
Using Multiple Fidelity Models in Motion
Planning

Breelyn Kane Styler

CMU-RI-TR-18-15

27 April 2018

The Robotics Institute
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Reid Simmons, Chair

Maxim Likhachev
Siddhartha Srinivasa (University of Washington)

Kanna Rajan (NTNU/UPORTO)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2018 Breelyn Kane Styler

Abstract
Hospitals and warehouses use autonomous delivery robots to increase produc-

tivity. Robots must reliably navigate unstructured non-uniform environments which
requires efficient long-term operation that robustly accounts for unforeseen circum-
stances. However, unreliable autonomous robots need continuous operator assis-
tance, which decreases throughput and negates a robot’s benefit. Planning with high
fidelity models is more likely to lead to more robust plans, but is not needed in many
situations. More specifically, a complex model is an inefficient use of plan-time
computation resources when a robot navigates a flat simple environment, but a sim-
ple model, that can generate plans quickly, may fail to capture complex environment
locales leading to task impediments.

This thesis presents a planning framework that reasons about multiple models
for efficiently generating a single motion plan without sacrificing execution success.
The framework chooses when to switch models and what model is most applicable
within a single trajectory. This has the effect of focusing the use of complex models
only when necessary. The framework also addresses uncertainty by adding variable
uncertainty to models in the form of robot padding. The footprint padding is not
fixed but is automatically chosen during plan-time based on the ability to find robust
plans.

The approach is evaluated by simulating a mobile robot with attached trailer
through various hospital environments. Our simulation experiments demonstrate
that multi-fidelity model switching increases plan-time efficiency while still main-
taining execution success.

iv

Acknowledgments
I’ve greatly enjoyed my time at CMU which includes my early time as a mas-

ter’s student, and an original Girls of Steel mentor (thanks George). I would like to
acknowledge all of my valuable RI friends and colleagues (my support group which
includes my terrific husband), the RI support staff (Karen and Suzanne!), my im-
mediate family (Alex, Amayla(1yr), Morty(crazy vizsla)), and my family (my Dad
[1949-2015] who started my CS path, brother, mom, step-mom, step-father, forever
young 94-yr old grandma, and all extended family including the in-laws). Lastly, I
would like to acknowledge my thesis committee (Max, Sidd, and Kanna!), and most
importantly my advisor Professor Reid Simmons. I am forever indebted to Reid for
all of his mentoring. He is honest and has a keen attention to detail. I will always
respect him as a smart ethical researcher, colleague, and friend. I will miss my time
at CMU.

vi

Contents

1 Introduction 1
1.1 Motivating Robot Examples . 4
1.2 Problem Statement . 4
1.3 Thesis Statement . 4
1.4 Contributions . 5
1.5 Overview . 5

2 Related Work 7
2.1 Models in Robotics . 7
2.2 Mitigating Model Approximation Error . 8

2.2.1 Robust Planning in Robotics . 8
2.2.2 Models with Uncertainty for Navigating Safely 10

2.3 Balancing Planning Time and Execution Success 11
2.3.1 Switching Between Approximate Models 11

3 The Model Hierarchy 13
3.1 Model Definition . 13

3.1.1 Adding Uncertainty to Models . 15
3.1.2 Defining Higher Fidelity and Model Translation 16

3.2 Model Organization . 16
3.2.1 Augmenting the Planning Model Hierarchy for Uncertainty Models . . . 17

4 Planning with a Hierarchy of Models 19
4.1 Plan-Time Model Switching . 20

4.1.1 Motion Plan Generation . 21
4.1.2 Feasibility Detection . 22
4.1.3 Model Selection . 23
4.1.4 Intermediate Goals and Multi-Tree Re-Planning 25

4.2 Plan-Time Model Switching and Uncertainty Models 28
4.2.1 Feasibility Detection . 29
4.2.2 Model Selection with Uncertainty . 31
4.2.3 Intermediate Goals and Multi-Tree Re-Planning with Padding Models . . 32

4.3 Plan-Time Model Switching Discussion and Enhancements 32
4.3.1 False Positive and False Negative Rates 32

vii

4.3.2 Multi-Tree Re-Plan Weighting . 33
4.4 Plan-Time Model Switching Summary . 34
4.5 Formalization of the Approach . 35

4.5.1 Probabilistic Completeness Guarantees 39

5 Implementation for Experiments 43
5.1 Simulation Environment . 43
5.2 Robot Controller . 43

5.2.1 Robot Controller More Details . 44
5.3 Robot Models . 45

5.3.1 Model Hierarchy . 46
5.3.2 Collision Checker . 47
5.3.3 Trajectory Generation with Models . 48
5.3.4 Trajectory Generation More Details . 51
5.3.5 Model Translation . 52
5.3.6 Path Translation Detailed Example . 53

5.4 Reference Path Propagation Details . 56
5.4.1 Feasibility Detector and Model Selection 56

5.5 Path Merging . 59
5.5.1 Path Merging More Details . 59

5.6 Voronoi Implementation for Uncertainty Models 61

6 Testing Environments and Experiments 65
6.1 Testing Environments . 66

6.1.1 Gurney Environments . 66
6.1.2 Swinging Door Environment . 67

6.2 Single Model Performance for Various Environments 68
6.2.1 Single Model Performance for Gurney Environments 68
6.2.2 Single Model Performance for Automatic Swinging Door Environments . 71
6.2.3 Confusion Matrix for Evaluating Checker Versus Controller Performance 73
6.2.4 Single Model Performance Summary 76

6.3 Plan-Time Model Switching . 77
6.3.1 Multi-Tree Weighting Heuristic for Switch Tests 78
6.3.2 Switching for Gurney Environments . 79
6.3.3 Switching for Automatic Swinging Door Environments 82

6.4 Plan-Time Model Switching with Uncertainty 84
6.4.1 Switching for Gurney Environments . 85
6.4.2 Switching for Automatic Swinging Door Environment 88
6.4.3 Plan-Time Model Switching with Uncertainty Discussion 89

6.5 Results Summary . 89

viii

7 Future Work 91
7.1 Improving Feasibility Checking in the Highest Model 92
7.2 Adaptive Sampling for Smarter Planning Search 92
7.3 Representing Uncertainty . 93
7.4 Expansions for Theoretical Guarantees . 94

7.4.1 Guarantees for a Best Model . 94
7.4.2 Guarantees for System Planning Time 95
7.4.3 Guarantees for Path Translation . 96

7.5 Model Selection Extension: Informed Search 97
7.5.1 Model Selection for Base Models Using Informed Search 97
7.5.2 Model Selection for Uncertainty Models Using Informed Search 98
7.5.3 Selecting the Model Based on Environment Features 99
7.5.4 Switching with Risk . 100

7.6 Thoughts on Expansion to an Execution-Based Framework 102
7.7 Thoughts on Dynamic Obstacles . 102
7.8 Notes on Explainability . 103
7.9 Future Work Summary . 103

8 Conclusions 105
8.1 Execution Success . 106
8.2 Plan-Time Efficiency . 106
8.3 Contributions . 107

9 Appendix 109
9.1 Larger Demo Environment . 109

Bibliography 115

ix

x

Chapter 1

Introduction

Autonomous transport robots increase efficiency and productivity of common tasks. For exam-
ple, hospitals utilize robots for medication and linen delivery [72], [9], and autonomous pallet
trucks help keep shelves stacked and organized [57]. For these robots to be usable in the future,
they need to operate dependably, long term. Dependable autonomy is also important in domains
with limited human intervention, such as large teams where operators must divide their attention
between robots [15], [19], or exploration environments unsafe for humans [4], [75]. To be suc-
cessful, these domains require a robot to act independently for long time periods. In these cases,
there is limited operator support, therefore the autonomy of the robot is essential.

Additionally, robots working in environments with humans must dependably execute tasks.
For example, a person having to care for a sick relative could utilize a robot for routine chores
allowing the caregiver to focus time on more meaningful patient tasks. The robot would be ex-
pected to perform assistive tasks without needing constant monitoring. In this case, the reliability
of the robot’s autonomy directly impacts the caregiver’s autonomy. This reliable autonomy is also
important in environments where task operation with humans is not hardcoded, such as hospitals
[61] and homes [88], [34]. Hospitals and homes require successful execution of the same task
over differing conditions. Unlike the static environment present in automotive factories, the robot
must adapt reliably as the task’s circumstances vary.

Robot systems ensure reliable autonomous operation in various ways. Related work, [98],
has enumerated hard coded contingency strategies for plans that deviate from expectation. For
rare situations, however, this enumeration is difficult to pre-determine, as not all cases are seen in
advance. An alternate approach is to learn control strategies [59], but without a model, gathering
enough data to account for these unexpected situations is challenging. These non-model based
approaches suffer because it is impossible to anticipate all possible scenarios.

Model based approaches generalize the planning space with model approximations to cover
unforeseen problems, and, therefore, anticipate a wider range of potential failure conditions. For
planning efficiency, model approximation also allows tractable global planning times. Models
can be of arbitrary fidelity for more accurate interaction modeling. Unfortunately, a single model
is insufficient because it does not anticipate the non-uniform environments encountered during
a robot’s long-term operation. For that reason, model approximation sacrifices model fidelity
for computation feasibility which increases failure rates in complex environment locales where
simple lower fidelity models are insufficient. In summary, a single model may be successful the

1

majority of the time, as the robot encounters common environments, but not in all cases. For ex-
ample, a hospital robot navigating a hallway that largely goes unchanged might assume a simple
model with flat terrain and known obstacles. Issues can occur, however, on a rare busy, rainy day
that introduces puddles and misaligned gurneys to the hallway. Navigating these unforeseen ob-
stacles now requires a more complex environment view, yet was not anticipated. This is why we
take a multi-model approach. Multiple models are useful for unstructured environments which
include open areas appropriate for simpler models and constrained or difficult areas that require
modeling more detailed environment interactions. The decision of which planning model to use
introduces a tradeoff between efficiency and robustness.

Our approach uses a multi-model hierarchy for navigating environments efficiently and ro-
bustly. We want the robot to conserve planning resources when appropriate while also execut-
ing successfully. Efficient planning requires being conservative with the use of complex higher
fidelity models which capture more precise interaction but are often expensive to use. Alter-
natively, a simpler lower fidelity model allows for tractable planning times by decreasing the
planning search space, but fails to capture detailed environment interaction. Therefore, there
should be a balance during planning of when to choose between high or low fidelity models.
This requires reasoning about a model choice. As previous work suggests, [37], it is unclear the
correct interaction level to model for successful task execution. Rather than arbitrarily choos-
ing a planning model, we leverage a hierarchy which organizes models by fidelity in order to
determine the model detail necessary for a particular part of the environment.

Multi-model switching tries to balance the tradeoff between planning efficiency and robust-
ness. Many previous works switch between models for improved planning efficiency but often
limit this to only two tiers. Such works have had success changing the planning resolution lo-
cally around the robot as it travels, [89], or using higher global plans to guide more informed
local planning and search, [48]. Other works have successfully switched between models and
discuss when to switch, but do not specifically search among models to determine what model
is most useful to plan in at a particular point in the task, [32]. We believe reasoning about what
model to use is important for robustness.

