITTI test system.
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2.2 Software Systems

Our experiments all use a common state estimation system that estimates the
velocity of the robot from sensor data. The software system is designed such that
removing or adding different processing subsystems is straightforward, allowing
us to test our approaches on each of the subsystems separately. We describe
below the core state estimation system as well as each of the subsystems. All of
our software is open sourced and can be found at https://github.com/Humhu.

2.2.1 Core State Estimation System

The core of our state estimation system is an adaptive Kalman filter that fuses
velocity observations from each subsystem into a single estimate of the robot
body velocity. We use a buffer architecture to support out-of-order observations,
where a fixed lag of observations are buffered and reprocessed on a copy of the
filter for each time step.

The filter estimates the observation covariance for each observation source
by using a sliding time window over previous observation prediction errors. Our
implementation differs from the standard AKF by weighting recent observations
more to allow faster adaptation, and also by using a prior model that slowly
blends to and from a fixed prior covariance when there are no observations in the
window. We use fixed covariances for the process transition as well as the IMU
observations, as we find this helps condition the other covariance estimators.

2.2.2 Sparse Planar Monocular Visual Odometry (SPM-
VO)

SPM-VO is a point-based visual odometry system intended to be used with the
IMR’s floor-facing camera. This system performs Lucas-Kanade tracking on a
regularly-spaced grid of points to find correspondences in the previous frame. If
the correspondence image similarity error is lower than a threshold, the system
then estimates a rigid 2D transformation with RANSAC between the images.
Since the camera is at a fixed height off of the ground, the translation scale is
constant and can be solved for during calibration. An illustration of the tracking
can be seen in Figure 2.4.

We use the OpenCV library’s implementation of Lucas-Kanade with pyra-
mids and rigid transformation estimation2. The majority of the tunable pa-
rameters for this system relate to the Lucas-Kanade tracker, with a few other
parameters specifying the point grid density and the RANSAC behavior.

2http://opencv.org/
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Table 2.1: SPM-VO tunable parameters

Parameter Type Values

Point grid dimension int ∈ [5, 30]
LK min solver improvement float ∈ [10−6, 1.0]
LK search window int ∈ [10, 40]
LK pyramid level int ∈ [0, 5]
LK max solution error threshold float ∈ [0, 7.5]
RANSAC max error float ∈ [0.0, 0.05]

Figure 2.4: Example illustrating SPM-VO operation. Points in the keyframe
(left) are tracked to the current frame (right) to estimate camera motion.

2.2.3 Dense Planar Monocular Visual Odometry (DPM-
VO)

DPM-VO is the dense counterpart to SPM-VO. This system estimates camera
motion by finding a rigid transformation that minimizes the per-pixel differences
between a current and keyframe image. Since the computational complexity of
this alignment depends heavily on the image size, we first linearly downsample
the image. The alignment is then initialized using the displacement predicted
by the velocity filter, and run until convergence or termination. If the alignment
error surpasses a threshold, the result is discarded, the keyframe reset to the
previous frame (if available), and alignment is re-attempted. Alternatively, if
the keyframe is determined to be farther than a threshold distance away, it is
reset. An illustration of this process is shown in Figure 2.5.

Like SPM-VO, we use the OpenCV library for image downsampling and
ECC-based alignment. The majority of tunable parameters for this system deal
with the ECC image alignment algorithm, with the remainder controlling the
camera capture, image downsampling, and keyframing behavior.
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Table 2.2: DPM-VO tunable parameters

Parameter Type Values

Camera gain int ∈ [0, 100]
Camera exposure time (ms) float ∈ [0, 3]
Image downsample scale float ∈ [0.25, 1.0]
ECC pyramid depth int ∈ [0, 2]
ECC max iterations int ∈ [10, 100]
ECC log10 objective tolerance float ∈ [−4,−2]
ECC log10 min correlation float ∈ [−3,−1.875]
Max keyframe movement float ∈ [0.05, 0.25]

Figure 2.5: Example illustrating DPM-VO operation. The current frame (right)
is aligned to the keyframe (left) with the pose indicated by the green box,
resulting in estimated velocity shown by the arrow.

2.2.4 ICP Laser Odometry (ICP-LO)

ICP-LO aligns laser scans against keyframe scans to estimate the motion of the
laser scanner. Similarly to DPM-VO, the alignment process complexity scales
dramatically with the number of points in the scan, so we use an approximate
voxel filter to produce a spatially-even downsampling of scans. The scan is
checked for symmetries and degeneracies, e.g. parallel lines and circles. If
no degeneracies exist, we then use the iterative closest point (ICP) algorithm
to align the current scan against the keyframe scan with an outer RANSAC
loop to compensate for outliers. This alignment process is initialized using the
displacement predicted by the velocity filter. If the final alignment error is too
high or the proportion of inliers is too low, the keyframe is reset to the previous
scan (if available) and alignment is re-attempted. The keyframe is also reset
automatically once its age exceeds a specified time limit. An illustration of this
process is shown in Figure 2.6.

22



We use the Point Cloud Library (PCL)3 implementation of ICP, which fea-
tures a large number of numerical parameters. The remaining tunable parame-
ters for this system concern the voxel filter and error thresholding.

Table 2.3: ICP-LO tunable parameters

Parameter Type Values

log10 voxel filter width float ∈ [−2, 0]
ICP max iterations int ∈ [10, 100]
ICP max corresp. distance (m) int ∈ [0, 1]
ICP max solution error float ∈ [0.01, 1.0]
ICP log10 objective tolerance float ∈ [−6,−3]
ICP min inlier ratio float ∈ [0.5, 0.95]
RANSAC iterations int ∈ [0, 100]
RANSAC inlier distance (m) float ∈ [0.1, 1.0]

Figure 2.6: Example illustrating ICP-LO operation on the KITTI dataset. The
current frame (red) is aligned to the keyframe (green) with the laser scanner
pose indicated by coordinate axes.

2.2.5 Sparse Stereo Visual Odometry (Fovis)

The Fovis visual odometry library Huang et al. [2017] finds point correspon-
dences between image pairs and then tracks these points across consecutive
frames to estimate the 3D motion of the camera. An illustration of the algo-
rithm is shown in Figure 2.7.

3http://pointclouds.org/
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We use the open source core library4 and ROS interface5, modified slightly
to support parameter reconfiguration and data replay in our test system. When
operating on the IMR, we can additionally tune the camera capture parameters.

Table 2.4: SS-VO tunable parameters

Parameter Type Values

Feature window size int ∈ [3, 21]
Feature search window int ∈ [5, 50]
Max pyramid level int ∈ [0, 5]
Target pixels per feature int ∈ [150, 350]
FAST threshold int ∈ [5, 70]
Bucket size int ∈ [20, 100]
Max keypoints per bucket int ∈ [10, 40]
Inlier reprojection threshold float ∈ [0.25, 3.0]
Clique inlier threshold float ∈ [0.01, 0.2]
Min feature threshold int ∈ [10, 30]
Mean reprojection threshold float ∈ [5.0, 15.0]
Max epipolar distance float ∈ [0.5, 5.0]
Max refinement distance float ∈ [0.5, 2.0]
Max disparity int ∈ [60, 200]

Figure 2.7: Example illustrating SS-VO operation on the KITTI dataset. Key-
points (circles) are matched between the left (top) and right (bottom) images,
with inliers shown by green lines and outliers shown by red lines.

4http://fovis.github.io/
5http://wiki.ros.org/fovis_ros
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2.2.6 Dense Stereo Visual Odometry (DS-VO)

Our dense analogue to the Fovis stereo system combines the BitPlanes Visual
Odometry (BPVO) library Alismail et al. [2016] with a block-matching disparity
estimation algorithm to provide dense stereo odometry. Image pairs are pro-
cessed into a disparity (inverse depth) image by finding small image blocks with
similar appearance. The disparity image and corresponding original grayscale
image are then aligned to a keyframe scene to estimate the 3D motion of the
camera. We use the displacement predicted by the velocity filter to initialize
this alignment process.

We modify the open-source BPVO library6 to support parameter recon-
figuration, and wrap it in our own software for velocity prediction and ROS
interfacing. We use the ROS stereo image proc package for disparity estima-
tion7, which already supports parameter reconfiguration. The block-matching
and BPVO algorithms contribute slightly under half of the overall tunable pa-
rameters each, with a few parameters dealing with the camera capture and final
error thresholding.

Table 2.5: DS-VO tunable parameters

Parameter Type Values

Camera gain int ∈ [0, 8]
Correlation window size int ∈ [5, 25]
Disparity search range int ∈ [64, 128]
Min uniqueness ratio float ∈ [10.0, 30.0]
Texture threshold int ∈ [600, 1000]
Speckle filter size int ∈ [100, 400]
Speckle range int ∈ [0, 31]
Optimization log10 tolerance float ∈ [−8,−3]
Max solution error float ∈ [0.02, 0.25]
Min saliency false ∈ [0.05, 0.5]

6https://github.com/halismai/bpvo
7http://wiki.ros.org/stereo_image_proc
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(a) Raw image from left camera

(b) Disparity image generated from image pair. Red is largest disparity (closer) and
purple is smallest (farther).

Figure 2.8: Disparity image generated from Figure 2.2b used as input for BPVO
algorithm.
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Chapter 3

Formalizing Perception
Context and Performance

To have a meaningful discussion about perception performance and context,
we must first establish a reasonable theoretical framework. In this chapter we
formally define terms and concepts relating to perception and context that we
use throughout this work.

3.1 A Probabilistic Model of Perception

We begin by formalizing the perception task itself, which we define as processing
observations in order to estimate an unknown latent of interest. The nature of
the latent changes between applications. For instance, in state estimation the
latent is typically the position or velocity of a robot, while in classification the
latent is a discrete object class. Let x denote the latent variable belonging to a
latent space X, and let x̂ denote estimates of the latent, also belonging to the
latent space X.

To estimate the latent, the perceptual system collects data referred to as
observations. Let z denote an observation belonging to an observation space Z.
For generality, we understand that an observation may be a single piece of data,
such as an image captured by a camera, a sequence of data, such as a waveform
from an IMU, or data in another more abstract form.

3.1.1 The Standard Model of Perception

In the standard latent model of perception, shown in Figure 3.1, the latent
generates an observation which is then processed to produce an estimate of
the latent x̂ ∈ X. Since the estimation process may be stochastic if the algo-
rithms used involve randomness, e.g. random initializations, stochastic gradient
descent, etc., we explicitly represent the estimate in the graphical model.
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Figure 3.1: The standard latent model of perception. The latent x generates
observation z, which in turn generate an estimate x̂ which is used with the latent
x to compute loss `.

We quantify the quality of a latent estimate with an application-specific loss
function `(·, ·) : X × X 7→ R, which compares the estimated and true latent
values and returns the error as a scalar. For example, the sum squared error
(SSE), mean squared error (MSE), and root mean squared error (RMS) are all
commonly used losses in state estimation, whereas the indicator, hinge, and
logistic losses are often used for classification.

Since we use a loss-based formulation (as opposed to reward-based), our
overall goal in perception is to generate estimates with low loss. Accordingly,
much work in perception focuses on the fidelity of the estimate x̂ derived from
observations z. Instead, we are focused on better understanding what factors
affect the generation of both the observations and estimates themselves, and
correspondingly their downstream effects on the performance.

3.1.2 Tunable Parameters

We now consider tunable parameters, variables within the control of the per-
ception system that affect the system behavior. For a system with M tunable
parameters, we denote the parameters as c1, . . . , cM where each parameter ci
belongs to a corresponding parameter space Ci. We refer to a set of param-
eters as a configuration θ = {c1, . . . , cM} belonging to the configuration space

θ =
∏M
i=1 Ci. Accordingly, reconfiguration is the act of changing the tunable

parameters.
Tunable parameters are typically discrete, continuous, or categorical in na-

ture. For example, discrete parameters may include integer-valued parameters,
such as image search windows, while floating-point parameters, such as conver-
gence criteria, can be thought of as continuous. Finally, toggle parameters that
enable or disable functionality, or selections from a group, such as selecting one
out of many error functions, are categorical. In this work we only consider con-
tinuous parameters and discrete parameters approximated by continuous values.

The configuration of a perception system can affect both the generation
of observations and of the latent estimate. For instance, the exposure setting
of a camera affects the images captured and the convergence threshold for a
tracking algorithm affects the displacement estimated from images. Thus we
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Figure 3.2: The model with effects from tunable parameters added. The pa-
rameters θ affect the generation of observations z with the latent x, and the
generation of estimates x̂ with the observations z.

can naturally introduce the effects of tunable parameters into the perception
model as a dependency between the current configuration θ and the observations
z and latent estimate x̂. This is shown in Figure 3.2.

3.1.3 Context

Next we consider the effects of context. Formally, we define context as all vari-
ables, aside from the latent and tunable parameters, that affect the generation
of observations. In other words, the latent, configuration, and context jointly
generate the observations, as shown in Figure 3.3. As previously mentioned,
variables that are explicitly compensated for are considered as part of the la-
tent, whereas the unmodeled remainder form the context. Our definition of
context is closely related to nuisance variables in statistics, quantities that are
statistically important but otherwise undesired for estimation. For convenience,
let us represent context abstractly as φ in some undefined context space Φ.

Explicitly representing context is challenging as it may consist of many un-
predictable or unobservable factors. It may be possible to determine a context
representation by finding correlations with observable quantities which explain
observation variations, but this is outside the scope of this work. Rather, our
goal is to understand how context can affect perception, and then develop tech-
niques to compensate for unknown context in certain reasonable situations. In
particular, we consider operating with a stationary distribution of contexts,
which we refer to as a deployment, denoted by p(φ). The context distribution
is typically unknown and alters the system behavior from a laboratory setting,
forcing us to adapt on-site.

3.2 Defining Performance

3.2.1 For Independent Executions

As previously mentioned, we quantify the quality of a single latent estimate
with a loss function. However, perception is stochastic, with varying latents
and observations, so we imagine that a measure of performance should take
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Figure 3.3: The model with effects from tunable parameters and context. The
context φ affect the generation of observations z with the latent x and param-
eters θ.

into account the possible loss for various situations. This intuition can be suc-
cinctly captured by defining performance ρ as the expected loss over latents and
estimates for a particular configuration θ:

ρ = Ex,x̂|θ [`(x, x̂)] (3.1)

Note that variations in observations and context do not appear explicitly, as
they are marginalized out. This is directly analogous to the Bayesian estimation
theory concept of risk, which describes the expected loss over estimator inputs
and outputs. With this definition, the performance can be affected by changing
the configuration to affect the distribution of observations and latent estimates.

3.2.2 For Stateful Systems and Processes

Note that Equation 3.1 relies on independent perception instances. This is rarely
applicable to robotic systems, which perceive the world as part of a physical
process, and thus have highly correlated inputs and outputs. To compensate
for this correlation, we can borrow from the reinforcement learning literature
and define the performance ρt at a discrete time t as the expected discounted
sum of losses from t onward:

ρt =
Ex,x̂|θ

[∑T−1
i=0 γi`(xt+i, x̂t+i)

]
∑T−1
i=0 γi

(3.2)

where T is a finite horizon length and γ ∈ [0, 1] is the discount factor. Intuitively,
a larger discount factor corresponds to estimates more greatly affecting future
losses. This captures the behavior of systems with high sensing rates, high
overlap between consecutive data, and slow physical evolutions, all of which
exhibit stronger correlations in time. In contrast, systems operating offline on
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unordered data with no correlations, such as offline classifiers or detectors, can
still be modeled with γ = 0, which recovers Equation 3.1.

3.3 Case Studies

To illustrate these concepts, we analyze a few of the test systems described in
Chapter 2, as well as a typical object classification system.

3.3.1 Floor-facing Visual Odometry System

We consider first the floor-facing visual odometry system described in Sec-
tion 2.2.3. This system registers consecutive images of the floor in order to
maximize raw appearance correlations and estimate the 2D motion of the cam-
era. The latent for this system consists simply of the camera motion, as nothing
else is estimated or modeled, and the observations are simply the image pairs.

Given the minimal nature of this system’s latent, there are a number of
potentially important factors that we can consider contextual. For instance,
the system assumes that the floor is planar, but this may not always be true.
Further, this system relies on capturing enough appearance texture to perform
registration. If the floor surface is more reflective or absorbant than expected,
the image may not have enough texture. The dense registration algorithm
is also relatively computationally-intensive. If additional software is deployed
on the computer hosting this system’s software components, the perception
performance may be degraded.