If the robot always planned using the highest fidelity model possible, its failure rate would
be reduced, so why not always use the highest applicable model? Planning in the highest fidelity
space may not be necessary at all points during the robot’s task. For example, if the robot is
moving through large unconstrained open spaces that do not require many turns, a lower fidelity
model that only considers geometric planar motion might suffice. Therefore, the highest fidelity
space could be computationally expensive. Secondly, higher fidelity models often require more
information (such as the coefficient of friction of the terrain) that is not known or unavailable.
Without knowing this information, the value in planning in the higher fidelity model is lost.

We provide a planning framework that generates a single motion plan from varying levels of
model fidelity. We switch between a richer set of models than previous work to further balance
planning resources and robust execution success over varied environments. We are not devel-
oping a new planner, but creating a framework for current motion planners to leverage multiple
models. The types of planning models we are focusing on describe state and action information
explicit to the robot’s interaction with the environment. We assume these models are given. We
also assume the higher fidelity the model the more accurately it captures details of robot interac-
tions with the environment and more closely approximates the robot’s underlying controller.

2

We present a probabilistically complete plan-time approach that uses Rapidly Exploring Ran-
dom Trees (RRTs) for path generation over multiple models in continuous space. First models
are organized in a hierarchy based on fidelity. Then an initial motion plan is generated in the
lowest model. The approach then detects whether any parts of the lower fidelity plan are infeasi-
ble for execution. This is done by checking the current plan within the highest possible model in
our hierarchy. The partial infeasible sections of the plan are repaired using re-planning through
model selection. The model selection process autonomously selects the most applicable higher
fidelity model in the hierarchy. This is done by translating lower models into higher models, and
then choosing to re-plan in the model which fails to propagate the infeasible part of the plan.
This higher fidelity model is used to locally plan to an intermediate goal where the previous
lower fidelity plan is resumed.

In addition to varying fidelity models, our approach also reasons among models with added
uncertainty. For low fidelity models, uncertainty can cover imprecise details without requiring
knowledge of specific robot interactions that are hard to capture. Additionally, for higher fidelity
models, adding uncertainty is a way to deal with an inaccurate model that does not match the
robot’s interactions exactly. Our approach reasons about variable amounts of uniform uncertainty
by changing the amount of padding over the robot’s footprint. This type of uncertainty accounts
for inaccuracies in the robot’s motions and sensed obstacle locations. The variable padding
amount is automatically determined at plan-time.

The framework not only determines when to switch between different model types, but also
what model is most appropriate at a given point in the path. We address inaccurate modeling
through model selection. At any point in the plan the model selector either chooses to switch to
a model that includes uncertainty with how the robot interacts or switches to a model with more
accurate fidelity representation. Switching has the effect of combining the robustness of a high-
fidelity plan with the efficiency of an abstract representation by using higher fidelity models only
when necessary. While choosing between low and high fidelity presents a tradeoff between plan
time and execution success, switching among models with variable footprint padding introduces
path cost. Low fidelity models with added padding save on plan time, compared to the highest
model, and increase success rates, but do so at the cost of longer paths. Also, models with
padding sometimes cannot even find a path if there is too much padding. This is why it is
important to not use larger footprint padding amounts than necessary.

Multi-model switching can occur at plan-time or execution time. The decision of when to
switch between models occurs when new information necessary for higher fidelity models be-
comes available. Therefore, it is possible to use a lower fidelity model with more uncertainty and
then switch to a more certain model as information becomes known during execution. Execution
time switching is necessary when new information becomes available that did not exist at plan-
time. Alternatively, if the information is available at plan-time it does not make sense to wait for
the robot to fail before re-planning with a different model.

We ran experiments in a high fidelity physics simulated hospital world with a differential
drive robot. Our testing uses multiple wheeled mobile robot planning models. In our results,
we demonstrate failure rates and planning times when using a fixed single model versus au-
tonomously switching between models of varying fidelity.

3

1.1 Motivating Robot Examples
This work is motivated by observing various pallet truck and hospital cart transport scenarios.

One example scenario is a forklift robot trying to pick up a pallet. An initial planning model
might consider interactions between two static objects. The robot would plan a motion path
to align with the pallet. The robot would then proceed to move under the pallet with its forks
lowered. If the pallet was empty, the robot could fail to pick the pallet up by instead pushing
it along the floor. A model that reasoned about the pallet’s mass and the pushing interaction
between two objects that could move (i.e., not static) could reason about the minimum force
necessary to pick up the pallet without pushing it.

A second example is for a hospital robot delivering linens. A failure could occur with trans-
porting an object around a tight turn. The original model for plan generation may just consider
maneuvering through an open space. The robot may not be able to take the turn directly on the
planned trajectory, or might have to stop if it passes the waypoint. A model that contained in-
formation about trailer swing and transport object mass could reason more accurately about the
robot’s turning radius around tight areas.

1.2 Problem Statement
In summary, we increase robot robustness by deciding when and what higher fidelity model to
re-plan in that inherently incorporates more information. We assume the reason for failure is
because the robot’s current planning model does not have enough detail for the current task. In
this paradigm, a robot’s ability to make decisions is only as good as its models. Therefore, the
robot’s goal is to decide at any point during its plan generation what the most appropriate level
of fidelity is for the given task.

We formulate this as a motion planning problem where the goal is to find a continuous col-
lision free path, ζ , that takes a robot from a start to end configuration. Planning requires [55]:
a workspace W , with defined obstacle regions, that contains a robot representation, R, and the
configuration space, C, of possible transformations that can be applied to the robot.

Our models can contain different representations of W,R, and C. We generate a continuous
collision free multi-model path that must also check collision free within our highest model.
Model selection determines at any point in the generation of ζ what model is necessary to take
cn ∈ C successfully (collision free) through W . This requires generation of partial ζi until ζ
includes cstart, cend ∈ C and checks collision free in the highest model of W,R, and C.

1.3 Thesis Statement
An autonomous robot can balance planning efficiency and navigation robustness through non-
uniform environments by automatically selecting from a hierarchy of models considering fidelity
and uncertainty.

We would like to address the following questions:
• What planning model contributes the ’best’ information at a particular time?

4

• How do representations capture information and account for uncertainty?
• How does the model selection strategy search for a planning model that maximizes task

success while remaining computationally tractable?

1.4 Contributions
The primary contribution for this thesis is providing a framework for multi-fidelity plan-time
model switching. We also discuss adding uncertainty to models by automatically deter-
mining variable padding, and their placement in a hierarchical model graph. Our framework
includes model selection strategies for models with higher fidelity and variable padding.
Model selection addresses when to switch models and what model is most applicable. Lastly, we
demonstrate advantages of the multi-fidelity model switching framework through simulation
experiments.

1.5 Overview
The remaining thesis chapters are summarized below:

Chapter 2 - Related Work In this chapter we provide an overview of how other works have
motivated our current work. We touch on how related works deal with plan failure due to model
approximation, and how those specific to model switching address the tradeoff between planning
efficiency and robust execution. Lastly, we touch on related work that deals with uncertainty and
how our work compares with those that utilize safe planning regions.

Chapter 3 - The Model Hierarchy This chapter discusses our definition of model and how
the models are organized hierarchically. It includes information for models both with and without
added footprint padding.

Chapter 4 - Planning with a Hierarchy of Models Our main approach is discussed in this
chapter. We describe the parts of our approach and how we generate a single mixed fidelity plan.
This chapter also includes how we decide to add footprint padding to our original models and
how these additional padding models affect the initial approach. We include some discussion
and enhancements that directly relate to our results. Lastly, we also include a formalization of
the approach at the end of this chapter.

Chapter 5 - Implementation for Experiments In this chapter we provide details about our
simulation testing environments. This includes the type of robot we simulated, our simulator,
and more details on the planning models that were used. We then touch on more implementation
specific details of our algorithm for running these models for our experiments.

Chapter 6 - Testing Environments and Experiments In this chapter we discuss the simula-
tion environments in more details including results of our approach for various environments. We
provide tests for evaluating single model performance, switching models, and switching models
with added uncertainty. For each of these evaluations we also provide information on average
statistics over all worlds as well as highlighting some example world results.

Chapter 7 - Future Work In our future work, we list possible framework improvements and
extensions which include details for creating a more informed model selector.

5

Chapter 8 - Conclusions Our conclusion section lists the takeaways from our results and
lists our thesis contributions.

6

Chapter 2

Related Work

The related work is divided into three sections. The first discusses model work in robotics. This
motivates the use of multiple models in our approach. Then we discuss how work mitigates errors
that arise from approximating the planning space with models. This is divided into two parts. It
starts with a high level overview of robust planning in robotics and then includes a section which
relates to our framework’s uncertainty models. The last section discusses related work in model
fidelity which balances between plan efficiency and execution success. This is a tradeoff that we
also consider with our model switching framework.

Our novelty is in providing a framework that hierarchically leverages more models than re-
lated work and reasons explicitly about how each model contributes to execution success. Our
work attempts to minimize planning time without giving up execution success.

2.1 Models in Robotics

Models are often used in robotics. Their application shows a tradeoff between model fidelity and
computation time where higher fidelity models reduce uncertainty in the environment. Previous
work demonstrates examples of this by showing increased robustness for humanoid balancing
[91] and higher fidelity wheeled robot models that more accurately capture real world trajectories
[85]. Our work leverages models already created in the robotics community.

Related work also recognizes the possibility of representing the world with multiple models.
Work by [35] discusses multi-modal motion planning techniques. They describe the configura-
tion space as containing varying dimensions that can span multiple sub-manifolds. This space
discretization inspires our use of multiple models as does other works which scope the planning
model space at different detailed levels. This includes work in physics based planning [102],
physics based models for manipulation planning [22], and a hierarchical perception/control struc-
ture [21].

Models also approximate different parts of the planning environment. Kuipers divides the
world symbolically [52]. Works in motion planning break up the proximity of grid cells near
the robot into coarse or fine resolution[45], and [8]. There are works in the combined task
and motion planning community that divide the planning space into a hybrid space, mixing
both symbolic and geometric representations [42], [20], and [99]. Also, work in [7], and [26]

7

hierarchically group underlying states in the planning space into different state approximation
levels. Lastly, ontologies provide a knowledge base similar to a model collection. Ontologies
represent relationships and concepts for common understanding of a domain [87] [28].

All of these works inspire the idea that richer models allow a robot to be more robust when
making decisions.

2.2 Mitigating Model Approximation Error
Artificial Intelligence (AI) planning techniques depend on models that generate deliberative ac-
tions and controls for the robot to execute. The planning community uses these models to make
an otherwise difficult planning problem tractable. This is true in cases where it is intractable to
model higher dimensions, or information is not available at plan start. Work that supports the
necessity of approximation discusses assumption architectures for tractable planning, [69]. They
argue that it is not possible to generate a plan from initial conditions to handle every case and
assumptions are required. Therefore, we hypothesize approximations are necessary to plan in
the high dimensional space of the real world and misinformation arises in planning models due
to this approximation. Adele E Howe [40] suggests that a lack of understanding with complex
environments introduces errors. She recognizes failures from ”obsolete, uncertain or limited
information”. Work by [37] also discusses issues that occur due to abstractions. They focus
on robust robot assembly noting that many failures occur during the robot’s interactions with
the environment. Our work focuses on using AI planning techniques to overcome misinformed
models. The following section discusses how related work has addressed model inaccuracies.
Next we discuss various robust planning techniques in robotics.

2.2.1 Robust Planning in Robotics
Robot autonomy requires the robot to reason independently and react appropriately to unantici-
pated events. Work by [11] recognized that related work for reliable robot autonomy techniques
reason about a lack of information to increase autonomous robot robustness. In the follow-
ing section, we touch on a small subset of approaches for handling model inaccuracies through
planning. These include: contingency strategies, single model adaptation, plan adaptation, and
re-planning.

One approach is to enumerate hard coded planning strategies during the design phase. Con-
tingency planning is an example of a priori responses created from known events or learned
anticipatory considerations. Works such as [98] come up with path alternatives in advance.
These planners also reason about uncertainty in an attempt to capture all possible events that
could occur during execution. A review of planning under uncertainty is presented in [10] where
extensions for capturing misinformation and uncertainty are considered in both classical and
decision theoretic planning. They recognize that these approaches rely on complete, detailed
models.

Many works also reason about potential alternatives during plan time and decide when to
switch to specific plans during execution. Work in [98] generates contingency plans in advance
for each non-deterministic action, and for each time an observation action must be taken. They

8

use execution monitoring to determine which branch to take at runtime. Other examples of work
that switches between planning space hierarchies during execution occurs in [42], and [29]. The
switching delays decision making until execution to help reduce uncertainty.

Precoded strategies are also present in works that use universal single models to capture
all situations. Markov Decision Processes (MDPs) and Partially Observable Markov Decision
Processes (POMDPs) are examples. Similarly, single trajectory optimization improves a single
model. Trajectory optimization depends on features chosen for training and a cost function that
captures robust scenarios during training. Motion planning algorithms that use optimization
iterate on naive initial trajectories to minimize the cost of a final solution trajectory as discussed
in [82] and [43]. Lastly, learning is also used to address model inaccuracies. This includes works
which adapt a model that deviates from expectation as in [66] and [83].

Other works adapt the plan as it is formed. They do not alter the underlying model but vary
the search space strategy, bias toward informative heuristics, or re-plan and repair the plan from
scratch. Sample-based motion planning algorithms sample the state space randomly and gen-
erate connections between neighboring sample points. One example of this is with the Rapidly
Exploring Random Trees (RRTs) algorithm [54]. Execution Extended RRT rebuilds from scratch
and adapts plans by biasing search to previous plan waypoints [13]. Other methods focus more
on adaptation by eliminating a range within the invalid path and re-growing a search tree in that
invalid space [25]. Work by [105] also maintains entire previous searches by using a forest of
disconnected RRTs for planning. Another way to bias the search in sample-algorithms is to bias
the sampling rather than bias towards old plan searches, this was shown in [106]. They bias sam-
ples to features within the workspace, the 2D or 3D environment representation that describes
the robot and obstacle geometry.

Re-planning is a technique that has been in symbolic planning since early mobile robots
[27]. Re-planning is also prevalent in the motion planning community. Motion planning uses
re-planning in incremental search and sampling based algorithms. Re-planning when new infor-
mation is found. Incremental search in motion planning builds off the graph based A∗ search
algorithm. This algorithm finds a path from start to goal by minimizing edge costs on a directed
graph. Incremental heuristic search combines both re-planning (restarting at plan deviations) and
plan adaptation (using more informed heuristics and past information) to speed up the search
process. Examples include: D∗ [90], LPA∗ , and D∗ Lite [50].

Re-planning has also been shown to handle probabilistic planning domains by outperforming
universal model algorithms (MDPs). The success of a deterministic action selection planner, FF-
Replan [100], in the International Probabilistic Planning Competition demonstrates this. They
describe FF-Replan as having a similar style to contingent planning without explicitly needing
to consider action effects. They leverage a deterministic planner known as the Fast-Forward
planning system (FF) [38]. They recognize that the competition problems were simple by not
”exercising the full difficulty” that is present in a probabilistic domain. They also note the algo-
rithm’s strength is due to the progression of fast and efficient informative heuristics.

Our work uses a combination of plan adaptation and multiple model switching. We generate
a single multi-fidelity motion plan by re-planning over non-uniform environments.

9

2.2.2 Models with Uncertainty for Navigating Safely

Uncertainty is another way to address inconsistencies in approximate models. In this section, we
touch briefly on related work with navigating under uncertainty, and discuss how such works are
relevant to the padding models which extend our approach.

Navigating with uncertainty has been studied vastly and we will not provide an exhaustive
overview. Many works investigate robot state uncertainty and localization, but we are interested
in those that focus on uncertainty in robot motion and obstacle locations. We draw motivation
from: uncertainty works that hierarchically break up the space [41], works that leverage a higher
level controller for execution feasibility checking, and uncertainty work that focuses on safety.

It is important to take into account the execution controller when considering path feasibility
rather than take the planned path as a given. Two related works that identify this include [95],
[14]. They recognize how motion uncertainty can cause path deviations, and that it is important
to consider these deviations offline. The first work generates many candidate paths and evaluates
their success rates, and the second builds a single path by reasoning in a belief space. Our work
differs by seeding the path generation with multiple simpler representations to minimize planning
times while utilizing a higher fidelity model for considering path deviations.

Planning with varying robot footprint padding changes the robot’s distance from obstacles
with respect to uncertain obstacle locations. This closely ties to related work that reasons about
robot navigation safety. Two recent works include: [3] and[94]. Each work contains motivations
that we share. The first work touches on multiple topics that also motivate our approach such
as uncertainty reasoning is cheap and being overly conservative is inefficient. The second paper
recognizes that collision probability ” from a configuration onwards depends on prior history. ”.
We use this idea when re-merging re-planned partial paths as the path configuration history is
necessary for properly checking in the highest model and accurately determining repair points.

Unlike our work, both safety works referenced above, set a hardcoded risk factor, or max con-
vergence time for generating the safe path. Our algorithm varies a footprint padding threshold
during the planning process. Both works have a more sophisticated geometric way of determin-
ing safety buffers than using uniform padding over the robot’s footprint.

Lastly, there are related works in [63], [64], and [84] where hardcoding a padding value
around the robot’s footprint is used to increase successful robot execution. Therefore, hardcoding
a footprint padding value is common, even if it’s not the object of study. Even though a hardcoded
value is sufficient for frequently encountered environments, it may not be possible to determine
a single value during long term navigation. This is why automating the padding amount, as is
done in our approach, is important.

The novelty with our uncertainty padding extension is creating an approach which combines
multiple ideas from the literature which include: switching between models with added padding
for decreased planning times, determining safe padding amounts automatically, utilizing a higher
fidelity model checker for execution feasibility, and staying probabilistically complete with re-
spect to the highest model.

10

2.3 Balancing Planning Time and Execution Success
The concept of using higher fidelity to gain a more accurate representation and improve plan
quality is discussed in many related works. This includes works which consider model fidelity
but do not explicitly switch models. Related work that changes fidelity must also reason about
computation costs incurred with higher fidelity models. The tradeoff between planning represen-
tation and efficiency has been recognized in the planning community since the 1980s, [62]. In
this section, we discuss related work that reasons about fidelity for balancing planning efficiency
and execution success.

2.3.1 Switching Between Approximate Models
The model choice to plan in creates an inherent tradeoff between planning time and robust path
execution. Many previous works use different forms of model switching to address this bal-
ance. Previous work in Variable Level-Of-Detail Planning, by [103], relax the local space to
ignore more complex details that occur far in the future. A similar approach is applied to multi-
robot planning with sub-dimensional expansion [97] where each robot initially plans indepen-
dently. The search space dimensionality increases to a joint robot space after robot interactions
are found. This effectively is a switch between different approximations of the space. Addi-
tionally, works that break the planning problem into sub-problems also reason about different
approximations [17]. This includes relaxing optimality by changing the heuristic used to search
the space [2]. Similarly, adjusting the resolution in a plan is a form of switching. The following
works adapt the planning space resolution locally around the robot, but do not vary the model
fidelity throughout the same plan[45], [89], [8]. Our strategy varies models throughout the same
plan searching directly in continuous space and changing dimensionality in both the state and
action space.

The following paragraphs review previous works which focus on when to switch between
models rather than reasoning about what detail the model contains before switching. Our work
contains an additional model selection stage that most related works do not. This stage deter-
mines what detail level is most applicable for re-planning.

Fixed strategies focus on the when for switching between levels of detail. This is apparent in
[39] and work that only has two levels, such as a higher level global plan that guides a low level
continuous planner [48]. Examples of approaches that often take a two tier approach, where the
planning representation is relaxed at various points during the planning process, include: [86],
[78], [77], [39], and[48]. Hybrid planning also switches between a distinct discrete plan and more
focused continuous planner [78] as in the SyClop planning framework. This also occurs in [16]
where a contingency ”channel” with many possible motion plans guides a lower-level potential
field controller. Other work [29] divides the planning space between task and observation level
plans similar to the division between global and local planners. They switch between a fast
sequential ”classical” planner, and more expensive decision-theoretic planning for abstracted
sub problems. Thesis work in [101] notes that dual-layer approaches are weak because global
plans are generated without low level details. A global plan may be generated that is impossible
for a controller to follow because the global plan does not provide any guarantees on the local
planner’s ability to find a valid solution.

11

Work by [42] demonstrates switching between state spaces in a fixed top-down fashion. Much
of the hierarchical planning community plans top-down increasing the level of planning detail.
[26], [99], [6]. This includes anytime approaches which find an initial solution and then consider
more detail to further refine it as time allows as shown in [104]. The motion planning community
also include anytime variants of the shortest path algorithm [96], [58].

Multi-modal and multi-stage work also contain fixed switching strategies. Work in [36] and
[35] switch between different planner types based on a modal discretization, but do not reason
explicitly about the detail they are switching to. Lastly, work by [93] for task motion multi-
graphs also contain predefined points where switching occurs. The decision of when to switch is
predefined between tasks and the selection criteria is based on computation time.

Our work resides in the motion planning domain. Work more similar to ours utilize re-
planning and change fidelity throughout the planning space. One such work graduates motion
primitive fidelity along a state lattice [76]. They change the fidelity between re-plans in the mo-
tion planning workspace. They also recognize that ”partially or completely unknown” regions of
the space can use lower fidelity representations than regions most relevant to the current problem.
The work also claims that previous multi-resolution work is more systematic while theirs allows
different resolution regions to move over time. The fidelity around the robot is fixed and moves
like a sliding window, which is different than our mixed fidelity plan.

Our work is mainly inspired by Gochev’s previous work with adaptive dimensionality [32]
[30] [31]. That work divides the state space into two parts; a high dimensional and low di-
mensional graph with defined transition probabilities. They use a state lattice planner with pre-
computed grid transitions. Unlike other works, they are able to mix the two subspaces into a
single plan. Our work also has this same effect, of generating plans that mix dimension spaces,
through adaptive switching. They have a tracking phase (similar to our plan checking stage)
to determine where to insert higher fidelity states in a low fidelity plan. This phase requires
a search in the higher space during tracking that is computationally more expensive than our
checking phase. Their algorithm reasons about a single high fidelity state at a time. Our algo-
rithm does not require this explicit reasoning. We insert partial paths found directly from the
continuous path space. These partial paths automatically detect the size of the infeasible region
and plan accordingly. Our novelty is we use a complete hierarchy of models. Therefore, our
algorithm contains an additional model selection stage.