We can imagine compensating for these contextual factors in a number of
ways. Motion estimates from slightly non-planar floor patches can be rejected
with an appropriately selected error threshold, or identified and avoided al-
together. The camera exposure and gain can be adjusted to compensate for
lighting properties, and the camera images can be downsampled when the com-
putational resource availabilities change.

Finally, given the camera’s framerate, field of view, and height off the ground,
we know that consecutive images have a large amount of overlap between them.
Thus we expect that observations, and thus estimates and losses, will be highly
correlated in time. Further, previously estimated camera motions are used to
initialize the image registration process, resulting in even more correlation be-
tween losses. As such, performance for this system should be computed with
a discount factor γ near 1.0 and a long horizon T to reflect our belief that the
current behavior of the system has a strong effect on future losses.

3.3.2 ICP Laser Odometry

Next we discuss the laser rangefinder-based odometry system described in Sec-
tion 2.2.4. This system estimates the robot motion by registering 2D laser scans
of the local environment against previous scans. Unlike the previously discussed
image alignment algorithm, this point cloud alignment algorithm performs an
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outlier rejection step, which can be thought of as estimating whether objects
in the laser scan belong to static or moving objects. Thus, the latent for this
system consists not only of the laser rangefinder motion, but also variables de-
scribing whether or not local objects are moving, even though an estimate loss,
e.g. SSE, would involve only the motion. Like before, the observations are
consecutive laser scans.

Though the laser odometry system’s latent is slightly more expansive than
the floor-facing odometry system’s, there are still a number of potentially im-
portant contextual factors. In particular, since the laser rangefinders are planar,
the system relies on the rangefinders staying parallel with the plane that the
robot moves in. Tilting resulting from uneven ground, or the addition of a sus-
pension on the drivetrain may violate this planarity assumption and degrade
performance. The system’s outlier rejection also relies on the majority of the
scans belonging to static objects. Operating in a highly dynamic environment,
for instance a busy corridor, will likely violate this assumption as well.

There are a few tunable parameters that may be able to help adapt to these
context factors. Specifically, we can set the keyframing thresholds to more
frequently update the registration keyframes such that only very recent scans
will be used in registration. This may mitigate effects from tilting. We can also
compensate for highly dynamic environments by lowering the minimum required
inlier ratio such that the system will not reject the correct motion estimate.

The laser rangefinders we use on the IMR operate at a relatively low rate
of 10 Hz, but with a moderate range of approximately 5.6 m that ensures a fair
amount of overlap between consecutive scans. This system also uses previous
motion estimates to initialize registration, like the floor-facing odometry system.
As such, this system likely exhibits fairly strong correlations in time as well.

3.3.3 Fiducial-Based Localization System

We depart the world of odometry and consider the IMR’s fiducial-based local-
ization system, which can be seen in Figure 2.1. This system uses 20 side-facing
cameras to detect illuminated AprilTag Olson [2011] fiducials in the environ-
ment. Since the pose of all tags are determined during a pre-deployment map-
ping step, detected tags can be used to estimate the pose of the robot. The
latent for this system is thus simply the pose of the robot, and the observations
are the images captured by the cameras.

This system has typical visual contextual factors, such as local lighting con-
ditions, which can be compensated for by tuning the camera exposures. The
detection algorithm also has various outlier rejection parameters that can be
used to make the localization system more aggressive if odometry information
is unavailable, or more conservative when there is high-quality odometry. This
consideration can be thought of as another contextual factor.

Unlike the previously discussed odometry systems, the estimates produced
by this system are nearly independent from each other. In some cases false
detections may continue in multiple consecutive images due to a common source,
but this is relatively rare.
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Figure 3.4: An illustrative robot system for bin picking with a wrist-mounted
depth camera.

.

3.3.4 Bin Picking System

We now consider an imaginary perception system designed to detect and localize
an object in a bin, similar to the Amazon Picking Challenge robots discussed
by Eppner et al. [2016] and shown in Figure 3.4. The system consists of a depth
camera on a robotic arm that captures depth and RGB images of the item in
the bin. The depth image is used to segment out the object from the bin, and
the object appearance is used with a feature-based classifier to determine the
object type. We assume that the types of possible objects are finite and known
beforehand.

The latent of interest for this system is the type of object in the bin, which
is a categorical variable. For instance, the object may be a toothbrush, a jar of
peanuts, or a mug. The observations are the depth and RGB image captured
for a particular bin and item instance. A reasonable loss function for this classi-
fication task is the hinge loss. Since this system will likely operate once per bin
and item, we do not expect strong correlations between observations, and thus
would compute performance over each estimate separately, i.e. with γ = 0.

A number of factors may form the context for this system. For instance,
Eppner et al. [2016] note anecdotally that “the lighting conditions were particu-
larly difficult due to very bright spot lights directly above the competition area:
objects in the front of each bin appeared to be effectively white, while objects
in the back appeared as nearly black”. This unexpected lighting variation re-
sulted in many teams’ perceptual systems failing, and is an example of context
resulting in degraded performance. To compensate for the lighting context, we
may want to tune the camera exposure as well as the position and orientation
of the camera relative to the bin when capturing images. We may also wish
to consider algorithmic parameters, such as thresholds, for segmenting out the
object from the bin and matching object appearances.
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Chapter 4

Evaluating Perceptual
Performance for Adaptation

To adapt the perception behavior, we must first quantify the performance of
the system. Our ideal evaluation scheme would have the following properties:

• Practical to use at scale: This means that the method cannot rely on
excessive amounts of computation, data, or other resources that might not
be available on-site.

• Compatible with our adaptation mechanisms: In this work, we ex-
plore parameter tuning and failure prediction as adaptation mechanisms.
Thus, our evaluation approach should be consistent across different pa-
rameter configurations and be structured in a way that we can reasonably
define failure.

• Generalizable to a wide variety of systems: By this we mean apply-
ing the approach to a new system should not require undue engineering
effort.

In our survey of prior work on evaluating performance, we find that none of
the existing methods satisfy all of these requirements. As such, we develop a new
approach for evaluation, building off a statistical understanding of performance,
and validate it empirically.

4.1 Prior Work on Measuring Performance

We survey and evaluate here prior work in quantifying the performance of per-
ception systems. These techniques can be classified into three major categories,
which we discuss below.
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4.1.1 Approaches using Ground Truth

The most commonly accepted method for evaluating performance is to compare
system behavior against a trusted source, hence the term “ground truth”. As
such, adapting using ground-truth-based methods effectively entails altering the
system behavior to match reference behavior as closely as possible.

Sources of ground truth vary by application, but can largely be split into
human, instrumentation, or by-design. Manual ground truth relies on humans
to produce the expected result of an algorithm. Manual labeling is used by
Jammalamadaka et al. [2012] to identify human poses in images, by Rogers
et al. [2014] to align planar laser scans, and by Civera et al. [2010] to choose
image feature correspondences. Narayanan and Likhachev [2016] use a dataset
with annotated object poses to study localization performance.

Instrumentation-based ground truth uses precise measurements for supervi-
sion, and is typically used in estimation applications. Motion capture systems
as used by Rwekmper et al. [2012] and Shen et al. [2016] can provide excellent
pose data, but are generally restricted to limited indoor spaces. Other sources
have also been used, such as automated survey equipment by Krsi et al. [2015],
augmented GPS/INS systems by Geiger et al. [2013], and more recently, detailed
urban maps by Jo et al. [2015].

Perhaps the least common, but most practical source of ground truth is that
which exists automatically, typically achieved through use of simulation, data
augmentation, or experiment design. Handa et al. [2012] use a photorealistic
simulation to study a visual odometry algorithm. Montesano et al. [2005] have
used laser scans collected at the same location but artificially perturbed to test
a scan-matching algorithm. Another common approach in state estimation is
to test loop-closure accuracy by traversing a closed loop and measuring the
integrated displacement residualClipp et al. [2010].

Ground-truth-based approaches reliance on external information makes them
impractical to use on-site at scale, as both human supervision and instrumen-
tation are typically expensive to obtain. It may be possible to rely on carefully-
designed experiments with built-in ground-truth, but such an approach may be
difficult to generalize to a variety of systems. We note, however, that advances
in system modeling may make simulation-based approaches like the one used by
Handa et al. [2012] practical for our application in the future.

4.1.2 Approaches using Heuristics

Another common method for evaluating performance is to use heuristic quanti-
ties that differentiate between nominal and abnormal system performance. As
such, using a heuristic to adapt can be thought of as altering system behavior
to match indications of nominal behavior.

Typically heuristics are designed to rely only on data available at runtime,
in contrast to ground-truth methods that use external information. For in-
stance, a common heuristic in sparse visual odometry is the number of feature
correspondences between frames, which is accepted as an indicator of tracking
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quality. This heuristic is used by Churchill et al. [2015] and Dequaire et al.
[2016] where the authors report the number of correspondences as a substitute
for localization performance. Other works by Brunner et al. [2011] and Brunner
and Peynot [2014] study visual odometry performance in adverse conditions,
focusing on correlations between image quantities, e.g. brightness, sharpness,
blur, with the number of feature correspondences. Zhu and Milanfar [2010] use
a gradient-based coherence heuristic to quantify image noisiness without ground
truth.

Statistical metrics are sometimes used as heuristics in the filtering and mod-
eling communities. For instance, work by Snderhauf and Protzel [2012] reports
the chi-squared test as a measure of solution quality or the optimization objec-
tive itself, which Grisetti et al. [2012] showed is related to the joint observation
likelihood. Similarly, Abbeel et al. [2005] used observation likelihood is used
as an optimization objective to select Kalman filter parameters and improve
state estimation. Dunik et al. [2012] report the normalized estimate entropy for
their unscented Kalman filtering approach, which reflects the state tracking and
observation prediction quality.

We note that heuristics are also used in perception to provide supervision to
an learning method by using domain information or assumptions. For instance,
the self-supervised river segmentation approach detailed by Achar et al. [2011]
assumes that the river lays below the horizon to generate training data during
operation. This is similar to the work of Hawke et al. [2016] where scale and
ground-plane information are used to find hard-negative pedestrian detection
examples. Works in grasping by Pinto and Gupta [2016] and Levine et al.
[2016] are also relevant, as they use a gripper force sensor to determine whether
a grasp is successful or not. However, the heuristics in these works are not
evaluating the performance of an existing system so much as operating as small
estimation systems unto themselves.

Heuristic approaches are attractive with respect to ease of implementation
and deployment, but can be challenging to design, especially for a variety of
systems. Statistical heuristics generalize more easily, but do not handle changing
quantities of observations well, as we show later in our experiments.

4.1.3 Introspective Approaches

The last class of evaluation methods we discuss here are part of a recent trend
in understanding perception introspectively, reasoning about the certainty or
quality of a estimate as it relates to the input. Though the nature of different
introspective approaches are different, we can think of adapting with introspec-
tive feedback as changing system behavior to maximize certainty or minimize
the chance of failure.

Though a number of methods may declare themselves as “introspective”,
their philosophies can vary considerably. One approach to introspection is ex-
plicitly reasoning about the space of hypotheses to explain observed data, and
correspondingly translating this into estimate uncertainty. An example of such
an approach is the work of Grimmett et al. [2016], which considers classifica-
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tion output uncertainty over distributions of models on training data. Related
are studies on filtering optimism, a condition wherein a filter becomes overly
confident in its estimate [Bailey et al., 2006].

The other major family of introspection approaches seek to predict what
data inputs or conditions result in system failure. Much of this work has been
done on vision systems, for instance Zhang et al. [2014] work on predicting
segmentation or horizon detection failures, or Daftry et al. [2016] work on nav-
igation estimation failures. Other work by Churchill et al. [2015] and Dequaire
et al. [2016] have shown prediction of the heuristic performance of a vision-based
navigation system, and by Gurău et al. [2017] on a classification system. All of
these approaches rely on applying machine learning techniques to large amounts
of examples.

Introspective approaches are promising for adaptation as, like heuristics,
they do not rely on external information. However, existing methods are not
mature enough to be generally applied to a variety of systems. In addition, it
may be challenging to extend learning-based methods over changing parameters
due to the increase in data required.

4.2 Monte Carlo Performance Evaluation

Since we are unable to identify a satisfactory existing technique for evaluating
performance, we set out now to develop such a technique.

Recall that in Chapter 3.2 we defined in Equation 3.1 the performance of a
perception system, expressed as an expectation of a perception loss. We repeat
it here for convenience:

ρ = Ex,x̂|θ [`(x, x̂)] (3.1)

Since the distribution p(x, x̂|θ) is not usually known, we cannot simply com-
pute the expectation. However, it is possible to collect samples from the distri-
bution by executing the perception system. As such, we describe a Monte Carlo
evaluation method and provide extensions to reduce variance.

4.2.1 Review of Monte Carlo Approximations

We briefly review Monte Carlo methods for approximating expectations of a
random quantity using samples. The basic approximation for a function f(·) of
random variable x over distribution p(x) is given by:

Ex [f(x)] ≈ QN ≡
1

N

N∑
i=1

f(xi), xi ∼ p(x) (4.1)

In words, we can approximate the function simply by drawing samples, com-
puting the function, and averaging the results. Being an average of independent
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random quantities, the variance of this estimator is given by:

V ar [QN ] = V ar

[
1

N

N∑
i=1

f(xi)

]
(4.2)

=
1

N2
V ar

[
N∑
i=

f(xi)

]
(4.3)

=
1

N
V ar [f(x)] (4.4)

As such, we see that the variance in the Monte Carlo estimate QN decreases
rapidly with an increasing number of samples N . In practice, since the variance
of f(x) is not known (or else we would likely not be using Monte Carlo), we can
estimate it empirically:

V ar [f(x)x] ≈ VN =
1

N − 1

N∑
i=1

(f(xi)−QN ) (4.5)

V ar [QN ] ≈ VN
N

(4.6)

In practice, the variance of the Monte Carlo estimate can be quite large.
Fortunately a number of variance reduction approaches exist. The most common
of these approaches is importance sampling, in which samples are drawn from a
proposal distribution q(x) instead of the target distribution p(x) and the samples
are weighted to compensate:

QqN ≡
1

N

N∑
i=1

p(xi)

q(xi)
f(xi) (4.7)

Importance sampling and its variants are quite effective in practice, but
cannot be used when the probability density p(x) is not known, as is the case
here. Thus, we must find other methods of reducing evaluation variance.

4.2.2 Application to Performance Evaluation

Returning to our performance estimation task, we can use a Monte Carlo ap-
proximation to the expectation in Equation 3.2 by sampling from the distribu-
tion p(x, x̂|θ):

ρ = Ex,x̂|θ [`(x, x̂)] (4.8)

≈ 1

N

N∑
i=1

`(xi, x̂i) (4.9)

xi, x̂i ∼ p(x, x̂|θ)
This corresponds to executing the system multiple times with the latent xi re-
vealed by ground truth. Recall that the effects of observation and context varia-
tions are marginalized out in our definition of performance, and as such, should
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be sampled over rather than held constant. Most ground-truth-based methods
rely on this approximation in one way or another, while heuristic methods use a
similar approximation to estimated expected heuristics. In either case, having
more samples reduces the approximation variance.

4.2.3 Reducing Variance with a Capture-Processing De-
composition

Previously we noted that the expected variance in a Monte Carlo estimate de-
creases inversely with the number of samples used. In practice it may be dif-
ficult to execute the physical system a large number of times. However, not
all of the system stochasticity may be from data collection, but from algorithm
randomness instead. Thus, if we can decompose the expectation in Equation 4.9
into a component that requires physical executions and one which does not, we
may be able to use more samples. Intuitively, physical executions are required
when data from the real world must be captured, but not when already cap-
tured data must be processed. As such, we refer to such a decomposition as
a capture-processing decomposition, as it splits the system into a data capture
half which involves physical executions, and a data processing half which does
not.