12

Chapter 3

The Model Hierarchy

Multiple models are useful for motion planning in non-uniform environments. Simpler models
allow for faster planning times and generalize over more environments. However, they miss
details that occur less often and are important for reliable long-term operation. Complex models
provide a more exact model of the robot’s interaction with the environment increasing successful
execution rates but require more computation

In this chapter we define what we mean by model Section 3.1, and describe our definition of
uncertainty model 3.1.1. We then discuss what we mean by fidelity and introduce a definition
for translating between models, Section 3.1.2. Lastly, we describe the organization of the model
hierarchy used in our framework, Section 3.2.

3.1 Model Definition

In this work we use the term model to refer to a subset of the planning space used for generating
a continuous motion trajectory from a start to goal configuration subject to vehicle and obstacle
constraints. At each time-step the validity of the robot’s configuration state is checked by detect-
ing if it intersects applicable obstacles in the environment using a collision checker. Figure 3.1
describes what is needed to generate a collision free motion plan. The first two boxes describe
information contained in a model. Models include a robot model, and environment model. The
robot model describes the robot’s state and motions that can vary from geometric spatial actions
to differential motion equations. The environment model represents obstacles in the planning
workspace. A more formal definition of model is included in Chapter 4.5.

Robot models contain a state vector [x(t) | x ∈ Rn], optional control input [u(t) | u ∈ Rn],
and a description of motions between states. This motion mapping may be defined as a system of
motion equations of the form ẋ = f(x(t), u(t), t) which map from u(t) to x(t), subject to kine-
matic and dynamic constraints. These can be described using first order differential equations
for velocities and higher derivatives for accelerations. The robot’s state also includes the robot
geometry which can contain aspects such as shape, mass, material, and coefficient of friction.
The models we use consider only the shape attribute and contain both first and second-order
differential motion equations.

13

What is Needed to Generate a Plan?

Figure 3.1: First two boxes define model.

Environment models describe the obstacle geometry represented in two or three dimensions.
These models also contain time dependent features such as traffic lights or automatic doors.

The collision checker checks if two objects intersect. The collision checker is the same for
all models. The planner propagates the robot’s control inputs between states by integrated the
equations of motion. At some pre-determined time-step, the planner checks the validity of the
robot’s current state by collision checking the robot’s mesh, at that waypoint, with environment
obstacles.

Models vary in fidelity and can be fully contained within each other, partially overlap, or not
intersect at all, Figure 3.2. Robots with multiple parts further divide based on subsystems. For
example, models may be specific to a robot base, or a robot manipulator. Higher fidelity models
could combine subsystems such as the base and manipulator into a single model.

This work does not focus on the construction of planning models. It assumes motion plan-
ning models are available. We leverage models from the motion planning community (see, for
instance, [55].). More specifically, we leverage models for a wheeled mobile robot.

The unique variables used to describe the configuration of the robot at any point in time is
described by the vector ~q. Where ~q = [x(t), u(t)]T for a particular t. We use this configuration
vector to label the models.

Four possible wheeled models are:

M1 = ~q = [x, y]

M2 = ~q = [x, y, z]

M3 = ~q = [x, y, θ]

M4 = ~q = [x, y, z, θ]

In this simple example, models [m2,m4] contain an additional z-variable which increases
the fidelity of robot and obstacle meshes sent to the collision checker. A three-dimensional
environment is used instead of the two-dimensional environment collision checked in [m1,m3].
Models [m1,m2] generate trajectories with planar motions. The motion equations describing
models [m3,m4] use constant curvature control arcs to generate s-curve trajectories. Planning

14

(a) Models can overlap, and be
entirely contained within each
other.

(b) Wheeled mobile robot
models increase in fidelity
with additional configura-
tion variables.

Figure 3.2: Simple Wheeled Robot Models.

within varying fidelity model spaces changes the computation amount necessary for collision
checking and generates varied trajectories.

One aspect of models is uncertainty and all models to some degree have uncertainty. When
describing the models we divide them into two categories: Base Models and Uncertainty Models
(with uncertainty greater than the base model). A base planning model is a model that is initially
provided to the algorithm with some nominal footprint padding (nominal uncertainty amount).
They are present throughout the entirety of the planning process and do not change.

3.1.1 Adding Uncertainty to Models

Our goal is to increase the robot’s planning efficiency by adding footprint padding to existing
models. Uncertainty models are base models with additional robot footprint padding. These are
models added after the initial planning process. They are added automatically at run-time by
determining variable footprint padding amounts.

It may be difficult to capture detailed environment interactions required for more complex
models. To address these limitations, it is possible to add noise to a model in the form of un-
certainty. Uncertainty models are a good intermediary model (between simple and complex
models) with low plan times and higher success rates that allow the planner to stay longer in a
lower representation.

Uncertainty may be represented in various way such as parametric gaussians[[80], [24],
[67]] or even probabilistically with non-parametric distributions [[79] [65]]. We have chosen
to represent uncertainty as padding around the robot’s footprint by investigating the addition
of uniform uncertainty. Uniform uncertainty addresses inaccuracies in a robot’s movement and
sensed obstacle locations. The uncertainty value can change by increasing the robot’s footprint
padding. We do not want to focus on specifics of object properties such as color or texture.
Explicitly listed, the uncertainty types are:
• Robot state and actions caused by uncertainty in the motion space.
• Objects and obstacles position in the environment’s state caused by uncertainty in percep-

tion space.

15

We increase the number of fidelity models by adjusting the robot’s footprint size which is sent
to the collision checker. This does not change the underlying model motions, but does change
the number of collision checks within the environment. It is important for this padding amount to
be conservative since planning with larger footprints create longer paths. The decision of when
and how much padding to add is described in Chapter 4.2.

3.1.2 Defining Higher Fidelity and Model Translation

The main criteria for knowing when a model is higher fidelity than another is if there exists a
lossless translation between models. This allows lower fidelity models to translate into higher
order spaces. For example, [x y] can translate into [x y z] by assuming a constant z, but [x y
z] can not translate into [x y θ] due to the loss of the third dimension. Therefore, if a lossless
translation exists from model A to model B, then model B is higher fidelity than model A.

Translation through the model hierarchy is transitive. If model A can be translated into model
B, and model B can be translated into model C then model A can be translated into model C.
This transitive property means that it is necessary to provide translations only between adjacent
models that have a direct precedence relationship. We provide examples of translation between
models in Section 5.3.5.

Higher fidelity models can generalize lower fidelity models along different dimensions (for
instance through more detailed environment representations, control inputs, or vehicle-terrain
interaction models). It is also possible to include differential constraints in higher fidelity models
to more accurately approximate the actual robot controller; other higher fidelity models include
more accurate representations of the environment. We want the hierarchy to generalize along
different dimensions because choosing the most appropriate model for a given task and situation
is more important than just always using a model that has more information. It might be the case
that a more appropriate model that is constrained to consider fewer details is more applicable.
For example, different robots may have different maximum velocities for operation on particular
terrains. A model that constrains this space accurately is more beneficial in environments with
more slip than a model that allows any possible velocity to be sampled. Since the environment
terrain can change during a robot’s task, it is important for the robot to have a variety of models.
The robot can make large gains by switching among subsets in the model graph before settling
on specific models that help with a certain task.

3.2 Model Organization

This notion of higher fidelity leads to a hierarchy. The ability to translate one model into another
without losing information forms a partial ordering. The hierarchy is organized where a model
may have multiple ancestors and multiple descendants. In some cases, if there is a lowest and
highest model this can form a lattice. Higher fidelity models cover lower fidelity models. The
covering relation is used to compare elements in a partially ordered set. Therefore, if the higher
model contains the lower model plus some additional information it also covers it.

16

Emulating models in others is not always straight forward. It is the case that some models
may be partially but not entirely more general than others. This means that some models may
have no precedence relationship between each other. In this case, they would be grouped on the
same horizontal level in the hierarchy. Therefore, there is no ordering within a horizontal level
between multiple models.

The organization forms a finite acyclic directed model graph G(~q, E) connecting low fidelity
models to higher fidelity models. First an edge is drawn between each model for which a lossless
translation exists. Once all edges are found between models the graph can be reduced to form the
final hierarchy. The final partial ordering is the transitive reduction of the initial directed acyclic
graph of models [1]. This is also known as the minimum equivalent graph, [68], where the final
model graph has as few edges as possible while maintaining the same reachability relation as the
original graph. As a simple example, Figure 3.3 shows the organization of four wheeled robot
models: M4 = ~q = [x y z θ], M1 = ~q = [x y], M3 = ~q = [x y z], and M2 = ~q = [x y θ]. By definition,
an edge is drawn between models with lossless translation as shown on the left side of Figure 3.3.
Redundant edges are then eliminated, the right side of Figure 3.3, to create the directed graph’s
transitive reduction which maintains the longest edge paths.

We note that base models are organized in the model graph before the planning process be-
gins. These models comprise the initial hierarchy. Uncertainty models with additional footprint
padding are added to the hierarchy at run-time based. The decision of when to add these models
is described more in Chapter 4.2.

Figure 3.3: Transitive Reduction of Original Model Graph.

Ordering the models hierarchically is also important for model selection (discussed in Section
4.1.3). The last model that was successfully planned in for a particular space is the starting model
node to search from. The model selector searches through models using the hierarchy. This
hierarchy groups correlated models. The lower fidelity models should be used more for simple
environments. This then leads to the more detailed models being used infrequently, which means
there is little computational disadvantage to having them around. Therefore, it does not hurt to
keep a lot of different models.

3.2.1 Augmenting the Planning Model Hierarchy for Uncertainty Models

Translating to a space with uncertainty means increasing the uniform robot footprint padding
amount. This translation maintains the same dimensionality of the robot’s state and environment.

17

It only changes the size of the robot’s footprint. A lossless translation still exists when adding
uncertainty to achieve a higher model.

If an uncertainty model is chosen for re-planning, it then needs to be added to the model
hierarchy. Figure 3.4 (a) shows a single uncertainty model added to the hierarchy. The hier-
archy changes to group all models with similar configuration variables and variable uncertainty
amounts into a single node. Uncertainty models are higher extensions of a base model (with nom-
inal padding) and are ordered based on the amount of uniform footprint padding. This is shown
in Figure 3.4 (b) where multiple uncertainty models with the same base model are grouped to-
gether and then ordered by increasing padding amount. The alternative is to create additional
edges to higher models and add equivalent footprint padding amounts for those higher models.
We chose to group uncertainty models together with the same base model, and not increase the
footprint padding amount for higher models more than necessary. This is discussed more in our
model selection approach for uncertainty models in Chapter 4.2.2.

M1:
(x,y)

θ

zθ

z

M2:
(x,y,θ)

M3:
(x,y,z)

M4:
(x,y,z,θ)

M1+U:
(x,y,u)

(a) Single Uncertainty Model
Addition.

(b) Multiple Uncertainty Models with Differ-
ent Base Models.

Figure 3.4: Adding Uncertainty Models to the Hierarchy.

In this chapter, we discussed our definition of model as it is used in motion planning. We
defined model fidelity and showed how models are organized hierarchically. Lastly, we discussed
what we mean by uncertainty model by explaining how the model hierarchy is augmented to
include models with additional robot footprint padding. In the next chapter we will describe
our plan-time model switching approach which includes the decision of when to switch between
these models, and which model in our hierarchy to switch to for plan repair.