Representing this decomposition analytically is straightforward since we con-
sider the collected data z separately from the generated estimate x̂. Applied to
Equation 4.9 we have:

ρ = Ex,x̂|θ [`(x, x̂)]

= Ez|θ
[
Ex,x̂|z,θ [`(x, x̂)]

]
= Ez|θ

[
Ex|z,θ

[
Ex̂|z,θ [`(x, x̂)]

]]
(4.10)

= Ex,z,|θ
[
Ex̂|z,θ [`(x, x̂)]

]
(4.11)

≈ 1

NM

N∑
i=1

M∑
j=1

ρ(xi, x̂i,j) (4.12)

xi, zi ∼ p(xi, zi|θ)
x̂i,j ∼ p(x̂i,j |zi, θ)

where we have used the conditional independence relation x̂ ⊥⊥ x|z, θ to simplify
p(x, x̂|z, θ) = p(x|z, θ) p(x̂|z, θ). Since in practice it is much easier to sample
from the estimate distribution p(x̂|z, θ) than p(x, z|θ), we can have M � N .
This reduces the variance from stochasticity in the estimate.

4.3 Approximate Posterior Evaluation

The methods described in Section 4.2 meet two of our three stated goals for
an evaluation method, but their reliance on ground truth conflicts with the
remaining goal of practicality at scale. To overcome this, we propose a technique
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to remove the need for ground-truth while retaining much of the Monte Carlo
methodology.

4.3.1 The Approximate Posterior Estimate

In Section 4.2.3 we decomposed the performance expectation into three nested
expectations in Equation 4.10, and then consolidated them into capture and
processing components. We consider now the alternative ordering:

ρ = Ez|θ
[
Ex̂|z,θ

[
Ex|z,θ [`(x, x̂)]

]]
(4.13)

The innermost expectation is over p(x|z, θ), which is known in Bayesian esti-
mation literature as the posterior distribution, and is tracked or produced as an
artifact by Bayesian estimators. Thus, given the posterior, we can evaluate the
inner expectation analytically, removing the need for ground truth, while still
relying on samples for the outer expectation over observations and estimates.
This can be understood as Rao-Blackwellization, which has been applied to par-
ticle filtering wherein some variables can be analytically updated while others
use sampling Doucet et al. [2000]. Fully expanded, our estimator is given by:

ρ ≈ 1

NM

N∑
i=1

M∑
j=1

Ex|zi,θ [`(x, x̂i,j)] (4.14)

zi ∼ p(zi|θ)
x̂i,j ∼ p(x̂i,j |zi, θ)

Since it relies on the posterior distribution, we refer to this as the approximate
posterior estimate of performance, abbreviated as APE. Even if a Bayesian
estimator is not used, it is straightforward to derive the posterior for a single
observation from a forward observation model p(z|x, θ) using Bayes’ Rule:

p(x|z, θ) =
p(z|x, θ)p(x|θ)

p(z|θ) (4.15)

∝ p(z|x, θ)p(x) (4.16)

where p(x|θ) = p(x) from conditional independence.
Intuitively, the APE equates estimate quality to estimate certainty. In other

words, instead of looking at whether a system behaves similarly to a ground-
truth reference, the APE judges a system based on how confident its estimates
are, and thus relies on having accurate statistical models.

4.3.2 Application to Squared Error Losses

We derive the APE of the common sum squared error (SSE) and its related
losses, the mean squared error (MSE) and root mean squared error (RMS),
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given below:

`SSE(x, x̂) = (x− x̂)T (x− x̂) (4.17)

`MSE(x, x̂) =
(x− x̂)T (x− x̂)

dim (x− x̂)
=

`SSE(x, x̂)

dim (x− x̂)
(4.18)

`RMS(x, x̂) =

√
(x− x̂)T (x− x̂)

dim (x− x̂)
=
√
`MSE(x, x̂) (4.19)

where dim y denotes the dimensionality of vector y. Since these three losses
are effectively equivalent, we perform our analysis with the SSE for simplicity.
Substituting the expression from Equation 4.17 into Equation 4.14, we get:

ρ ≈ 1

N

N∑
i=1

Ex|zi,c
[
(x− x̂)T (x− x̂)

]
(4.20)

=
1

N

N∑
i=1

Ex|zi,θ
[
tr
(
(x− x̂)(x− x̂)T

)]
(4.21)

=
1

N

N∑
i=1

tr
(
Ex|zi,θ

[
(x− x̂)(x− x̂)T

])
(4.22)

where trA is the trace of matrix A, equal to the sum along the diagonal of A.
If we assume that the estimate is the mean of the posterior x̂ = Ex|z,c [x], then
Equation 4.22 further simplifies to:

ρ ≈ 1

N

N∑
i=1

tr
(
Ex|zi,θ

[
(x− Ex|zi,θ [x])(x− Ex|zi,θ [x])T

])
(4.23)

=
1

N

N∑
i=1

tr

(
cov
x|zi,θ

(x)

)
(4.24)

which is simply the trace of the covariance of the posterior, averaged over mul-
tiple trials. This makes computing the APE for SSE loss on posteriors with
closed-form expressions for their covariance straightforward. If the estimate
is not selected as the mean, or x̂ 6= Ex|z,θ [x], as may occur for multi-modal
posteriors, then we can instead evaluate the expectation in Equation 4.22 with
another Monte Carlo approximation.

Extending these results for the MSE loss is trivial, as it is simply a scaled
version of the SSE. Extending to the RMS loss, however, is quite involved, as
it requires the 1

2 -th moment of the posterior. Further, since the transformation
from MSE to RMS is non-linear, a configuration that minimizes MSE may not
be the minimizer for the equivalent RMS. However, RMS, MSE, and SSE are
used almost interchangably throughout the literature, and as such, we use the
SSE in our demonstrations for simplicity.
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4.3.3 Tracking Posteriors with Adaptive Kalman Filtering

As discussed in Section 4.3.1, the APE relies on having an accurate posterior
distribution p(x|z, θ). Much of the work to-date in perception has focused on
generating accurate mean predictions as opposed to accurate distributions, and
as such, there are relatively few methods for calibrating statistical models. A
regression-type approach was previously explored by Hu and Kantor [2015] and
Haarnoja et al. [2016]. More classically, the EM approach proposed by Ghahra-
mani and Roweis [1998] could also be used to learn system models from data. We
detail here the Adaptive Kalman Filter, a flexible and powerful non-parametric
technique.

In a standard Kalman filter the estimate covariance does not involve the
observation themselves, evolving purely as a function of the system model, i.e.,
the transition and observation models. Intuitively, we expect the error or noise
magnitude to vary in time due to changing contexts or configurations. We can

capture this intuition with the adaptive Kalman filter: Let x
(−)
t and x

(+)
t denote

the estimate mean before and after performing an update, respectively, with a

similar notation for the estimate covariance P
(−)
t and P

(+)
t . Further define the

transition function Jacobian as Ft and the observation function Jacobian as Ht,
with the observation at time t written as yt. Using the approach detailed in Mo-
hamed and Schwarz [1999], the online estimates of the transition covariance Qt
and observation covariance Rt are:

Qt+1 =
1

WQ

t∑
τ=t−WQ+1

∆xτ∆xTτ (4.25)

Rt+1 =
1

WR

t∑
τ=t−WR+1

ντν
T
τ +HtP

+
t H

T
t (4.26)

where WQ and WR are sliding window lengths, ∆xt = x
(+)
t − x(−)t ) is the state

correction, and νt = yt− ŷ(+)
t is the post-update measurement prediction error,

often referred to as the residual. Intuitively, Eqs. 4.25 and 4.26 adjust the
covariances to match the observation prediction errors during execution: When
the state evolves predictably, the state corrections will be small, resulting in a
small Q. Similarly, when the observations are well-predicted, the residuals will
be small, resulting in a small R.

We note that the AKF estimates rely on an assumption of uncorrelated
transition and observation noise to be meaningful. When the noise is system-
atic or heavily correlated in time, e.g., calibration errors or software bugs, the
estimated covariances may not be accurate, resulting in poor introspection.
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4.4 Experimental Validation

We validate our proposed methods for performance evaluation with experiments
on our demonstrative state estimation application. Our primary goal is to inves-
tigate the fidelity of the APE for use in adaptation to context, and additionally
are interested in what situations the APE does and does not perform well in,
as well as the importance of using multiple samples.

Our overall approach is to directly compare evaluation approaches by ex-
ecuting our test systems many times over a variety of configurations and en-
vironments. Given this population of evaluations, we can quantify the overall
quality of an evaluation approach compared to a standard ground-truth-based
approach. Further, with multiple executions on the same configuration and en-
vironment, we can also test the effect of using multiple samples for evaluation.
It is difficult to gain a deeper understanding of the APE with this purely empir-
ical approach, however, so we also use executions of a simulated system where
we can control sensing phenomena.

Below we describe our experimental procedure, present results from each of
our tests, and conclude with a discussion and analysis of the results overall.

4.4.1 Evaluation Methods Tested

We test three canonical evaluation approaches in addition to our proposed APE
method, described below:

Sum of Squares Error (SSE)

The conventional baseline that uses ground truth to compute Eq. 4.17 for the
body velocity error. Low SSE corresponds to better performance. We compute
the SSE for two-dimensional body velocities (ẋ, ẏ, ω) and do not weight the
components in the SSE summation.

Sum Observation Log-likelihood (SOL)

The SOL is a statistical heuristic computed as the sum of log-likelihoods for
all observations received in the trajectory. This is equivalent to computing the
joint probability of all received observations assuming they are independent. We
expect that high SOL corresponds to better performance.

Average Observation Log-likelihood (AOL)

One weakness of the SOL is that it can vary dramatically depending on trajec-
tory length. To compensate for this, we can normalize the SOL by the number
of observations received and compute the AOL, which is equivalent to the av-
erage observation probability. We expect that high AOL corresponds to better
performance.
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Approximate Posterior Error (APE)

Our proposed approach, computed as described in Eq. 4.23 as the trace of the
state estimate covariance. Like the SSE, the APE is computed over a trajectory
with numerical integration. Low APE corresponds to better performance. To
correspond to the unweighted SSE on two-dimensional velocities, we compute
the APE with the covariance over the two-dimensional body velocities only.

4.4.2 Test Metrics

Given a population of evaluation comparisons, we can quantify the quality of an
evaluation method against ground truth performance. We do not have ground
truth performance, per se, but can estimate it using multiple evaluation sam-
ples as in Equation 4.12. Once ground truth is computed, we then report the
following two test metrics for each evaluation method.

It is tempting to assert that a good evaluation approach should be highly
correlated with ground truth in the traditional sense, but this is a much stricter
requirement than what is needed for adaptation. Instead, we propose that a
good evaluation approach need only rank configurations similarly to ground-
truth. This property can be captured with a rank correlation, such as Spear-
man’s ρ or Kendall’s τ , which reflect how consistently two quantities rank items
together.

In our experiments, we are interested in the rank correlation between each
evaluation method and the ground truth rankings, as well as the variance in
the rank correlation resulting from evaluation variance. In previous work, New-
son [2002] suggested that the Kendall-τ has better confidence intervals than
Spearman’s ρ. Gilpin [1993] also favors Kendall-τ , for its faster convergence.
Nonetheless, we report both on a limited set of our results for comparison, and
detail both measures below, as they are not commonly used in the robotics
community.

Kendall-τ

The Kendall-τ coefficient can be understood as the normalized number of bubble-
sort insertions required to transform one ordering into the other, or alternatively
as related to the probability of a ranking being in agreement. As such, making
multiple small ordering mistakes produces higher τ values than a single severe
ordering mistake. In these results, we use the τ -b variant implementation in
SciPy1 which normalizes to the number of data and accounts for ties.

Consider a set of joint observations {(xi, yi)}. In our setting, xi is the trial
mean SSE and yi is a performance evaluation. A pair of observations (xi, yi)
and (xj , yj) with i 6= j is concordant if the ordering of observations match, i.e.,
xi > xj and yi > yj , and discordant if the ordering of observations is reversed,

1https://www.scipy.org/
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i.e., xi > xj and yi < yj . The τ -b coefficient is computed as:

τ =
nC − nD√

(nC + nD + Tx)(nC + nD + Ty)
(4.27)

where nC is the number of concordant pairs, nD is the number of condordant
pairs, Tx is the number of ties in the xi observations, and Ty is the number of
ties in the yi observations. A τ = −1 corresponds to exactly opposite rankings
and a τ = 1 corresponds to exactly identical rankings. Thus, in our analy-
sis, approaches that produce τ values near 1 can be understood as accurately
replicating the ground-truth ordering across all trials.

The Kendall’s τ coefficient allows us to measure the accuracy of a single or-
dering. Accordingly, we can measure the effect of stochasticity in the executions
and the number of executions N per trial on ordering stability. Ideally we would
collect a large number of independent datasets, but this is rather impractical,
so we instead bootstrap to generate synthetic datasets by sampling executions
from each trial.

Spearman-ρ

The Spearman-ρ coefficient is the application of “standard” correlation to the
ranks generated by two sets of values. In other words, it is the direct measure of
how well two assigned rankings correlate with each other. Like the Kendall-τ ,
this allows us to measure the ordinal correlation instead of linear correlation
between two quantities.

Consider again a set of joint observations {(xi, yi)}. Let ki be an integer
rank for xi within the population, and li be an integer rank for yi within the
population. The Spearman-ρ coefficient is computed as:

ρ = 1− 6
∑
d2i

n(n2 − 1)
(4.28)

where di = ki− li is the difference in ranks for element i and n is the number of
observations. Like with the Kendall-τ , a value of 1.0 means an exactly identical
ranking, while −1.0 means an exactly reversed ranking.

4.4.3 KITTI Experiments

We test the ICP-based laser odometry (ICP-LO) and sparse stereo (SS-VO)
odometry systems in two KITTI environments, for a total of four different test
conditions. We test 100 uniformly-randomly selected configurations 10 times
each in each of the test conditions by executing the system on each recorded
trajectory.

We begin each system execution by resetting the perception system state,
setting the configuration, and then initializing the velocity filter mean to the
true velocity with a high covariance. This is needed for initialization-dependent
methods, such as ICP-LO, since some dataset trials begin with the vehicle at

45



high speeds (≈15 m/s). This initialization also helps the AKF covariance esti-
mators converge more quickly on startup.

Visualizations of the relation between the ground truth SSE and various
evaluated methods, which we dub “parity”, are given in Figure 4.1. Correla-
tion metrics computed from 1000 bootstrap instances for each of the environ-
ments and systems are shown in Figure 4.2. We report both the Kendall-τ
and Spearman-ρ correlations for the aggregated environments and systems in
Figures 4.2a and 4.2b, respectively, to show the similarity of the two metrics,
and report only the Kendall-τ for the individual conditions. Note that since the
AOL and SOL are negatively correlated with the ground-truth SSE, we report
the absolute value of the correlation in our results.
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Figure 4.1: Parity plots of the ground-truth-free methods against SSE on the
KITTI system. The ground-truth-free evaluations are normalized to [0, 1.0]
on the x-axis for comparison. Each point represents the mean of 10 repeated
samples.
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Figure 4.1: Parity plots of the ground-truth-free methods against SSE on the
KITTI system (continued).
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(a) Overall KITTI Kendall-τ
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Figure 4.2: Correlation measures for each evaluation method using varying num-
ber of samples on the KITTI system. The line indicates the median correlation
over 1000 bootstrap instances, and the shaded region indicates the 5th and 95th
percentiles.
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Figure 4.2: Correlation measures for each evaluation method using varying num-
ber of samples on the KITTI system (continued).
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Figure 4.2: Correlation measures for each evaluation method using varying num-
ber of samples on the KITTI system (continued).
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4.4.4 IMR Hardware Experiments

We test the ICP-based laser odometry (ICP-LO) and sparse planar monocular
(SPM-VO) odometry systems in two environments each, for a total of four
different test conditions. The conditions are shown in Fig. 4.3 and detailed
below.

• clear: LO in a cleared indoor area

• clutter: LO in an area cluttered with traffic cones

• carpet: VO on low-pile speckled carpeting

• concrete: VO on medium-gloss painted concrete floor

Like in the KITTI experiments, we executed the system 10 times for 100
uniformly-randomly sampled configurations in each test condition. Each system
execution is performed with the following procedure:

1. The perception parameters are set to their test values. Trial data recording
begins.

2. The robot remains stationary for one second to initialize the AKF.

3. The robot drives forward at 0.5 m/s for 1.0 m.

4. The robot turns in place at 1.0 rad/s for a half-rotation (π radians).

This motion tests the odometry system performance for both translational
and rotational motion and is illustrated in Fig. 4.4. The robot resets its pose
every two executions using a side-facing camera and a fiducial in the test area
to avoid drifting over time.

52



(a) clear (b) clutter

(c) carpet (d) concrete

Figure 4.3: The test conditions for the APE validation experiments on the IMR.