18

Chapter 4

Planning with a Hierarchy of Models

Planning with a
Hierarchy of Models

(Chapter 4)

Plan-Time Model
Switching

(Section 4.1)

Should the Padding
Model Be Added?
(Section 4.2.1.2)

Motion Plan Generation
(Section 4.1.1) Feasibility Detection

(Section 4.1.2)

Model Selection Using
Uninformed Search

(Section 4.1.3)

Intermediate Goals and
Multi-Tree Re-Planning

(Section 4.1.4)

Padding Model
Creation

(Section 4.2.1.1)

+
Uncertainty

(Section 4.2.2)

+
Uncertainty

(Section 4.2.3)

Figure 4.1: Approach Roadmap.

In this chapter we describe our approach to creating a general framework in which robots use
varying fidelity models for robust motion planning. The chapter is broken into multiple sections.
A roadmap of these sections is displayed above in Figure 4.1.

Section 4.1 provides an overview of the initial plan-time multi-model switching algorithm.
This is a probabilistically complete plan-time algorithm for deciding what fidelity model to uti-
lize at each point in a navigation path. We then build on our model collection by deciding whether
or not to add models with additional uncertainty as described in section 4.2. With the added abil-
ity to choose to switch between models with variable padding, we expand our model selection

19

algorithm to now include these models.

4.1 Plan-Time Model Switching

Our robust plan generation algorithm consists of four main stages that loop:

1. Motion plan generation.
A plan is generated for a particular start and goal state using a given model.

2. Feasibility detection.
The plan is checked using the highest fidelity model to see whether it may cause problems
during execution. This stage answers the question of when to switch between models in
the plan.

3. Model selection.
This stage decides what model to switch to for re-planning. The model selector reasons
over the model hierarchy to determine what model may be sufficient to repair the plan.

4. Multi tree re-planning.
Re-planning from various starting points to various goal points are interleaved to provide
an efficient, but probabilistically complete, search algorithm.

The robot’s task is to navigate from a start state to a goal state. Our system uses an environ-
ment map to generate a plan from start to goal in the lowest applicable fidelity model (Motion
plan generation). This plan is the initial global plan.

The plan is then checked in the highest fidelity model to determine parts of the plan that
might need repairing (Feasibility detection). Even though the high fidelity model is complex,
checking a single plan does not incur much computation time.

If re-planning is necessary, due to a detected impediment such as an anticipated collision
with objects in the environment, the algorithm moves to stage three (Model selection). The
model selector finds the lowest fidelity model that can still feasibly generate a repaired plan.
This gives further computation savings by using the lowest fidelity model applicable rather than
always switching to the highest available model. The re-planning model is selected by re-testing
the partial plan segment, which needs repair, in successive higher fidelity models. The first
model in which checking of the previous plan segment is unsuccessful is the model selected for
re-planning. This model is assumed to be a more informative approximation of the space.

A new plan is generated in the selected model. To try to minimize re-planning time, the use
of the selected model is localized around the detected impediment by re-planning to intermediate
goals on the remainder of the infeasible plan rather than re-planning all the way to the original
goal. Also, waypoints before the impediment are set as separate start states which plan concur-
rently to guarantee probabilistic completeness (Multi tree re-planning). The first start and goal to
find a plan creates a partial plan repair. The new partial plan is then merged back into the global
plan. The last three steps of the process repeats until the feasibility detection stage does not find
any more impediments. If this is the case, the full global plan is determined to be executable.

20

4.1.1 Motion Plan Generation
Motion planning generates a collision free robot trajectory from a start to goal location. The
planner is given as input a description of the obstacle environment and robot configuration state
that can include differential constraints. It then outputs a series of waypoints and associated
waypoint controls that drive the robot through a collision free waypoint path.

What is Needed to Generate a Plan?

Figure 4.2: Input and output components for a motion plan

The planner takes a description of the state, motions to move between states (actions), and a
collision checker. The state consists of the obstacle workspace, and robot state. It also includes
the specification for the start and goal state. The obstacle workspace defines the positions of
occupied obstacles in the free configuration space. The robot state includes possible configura-
tions of the robot such as: position, orientation, joint space, and any differential constraints the
robot must satisfy. The obstacle workspace and robot state can also include uncertainty to cover
imprecise models.

For our purposes a model can vary the descriptions of the state and movement shown in the
first two boxes in Figure 4.2. The collision checker remains the same for all of our models. The
model dictates what dimensions are used during collision checking. The planner uses the boxes
on the left as input to produce the output box on the right in Figure 4.2.

Our work does not create a new planner, but provides a framework where existing planners
are used. We use Rapidly Exploring Random Trees (RRTs) from the sample based motion plan-
ning community to generate motion plans [54] since RRTs can handle various models, including
those with differential constraints and dynamics.

Motion Plan Generation Details

Planning occurs in geometric models or those that include controls. Models that do not include
controls sample target waypoints in the state space and collision check along the interpolated
line between waypoints. Models with controls define the steering function for propagating the
planner towards sampled target waypoints. The steering function includes a definition of ordinary
differential equations, a maximum propagation step size, and set range for the control duration.
At each time step the robot state propagates by numerically integrating the equations using Runge
Kutta. Implementation details for our tested models can be found in Section ??.

21

Algorithm 1 Robust Plan Generation
1: [p , planResult] = generatePlan(m);
2: if planResult == success then
3: globalPlan = savePlan(p, globalPlan);
4: tm = translateToModel(p, highest);
5: [planCheck, b4repair, after] = propagateWhileValid(tm, highest)
6: if planCheck == infeasible then
7: m = MODELSELECTOR(globalPlan, b4repair, after);
8: [p, planResult] = multiTreeReplan(globalPlan, b4repair, after, m);
9: Goto line 2
10: else
11: executeResult = sendToRobot(globalPlan);
12: end if
13: else
14: Failed to find plan.
15: Goto line 7
16: end if

The collision checker is the same for all models. A state is determined valid by collision
checking the appropriate robot model mesh against any corresponding environment obstacles.
This is determined by using an occupancy grid where obstacles are inflated by the robot’s radius.
All obstacles which intersect this state in the occupancy grid are collision checked agains a robot
mesh defined by its model. For example, [x, y, θ] is collision checked in the x, y, and θ directions
for each overlapping obstacle mesh. Implementation details for our selected collision checker
can be found in Section 5.3.2.

Our system uses an environment map to generate a plan from start to goal in the lowest ap-
plicable fidelity model. We start by planning in a default model space, typically [x,y] (Algorithm
1, line 1). This produces a plan in the form of a series of waypoints, such as that shown in Figure
4.3 (a).

4.1.2 Feasibility Detection
The plan is then checked in the highest fidelity model to determine parts that might need repairing
(Algorithm 1, line 6). Feasibility checking is inexpensive because it does not require a new
search. The lower plan checks in the higher model along the previous plan’s waypoints. For
example a lower model considers only geometric constraints while a higher model considers
dynamic constraints. Even though the highest fidelity model is complex, checking a single plan
does not incur much computation time. If the plan is feasible, that is there are no detected
collisions, it is sent to the robot for execution (Algorithm 1, Line 11). If the plan is not feasible,
the infeasible plan segment is sent to the model selector. In Figure 4.3 (b), an infeasibility is
detected between waypoints four and five.

Checking in the highest model requires a translation step to match the configuration inputs
of the higher model, and collision checking between the robot and obstacles in the environment
along the plan.

Plan Translation

Plan translation is necessary for checking paths in different models. In our work, there is a
distinction between translating between models and translating between plans. As discussed

22

previously in Section 3.1.2, the definition of how a hierarchy is formed includes a lossless trans-
lation function which describes translation to higher fidelity models. Unfortunately, this does
not include all information necessary when checking between plans. Models that include passive
states are re-propagated from the start along the path. Examples of passive states include an
additional robot trailer position, and indexing in the environment by time. Another example is
modeling non-infinite accelerations in higher models. The robot needs to propagate the actual
velocities since it may not reach the desired velocity by the next waypoint.

Another consideration with plan translation is how to improve the checker’s fidelity to ac-
count for what the controller does. For example, our [x y] model requires directional thetas to
be added for higher fidelity spaces where θ is modeled. Additionally, the plan is translated to
more closely match the controller by augmenting angular velocity to stay along the path. This
forces the feasibility detector to follow a path that most closely resembles the robot’s actual path
during execution. Implications of the differences between how explicitly the feasibility checker
matches the underlying robot controller are discussed in Section 4.3.1.

Note that the model space is separate from the underlying robot controller. To illustrate this
separation, imagine people racing cars on switchbacks. They are able to apply a controlled skid
to take tight turns at high speeds by estimating an internal momentum model. The internal model
they use for their driving plan is separate from the underlying application of braking, hitting the
gas pedal, and steering necessary for controlling the car.

Feasibility Checking Details

The feasibility detector retrieves the current globally maintained path and translates it into the
highest model. The translation step adds necessary states then propagates from the start to end to
update passive states without collision checking. It does so by propagating and collision checking
using the global path as a reference path from which the next target point is retrieved. The
feasibility detector propagates between waypoint guides by using the planner’s ODE integration
functions while waypoint follows the path like the underlying robot’s controller. This includes
the same logic that decides when waypoints have been achieved and adjusting controls to remain
on the path similar to the real robot.

We note that plan generation for the highest model uses the same propagation functions as
used during feasibility detection. The main difference is that when propagating for feasibility
detection the next waypoint(s) guide what the waypoint follower does; but during planning the
next waypoint is not known so the level of fidelity is different even when planning in the highest
model.

It is important for the feasibility detector and the underlying controller to match. Mismatches
create false positive and false negative rates that directly impact switching results. This is fur-
ther mentioned in Section 4.3.1. Initial nominal padding amounts used by the checker can help
influence these mismatch rates. This is further discussed in Section 5.4.1.

4.1.3 Model Selection
As an example of how the model selector works, assume that an infeasibility is detected between
waypoints 4 and 5 of Figure 4.3 (b). The model space used for the plan segment (between

23

waypoint four and five) that needs repair (initially the [x,y] model) is the first node to search
from in the model graph. The model selector determines the appropriate model to re-plan in. Our
model selection process (Algorithm 2) uses Breadth First Search to explore the model graph. As
an example of how the model selector works, assume that it starts with the first higher model of
theM1 = [x,y] model which is theM2 = [x,y,θ] model. For each model, we first test the infeasible
plan segment in that new model space. The previous [x,y] plan segment is tested in this model
(Algorithm 2, line 8). If the plan succeeds, we assume that the [x,y,θ] model does not accurately
capture the infeasibility. We then choose the next higher model for [x,y], which is M3 = [x,y,z],
and again test the previous plan in this higher fidelity model. If the plan again succeeds, we then
try the M4 = [x,y,z,θ] model. If testing the previous plan finally does not succeed, we assume
this model captures the space of the infeasibility and has information not present in the original
model used to generate the plan. It is then selected as the model to use for re-planning. In this
approach it is possible to produce a final plan that skips between model tree levels when choosing
the next model (in this example, we skipped from [x,y] to [x,y,z,θ]).

It is important to note again that the re-plan model contains information relevant to the de-
tected infeasibility. We define a more informative model as one that contains information useful
for re-planning in the current environment context. This means that not all higher fidelity models
are useful for re-planning. For example, a higher fidelity model that reasons about velocities
and slip constraints contains more information than a model that represents the z-dimension of
environment obstacles. The model which contains z is more applicable to a world with a tall
robot which must navigate overhangs even though it does not have the most information.