Figure 4.4: An illustration of the system execution procedure. 1.) The robot
drives an open-loop trajectory consisting of 0.5 meters straight forward, followed
by a 180◦ turn. 2.) The robot resets its pose using a side-facing camera to
observe a fiducial. 3.) The robot can then execute its next open-loop trajectory.
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Figure 4.5: Parity plots of the ground-truth-free methods against SSE on the
IMR system. The ground-truth-free evaluations are normalized to [0, 1.0] on the
x-axis for comparison. Each point represents the mean of 10 repeated samples.
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Figure 4.5: Parity plots of the ground-truth-free methods against SSE on the
IMR system (continued).

55



1 2 3 4 5 6 7 8 9

Number of samples, k

0.0

0.2

0.4

0.6

0.8
A

b
s.

K
en

d
al

l-
τ

SSE

APE

AOL

SOL

(a) Overall IMR Kendall-τ

1 2 3 4 5 6 7 8 9

Number of samples, k

0.0

0.2

0.4

0.6

0.8

1.0

A
b

s.
S

p
ea

rm
an

-ρ

SSE

APE

AOL

SOL

(b) Overall IMR Spearman-ρ

Figure 4.6: Correlation measures for each evaluation method using varying num-
ber of samples on the IMR system. The line indicates the median correlation
over 1000 bootstrap instances, and the shaded region indicates the 5th and 95th
percentiles.
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Figure 4.6: Correlation measures for each evaluation method using varying num-
ber of samples on the IMR system (continued).
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(e) SPM-VO carpet Kendall-τ
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Figure 4.6: Correlation measures for each evaluation method using varying num-
ber of samples on the IMR system (continued).
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4.4.5 IMR Simulated Experiments

We supplement our IMR hardware experiments with experiments in simulation
designed to test the robustness of different evaluation approaches to different
sensing phenomena. The simulation itself is simple and emulates the IMR as
a point mass with second-order dynamics operating in a 2D environment. The
simulated robot receives observations of its body velocity corrupted with zero-
mean Gaussian noise, and runs the same core state estimation system as the
physical test systems.

We also run the same experimental procedure as on the IMR hardware sys-
tem, but with three test conditions corresponding to different sensing phenom-
ena which manifest as varying observation rates and noise magnitude. We ex-
pect that both suboptimal configurations and higher robot speeds affect sensing
performance and quantify this intuition with a “hardness factor” κ:

κ = ‖v‖2 · ‖θ‖2 (4.29)

where v is the robot body speed and we have arbitrarily set the optimal configu-
ration θ∗ = 0. This heuristic reflects that deviating from the optimal parameters
increases the noise effects of higher speeds, and vice-versa. The hardness factor
is then used in the following three sensing test conditions:

Dependent Noise (DN)

This model captures perception difficulty as sensor noise covariance R that
increases exponentially with hardness:

R = R0 + R̃ [1− exp(kR · κ)] (4.30)

where kR > 0 so that R achieves its minimum value R0 at κ = 0 and increases
with increasing hardness. The sensor rate f is fixed at 200 Hz, and we use
constants R0 = 1E − 6I, R̃ = 0.5I, kR = 0.75.

Dependent Noise and Rate (DNR)

This model builds upon the DN model by additionally having the sensor rate
exponentially decrease with hardness:

f = f0 + f̃ exp(kf · κ) (4.31)

where kf < 0 so that f achieves its maximum value f0+f̃ at κ = 0 and decreases
with increasing hardness to a minimum of f0. We use the same constants as the
Dn model with additionally f0 = 20, f̃ = 180, and kf = −1.0, corresponding to
a maximum rate of 200Hz.

Dependent Noise and Rate with Cutout (DNR+C)

This model modifies the DNR model by modeling a phenomena where the sen-
sor will fail or “cut out” above a certain hardness κmax and not produce any
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observations:

f =

{
0, κ > κmax
f0 + f̃ exp(kf · κ), o/w

(4.32)

We use the same constants as the DNR model with additionally κmax = 0.8.
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Figure 4.7: Parity plots of the ground-truth-free methods against SSE on the
simulated system. The ground-truth-free evaluations are normalized to [0, 1.0]
on the x-axis for comparison. Each point represents the mean of 10 repeated
samples.
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Figure 4.7: Parity plots of the ground-truth-free methods against SSE on the
simulated system (continued).
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Figure 4.8: Correlation measures for each evaluation method using varying num-
ber of samples on the simulated system. The line indicates the median correla-
tion over 1000 bootstrap instances, and the shaded region indicates the 5th and
95th percentiles.
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Figure 4.9: Correlation measures for each evaluation method using varying num-
ber of samples on the simulated system (continued).
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Figure 4.9: Correlation measures for each evaluation method using varying num-
ber of samples on the simulated system (continued).

4.4.6 Discussion

Kendall-τ versus Spearman-ρ

First, we consider the differences between the Kendall-τ and Spearman-ρ cor-
relation metrics, both of which have been reported for the overall rankings of
KITTI in Figures 4.2a and 4.2b, for the IMR in Figures 4.6a and 4.6b, and for
the simulation in Figures 4.8a and 4.8b. We observe that Spearman-ρ generally
reports larger correlations and lower variances than Kendall-τ , the trends are
otherwise very similar. Given the relatively large bootstrapped populations we
compute correlations over, it is possible that the concerns from Gilpin [1993]
about convergence rate are not relevant here. As such, we continue our discus-
sion using the Kendall-τ correlations.

Analysis of Simulated Results

We begin with analysis of the simulated results, as this will help build an in-
tuition with which we can better understand the physical experiment results.
First we consider the relations between metrics shown in the parity plots for
each of the simulated test conditions. We see in the DN test condition results
in Figure 4.7a a clearly linear, albeit noisy relation between the different nor-
malized metrics and the ground truth SSE. In particular, we observe a strong
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positive correlation between SSE and APE, and a strong negative correlation
between SSE and AOL, as well as with SOL. This can be explained as the higher
the log-likelihood of observations, the lower loss we expect to receive. Overall
this suggests that all three ground-truth-free metrics perform well when only
the observation noise magnitude changes.

When we add variable sensing rates for the DNR test condition, however,
we see in Figure 4.7b that the AOL and SOL are no longer quite as linearly
correlated with the SSE. In contrast, the APE appears unaffected and still
exhibits a strongly linear relation. Adding in sensor cutout for the DNR+C
condition, shown in Figure 4.7c, we see that the correlation between AOL and
SOL with SSE entirely disappears: The portion of evaluations which do not
experience cutout still correlate relatively well with SSE, but the remainder with
cutout are distributed with no clear relation whatsoever. A similar separation
exists for the APE evaluations, but preserves the overall relation with SSE.
These two results together suggest that the observation log-likelihood-based
methods cannot compensate with dramatically different numbers of observations
across evaluations, whereas the APE can.

This qualitative conclusion is supported by our quantified correlation results
as well. In Figure 4.9a we see that all methods perform relatively well, scoring τ
values around 0.8 for 5 samples. It is interesting to note that SSE performs the
worst in this condition, both in mean performance and variance. We suggest
that the SSE results suffer from high variance due to serendipity, wherein an
estimated trajectory may generate low loss by random chance, or “luck”, even if
the perception system did not receive high-quality observations. As such, multi-
ple samples are needed to capture this effect from variance, whereas the quality
of observations received, used by the ground-truth-free methods, is apparent
from a single trial.

In the DNR test condition, however, AOL and SOL, in particular, do not
perform as well. This can be seen in Figure 4.9b, where AOL and SOL achieve
less than 0.7 and 0.5, respectively. As previously discussed, we propose that
this drop in performance is due to a change in the number of observations
received. SOL is affected the most because it explicitly associates the quantity
of observations with the quality. Thus, it is difficult to differentiate between a
large number of poor observations from a lower number of good observations.
The AOL compensates for this by normalizing by the number of observations
received, and thus does not suffer as great a performance drop. The APE still
performs very well in this condition, exhibiting considerably lower variance and
better sample efficiency than SSE.

Finally, in the DNR+C test condition, shown in Figure 4.9c, both the AOL
and SOL methods completely fail, with correlations of ≈ 0.15, indicating nearly
no correlation. In contrast, the APE still performs quite well, scoring above 0.7
with slightly less variance than SSE. We previously proposed that the AOL is
able to partially compensate for changing numbers of observations by normaliz-
ing, and thus capturing the average quality of observations. With the presence
of cutout, however, there are now different numbers of observations within parts
of the trajectories, as well as across tests.

66



Analysis of KITTI Results

Next we consider the results from our experiments on the KITTI system, again
starting by qualitatively inspecting the parity plots. Here we can see some
similarities to simulated test conditions. For instance the ICP-LO road condition
in Figure 4.1b resembles the DNR+C condition, suggesting that cutout occurs,
whereas the SS-VO city parity in Figure 4.1c resembles more closely the DNR
condition. None of the KITTI test conditions exhbit the ideal linear correlations
seen in the DN simulated condition. This aligns with our expectations, as all of
the KITTI test systems use error thresholding to reject poor estimates and thus
exhibit changing observation rates. The computational intensity of the ICP-LO
system results in very long processing times per scan for certain configurations,
which results in cutout-like behavior on the high-speed road datasets since the
velocity-based initialization is not as accurate as in the lower speed city datasets.
Similar, we see that the SS-VO road condition is quite challenging to evaluate, as
evident from the noisy relations seen in Figure 4.1d. Though the SS-VO system
is less computationally intensive than the ICP-LO system, it is more affected
by outliers from other moving vehicles due to its smaller field of view. Thus,
in the high speed environment of the road, the system can end up tracking the
wrong motions, resulting in highly biased estimates that are difficult to detect
with the AKF.

Looking at the Kendall-τ metrics for the various metrics, we see that the
APE significantly outperforms the AOL and SOL in ranking different configu-
rations both within a test condition and across conditions. In Figure 4.2a we
report a nearly constant Kendall-τ of ≈ 0.85 for the APE. In contrast, the AOL
and SOL achieve only 0.6 and 0.5 correlations, respectively. This overall pattern
is similar to the correlation results for the DNR simulated condition, suggesting
that changing observation rates may be the most significant differential across
conditions.

Within conditions, the trends are more nuanced. APE performs on-par
with SSE in the ICP-LO conditions, seen in Figures 4.2c and 4.2d, whereas
AOL and SOL both perform very poorly. This pattern resembles the DNR+C
simulated condition correlations, supporting our previous hypothesis of ICP-LO
cutout. On the SS-VO conditions, however, all three ground-truth-free metrics
perform similarly, as can be seen in Figures 4.2e and 4.2f. This resembles the
simulated DN condition, but with all correlations shifted downward, which can
be explained by the AKF not fully capturing the noise dynamics. Part of this
may be due to biases that the AKF cannot detect.

Analysis of IMR Results

Finally we consider the results from the IMR hardware experiments, beginning
again with a qualitative assessment of the parity plots. Overall we see that
all methods exhibit almost entirely linear relations with SSE for the ICP-LO
test conditions, shown in Figures 4.5a and 4.5b, much like the simulated DN
condition. However, there are a few outliers where very high SSE trials also
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have very high AOL and SOL. This means that the overall trend of lower SSE
correlating with higher AOL and SOL may not be reliable for parameter tuning.
In the SPM-VO conditions, however, there is almost no discernable trend for
the AOL and SOL, as can be seen in Figures 4.5c and 4.5d, while the APE still
exhibits a strong linear relationship. This suggests that the SPM-VO system
may exhibit extreme phenomena, such as dropout, which is expected given the
nature of the system.

These qualitative trends are mirrored in the correlation metrics as well. We
see that the APE performs well when comparing evaluations across test condi-
tions, achieving Kendall-τ correlations of ≈ 0.7 in Figure 4.6a, while the AOL
and SOL methods achieve ≈ 0.1. Within conditions, the AOL and SOL per-
form much better, in particular achieving ≈ 0.7 on the ICP-LO test conditions
shown in Figure 4.6c and 4.6d, but are still outperformed by the APE, whose
performance versus number of samples closely matches that of the SSE. The
qualitative failure of AOL and SOL on the SPM-VO conditions is quantified as
low correlations in Figures 4.6e and 4.6f of ≈ 0.1 to 0.3, whereas the APE again
performs well at ≈ 0.7.
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Chapter 5

Reconfiguring Parameters

In this section we discuss how perception systems can perform parameter tuning
on-site without external supervision as a method of adapting to contextual
changes. Specifically, we cast parameter tuning as a numerical optimization task
with the system performance as the objective and the parameters as the input.
Further, by using the techniques developed in Chapter 4, we avoid the need
for ground truth, allowing parameter tuning to be performed in wide variety of
applications.

We first survey existing approaches for tuning parametric behaviors of robots
and algorithms in various fields, and then formalize our parameter tuning task
as numeric optimization. We also discuss the applicability of various popular
optimization techniques, and present experimental results demonstrating the
practicality and importance of fully automated parameter tuning on the KITTI
and IMR systems.

5.1 Related Works on Parameter Tuning

There exists a vast body of literature that falls under the term “parameter tun-
ing,” though the nature of a “parameter” in these works and the applications
themselves vary considerably. In our setting, we consider parameters as a rela-
tively low-dimensional specification of behavior for a complex system. We cover
here relevant works which are similar in concept or application to our work on
perception system tuning.

5.1.1 Robot Perception

The idea of tuning perception parameters to match the task at hand can be
traced back to active perception, started by Bajcsy [1988] and Aloimonos et al..
These works, particularly in active vision, focused on geometric factors, such
as viewpoint selection, but also considered data capture parameters, such as
camera exposure and zoom.
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Following these concepts was active localization, proposed by Burgard et al.
[1997], who demonstrated that altering a mobile robot’s motion and use of
multiple sonar rangefinders could improve localization performance. Fairfield
and Wettergreen [2008] used this technique for localizing an underwater robot
by moving to maximize information gathered by sonar sensors against a map.
More recently, Hausman et al. [2016] considered switching between different
modalities of a

Controlling perception systems has also been considered by Ondruska et al.
[2015] for balancing between power usage and localization accuracy. By model-
ing localization uncertainty, the authors demonstrate a policy for disabling the
robot’s visual odometry system when it is not needed, allowing them to save
energy.

5.1.2 Robot Control

The bulk of modern parameter tuning work can be found in the setting of control
and learning for dynamical systems. In particular, there is a large body of work
for tuning parametric gaits to achieve robust and fast motion, explored in the
context of bipeds by Calandra et al. [2014] Wang et al. [2009a] and Endo et al.
[2008], quadrapeds by Chernova and Veloso [2004], Kohl and Stone [2004], and
Röfer [2005], and for snakes by Tesch et al. [2011]. The dynamics of a particular
gait depends heavily on the local environment, making it challenging to model
and predict performance. As such, these works rely on empirical trials using
the robot itself to measure performance and search the parameter space. Many
optimization approaches have been explored, as Chernova and Veloso [2004]
and Röfer [2005] used evolutionary algorithms, while Kohl and Stone [2004]
used numerical gradients and Tesch et al. [2011] used Bayesian optimization.

Also related are works on tuning parameters of classical control algorithms.
Marco et al. [2016] demonstrate learning an inverted mass balancing controller
by optimizing LQR weights, which in turn produce a closed-loop controller.
Berkenkamp et al. [2016] similarly optimize a quadrotor’s flight performance
by applying a conservative “safe” Bayesian optimization approach to tune con-
troller gains.

5.1.3 Optimizers and Solvers

Algorithm parameter tuning has been studied outside of robotics for a while
now, primarily in the computational sciences. Tuning has been demonstrated
for constraint satisfaction solvers by Hutter et al. [2011], for formal verification
algorithms by [Hutter et al., 2007], evolutionary algorithms by Smit and Eiben
[2009], and image denoising by Zhu and Milanfar [2010]. Bourki et al. [2010]
demonstrated tuning a Go-learning algorithm over a discretized configuration
space, and show that a uniform search approach can take advantage of par-
allelization, and in some instances, outperform a model-based search. This is
similar to many of the aforementioned works on gait tuning, such as that by
Kohl and Stone [2004], where multiple robots were used to run tests in parallel.
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We assume in our setting that we have only one robot, but could extend our
approach using the techniques described by Snoek et al. [2012] to parallelize the
Bayesian optimization if there were multiple robots available.

In addition to parallelization, Snoek et al. [2012] and Loshchilov and Hutter
[2016] consider evaluation costs that may arise when tuning hyperparameters of
machine learning algorithms, i.e., training a small versus large neural network.
Kandasamy et al. [2016] consider a related setting where the search algorithm
can evaluate at varying fidelities, or as described in their machine learning ap-
plication, train on varying amounts of data. In this work we use only a single
empirical test to evaluate the performance of the perception system, though
our approach could be extended in the future to incorporate multiple tests of
varying length and thoroughness.

5.2 General Reconfiguration as Optimization

We begin with a high-level comparison of optimization approaches. Optimiza-
tion in general is the task of finding inputs to a function that produce an extreme
value. With this definition, parameter tuning can be viewed as optimizing pa-
rameter values to result in maximum performance. However, optimization is a
broad task applicable to a huge variety of fields.

5.2.1 Characterizing Reconfiguration

To utilize existing work on optimization, we must first classify the parameter
tuning task in optimization terms. Below we consider aspects of parameter
tuning relevant for selecting an appropriate optimizer and relate them to the
previously discussed prior works.

Characteristics of the Input Space

The first distinction we consider is the nature of the variables we seek to op-
timize. Parameters are quite varied in nature, sometimes involving mixes of
continuous, integer, and categorical variables. Numerical optimization refers to
optimizing continuous variables, integer programming for optimizing integers,
and categorical optimization for optimizing categorical variables. Were we to
try and optimize all of these variable types, we would need to delve into mixed-
variable optimization.

Most of the prior work discussed previously falls into the numerical optimiza-
tion category. For instance, Kohl and Stone [2004] tuned gaits parameterized
by continuous values. A notable exception is the work of Hutter et al. [2011]
on tuning with categorical and numerical parameters. It can be argued that
optimization of group elements, such as viewpoints and poses, demand special
treatment, but these problems can often be transformed into a numerical opti-
mization. An example of this can be found in the work of Grisetti et al. [2010]
for the case of graph-based SLAM.
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Due to scope and complexity, we restrict ourselves to consider only con-
tinuous variables. In practice, many integer-valued parameters can be well-
represented as continuous variables due to their high resolution. Further, the
bulk of parameters in the systems we consider are numerical in nature. For com-
pleteness, we will discuss possible extensions to our work for the mixed-variable
setting as well, but do not show any experiments.

We also note that many perceptual systems have anywhere from two or
three to dozens of tunable parameters. As such, we would like an approach
that can scale to roughly 20 or so parameters. This puts us in the middle
range of typical optimization dimensionality: neither very low-dimensional nor
high-dimensional.

Knowledge of the Objective Function

Next we consider the objective function we are seeking to optimize. In parameter
tuning, we desire to optimize the expected performance of the system. As
discussed in Chapter 4, this is typically evaluated by executing the system and
observing the performance on-site. Thus, we can query the objective function
to determine the performance of a particular configuration, but do not have
an analytical form of the objective function. The lack of knowledge of the
objective function’s form means it is difficult to use analytical models to find
good parameters without interacting with the system itself. As such, a more
practical approach is to sequentially test configurations on the system itself to
provide feedback for the optimizer, a regime referred to as sequential black-box
optimization.

The black-box formulation is common in robotics, as the complexity of in-
teractions generally precludes analytical modeling. For instance, the work by
Chernova and Veloso [2004] and many other authors on optimizing quadruped
gaits involves many complex dynamical interactions. Similarly, there is very
little theory for predicting the effects of machine learning hyperparameters, the
task of interest to Snoek et al. [2012]. The effectiveness of these approaches
comes from their use of the system itself, as opposed to relying on inaccurate
analytical models.

Characteristics of the Objective Function

Perception systems interact with the world, and thus, can exhibit a significant
amount of randomness in their behavior. This is discussed in Chapter 4, and
though we discuss methods for reducing variance in performance estimates, it
is impossible to remove entirely. Thus, the performance of a particular configu-
ration may vary between repeated queries, meaning that the objective function
is noisy. This is referred to as a stochastic optimization problem.

Stochasticity as a property often comes with a black box formulation as a
necessity. In other words, the cost of being agnostic about the objective function
is inexplicable variance. For instance, executions of the same quadruped gait
may result in slightly different motions due to variations in initial conditions,
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unmodeled effects, etc. As such, Kohl and Stone [2004] used the average of
multiple evaluations of a gait to compensate for stochasticity. An alternative
approach is that used by Tesch et al. [2011], which is to use an optimization for-
mulation that explicitly models stochasticity. Appropriately enough, the work
by Zhu and Milanfar [2010] on denoising images uses a noiseless optimization
approach, as the denoising algorithm itself is deterministic.

We also note that the objective function itself may not be very smooth.
Parameters controlling discontinuous behavior, such as outlier rejection thresh-
olds, may dramatically affect the performance for small perturbations. This
also means that the behavior of the performance may vary dramatically across
the entire configuration space, and thus searching in a small local area may not
be a reliable way to find good performance. Further, we do not desire to rely
on a good initialization for a local search. Together, these factors mean that we
desire a global optimization over the entire configuration space.

Discontinuity in the objective is quite common in robotics applications and
locomotion in particular, as contact forces are inherently discontinuous. As such,
changing the gait of a quadruped ever so slightly may dramatically change its
behavior. Röfer [2005] use a gradient-free optimization approach to compen-
sate for these discontinuities, whereas Wang et al. [2009a] use an optimization
approach that smooths out objective discontinuities by introducing stochastic-
ity in the optimization process itself. Other works explicitly rely on objective
continuity and smoothness, such as in the case of Berkenkamp et al. [2016] to
safely search the input space.

Optimization Quality Criteria

Finally, we also consider the desired outcomes and constraints for our optimiza-
tion task. First, we desire that self-tuning be done in a relatively short time.
Since evaluating the objective function corresponds to executing the physical
robot, methods that require a large number of evaluations will require a large
amount of time to tune. We can translate this desire as an upper-bound on the
number of evaluations allowable. This is often referred to as budgeted optimiza-
tion or sample-efficient optimization.

Sample efficiency is particularly important in robotics and machine learning,
as executing a robotic or learning system many times can be quite resource-
intensive. For instance, the work by Tesch et al. [2011] uses an optimiza-
tion approach specifically designed to be sample efficient, as running trials on
the snake robot requires considerable time. In contrast, Bourki et al. [2010]
demonstrate the effectiveness of a highly parallelizable but otherwise extremely
sample-inefficient optimization approach, as their Go-solving algorithm is easily
executed on a large number of servers.

We also do not require that the output of the optimization be the globally-
optimal parameters. Putting aside the fact that this is infeasible in our setting,
we intuitively only require that the optimization produce a sufficiently perfor-
mant configuration. This is often referred to as near-optimality or approximate
optimization.
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The importance and practicality of searching globally varies across applica-
tions. For instance, the quadruped gait tuning work by Kohl and Stone [2004]
relies on improving an existing gait, whereas that of Tesch et al. [2011] on snake
gaits does not use any initial information. This is justified by Kohl et. al. as due
to poor initializations resulting in extremely slow learning, whereas the learn-
ing process gets stuck in local minima when starting from finely hand-tuned
initializations. In contrast, the gait parameterization for the snake is relatively
low-dimensional, such that most gaits result in useful motion. In both of these
cases, global search is important to avoid the plethora of poor local minima,
but once a good gait is found, it is practical to rely on local refinement. In
contrast, Bourki et al. [2010] note that the hyperparameters of their solver vary
dramatically depending on the application, and as such, they cannot rely purely
on local refinement.

5.2.2 Black Box Optimization Approaches

Here we review common numerical optimization algorithms and discuss their
applicability to parameter tuning, focusing on sample efficiency and robustness
to stochasticity. For consistency with existing literature, we will discuss algo-
rithms for a maximization task, though our task is actually a minimization.

Nelder-Mead Simplex (NMS)

NMS is a well-known algorithm with good empirical performance, but few the-
oretical guarantees. At a high level, NMS maintains a set of points in the input
space that define a simplex in which the optima is believed to exist. It uses a set
of heuristic updates to shift, shrink, and expand this simplex by evaluating the
objective at new points. However, NMS does not compensate for stochasticity
and has been shown by Han and Neumann [2006] to be sample inefficient in
higher dimensions, making it a poor candidate for parameter tuning.

Covariance Matrix Adaptation (CMA-ES)

Introduced by Hansen and Ostermeier [2001], CMA-ES can be thought of a
standard evolutionary algorithm where the population of individuals is param-
eterized by a multivariate Gaussian. At each iteration, individuals (inputs)
are sampled from the population distribution and evaluated. The population
is then updated according to the individual fitnesses (objective) to favor high-
fitness individuals. CMA-ES is known to be robust to noisy evaluations and be
relatively efficient in high dimensions with potential for parallelization due to
its generation-based iterations. It is also unaffected by affine transformations of
the input space when the population covariance is allowed to be dense, making
it overall quite effective as a generic black box optimizer. CMA-ES has seen
success in generic numerical optimization as well as machine learning for hyper-
parameter tuning Loshchilov and Hutter [2016] and in dynamic legged walking
community for optimizing control algorithms Wang et al. [2009a].
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Numerical Gradients (NG)

We use the term “numerical gradients” to refer to a large family of algorithms
which estimate the gradient of the objective with respect to the inputs by sam-
pling the objective function around a linearization point. In some cases the
sample deviations are regularly spaced, as in Kohl and Stone [2004], whereas in
others they are normally distributed Mania et al. [2018]. Once estimated, the
gradient is used to increment the linearization point towards a local optima,
and the process is repeated until convergence.

Previous applications of NG methods to reinforcement learning for physical
systems by Kohl and Stone [2004] and simulated systems by Mania et al. [2018]
have shown them to be robust to stochasticity in relatively high dimensions.
However, these methods are still dependent on initializations, and thus must be
restarted many times to assure good performance, making their sample efficiency
too low to be practical for tuning physical systems.

Uniform Random Search (UR)

UR is often studied as an exercise, but in fact exhibits good theoretical prop-
erties. Random sampling can be generated in a number of ways to reduce this
variance. Random search is easy to parallelize, making it ideal for tasks such
as hyperparameter tuning, where it can be surprisingly effective Bergstra and
Bengio [2012], Hutter et al. [2011]. However, it is unlikely that we will have
opportunities to parallelize tuning on physical systems, as this would require
multiple robots. Nonetheless, UR provides a reliable baseline for determining
the difficulty of a particular optimization task.

Bayesian Optimization (BO)

Bayesian Optimization (BO) is a black box optimization technique that incor-
porates objective function queries into a model of the objective function, which
is then used to select new promising queries. These approaches can be highly
sample-efficient if the model and search strategy are well-matched to the task.
As such, BO and its variants have seen success in applications where querying
the objective function is expensive, i.e. running an experiment on a robot, and
has been demonstrated for quadrotor tuning by Berkenkamp et al. [2016] and
for snake gait learning by Tesch et al. [2011].

BO approaches can be classified largely by their query strategy and choice
of model. Popular query strategies include Expected Improvement, which was
used by Tesch et al. [2011], SafeOpt Berkenkamp et al. [2016], and Upper Con-
fidence Bounds Srinivas et al. [2010]. Most of these approaches use a Gaussian
Process (GP) to model the relation between inputs and objective, as GPs can
naturally account for stochasticity and can report both mean predictions as well
as uncertainty. Other approaches, such as work by Hutter et al. [2011], uses a
Random Forest to incorporate both numerical and categorical parameters.

In our work we use the Gaussian Process Upper Confidence Bound (GP-
UCB) algorithm, first proposed by Srinivas et al. [2010]. GP-UCB is simple and
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easy to implement, and has been proven to have good cumulative regret bounds
if the true objective function is appropriately representable (has low reproducing
kernel Hilbert space norm). Recently, GP-UCB has also been shown to have
good simple regret bounds for the commonly used squared exponential (SE) and
Matérn kernels by Scarlett et al. [2017].

The GP-UCB algorithm models the objective function with a Gaussian Pro-
cess model that integrates all previous queries. At each iteration t, the algo-
rithm queries the input xt with the highest upper confidence bound ϕt(x) which
is given (with high probability) by:

ϕt+1(x) = µt(x) +
√
βtσt(x) (5.1)

xt = arg max
x∈X

ϕt(x) (5.2)

where µt(x) and σt(x) are the mean and standard deviation predicted at input
x by the GP model, and βt is a scheduled exploration rate.

Multi-Fidelity Bayesian Optimization (MFBO)

MFBO is an extension of BO which considers optimizing an objective using
biased lower-fidelity objectives that are cheaper to evaluate. In our setting, this
corresponds to running a faster evaluation using a smaller benchmark, which
gives an evaluation biased from the full benchmark in an unknown way. MFBO
provides a principled way of using a hierarchy of such lower-fidelity objectives
to quickly explore the input space and gradually expend more effort refining
promising areas.

Conceptually, MFBO is very similar to BO, though instead of a single objec-
tive function f(x) we now consider a series of objective functions f (m)(x), m =
0, . . . ,M , where each function has a level of fidelity m with f (M)(x) at the
highest fidelity equal to the objective function we wish to optimize. Intuitively,
we would like these lower fidelity functions to represent objective queries that
use fewer resources, but which also return less information. The example used
by Kandasamy et al. [2016] in the original presentation of MFBO is a machine
learning hyperparameter tuning task: We would like to find parameters that
maximize validaiton peformance as quickly as possible, but running learning on
the large dataset is time-intensive. Instead, we can learn on a subset of the
data, but this will return a slightly incorrect validation performance. Impor-
tantly, these errors will be biased due to the data selection, and as such, we
cannot simply represent lower fidelities as higher variance observations.

Using this intuition, Kandasamy et al. [2016] define the lower fidelity func-
tions as being within some bias ζ(m) of the true objective function, with higher
fidelities having less bias:

|f (m)(x)− f (M)(x)| ≤ ζ(m) ∀x ∈ X (5.3)

ζ(1) > ζ(2), . . . , ζ(M−1) (5.4)

where X is the optimization domain. This representation can be adapted into
the UCB algorithm discussed for standard BO, as each bias can be thought of
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as an additional upper bound. Modifying Equation 5.1, the bound at iteration
t for each fidelity becomes:

ϕ
(m)
t+1(x) = µ

(m)
t (x) +

√
βtσ

(m)
t (x) + ζ(m) (5.5)

where µ
(m)
t and σ

(m)
t are the mean and variance predicted by a GP at each

fidelity m. Accordingly, the lowest of these upper bounds is the tightest upper
bound, which serves as the UCB acquisition function used to pick the next
sample xt:

ϕt(x) = min
m=1,...,M

ϕ(m)(x) (5.6)

xt = arg max
x∈X

ϕt(x) (5.7)

Maximizing the acquisition function tells us where to next sample the ob-
jective function, but it does not tell us which fidelity to use. The original pre-
sentation of MFBO uses the lowest fidelity for which the uncertainty is greater
than a threshold γ(m):

mt = arg min
m=1,...,M

m|β1/2
t σ

(m)
t (xt) ≥ γ(m) (5.8)

The original presentation of MFBO presents a heuristic algorithm for learn-
ing both the biases ζ(m) and thresholds γ(m) online.

5.3 Experimental Validation

We explore various approaches for automatic parameter tuning with experi-
ments on our KITTI and IMR state estimation systems. Our primary goal is to
determine which optimization algorithms work well in practice for this task. In
addition, we validate that the conclusions of Chapter 4 about the effectiveness
of APE evaluations for parameter tuning by comparing it against tuning with
ground truth. Finally, we seek to demonstrate that parameter reconfiguration
on-site can mitigate performance degradation from contextual effects.

We compare various optimization algorithms using the KITTI system, as it
is relatively easier to run a large number of experiments compared to the IMR.
Conversely, we validate the APE for tuning and demonstrate context adaptation
on the IMR system, as it exhibits more significant contextual variations than the
KITTI dataset. We discuss our procedure in depth below, followed by results
from each of our experiments and a discussion of the results in conclusion.

5.3.1 Optimization Algorithms Tested

We list here the algorithms we consider and describe the particular implemen-
tations used in our experiments. Like in Chapter 4, we use the log SSE loss
on two-dimensional body velocities (ẋ, ẏ, ω) and its corresponding log APE to
quantify the system performance.
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Uniform Random (UR)

We uniformly randomly sample configurations using the random number gen-
erator from the Python numpy package with a fixed seed of 0. We simulate the
effect of repeated UR trials by randomly reordering the samples.