Algorithm 2 The model selector does a Breadth First Search by testing old infeasible plan seg-
ments in higher fidelity models until the old plan fails. If the old plan fails, this indicates the
model contains information that may be relevant to the infeasibility and it is chosen for re-
planning.
1: function MODELSELECTOR(p, b4failIndex, afterfailIndex)
2: mLast = findModelFor(p.getNode(b4failIndex));
3: m = mLast;
4: p = resizePlan(p.getNode(b4failIndex), p.getNode(afterfailIndex));
5: setUsedModel(m); . Last model used becomes root node.
6: m = getNewModelBFS();
7: tm = translateToModel(p,m);
8: planResult = propagateWhileValid(tm, m); . Does collision checking.
9: if planResult == success then
10: Goto line 5
11: end if
12: return m
13: end function

The efficacy of this approach versus an execution time recovery approach depends on the
expected failure rate, expected severity of the failure, and uncertainty in execution knowledge of
the environment. Since information is available to the robot at plan-time, model switching can
occur before execution.

Model Selection Details

The model selector also has a translation step for elevating the partial path being checked to
the selected re-plan model. The translation steps are the same as the feasibility checker. Model

24

configuration variables are added as necessary and then a propagation step translates passive
variables from the start waypoint until the waypoint after the detected collision. The propagation
function changes based on the model that is being checked. Then the model selector collision
checks between the two waypoints where the collision was detected by the highest model feasi-
bility checker. We do not collision check earlier along the path because it is possible for models
lower than the highest model to prematurely detect a collision and the repair area should not
change from what the feasibility detector determined. This is because if the model being check-
ing in is not the highest model, then it is assumed to not be the best representation of how the
actual robot moves in the environment. So even if a lower model (say XY θ) deviates from the
lower reference path (an XY portion) and this is before where the feasibility checker detected a
collision, the repair should not move since this is not the most accurate evaluation of the robot
moving in the world. The purpose of the model selection is to choose the lowest applicable model
to cover the collision detected during feasibility detection. Therefore, it checks the path along
models that do not move exactly as the robot does, but are hopefully still beneficial in indicating
that they contain some information to circumvent the collision.

4.1.4 Intermediate Goals and Multi-Tree Re-Planning

WP2
WP3

WP4 WP5 WP6 WP7
WP1

S
G

(a) Example global path.

WP2
WP3

WP4 WP5 WP6 WP7
WP1

S
G

(b) Infeasibility exists between waypoints four and
five.

WP5 WP6 WP7

S
G

(c) Waypoints five, six, and seven form a goal set
to plan towards. They are probabilistically sampled
using an inverse distance metric from the infeasibil-
ity.

WP1
WP2

WP3
WP4

S
G

(d) Waypoints one, two, three, and four are the
starts of multiple re-plan trees. A tree is grown each
cycle based on probabilistically sampling the starts
using an inverse distance metric from the infeasibil-
ity.

(e) Re-planning concurrently plans from multiple
start trees towards a set of intermediate goals.

Figure 4.3: Localizing around the infeasible area by generating multiple re-plan trees towards
intermediate goals, using the new selected model, rather than re-planning to the original goal.

Infeasible areas vary in size and closeness to previous plan waypoints. Therefore, our re-
planning stage accounts for planning from multiple starts and towards multiple goals that vary

25

in distance from the infeasibility. To accomplish this, waypoints along the globally maintained
plan, Figure 4.3 (a), before the infeasibility, are considered the starts of re-plan trees. Similarly,
remaining waypoint nodes after the infeasibility are considered intermediate goals.

The remaining waypoints along the path, Figure 4.3 (c), form a set of intermediate goals.
We sample from this multi-goal set based on an inverse distance metric from the previous in-
feasibility to encourage returning to re-using the previous path. This allows the algorithm to
concurrently plan to all remaining intermediate goals, and be more efficient with path re-use.
For example, in Figure 4.4 a goal set is created for all unachieved waypoints (5 through 7). The
remaining nodes after the infeasible area create a goal set. The planner then re-plans to this goal
set and finds waypoint 6 is successful. If we successfully plan to an intermediate goal we can
switch back to using the previous path for the remainder. Using waypoints as a cache was also
done in work by [13]. We expand this for multi-fidelity nodes and plan reuse.

WP3
WP6

G

remainder

Figure 4.4: Re-planning from waypoint 3 to 6 and then resuming the original path.

We also plan from all previous waypoints for probabilistic completeness guarantees, shown
in Section 4.5.1. In Figure 4.3 (d), we generate start trees using all previous waypoints since it
may not be possible to find a plan from the waypoint start closest to the infeasibility to any goal.
Planning from previous waypoints could be done sequentially but we create a multi-tree set that
concurrently generates trees from all previous start waypoints. The growth of each tree towards
the goal set, Figure 4.3 (e), also uses a heuristic weighting metric to probabilistically sample
what tree to expand next. Further analysis for probabilistically weighting the start trees and goal
set are discussed in Section 4.3.2.

The globally maintained plan contains nodes of multiple model types. Consequently, it may
not be possible to re-plan in the selected model for all previous nodes along the global path.
For example if the re-plan model is [x y z], we would want to maintain previous portions of the
path planned in [x y θ]. This is because that model was found to be useful for some previous
portion of the path and it makes sense to use at least that high fidelity of model when re-planning
along the path. Since all models have at least one common higher model (LCM) (such as M4 in
Figure 3.3), previous waypoints along the global path are elevated to this common model before
re-planning occurs. In this example, the least common higher model (LCM) between [x y z] and
[x y θ] is [x y z θ]. Additionally, the remaining intermediate goals after the infeasible area are
translated to the appropriate LCM between itself and the currently selected model when set as
possible goals.

We do a further refinement when re-planning from previous waypoints to ensure that lower
models do not overwrite previous higher model plans. In addition to finding the least common

26

higher model between the current waypoint and the model selected for re-planning, the LCM
is compared for all waypoints before this waypoint. The LCM for all previous waypoints, this
waypoint, and the selected model is then the model for re-planning.

The first re-plan tree that connects to an intermediate goal creates a partial plan which is
merged back into the global plan. Therefore, this re-planning phase may create shortcuts con-
necting start trees earlier in the path to later intermediate goals. The overall process repeats until
the feasibility detection stage determines the full global plan is executable and sends it on to the
robot.

Multi-Tree Re-Plan Details

As stated before, to know which model to translate the start and respective goal set into we need
to find the least common higher model (LCM) in our graph between the start node of the planning
tree in the global path, the model selected to re-plan in, and all previous waypoints before this
current waypoint. Once the waypoints are translated the new start and goal(s) are checked to
see if they still remain valid. Invalid start or goal waypoints are skipped. This also means it is
possible that there are no valid re-plan trees. If this is the case, our implementation goes back to
the model selector to determine the next higher re-plan model.

The multi tree re-planning planner is a wrapper around the RRT planner that at each time
step, while an intermediate goal has not been achieved, selects the next tree to expand based on
a tree expansion heuristic, Section 4.3.2. It keeps expanding trees concurrently until a solution is
found. Then it takes this partial path and re-merges it into the maintained global path.

Algorithm 3 A global plan saves the proper model with each plan node. Partial paths are merged
back into the global plan.
1: function SAVEPLAN(p, globalPlan)
2: if globalPlan!=empty then
3: planPrepend = findPartial(p.start(), p.end(), globalPlan)
4: planRemainder = findPartial(p.end(), globalPlan);
5: globalPlan = planPrepend + p + planRemainder;
6: addConnectionPoint(planPrepend.end(), p.start());
7: addConnectionPoint(p.end(), planRemainder.start());
8: else
9: globalPlan = p;
10: end if
11: return globalPlan
12: end function

The initial plan that is generated is saved to a global path. The model type is maintained to
know what model generated the plan for each node. When merging the partial path (Algorithm
3), the global path up until the waypoint node that matches the start index of the re-planned
path is the prepend path. The re-planned path’s start node is added to the end of the prepended
path at a connection node. This connects the original path to the start of the partially re-planned
path. Similarly, if the partially re-planned path connects to an intermediate goal the original path
remainder after this node is retained. The new partial path is then merged where the node that
matched the intermediate goal is the connection to the path remainder. The connection nodes
also update configuration values to match between different model types.

27

4.2 Plan-Time Model Switching and Uncertainty Models

Plan-Time Model
Switching with

Uncertainty Models
(Section 4.2)

Should the Padding
Model Be Added?
(Section 4.2.1.2)

Feasibility Detection
(Section 4.2.1)

Model Selection Using
Uninformed Search

Intermediate Goals and
Multi-Tree Re-Planning

Padding Model
Creation

(Section 4.2.1.1)

+
Uncertainty

(Section 4.2.2)

+
Uncertainty

(Section 4.2.3)

Figure 4.5: Approach with Added Uncertainty Roadmap.

Uncertainty is a good metric for capturing information that is difficult to represent. One ex-
ample is information that is hard to capture in a higher fidelity model such as complex terrain
interaction features that cause the robot to veer from the controller’s trajectory. This may re-
quire information about a vehicles attitude, chassis configuration, or slip parameters that are not
available. Rather than leave the information completely un-modeled, uncertainty can be used to
represent it more generally.

Uncertainty may also arise from inadequate sensing. Even if information becomes available
later it may be impossible to detect it completely. For example, lifting a pallet and transporting
it across a constrained space might require detailed information about the pallet’s shape and
position on the robot’s forks. The pallet’s position and shape might be hard to detect, especially
if the pallet forks do not include a sensor to determine this. Uncertainty can be used to cover
possible pallet locations on the robot’s forks.

Our approach represents uncertainty by increasing the robot’s footprint with uniform padding,
that is, all the dimensions of the robot are increased by the same amount of padding. While the
padding is uniform, in our approach the amount of padding is not fixed. Fixed padding amounts
may be too high, such as in constrained passageways, or need to vary. For example, a navigating
robot might include footprint padding to increase its distance from obstacles and ensure more
reliable execution. Navigating past tight doorways may need less padding than when navigating
near people that require a higher safety buffer. Padding specific to doorways may be inaccurate if

28

door sizes change. Therefore, our solution automatically determines the least amount of padding
necessary to be successful. We choose the minimum padding amount necessary to circumvent
the infeasibility as to not create unnecessarily long paths and minimize time spent planning in
higher models.

4.2.1 Feasibility Detection
The highest model feasibility detector, discussed previously in our plan-time model switching
algorithm (Section 4.1), starts the process for determining the model padding amount. If the
detector determines an infeasibility, the algorithm then decides a padding amount to add, and if
a new model that includes that padding amount should be added to the model hierarchy.

Padding Model Creation

The padding amount to add to the lower model is determined based on where the detected higher
level impediment is found. This is a minimum amount so that the padded robot can fit through
constrained spaces. First the feasibility checker finds a collision point. Then the minimum
padding amount necessary to cover this collision point in the lower model is found by comparing
the distance between the robot footprint and the collision point along the lower path.

For example, the reference path is the solid path shown in Figure 4.6. The dotted path is the
robot path propagated and checked in the highest model which finds a collision point indicated
by the star. The minimum distance between the starred collision point and the robot’s footprint
along the original reference path gives the padding amount.

Figure 4.6: Reference path versus checked path as compared to a detected collision point.