Covariance Matrix Adaptation (CMA-ES)

We use the implementation of CMA-ES from the Python cma package1. In our
experiments we fix the random seed for each trial to be 9000 + i for trial i, e.g.
trial 1 will use seed 9001, etc. We configure the algorithm to use 10 samples in
each iteration, but otherwise use all default parameters.

Bayesian Optimization (BO)

Our BO implementation uses the GPy package2 implementation of Gaussian
Process (GP) models. We use a GP with an Matern kernel (ν = 1.5) with
automatic relevance detection (ARD). Each optimization is initialized with 10
uniformly randomly sampled configurations, with model hyperparameters fitted
after the initial samples and then every 5 samples afterwards. We use the explo-
ration rate schedule form given in Srinivas et al. [2010], but as a function of the
elapsed optimization runtime t as β = αd log(γt), where d is the configuration
space dimensionality. In our experiments we used α = 0.5 and γ = 0.2 with t
measured in seconds, for relatively aggressive exploration behavior.

5.3.2 Test Metrics

We use the following test metrics to quantify the efficacy of various optimizers
and evaluation approaches for parameter tuning, and to quantify the benefits
of on-site tuning for parameter adaptation.

Best Seen Performance

An ideal optimization and evaluation approach will return a final solution that
results in good performance. However, given the variability of different conver-
gence criteria that determine when an optimization is “done”, it is also illus-
trative to consider the behavior of an optimizer as it explores the configuration
space. Specifically, we are interested in seeing what is the performance of the
configuration the optimizer believes is the best seen so far, as this allows us
to infer final solution performance over varying convergence criteria. When
optimizing with APE evaluations, the best seen configuration is the previously
tested configuration with the best APE. As such, the best-seen performance will
sometimes increase over time. We also compute the variance of the best-seen
performance over repeated optimization trials. This gives us insight into how
reliable an optimization approach is.

1https://github.com/CMA-ES/pycma
2https://github.com/SheffieldML/GPy
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Context Suboptimality

We propose to quantify the benefit of on-site adaptation by measuring the
change in performance when tuning in one context and operating in another.
In other words, this suboptimality captures the loss in performance incurred by
ignoring changes in context as the robot transitions between environments.

5.3.3 KITTI Experiments

We ran experiments on the city and road contexts in the KITTI dataset, using
approximately 3 minutes of trajectories for each context. We ran each of the
optimization algorithms on these two contexts using APE evaluations for both
the ICP-LO and SS-VO systems, repeated three times each, for a total of 48
optimizations. For MFBO we created a mid-fidelity evaluation using just one 30
second trajectory in each context, and a low-fidelity evaluation using the first 10
seconds of the mid-fidelity trajectory. All algorithms were given a time budget
of 5 hours, which is approximately 100 highest fidelity evaluations.

Traces of the best-seen performance for the tested optimizers are shown in
Figures 5.1. We also plot the range of parameter values whose performance
surpasses a threshold in Figure 5.2 as a way to visualize the importance and
fineness of each parameter.
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Figure 5.1: Best-seen performances on KITTI tuning with uniform, CMA, and
BO approaches for approximately 6.5 hours of evaluation per trial. Solid lines
denote medians, and filled regions denote extreme ranges for CMA and BO
over 3 trials, and the 5th and 95th percentile performances over 1000 bootstrap
samplings for the uniform results. 80
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Figure 5.1: Best-seen performances for tuning on KITTI with uniform, CMA,
and Bayesian optimization approaches (continued).
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Figure 5.1: Best-seen performances for tuning on KITTI with uniform, CMA,
and Bayesian optimization approaches (continued).
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Figure 5.1: Best-seen performances for tuning on KITTI with uniform, CMA,
and Bayesian optimization approaches (continued).
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Figure 5.2: Ranges of parameters versus performance thresholds as seen across
all optimization trials on KITTI. Dots represent the median of the set of param-
eters performing at least as well as the x-coordinate value, and the shaded area
shows the extreme ranges of the parameters. Note that the upper (rightmost)
threshold range is reduced from the full dataset to show detail.
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Figure 5.2: Ranges of parameters versus performance seen across all optimiza-
tion trials on KITTI (continued).
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Figure 5.2: Ranges of parameters versus performance seen across all optimiza-
tion trials on KITTI (continued).
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Figure 5.2: Ranges of parameters versus performance seen across all optimiza-
tion trials on KITTI (continued).
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5.3.4 IMR Experiments

Informed by the results from the KITTI experiments, we focus on using the
UR and BO algorithms for tuning the parameters of the ICP-LO and DPM-VO
systems in three different contexts, shown in Fig. 5.3.

• lab environment has medium-gloss painted concrete floors, desks, and test
equipment tripods

• tunnel environment has bare concrete floors, and pipes and sandbags
along the walls

• office environment has glossy linoleum tile floors and multiple chairs and
tables

During the experiments we mount our ground truth system cameras along the
upper walls and ceiling in the tunnel and office environments so as to not alter
the local geometry and affect the laser odometry. The camera tripods serve as
part of the local environment in the lab environment.

We use the same system execution procedure in our previous experiments
described in Section 4.4.4, but with a trajectory consisting of a forward and
backward motion, followed by left and right point turns. This trajectory suc-
cinctly tests both the linear and angular tracking performance of the odometry
systems and takes on average eight seconds per execution.

Tuning

We tuned each system 5 times in each context with APE and ground-truth
evaluations for a total of 60 BO trials. Each trial lasted 30 minutes, or approx-
imately 200 evaluations. UR was run once in each context for each system with
the samples permuted for variance computations. In total the tuning experi-
ments consist of 13, 200 evaluations, or 33 hours of robot runtime.

Best-seen performance traces for BO and UR in each context are shown
in Figures 5.4. We again show the distribution of the ten best performing
configurations across all trials in each context in Figure 5.5.
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Figure 5.4: Best-seen performances on IMR tuning with BO and uniform ap-
proaches with approximately 30 minutes of evaluation per trial. Solid lines
denote medians and filled regions denote extreme ranges for the 5 BO trials.
Dotted lines denote the median over 1000 bootstrap samplings of the uniform
evaluations. 89
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Figure 5.4: Best-seen performances on IMR tuning with uniform and BO ap-
proaches (continued).
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(e) DPM-VO office
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Figure 5.4: Best-seen performances on IMR tuning with uniform and BO ap-
proaches (continued).
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Figure 5.5: Ranges of parameters versus performance thresholds as seen across
all optimization trials on IMR. Dots represent the median of the set of parame-
ters performing at least as well as the x-coordinate value, and the shaded area
shows the extreme ranges of the parameters. Note that the upper (rightmost)
threshold range is reduced from the full dataset to show detail.
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Figure 5.5: Ranges of parameters versus performance thresholds as seen across
all optimization trials on KITTI (continued).
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Figure 5.5: Ranges of parameters versus performance thresholds as seen across
all optimization trials on KITTI (continued).
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Cross-Environment Comparison

To test the benefit of tuning on-site, we evaluated the 3 top-performing config-
urations from each tuning trial in each environment 5 times each. This means
each top configuration is evaluated 15 times each, which comes to a total of
2, 700 comparison evaluations. We report the corresponding RMS for the APE
and SSE evaluations across these comparative evaluations in Figures 5.6, 5.7,
5.8, and 5.8.
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Figure 5.6: Box plot of top DPM-VO configurations’ RMS-APE in test envi-
ronments when tuned on training environments indicated by legend. Median
is shown by white line, box denotes upper and lower quartiles, and whiskers
denote 5th and 95th percentiles with outliers shown as circles.
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(a) DPM-VO RMS-SSE tuned using APE
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(b) DPM-VO RMS-SSE tuned using SSE

Figure 5.7: Box plot of top DPM-VO configurations’ RMS-SSE in test envi-
ronments when tuned on training environments indicated by legend. Median
is shown by white line, box denotes upper and lower quartiles, and whiskers
denote 5th and 95th percentiles with outliers shown as circles.
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(a) ICP-LO RMS-APE tuned using APE
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(b) ICP-LO RMS-APE tuned using SSE

Figure 5.8: Box plot of top ICP-LO configurations’ RMS-APE in test envi-
ronments when tuned on training environments indicated by legend. Median
is shown by white line, box denotes upper and lower quartiles, and whiskers
denote 5th and 95th percentiles with outliers shown as circles.
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(a) ICP-LO RMS-SSE tuned using APE
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(b) ICP-LO RMS-SSE tuned using SSE

Figure 5.9: Box plot of top ICP-LO configurations’ RMS-SSE in test environ-
ments when tuned on training environments indicated by legend. Median is
shown by white line, box denotes upper and lower quartiles, and whiskers de-
note 5th and 95th percentiles with outliers shown as circles.
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5.3.5 Discussion

Comparison of Optimization Approaches

We discuss first the effectiveness of the various tested optimizers in our exper-
iments. Starting with the KITTI ICP-LO experiments, we see in Figures 5.1a
and 5.1c that BO consistently obtains the lowest APE by the end of each trial.
CMA performs reasonably well on the ICP-LO city condition, but has very
high variance on the more challenging ICP-LO road condition. In both cases,
UR performs the worst, but is surprisingly competitive against the focused op-
timization approaches. We will return to this observation in a later section.
BO’s superior APE performance translates to SSE as well, across all trials in
Figure 5.1b and on average in 5.1d. The better lower-bound SSE performance
of CMA on the ICP-LO road condition does not originate from a lower APE,
and as such can be attributed to either SSE variance or a disparity between the
APE and SSE.

Performance is mixed for the SS-VO conditions. Looking at the APE for the
SS-VO city condition in Figure 5.1e, we see that CMA performs best, followed
by UR, and finally BO. The corresponding SSE in Figure 5.1f show UR perform-
ing best, however, with BO exhibiting large variance between UR and CMA.
However, the magnitude of this variance (±0.2 SSE and ±0.1 APE) are fairly
small already. Improving this result likely requires improving our performance
evaluation approach. On the SS-VO road condition, seen in Figures 5.1g and
5.1h, BO outperforms the other two methods on average, but exhibits high vari-
ance, while CMA shows very low variance. This may suggest that the objective
function had large local minima basins that trapped CMA, whereas the more
aggressive BO was able to wander into better minima on 2 out of the 3 trials.

Since these initial results suggest that BO is more effective than CMA in
some cases, and not much worse in others, we tested only UR and BO on the
IMR system, but consider using both APE and SSE evaluations to guide the
search. The resulting SSE performances on the DPM-VO conditions, seen in
Figures 5.4a, 5.4c, and 5.4e, show that running BO with APE evaluations is
competitive against running BO with SSE. We note also that UR with APE
performs poorly in these tests, while UR with SSE performs surprisingly well,
but defer discussion of this point to a later section.

BO with APE performs less favorably on the IMR ICP-LO conditions, with
high variance in the nshhb and office conditions shown in Figures 5.4b and 5.4f,
and a poor median in the tunnel condition shown in Figure 5.4d. UR with APE
performs particularly poorly in the ICP-LO nshhb condition, suggesting that
these issues may be due to poor APE-SSE parity. However, on the ICP-LO
office condition, UR with APE is relatively monotonic compared to BO with
APE, while UR with SSE outperforms BO with SSE. This suggests that the BO
search tends to get trapped in local minima for this test condition, regardless of
the evaluation approach, resulting in high variance. This may also explain the
very large variance of BO with APE on the ICP-LO tunnel condition, which
overall exhibits similar traits as the ICP-LO office results.
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Overall we see that in many cases using BO with APE evaluations can
reliably find high-performing configurations. In some other cases we note that
there are issues with the APE-SSE parity, and in yet others we see that BO
gets trapped in poor local minima. We believe that both of these issues can be
addressed in future work.

Effective Difficulty of Parameter Tuning

We revisit our earlier observation of UR performing competitively against both
CMA and BO in many of our experiments, despite the dimensionality being
large (> 6) and the number of evaluations being low (100− 200). One possible
explanation is that shape of the objective functions does not sufficiently fulfill
the assumptions used by CMA and BO, resulting in suboptimal performance.
However, this seems unlikely, as we would expect this to result in high variance,
but CMA and BO are mostly consistent across our experiments.

Instead, we believe this suggests that the effective dimensionality of the
tuning optimization task is small. In other words, the number of important
parameters for tuning is much less than the total number, such that UR is
able to relatively densely sample the entire configuration space. Looking at
the spread of ICP-LO parameters from the KITTI experiments in Figures 5.1a
and 5.1c, we see that θ2 and θ3 exhibit a nearly full spread even at the lowest
APEs, while θ1, θ5, and θ6 are spread over half the normalized range. Only
θ0 and θ4 show aggressively decreasing spreads resulting in effectively a point
at an extreme value. As such, UR is actually sampling in an effectively 2 or 3
dimensional space.

On the SS-VO conditions in Figure 5.2e and 5.2g, most parameter ranges
narrow slowly with decreasing APE. The final dramatic narrowing in Figure 5.2g
occurs due to a few exceptional configurations found by BO in one trial. Since
there are so few samples at this performance level in this condition, we cannot
draw any strong conclusions about the parameter fineness here. Nonetheless,
the results from the SS-VO city condition supports the hypothesis that the
effective dimensionality for achieving near-optimal performance is small.

We note that it may be possible to discover and take advantage of this
reduced dimensionality for faster and more robust optimization. If we believe
that the low effective dimensionality arises from individual parameters in an
independent way, we could apply the work of Kandasamy et al. [2015] on additive
GP kernels for finding these subspaces. Alternatively the work of Djolonga et al.
[2013] proposes to more generally discover the objective subspace.

Importance of Refinement to APE-based Tuning

We noted earlier the particularly poor performance of UR with APE on the IMR
ICP-LO nshhb condition, and to a lesser degree on the DPM-VO nshhb con-
dition as well. In these test conditions, the SSE of the best-seen configuration
increases with more samples, suggesting that the APE-SSE parity is particu-
larly poor in a few instances. This does not seem to affect the BO with APE
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approaches as much, however, which still manage to perform competitively in
these conditions, though with increased variance. One hypothesis is that par-
ity may be negatively correlated with APE performance, such that lower APEs
generally have better parity. As such, actively optimizing the APE, for instance
with BO, leads us to better APES with better corresponding SSE bounds.

As an aside, we note that the process of discovering low parity configura-
tions in the course of optimization proivdes invaluable feedback for discovering
sources of overconfidence and refining the perception system itself. For instance,
while tuning the ICP-LO system in hallways, we discovered that certain parallel
degenerate geometries were resulting in the system becoming highly confident
that the robot was not moving. Similarly, we discovered a variety of boundary
cases when dealing with empty disparity images on our DS-VO system.

Benefits of Context Adaptation

We now turn our attention to the results from the cross-environment IMR ex-
periments, starting by comparing tuning using APE versus SSE. In Figures 5.6a
and 5.6b, we see that tuning the DPM-VO system using APE results in consider-
ably lower APE losses across all conditions, and also with lower variance across
trials. This same trend is true when looking at the SSE losses in Figures 5.7a
and 5.7b for the nshhb and office environments, but not significantly so for
the tunnel environment. This suggests that optimizing the APE gives more
consistently performant configurations, possibly due to the issue of serendipity
discussed in Chapter 4.4.6. The same trends can also be seen for the results on
the ICP-LO system, where tuning with APE gives better APE performance, as
seen in Figures 5.8a and 5.8b, as well as SSE performance, as seen in Figures 5.9a
and 5.9b.

Looking across conditions, starting with the DPM-VO system tuned using
APE seen in Figure 5.6a, we see that tuning and testing on the same environment
gives the best APE performance. In some cases, such as tuning on nshhb and
testing on office, the benefit is not significant, but the worst cases, such as
tuning on nshhb and testing on tunnel, are dramatic. The same is true for the
SSE performances reported in Figure 5.7a. This shows that adapting to context
on-site can allow systems to avoid potentially catastrophic worst-case scenarios.

For the results on the ICP-LO system, however, we see in Figures 5.8a and
5.9a that there is relatively little difference in APE and SSE performance when
tuning and testing across environments, aside from slightly reduced variance.
This may be because the environments we tested in did not exhibit significant
contextual variation for the ICP-LO system, whereas the surface texture vari-
ations across environments were important for the DPM-VO system. As such,
the ICP-LO system can be considered relatively context-free in this deployment,
but nonetheless benefits slightly from adapting on-site.