The problem is that if too much padding is added to the footprint the robot may not fit between
obstacles. Therefore, we want to find the maximum padding that can be added and still fit
through the space. We do this by using Voronoi diagrams. We add a further refinement to be
more conservative with the padding amount by using a Voronoi diagram. The environment’s
Voronoi diagram is used to find the Voronoi edge closest to the collision point. This edge may be
closer to the collision point than the planned robot path. To test this, the original robot footprint
is checked along the Voronoi edge to determine the minimum padding amount necessary to
cover the collision point. Then this amount is compared to the previous reference path padding
amount and the overall minimum padding amount is used. For example, in Figure 4.7 the dark

29

Figure 4.7: The dark line is an approximation of the Voronoi edge between obsacles as compared
to a refence path and checked path.

black line approximates the Voronoi edge equidistant between the two obstacles. The line with
waypoints represents the original reference path and the dotted line is the path checked which
approximates the robot’s execution. The distance between the lower star, where the checked path
finds a collision, and the Voronoi edge is less than the distance to the reference path. Therefore,
when using the robot’s footprint to find the minimum padding necessary to cover the collision
point we would use the result from comparing the footprint along the Voronoi edge rather than
the reference path. Using the padding found through the Voronoi diagram will ensure that the
padded robot footprint can fit between obstacles, at least at the point of the collision.

Should the Padding Model Be Added?

We check two cases for deciding whether or not to use the uncertainty model for re-planning.
If the robot footprint already intersects the higher model collision point then no additional

padding is necessary and an uncertainty model is not added. This case occurs when the collision
checked obstacles change in the higher model (as with time-indexed obstacles) and checking the
robot along the lower reference path is found to already intersect with the collision point. In this
case, the distance is zero. This is an example of an environment that would not benefit from
added footprint padding, but could use models with variable uncertainty in the time dimension
(which are beyond the scope of this thesis).

The second case is when the footprint padding amount to add is so large that it would not
be possible to find a path. This can be determined without having to plan by using a Voronoi
diagram. First we use the Voronoi Diagram edges to find the padding distance between obstacles
for different homotopy classes. A percentage of this value is set as the max traversable value.
Then for each edge we check if the re-planning padding amount exceeds the traversable amount
for that edge and mark if it is traversable. For all traversable edges, the algorithm finds if a path
exists from the start to end edge that fits this model’s padding amount. If there is not, we assume
no path can be found forcing a switch to re-planning in a higher fidelity model.

Model Padding Details

There are further details considered when selecting the padding amount. The first is to only
compare the robot footprint distance between waypoints where the collision occurred. This is

30

because the global reference path is multi-model and we only want to check the failed model
section. Secondly, it is possible for the new re-planned portion of the path to find a collision
during feasibility checking. If this occurs repeatedly, the minimum padding amount may not be
enough to avoid the infeasibility and a planning and checking loop can occur. To resolve this
issue, we track the Voronoi edge last used for deciding additional padding with this model. The
Voronoi edge is not used to find the padding amount if the same edge was previously used.

4.2.2 Model Selection with Uncertainty
With the addition of padding models, the model selector now either selects a model with more
uncertainty or a higher model with more configuration variables and unchanged uncertainty. The
model selector still uses Breadth First Search through the model graph, but switches to Depth
First Search within the group of padding models. This is because, typically, lower fidelity models
with increased padding take less planning time than higher fidelity models, even if they have less
padding. The padding model is assumed cheaper for planning so the model selector conserva-
tively checks all padding models for a particular base model before going back to Breadth First
Search. When a padding model is selected, the planner now uses the selected padding amount.
This padding creates re-planned partial paths which either shift waypoints further from obsta-
cles in the repair region or help circumvent environment areas where the robot’s dynamics cause
deviation from following the lower path.

As an example, Figure 4.8 shows a model graph with four base models and five padding
models which were added during the planning process. The padding models for a common base
model are ordered by increasing uncertainty. These models comprise an uncertainty group for
that base model. The base model [x, y] has three padding models with padding values 0.12,
0.18, and 0.2, and two higher fidelity configuration models [x, y, z] and [x, y, θ]. The base model
[x, y, θ] has two padding models with padding values 0.1, 0.22, and one higher fidelity configu-
ration model [x, y, z, θ]. The model graph is numbered based on the model selection order which
is Breadth First Search through the base models and Depth First Search through the padding
models.

M1:
(x,y)

M2:
(x,y,θ)

M3:
(x,y,z)

M4:
(x,y,z,θ)

M1+U:
(x,y,0.12)

M2+U:
(x,y,θ,0.1)

M1+U2:
(x,y,0.18)

M1+U3:
(x,y,0.2)

M2+U2:
(x,y,θ,0.22)

1

2

3

4

5

6

7

8

9

Figure 4.8: Model graph with various padding amounts that are numbered to show the model
selection order.

31

4.2.3 Intermediate Goals and Multi-Tree Re-Planning with Padding Mod-
els

As stated previously in Section 4.1.4, it is necessary to determine the least common higher model
(LCM) between the selected re-plan model and previous model nodes when there is no lossless
translation between them. Padding models introduce new cases to consider when deciding the
LCM. The model selector could select a model with the same configuration variables as the pre-
vious path model but a different padding amount. For example in Figure 4.8, suppose the model
selector decides to re-plan with model [x, y, 0.2] and the rest of the path has been planned with
model [x, y]. In that case, the least common model should be the one with higher uncertainty, [x,
y, 0.2]. Translation between models with different padding amounts is straight forward because
a change in uncertainty is a change in the footprint padding amount that is collision checked.
Now consider the case where the model selector could determine a model that is an indirect
higher model [x, y, θ, 0.1] of the previously planned model [x, y, 0.12]. Even though the padding
amounts are different, the LCM would then be the higher configuration model with determined
padding [x, y, θ, 0.1]. Lastly, in the case where there are two models that are not comparable
(in configuration variables) and different padding amounts, such as [x, y, θ, 0.22] selected for
re-planning over previous planned [x, y, z], the least common higher model is the LCM without
additional padding [x, y, z, θ].

The start tree states and goal sets are also validated after translation into the LCM, as men-
tioned in Section 4.1.4. This is because waypoints may get translated into models that cause
invalid states. An example of this occurs when a model with some added padding now causes
the footprint at this waypoint to intersect an obstacle. Goal waypoints are also checked, but with-
out their passive variables because these values can not be predicted without having planned the
repaired path. Furthermore, it is possible for different goals to be valid for different trees since
they can be elevated to different padding models. If the start state is invalid or there are no valid
goals, the tree is not used for re-planning.

4.3 Plan-Time Model Switching Discussion and Enhancements
In this section we describe two additional considerations for our plan-time algorithm. The first
describes a statistic for evaluating how well the feasibility checker matches the robot’s execu-
tion controller and how this statistic can effect our results. The second describes a re-planning
heuristic that effects overall planning times.

4.3.1 False Positive and False Negative Rates

Our work assumes the highest model matches the real world as closely as possible, if this does not
occur it increases the presence of false positive and false negative results. A false positive result
occurs when the highest model used to check the path detects a collision, but the robot would
have executed the path successfully. For example, this can occur in a swinging doors world where
door states are discretized with each time-step, but in reality door swing is continuous. A false
negative result occurs when the highest model checker does not detect a collision but the robot

32

encounters an execution failure. This can occur when ineffectively modeling dynamics, such
as mass, which could increase or decrease a swinging trailer as compared to the highest model.
False positives and negatives have adverse effects. False positives increase planning times since
re-planning may occur unnecessarily, and false negatives decrease overall success rates of our
approach.

For successful model implementation we seek a balance between successful execution rates
and shorter planning times. To achieve this it is important to balance between the false positive
and false negative rates that can occur between inconsistencies with the planner’s path checker
and the robot’s underlying controller. We found that as a first step it is possible to consider
checking paths with a nominal footprint padding value and also plan with a different initial
nominal padding value. This is described further in Section 5.4.1.

4.3.2 Multi-Tree Re-Plan Weighting
The re-planning phase creates partial repair paths from and towards reference waypoints planned
using a lower model. Sometimes lower model reference paths are generated in areas difficult for
higher models to find plans causing longer re-plan times. This is why a heuristic is used for prob-
abilistically selecting which re-planning tree to expand next and for weighting an intermediate
goal to expand towards.

The heuristic we use for tree expansion accounts for three things. It favors tree expansion
for waypoints closer to the collision point for path re-use, flattens the tree selection distribution
to be equal as planning times increase, and preferences start nodes further away from obstacles.
Re-planning from and towards waypoints closer to the collision point localizes the repair and
encourages the re-use of the previous path. Therefore, the first part of the heuristic contains
an inverse distance weighting, 1/(1 + distance), where the distance is to the waypoint after
the detected collision. As the distance from the collision increases the weight decreases. Si-
multaneously, it is not known how close the collision is to these re-planning waypoint guides,
and favoring tree expansion too close to the detected collision area causes the search to stall.
This is alleviated by re-planning from multiple start trees towards multiple intermediate goals
and with the second addition to the heuristic. The planning time is added to balance the pref-
erence of keeping the repair small while minimizing stall cases. As planning time increases the
expansion probabilities flatten to have an equal weight. Planning time is added to the denom-
inator, 1/(1 + (distance/planT ime2)) decreasing the effect of the distance value over time as
1/(1 + epsilon) = 1. Lastly, the third refinement favors start nodes further from obstacles by
including a logistic weighting function as shown in Figure 4.9. Since RRTs increase node ex-
pansion in constrained areas, re-planning can stall when any previous waypoints are too close to
obstacles, and not just those closer to where the impediment was detected.

The logistic sigmoid function groups lower distance values closer to zero as they approach
negative infinity and higher distance values closer to the max as they approach positive infinity.
As the robot moves in the world there is a distance that is too close for the robot to be able to
effectively re-plan from an obstacle, and anything less than this distance is equally discouraged.
Likewise, once the robot is a certain distance away from an obstacle any higher distance values
are equally beneficial. Figure 4.9 demonstrates this effect by weighting the obstacle distance
where anything less than 20 cm is considered too close (the lower 10%) and anything greater

33

than a half meter is equally good (the upper 90%). This logistic function is defined as: 1/(1 +
e−15∗(x−0.35)).

Figure 4.9: Logistic curve for obstacle distance weighting. Anything less than 20 cm is weighted
in the lower 10%, and anything greater than half meter is weighted in the upper 90%.

4.4 Plan-Time Model Switching Summary

In summary, our approach assumes we are given a discrete model collection. Using these models
we construct a hierarchical graph. Lower fidelity model abstractions lead to higher model super-
sets that better approximate the real world. The model organization considerations are described
in Section 3.2.

Detecting task impediment focuses on the decision of when to switch to a different model.
This occurs when the feasibility checker checks the reference path in the highest given model
while waypoint following similar to the robot’s execution controller, Section 4.1.2. Our approach
automatically determines what padding amount to add to the robot footprint for additional uncer-
tainty models, Section 4.2.1, and leverages the model hierarchy to choose what model to re-plan
in during the model selection process, Section 4.1.3 and Section 4.2.2. The path is repaired by
planning in the selected model from multiple start trees toward intermediate goal sets, Section
4.1.4. This process repeats until a determined execution feasible multi-model path is sent to the
robot for execution.

We highlight some initial assumptions that we have addressed.
• Models of varying fidelity from simple to complex are given.

34

• Lower fidelity models can be translated into higher fidelity models assuming a lossless
translation.