It is interesting to note that the benefits of tuning and testing on the same
environment are not as strong when tuning with SSE, and in some cases, worse
than tuning on a different environment. This can be seen in the SSEs for the
DPM-VO system shown in Figure 5.7b, where tuning on nshhb and testing on
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office gives a lower median SSE than tuning on office. Similarly for the
ICP-LO system, in Figure 5.9b tuning on office and testing on tunnel is
better than tuning on tunnel. This may be due to the difficulty of optimizing
the SSE, as seen in our tuning experiments, as well as serendipity resulting in
higher variance configurations being returned.
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(a) lab

(b) tunnel

(c) office

Figure 5.3: The three test environments used in the IMR experiments.
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Chapter 6

Predicting Perceptual
Failures

Previously we presented parameter tuning as a mechanism for adapting to con-
textual variations after deployment. However, even perfect parameter tuning
does not completely eliminate the possibility of perception failure, as some situa-
tions may simply be outside the operating capabilities of a system. For instance,
no amount of tuning will allow a visual odometry system to estimate motion
when there is no scene appearance texture. The best recourse in these situations
may be to simply avoid the situation in the first place, or as the old adage goes,
“an ounce of prevention is worth a pound (16 ounces) of cure.”

To predict failure, we must first understand the complex interactions be-
tween perception systems and the context. However, modeling this relation is
complicated by the wide variety of environment and system-dependent factors,
as well as stochasticity in the system behavior itself. As such, elegant analyt-
ical approaches are only possible when deep prior knowledge is available. For
instance, an engineer may understand that glare strongly affects a particular
visual odometry system, and can thus design an algorithm to predict its effects.
Unfortunately, the most critical contextual effects are often, by nature, the ones
not anticipated by the system designers.

Instead of relying on hand-engineered rules and heuristics, we propose that
systems should learn performance models from their own experiences. This does
not wholly eliminate failures, but instead allows systems to avoid repeating past
failures. In particular, we are interested in predicting performance directly from
sensor data to make our overall approach general and easy to apply.

To be practical in a robotics setting we need a learning approach that de-
mands relatively little computational and data resources during deployment.
One approach is to aggregate large amounts of data from different deployments
into a single general model. However, it is difficult to adapt such complex mod-
els on-site in the event that the system is deployed to an environment not in the
training data. Instead, we opt for a local learning approach which focuses on
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using data collected on-site to learn a less general, but more specialized model.
In this chapter, we first discuss relevant prior work on this topic before

presenting our formulation. We then discuss three possible modeling approches
in depth and present comparisons through experiments on the IMR system. Our
experiments demonstrate the viability of our modeling approach in general for
predicting perceptual failure.

6.1 Related Works

Our approach to performance prediction draws upon prior work in introspection,
local learning, and density estimation. We cover relevant works from these fields
below.

6.1.1 Introspection

Recently the term introspection has come to refer to predicting when a percep-
tion system will fail. The majority of approaches in this vein utilize machine
learning techniques to generalize past experiences of failure. Zhang et al. [2014]
demonstrated predicting failure in segmentation, classification, and other algo-
rithms directly from image content. More recently this was extended by Saxena
et al. [2017] to predicting whether a monocular depth estimation algorithm
will fail using a deep neural network. Both of these approaches relied on large
amounts of labeled data and offline training, though the work in Saxena et al.
[2017] uses a self-supervised approach. Another highly relevant work is that
of Gurau et al. [2017] on learning the local performance of a pedestrian detector
in different outdoor locations. The authors propose a system that aggregates
experiences within locations, and show that separating experiences based on
location appearance changes improves prediction quality. Other works explored
location Churchill et al. [2015] and appearance Dequaire et al. [2016] as context
for predicting the heuristic performance of a visual odometry system.

Distinct from these learning-based approaches is the work of Grimmett et al.
[2016], which proposes analytical methods for determining when queries to a
classifiers are well-constrained by the training data. This allows a system to
reason about potential failures without needing to experience them.

6.1.2 Local and Online Learning

Some of the earliest work on local and online learning for robots was that of
Wellington and Stentz [2006], who proposed near-far learning for long-range
terrain classification. In this framework, features of distant terrain are later
associated with accurate near predictions to gather examples without supervi-
sion. A similar approach has been used for learning online to detect obstacles
at long range from appearance, with an online non-parametric distribution used
by Happold et al. [2006] and a neural network by Hadsell et al. [2009]. More
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recently, Hawke et al. [2016] used an unsupervised learning approach to improve
the performance of a pedestrian detector over multiple deployments.

6.1.3 Density Estimation

There is a broad body of literature on the topic of density estimation, or pre-
dicting the value of a probability density function. In general these approaches
can be classified as non-parametric or parametric in nature.

We begin with the non-parametric approaches, of which the most well known
is the Parzen-Rosenblatt Window approach, developed independently by Rosen-
blatt [1956] and Parzen [1962]. This approach is now more commonly referred
to as kernel density estimation (KDE), referring broadly to techniques that rep-
resent a probability density function with a set of kernel basis functions. KDE
has been applied to a number of tasks, for instance, Yeung and Chow [2002]
use an estimate of normal network behavior density to classify unlikely behav-
iors as intrusions. Gerber [2014] use KDE to aggregate Twitter data for crime
prediction. Elgammal et al. [2002] use KDE to model the distribution of image
pixel intensities for segmenting foreground and background.

Aside from KDE are the closely related nearest neighbors approaches, which
have been studied alongside KDE for many decades Mack and Rosenblatt [1979].
Nearest neighbors approaches model probability density with the empirical den-
sity of training data. These approaches have been explored for image classifica-
tion by Boiman et al. [2008] and for KL-divergence computation using sampling
by Wang et al. [2009b]. Related is work by Wu et al. [2014] using random-forests
for density estimation to rapidly classify streams of data.

Finally there are the histogram-based representations of density, such as that
used by Happold et al. [2006] for modeling the conditional relation between
image features and traversability. Histogram representations can have issues
with discretization errors, but can still find use due to their computational
efficiency.

The other class of density estimation approaches are the parametric ap-
proaches. These methods fit parametric density functions to data, and are
related to system identification approaches, such as that of Ghahramani and
Roweis [1998]. For instance, Stauffer and Grimson [1999] model the distribu-
tion of image pixel intensities for background segmentation like Elgammal et al.
[2002], but with a Gaussian mixture model (GMM) instead. Singh et al. [2010]
use GMMs to model the multi-model distribution of loads in a power distribution
network, and Laxhammar et al. [2009] compare GMMs to KDE for detecting
anomalous marine vessel movements and find that the two are comparable for
their setting.

6.2 Failure Prediction as Density Estimation

Before we can discuss predictin failure, we must define what it means for a per-
ception system to fail. Our statistical formulation of perception already suggests
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a straightforward and intuitive definition of failure as performance exceeding an
application-specific threshold λ.

In what situation, though, will we be predicting if failure is likely? Recall
that our setting is a robot operating autonomously in a deployment, and that
our goal is to avoid situations which may result in failures. Thus, the latent x is
not available, though the estimate x̂ is. If we assume that this failure predictor
will be learned after tuning is done, then we know that the configuration θ
will be fixed. Finally, recall that in Chapter 3 we abstained from choosing a
representation for context due to its complexity. Thus, it seems that the best
we can do is attempt to predict whether failure will occur over all latents x and
contexts φ given the estimate x̂ and observation z. We argue, this is an ideal
setup, as it involves marginalizing out factors beyond the perception system’s
control while using all tangible observed quantities.

Having established a setup, we must decide on an overall approach. It is
tempting to treat this task as classification, where we collect many examples
of whether ρi > λ along with corresponding estimate x̂i and observation zi to
learn a classifier. However, this approach has two issues.

First, the stochasticity in mapping from latent x and context φ to observation
z, estimate x̂, and finally performance ρ may not be homoscedastic, but rather,
heteroscedastic. In other words, the variation in observed performances ρ may
vary across the latent and context spaces. For instance, a visual odometry
system may perform reliably in a well textured environment, but erratically
when lighting conditions are poor. Most standard classification and regression
approaches assume homoscedasticity and can perform poorly when learning on
heteroscedastic data Kersting et al. [2007].

Second, observing only whether the system fails or not discards useful infor-
mation in the scale of the losses incurred, and can also make the modeling task
difficult when losses are near the threshold. With these considerations about
stochasticity and information in mind, we propose to predict failure by modeling
the distribution of losses given the observation and estimate, or p(ρ|z, x̂).

6.2.1 Learning a Density Estimate

Formally, we denote the distribution model as p̂ : Z 7→ S, where S is the space
of probability distributions over real-valued scalars R. Given examples of actual
observations zi and estimates x̂i and their corresponding measured performances
ρi, we can quantify the quality of a distribution model by its log-likelihood for
the observed data:

L(p̂) =

N∑
i=1

log (p̂(ρ|zi, x̂i)) (6.1)

When this criteria is used to fit or select models, the procedure is commonly
referred to as maximum likelihood estimation, or MLE. If prior information
about the model is integrated by modifying the log-likelihood function, then it
is a maximum a posteriori or MAP approach. In this work we consider only a
MLE formulation and leave MAP extensions as future work.
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(a) Parametric model (b) Mixture model (c) Non-parametric model

Figure 6.1: The three modeling approaches tested in this work. Training data
are shown as black dots, a query observation ζ is indicated with a dotted line,
and the predicted performance distribution p(ρ|ζ) is shown along the vertical
axis in green. (a) Predicting the performance mean and variance as a function of
observation ζ (b) Mixture representation with components c1 and c2 predicting
performance by conditioning on ζ (c) Computing performance statistics from
k-closest training instances.

6.2.2 Distribution Modeling Approaches

We describe here three approaches for modeling distributions using data. It is
important to note that since we do not have ground truth for the conditional,
we cannot simply formulate this as a distribution regression task. Rather, as
previously mentioned, our data is pairs of received observations and resulting
performances which a model must “explain”.

Parametric Conditional Distribution

Parametric approaches use a function fυ defined by parameters υ ∈ Υ to predict
a representation of p̂(ρ|z) given the observation z as input. The advantage of
a parametric approach is that we can efficiently optimize the function param-
eters by using the gradient of the predictor log-likelihood with respect to the
parameters:

∂

∂υ
L(p̂υ) =

N∑
i=1

∂

∂υ
log (p̂υ(ρi|zi)) (6.2)

=

N∑
i=1

p̂′υ(ρi|zi)
p̂υ(ρi|zi)

(6.3)

where p̂υ(ρ, z) denotes the probability of ρ under the distribution predicted by
fυ with input z, and p̂′υ(ρ, z) denotes the gradient of the probability with respect
to the model parameters υ.

For practicality, we will restrict p̂ in this approach to univariate Gaussian
distributions. Since Gaussians can be fully parameterized by their mean and
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standard deviation, our parametric function can be any two-dimensional mul-
tivariate function fυ : Z 7→ R2 that outputs the performance mean and log-
standard deviation. An example of this is shown in Fig. 6.1a

The parametric function class or form can greatly affect the performance
of the approach. It is also common to introduce regularization in the form
of a penalty on the parameters themselves to aide generalization. Typically,
the more powerful the function class, the more parameters it has and the more
regularization is required. This has implications for the optimization complexity
and overall learning efficiency and reliability. In our experiments, we use a
relatively small artificial neural network (ANN) which is described in Sec. 6.3.2.

Parametric Joint Distribution

Mixture modeling approaches model the joint distribution p(z, ρ) with a finite
combination of independent distributions, referred to as the “mixture compo-
nents”. Data (z, ρ) is assumed to be generated by sampling one of the compo-
nents, and then sampling from that component distribution.

A commonly used mixture model is the Gaussian mixture model (GMMs),
shown in Fig. 6.1b, where each component is a multivariate Gaussian. Let ci
be a boolean variable that indicates if observation z and performance ρ was
generated by component i. The joint distribution for k components is given by:

p̂(z, ρ) =

k∑
i=1

p̂(ci)N
([

z
ρ

]∣∣∣∣µi,Σi) (6.4)

µi =

[
µzi
µρi

]
(6.5)

Σi =

[
Σzzi Σzρi
Σρzi σρρi

]
(6.6)

where [z, ρ] is the observation z and performance ρ concatenated into a single
vector. The mixture weight term p̂(ci) describes the prevalence of component i,
and µi and Σi are the mean and covariance for component i, respectively.

To use a GMM for predicting the performance given an observation z we
condition on the observation z for each mixture component. This results in
another GMM:

p̂(ρ|z) =

N∑
i=1

p̂(ci|z)p̂(ρ|z, ci) (6.7)

Inferring the conditional probability of each component p̂(ci|z) is a straight-
forward application of Bayes’ rule:

p̂(ci|z) =
p̂(ci)p̂(z|ci)

p̂(z)
=

p̂(ci)p̂(z|ci)∑N
j=1 p̂(cj)p̂(z|cj)

(6.8)
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We know from properties of Gaussian distributions that the conditional dis-
tribution p̂(ρ|z, ci) is also a Gaussian and can be computed in closed form:

p̂(ρ|z, ci) = N (ρ|µ̃ρi , σ̃ρi ) (6.9)

µ̃ρi = µρi + Σρzi (Σzzi )
−1

(z − µzi ) (6.10)

σ̃ρi = σρi − Σρzi (Σzzi )
−1

Σzρi (6.11)

Mixture models are typically learned using the expectation maximization
(EM) algorithm, interleaving optimizing mixture component parameters and
membership probabilities. Like gradient-based techniques, EM approaches are
only guaranteed to converge to a local minima while being relatively computa-
tionally efficient.

Model selection for GMMs consists of choosing an appropriate number of
components k. In general, fewer components corresponds to greater regular-
ization. Fixed offsets can also be added to the diagonals of the component
covariances Σi to prevent degenerate components. Fitting can also be contin-
ued from a “warm starts” as data is received in an online setting.

Nonparametric Lookup

Nonparametric approaches model functional relationships by utilizing relevant
data examples. By relying on data directly, non-parametric approaches can rep-
resent arbitrarily complex distributions. Examples of common non-parametric
approaches include k nearest neighbors (kNN), Parzen windows, and Gaussian
processes. In this work we consider a kNN approach, illustrated in Fig. 6.1c,
due to its flexibility, simplicity, and computational efficiency.

Non-parametric approaches such as kNNs or histograms are often used to
model distributions empirically. A common approach is to use kNN to retrieve
the k closest seen observations zi to a query z, and then retrieve their corre-
sponding performances ρi. Since the training data are drawn from the same
distribution that generated the query, with a sufficiently dense training dataset
such that zi ≈ z, we can assume that ρi ∼ p(ρ|z). Accordingly, we can use the
corresponding performances ρi to estimate the conditional distribution p(ρ|z).
In this work we approximate the conditional as a univariate Gaussian and thus
compute the empirical mean µ̄ and standard deviation σ̄ over the ρi:

p̂(ρ|z) = N (ρ|µ̄, σ̄) (6.12)

µ̄ =
1

k

k∑
i=1

ρi (6.13)

σ̄2 =
1

k − 1

k∑
i=1

(ρi − µ̄)2 (6.14)

If ρ is bounded, another approach is to bin the ρi into a histogram and use
it as a discrete distribution.
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Figure 6.2: Example showing GMM prediction on DPM-VO dataset. The
shaded region denotes one standard deviation of predicted performance, the
black line shows the observed instantaneous performance, the red dotted line
indicates the failure event, and the shaded red area shows 0.3 secs before the
event.

The quality of a nonparametric model depends on the training data and dis-
tance metric used to define data similarity. Without sufficiently dense training
data, the retrieved ρi may not be representative of the conditional at the query.
A similar issue arises when the distance metric does not describe locality well.

Nonparametric methods vary in their computational and memory require-
ments. kNN is typically implemented with an efficient tree structure over the
training data that allows lookups to be performed in logarithmic time with re-
spect to the quantity of data. However, this implementation of kNN requires all
of the training data to be stored, which can be an intensive memory requirement.
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Figure 6.3: Example showing ANN prediction on DS-VO dataset. The shaded
region denotes one standard deviation of predicted performance, the black line
shows the observed instantaneous performance, the red dotted line indicates the
failure event, and the shaded red area shows 0.3 secs before the event.
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6.3 Experimental Validation

We present results using our proposed technique to model the contextual per-
formance of two vision-based odometry systems for a ground robot.

Our goals in these experiments are as follows: First, we want to test how well
each modeling approach scales to more complex and diverse contexts. Second,
we want to test how sensitive each approach is to different training and test data,
or in other words, how much variance the approach has. Third, we want to test
what information (i.e. raw data, preprocessed, spatial, etc.) is important for
performance modeling. We describe here our experimental process and present
results from our IMR experiments. We then conclude with a discussion and
analysis of these results.

6.3.1 Test Metrics

We quantify the quality of the learned performance models by applying them
to the task of predicting perception failure, defined as falling below a mini-
mum instantaneous performance rmin = 4.0. We predict the probability of
failure occurring by computing the CDF of the predicted conditional p̂(ρ|z) and
thresholding the probability. After classifying all test datapoints, we report the
area under the receiver operating characteristic curve (AUC), as is common
practice for quantifying classification performance. An AUC of 1.0 corresponds
to perfect classification performance.

An issue with reporting performance across trials is that different environ-
ments have different complexities, resulting in changing modeling difficulty. As
such, only part of the variance shown in Figs. 6.4a and 6.4b can be attributed
to learner variance. To normalize for this changing difficulty, we also report
the relative AUC (rAUC), which we define as the difference between the trial
AUC for a test fold and the best AUC for that fold across all other learners and
trials. The best AUC can be thought of as a crude estimate of the maximum
attainable AUC for each fold. The rAUCs are shown also as box-whisker plots
in Figs. 6.4c and 6.4d.

6.3.2 Modeling Approaches Tested

Preprocessing

To aid generalization in all of the tested methods, we follow the example of Si-
monyan and Zisserman [2014] and Simon et al. [2017] and first generate dense
image features using the bottom layers of the pre-trained image classifier VG-
GNet Simonyan and Zisserman [2014]. Razavian et al. [2014] also used pre-
trained features with linear classifiers and reported competitive classification
performance.

This spatially compresses the image by a factor of 4 and produces 128
different response channels, resulting in 12 × 12 × 128 DPM-VO images and
12 × 21 × 128 DS-VO images. We further spatially downsample these features
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by averaging over non-overlapping blocks, with different block sizes for DPM-
VO and DS-VO, to produce 3 × 3 × 128 feature images. Intuitively we expect
that this should preserve high-level spatial relations in the image with relatively
few dimensions.

We use the ubiquitous Principal Components Analysis (PCA) technique for
dimensionality reduction due to its low computational complexity and ability
to be run online in minibatches. This makes it well suited for our local learning
setting. However, PCA is limited to extracting linear subspaces of high dimen-
sional data, and as such is often combined with a non-linear feature transform
to obtain any desired data invariances, ie. image translation invariance.

Parametric Function

We test a small ANN architecture with one convolution layer followed by two
fully-connected layers. Specifically, the convolution layer consists of sixteen
1×1×128 filters, which serve to further reduce the number of response channels
while preserving spatial relations. Both fully connected layers were 32 units wide
with ReLU activations between layers and tanh activations at the final output
layer. The tanh outputs are scaled and shifted to allow mean outputs within
[−6, 10] and log standard deviations within [−6, 3], corresponding to standard
deviations in [0.0025, 20]. The performances in our dataset were clipped to lay
within [3, 8].

We implemented and trained our ANNs in Tensorflow1 using batch normal-
ization and the Adam optimizer with batch sizes of 100 datapoints. Each model
was trained for 300 seconds or until convergence.

Mixture Model

Before fitting the GMM, we first dimensionally reduce and whiten the feature
images using Principal Components Analysis (PCA). For efficiency we used a
minibatch-based PCA algorithm. PCA was performed separately for each trial.
We then fit a GMM to the dimensionally reduced images concatenated with the
performance scalars to model the joint distribution. We regularized the fitting
process by adding 0.1 to the diagonals of the component covariances.

We used 64 GMM components in all of our trials, as adding more components
did not improve validation performance. However, we observed that the number
of PCA components d strongly affected performance, so we repeated fitting for
d ∈ [2, 4, 8, 12, 16] and used the model with the best log-likelihood computed on
10% of the training data held out for model selection. We used scikit-learn2 for
both the PCA and GMM routines.

1https://www.tensorflow.org/
2http://scikit-learn.org
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Non-parametric Lookup

We used the same PCA procedure to dimensionally reduce and whiten the
feature images prior to kNN modeling. We then build a kd-tree-based kNN
model on the dimensionally reduced images. To avoid degenerate predictions,
we enforce a minimum empirical standard deviation of 0.1.

In addition to the PCA components d, we observed that the number of
neighbors retrieved k also affected performance. Like with the GMMs, we tested
d ∈ [2, 4, 8] and k ∈ [8, 12, 16, 20, 24] and used the model with the best log-
likelihood computed on 10% of held-out training data. We used the scikit-learn
implementation of kd-trees and kNN lookup.

6.3.3 Experimental Procedure

We test increasing contextual diversity by training and testing on multiple en-
vironments together. In our trials we tested conditions with one, three, and
five environments, corresponding to 20, 60, and 100 minutes of training data,
respectively.

We also test learning variance by running trials with different training and
test fold assignments within each environment. Testing all possible combina-
tions of environments and train/test assignments requires an impractically large
combinatorial number of trials. As a compromise, we randomly sample 30 trials
for the three and five environment conditions, and used all 15 combinations for
the one environment condition.

Finally, to test the importance of spatial information, we run trials where
the 3× 3× 128 feature images are spatially averaged to size 1× 1× 128 before
learning. Note that this results in a smaller ANN, but only affects the complexity
of PCA for the GMM and kNN approaches. We denote these “no spatial” test
conditions with a “-ns” postfix on the method name, e.g. GMM-NS.

6.3.4 IMR Experiments

We teleoperated the IMR in a variety of environments and collected trajectories
of paired sensor images and performances for the IMR’s floor-facing DPM-VO
and ceiling-facing DS-VO odometry systems. The DPM-VO images were spa-
tially downsampled during collection to 48 × 48 pixels, and the DS-VO left
camera’s images were downsampled to 47× 84 pixels. Both image streams were
temporally downsampled to 10 Hz, and performance was calculated at each im-
age time using discount parameters T = 4 and γ = 0.6.

We collected 30 minutes of data in 5 environments for each system, giving us
a total of 180, 000 datapoints. The test environments were specifically chosen
for contextual variety that results in perception failures, ie. dark black carpet
and textureless ceilings. In our experiments we divide each trajectory into three
10-minute folds. Through all of our trials we use a 2 : 1 ratio of training to test
data, corresponding to training on two folds and holding out the remainder.
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The same sampled trial combinations were used in both the spatial and non-
spatial conditions and on both the DPM-VO and DS-VO datasets, giving 900
total models trained. All experiments were performed on a desktop computer
with a 6-core CPU and a GeForce 1080 GTX GPU which was used for training
the ANN models.

Example traces showing failure prediction for both IMR systems in shown
in Figures 6.2 and 6.3. The AUCs across all trials are shown in Figures 6.4a
and 6.4b as box-whisker plots.
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Figure 6.4: Box-whisker representations of AUC scores across trials and test
folds versus amount of environmental variation. The boxes show the second
and third quartiles with a white line at the median, the whiskers extend to the
1st and 99th percentiles, and remaining outliers are shown as circles.
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Figure 6.4: Box-whisker representations of AUC scores across trials and test
folds versus amount of environmental variation (continued).
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6.3.5 Discussion

Comparing Datasets

Overall we achieve reasonable performance on the DPM-VO dataset, as seen
in Figure 6.4a, with a median AUC around 0.85, and quite good performance
on the DS-VO dataset, shown in Figure 6.4b with the ANN models reporting
around 0.96 AUC.

It is surprising that performance is better on the DS-VO dataset, as we ex-
pect that the DS-VO images of the ceiling exhibit greater diversity than the
DPM-VO images of the floor. However, the DS-VO system has a weaker depen-
dence on the robot velocity, as the ceiling is further away than the floor from the
cameras. Thus, the DPM-VO dataset has a significant amount of stochasticity
resulting from the robot velocity, making it more challenging to predict failures
reliably. This could be addressed by augmenting the observations to make the
velocity more observable.

Comparing Learners

Looking at Figure 6.4a, we see that all methods report similar AUC ranges on
the DPM-VO dataset. In Figure 6.4c, however, the ANN methods have the best
rAUC for one environment while the GMM methods are better for three and
five environments. In contrast, the ANN methods significantly outperform all
the other methods over the whole DS-VO dataset as reported in Figure 6.4b.

One possible cause for the ANN rAUC decreasing is that more DPM-VO
environments increases the stochasticity in the DPM-VO data. This suggests
that the ANN methods cannot handle highly stochastic behavior, possibly due
to overfitting. Alternatively, it may be that the ANN architecture is too simple
to capture the DPM-VO stochasticity, but this seems unlikely since the GMM
methods perform well despite being linear. Correspondingly, these results sug-
gest that GMMs handle stochasticity well.

The KNN methods perform worst out of all of the tested methods across both
datasets, aside from GMM on the DS-VO dataset. The good performance of
GMM-NS on DS-VO suggests that the conditional distribution is not extremely
complex and nonlinear, leading us to conclude that the training data was simply
not dense enough. This hypothesis could be tested by collecting more data and
running more experiments with KNN.

Effect of Environmental Variation

We observe in all of Figure 6.4 very little effect from increasing environmental
variation on both the AUC and rAUCs for all methods. This suggests that our
regularization and model selection procedures are working correctly. The one
exception is on the DPM-VO dataset, where increasing the number of environ-
ments dramatically lowers the 1st percentile for the KNN and ANN methods.
As previously discussed, this is likely due to stochasticity in the data.
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Learning Procedure Variance

All methods exhibit a wide range of AUCs (≈ ±0.15)on the DPM-VO dataset,
as seen in Figure 6.4a, but have a relatively small range of rAUCs (≈ ±0.03)
for one environment, as seen in Figure 6.4c. This suggests that the learning
variance emerges primarily due to DPM-VO environmental diversity, possibly
due to some environments having more stochasticity.

In contrast, the ranges of AUCs on the DS-VO dataset in Figure 6.4b cor-
respond to roughly double the rAUC ranges in Figure 6.4d, suggesting an even
balance between learning stochasticity and variations in environmental diffi-
culty. The ANN methods both exhibit the smallest rAUC ranges (≈ 0.02) for
all DS-VO trials, suggesting that it is the least sensitive to training data.

Spatial Information Tradeoff

Looking across Figure 6.4, we see that removing spatial information has rela-
tively little effect on all the methods and datasets. The exception is GMM being
outperformed by GMM-NS on the DS-VO dataset in Figures 6.4b and 6.4d. One
possibility is that the variation resulting from spatial information takes up the
PCA output dimensions instead of more salient texture information. However,
KNN and KNN-NS perform comparably to each other and better than GMM,
despite using fewer PCA dimensions. This suggests that somehow the spatial
information is causing the GMM model to overfit, possibly by learning a large
number of correlations between spatial dimensions.
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Chapter 7

Conclusion

If a house is only as strong as its foundation, then perhaps we can say that a
robot is only as reliable as its perception system. And just as foundations must
conform to the land to be effective, so must perception systems adapt to their
context.

At the beginning of this work we presented context as a absract concept to
explain perceptual unreliability. With this understanding, we then developed
mechanisms for adapting to context, relying on the ability to interact with and
observe context’s effects while never truly understanding its form. By formaliz-
ing perceptual performance in a modern probabilistic framework, we naturally
derived an approach for evaluating performance without ground truth, the Ap-
proximate Posterior Estimate. This technique is attractively simple, and as seen
in our thorough experiments on a simulated robot, two offline systems, and two
hardware systems, is effective in practice.

By being able to obtain feedback on perceptual quality without requiring
any external feedback, the Approximate Posterior Estimate enables us to de-
velop two powerful mechanisms for context adaptation. The first is the ubiq-
uitous practice of on-site parameter tuning, in effect, changing the behavior
of a perception system to better suit the deployment. To automate this task,
we characterized tuning as black-box optimization, which we deeply explored
through a bevy of experiments. Our results on tuning the parameters of four
KITTI and IMR systems show that widely-used optimization algorithms, es-
pecially Bayesian optimization, can find performant configurations quickly and
reliably. Further, we showed that tuning a system on-site can avoid catastrophic
degredation of performance resulting from context variation.

Still, as they say, “discretion is the better part of valor,” for no amount of
tuning can circumvent some failure modes. For these, we proposed to predict
when failures are likely to occur by learning from past failures. With the ability
to learn from mistakes, we argue, perception systems can close the loop on the
act of perceiving. In our experiments on the two IMR vision systems, we showed
that common modeling techniques, and artificial neural networks in particular,
can learn to accurately predict perception failures in diverse environments from
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only data collected on-site and without external supervision.
We believe that this thesis represents a significant step towards reliable,

general robotic perception. The concepts in this work deal fundamentally with
the limitations of human understanding as applied to engineering, and as such,
will remain relevant even as the state of the art advances relentlessly.

Future Work

Nonetheless, there remain a number of interesting avenues deserving of future
investigation. We detail a few of them here.

Improving the APE

The Approximate Posterior Estimate (APE) is the heart of the mechanisms de-
scribed in this work; when it fails, so does the adaptation. In some sense, the
APE is only as good as the probabilistic models it uses, and as such, poorly
modeled phenomena can degrade APE effectiveness. One particularly problem-
atic issue is that of bias, or systematic errors, which are difficult to detect with
a relatively naive modeling approach like the adaptive Kalman filter (AKF).
The other issue is noise modeling lag in the AKF, which is mostly a concern for
low-bandwidth systems. A potential approach for both of these issues is to rely
on learning approaches for higher fidelity noise models, such as our previous
work in Hu and Kantor [2015] or that of Haarnoja et al. [2016].

Selecting Benchmarks for Evaluation

Our demonstrations have used heuristically-designed fixed trajectories and se-
lected data logs as samples for evaluating system performance in a deployment.
Strictly speaking, Monte Carlo methods do not require samples to be indepen-
dent between expectations, only within computations for an expectation Ji and
Li [2012]. Nonetheless, we expect that care should be given to the process of
generating or selecting these benchmark samples so as to minimize the error in
the Monte Carlo estimate.

From Black to Gray Boxes

Formulating tuning as black box optimization allows us to take advantage of
powerful and general optimization algorithms, but at the cost of being com-
pletely naive about the optimization task itself. Human engineers use much
more information than just the objective value when tuning, whether from di-
agnostics embedded in the system, temporal behavior, or just “a feeling.” One
possible way to formalize this extra information is the concept of instrument
variables from statistics Imbens and Angrist [1994]. Another interesting av-
enue is exploring different evaluation fidelities in a framework such as that of
Kandasamy et al. [2016].
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Tuning with Configuration Libraries

Bayesian optimization provides a relatively sample-efficient way to tune param-
eters on-site, as seen in our experiments. However, our intuition is that there
exist configurations that perform near-optimally in relatively similar environ-
ments. Thus, if we could discover a relatively small library of configurations
that “span” a large variety of environments, we can quickly tune by running
trials over the library. Techniques for selecting from the library using trials are
well developed, in particular in multi arm bandits Jamieson et al. [2014], and
concepts in submodular subset selection may be useful for efficiently building
libraries Krause and Guestrin [2007].

End to End Performance Learning

Our demonstrated work on performance prediction relies on the ineffable power
of pre-trained convolutional neural network features. However, these features
are designed to be interfaced into a large neural network, so it comes as no
surprise that the neural network model we tested generally performs better than
the simpler approaches. Yet, the Gaussian mixture model (GMM) and nearest
neighbor (KNN) offer promising computational advantages. Were it possible
to incorporate these approaches into a larger learning framework, it may be
possible to pre-learn features that are amenable to GMM or KNN learning
online. Recent work from Finn et al. [2017] may be applicable in this regard.

Closing the Loop with Responsive Reconfiguration

We have proposed parameter tuning as a adaptation process to be performed
upon deployment, akin to calibration. However, many parameters can be changed
on-the-fly as the robot operates, allowing much faster, reactive adaptation to
changing contexts. Learning a reconfiguration policy to do this involves rea-
soning about the dynamics of the perception system at a fine granularity. Our
attempts at adapting model-free reinforcement learning techniques to this task,
such as those described by Peters and Schaal [2006], have been hampered
by sample complexity and difficulty dealing with variance. Model-based ap-
proaches, such as that of Deisenroth and Rasmussen [2011], may help with this
aspect.
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