• Models with added uncertainty vary the amount of robot footprint padding.

4.5 Formalization of the Approach

We begin by providing a list of assumptions for our approach that we will refer to in the para-
graphs that follow.

1. The approach is for any domain that does motion planning with a rigid-body robot through
a space of known obstacles.

2. The domain includes a definition of a single highest-fidelity planning model.

3. The domain can be decomposed into varying fidelity planning models which include lower
and higher fidelity models.

4. Each model defines a manifold of configuration space and a state transition function which
defines the propagation between robot configuration states.

5. These models fit into a hierarchy based on a partial ordering of the model’s fidelity.

6. The domain defines a translation for the ability to propagate lower fidelity plans in higher
fidelity models.

7. This translation defines the update of lower fidelity state into higher fidelity state, which
includes: actively controlled state variables and passive state variables (that depend on the
history of this model’s plan).

8. The translation sets active variables to default values and updates passive variables through
path translation.

9. A control law exists for trajectory following plans in the highest possible model.

10. The control law for feasibility detection matches the one used by the robot during execu-
tion.

We first define the class of problems for our approach. We believe this approach would be
useful for any rigid body robot that is motion planning through a space of known obstacles. This
is a class of robot systems where it is possible to decompose the dimensionality of the planning
space. These decompositions range in fidelity from lower to higher where fidelity is defined in
Chapter 3.1.2. Each of these separate decompositions can be used to generate a path. We refer
to each decomposition as a model. We require a discretization of the motion planning space into
at least f fidelity models, where f is at least 2, and includes a description of the highest possible
model. If the problem class allows the discretization of the highest model into varying fidelity
models, where f > 2, then our approach is more beneficial.

We start by describing more formal examples of lower and higher dimensional models as
required by the class of problems. Then we describe the necessary inputs and outputs for the
ability to propagate lower models in higher model spaces. Once we have established what is
necessary for this propagation we can describe the use of the feasibility detector and model

35

selection steps. Then we go on to define completeness guarantee for our framework with respect
to the highest model.

Our approach defines parts of a model which are the basic components necessary for motion
planning, [55]. This includes a definition of configuration space, which includes the robot and
environment state, and a transition function. The configuration space contains an obstacle space
which describes the occupied parts of the environment, Coccup, and a collision free space which
describe the feasible configurations of the robot state Cfree. A continuous path is generated
from an initial start and goal configuration in Cfree where we require a transition function which
defines the propagation between configuration states of the robot. The transition function t takes
a given action a and a current feasible state c ∈ Cfree to a next feasible state c′ ∈ Cfree, c′ =
t(c, a). The transition function describes either a discrete-time state transition or transition on a
continuous stat space ẋ which may yield a velocity but can look similar to a discrete transition.
For example, this may be defined using optional control inputs for transitioning by integrating
velocity between states ẋ = t(c, a) = f(x(t), u(t), t), and then determining it is in Cfree or
Coccup.

Formally defining our models requires understanding the robot’s configuration space which
we refer to as the topological state used in motion planning, [55]. We expand on our model
definition, Chapter 3.1, of the configuration space. The configuration space defines unique con-
figuration variables of the robot at any point in time as defined by the vector ~q. This configuration
space is a manifold [23]. A manifold is defined from a topological space which requires a notion
of dimensionality and contains a homeomorphic property which implies reflective, transitive and
symmetry properties in the space. From Lavalle’s book, [55], a topological space S ⊆ Rn is
a manifold if: 1) for every state x ∈ S an open set exists such that 2) x is in the open set and
3) the open set is homeomorphic to a real vector space Rn, where n is the fixed dimension of
the manifold, S. Therefore, at every point a manifold behaves like a surface without crossing
points or self-intersections. We note that this manifold describes robot transformations in the
absence of configurations which cause the robot to collide with obstacles or itself, Sfree. The
dimensionality on a single manifold does not change. Therefore, the robot’s state for different
fidelity models represent different manifolds.

The definition of a model also includes constraints. The two constraint types are static con-
straints on the state or constraints on the transition function. For example, there can be a con-
straint on the allowable velocity at every point in the configuration space. Constraining the
velocity at particular points creates a tangential space to the full configuration space defining
a vector space. By discussing the tangent space, we can discuss differentiable manifolds and
describe how the tangent space can also be described as a manifold. Therefore, the motions the
robot takes can be thought of as actions between states represented as a differentiable mapping
[23]. It is also possible to constrain the transition function which affects the reachability between
configuration states. For example, possible constraints on the system can occur with the addition
of independent links for a robot body. The full range of motion for a robot may not be possible
depending on how independent links of subsystems are joined. Additional links create additional
constraints on the system for higher dimensional models. Constraints are expressed as a function
g(q, q̇), [55].

For uncertainty models the dimensionality of the configuration space does not change but
the volume of the free configuration space, Cfree, is reduced due to a larger robot footprint.

36

This could be thought of as a volume-reducing collision avoidance constraint which represents
a subset of the base model’s configuration manifold. Therefore, uncertainty models can also
represent configuration state with a manifold.

Decomposing the space breaks the planning space into what we refer to as lower fidelity, Ml

and higher fidelity models, Mh. One way of discretizing the model space is by defining new
topological spaces or manifolds. For example, our robot model’s state can include the real vector
space manifold R2 (state for XY) or the higher fidelity special euclidean group SE(2) which is
defined by combiningR2×SO(2) (state forXY θ), the two dimensional real vector space and the
yaw rotation group. The topology of a rigid body (the robot) does not change when translated or
rotated. Therefore, the Cartesian product generates new manifolds from existing ones, [55]. For
example, models that include velocity add a time dimension which creates a different manifold.
An example model defines [x, y] from R2, heading θ from SO(2) and velocity, then the robot
configuration state is defined as a manifold: S = R2×SO(2)×T . As another example, including
a trailer also creates a manifold with an additional trailer heading where: S = R2 × SO(2) ×
SO(2) and the volume of Cfree is reduced to include the trailer footprint. Multiple independent
subsystems can also be defined where multiple rigid bodies move independently. Each of these
could describe a separate manifold of configurations such as the robot’s base versus the robot’s
manipulator. The configuration spaces of each subsystem may also be combined by Cartesian
products. Since the class of problems for our approach requires a discretization of the planning
space, we believe that just as it is possible to create kinematic chains of multiple bodies that
are allowed to move independently by combining their configuration spaces, it is possible to
separate them. For a multi-subsystem robot this could mean planning the robot’s base separately
from its manipulator, or breaking up the full joint space of a robot arm to subsystems which just
include the forearm with wrist and end effector, or just the end effector. If different subsystems
of the robot represent different fidelity models, than combined subsystems lead to higher fidelity
models. The model hierarchy would place separate subsystems along the same level of the graph
and then combine into higher fidelity models where the highest model includes the complete
multi-subsystem robot.

We formally define the translation function, as lossless in Chapter 3.1.2, from lower to higher
fidelity models. This occurs by changing the dimensionality of lower fidelity variables which
consist of two types. Some dimensions are actively controlled and do not depend on the history
of the path xa ∈ x(t), and others (a second group) are passive variables, xp ∈ x(t) which depend
on the previous lower model’s path history (a function of this lower dimensional path). Examples
of passive variables include the trailer heading for a passive trailer or the update of the time
dimension. Both dimensions are added, x′ = a(xa, xp), to match the state for the higher model
manifold’s configuration space ~qh(xh(t) | x′ ∈ xh(t). First, the actively controlled variables are
set using default values; second, the passive variables are set using path translation. We describe
the change in configuration space for adding both variables and then the path translation for
updating passive variables in the following paragraphs.

First the ability to translate between models requires a change in configuration space. This
is the addition of configuration dimensions. For a lower fidelity model’s configuration variables
(~ql(xl(t)) | xl ∈ Rn) as defined for manifold (xl ∈ Sl, Sl ∈ Ml) and a higher fidelity model’s
configuration variables (~qh(xh(t)) | xh ∈ Rm) as defined for manifold (xh ∈ Sh, Sh ∈ Mh)

37

where n < m, additional configuration variables (both active and passive) are added to state
xl as necessary for n == m to match the state dimensionality xh of higher model Mh. These
additional dimensions are set to default values.

The second step is a path translation. The passive variables which depend on history infor-
mation can not be properly set until path information is known from the lower model space.
The passive variables are updated through a path translation which requires the use of the higher
model’s transition function for defined propagation between waypoints ẋh = t(c, a), and a con-
trol law. Formally, this is a trajectory follower, where given a sufficiently smooth trajectory
(reference path) x̄ : [0, T] → Rn finds controls u(.) that steer the state x(t), t ∈ [0, T] approxi-
mately along x̄, as defined in [92]. Here approximately is defined as tracking a desired reference
path, in our case originally generated in a lower dimensional x̄l : [0, T] → Ml elevated to the
higher model, x̄lh : [0, T], in a neighborhood of a point in the elevated model Mh. Therefore, the
control law uh(t) = f(t, ¯xlh(t), xh(t), ˙xh(t)), is an input output map for path translation between
models Ml →Mh; ¯xlh(t)→ uh(t) which takes an elevated lower dimensional tracking path, the
current state information (elevated to the higher model’s configuration space) and transition func-
tions (defined propagation) in the higher model for following this lower model reference path.
The control law outputs path following controls for simulating the robot along the trajectory in
the higher model. This means that state configurations from a lower dimensional manifold Sl
are used as guides, cl ∈ Cfree, where cl now contains added configuration state for the higher
dimensional manifold.

We have established the class of problems where there is a decomposition of the space into
varying fidelity models that are lower and higher with translations between. We require that a
transition function exists for propagation in each fidelity model. We also assume a control law
exists for path following that propagates (using the transition function) elevated lower model
reference paths in a higher fidelity model. Since we can always translate into the highest model,
the robot’s execution controller similarly assumes a control law exists which can follow a tra-
jectory of waypoints generated from any underlying model translated into the highest model.
This control law outputs controls for the robot to stay along the path including logic of knowing
when the next target waypoint is achieved. This is the same trajectory following logic used
in path translation. Therefore, the control law which exists for path following during plan-
time also allows the robot to follow the path during execution. The definition is the same,
uh(t) = f(t, ¯xlh(t), xh(t), ˙xh(t)), the transition function is an execution time-step in the envi-
ronment where an output of controls keep the robot along the path.

We note there can be deviations from the trajectory that is being followed. The control law
tracks a desired trajectory by following in a neighborhood of a points. The ability to reach a
point may not be exact because these future waypoints are used as guides and the lower fidelity
models do not match the robot’s characteristics as well as the highest model. Deviations between
a planned path and the control law’s ability to closely track the path lead to the necessity of a fea-
sibility detector described in our approach. Feasibility detection determines at plan-time where
deviations may cause an infeasibility and these are the points where switching to a different
model occurs.

The feasibility detector propagates uh∗(t) and collision checks c(xh∗(t)) the path at each
time-step , d(uh∗(t), c(xh∗(t)), t), in the highest possible model which requires a translation

38

into the highest model space xl(t) → xlh∗(t) such that passive variables are updated for path
¯xlh∗(t). This detection does path translation as described, and follows the path using uh∗(t) =

f(t, ¯xlh∗(t), xh∗(t), ˙xh∗(t)), where the configuration state and transition function is for the highest
possible Mh∗ defined model of the domain. The feasibility detector and robot controller use the
same control law for waypoint following. They take the same input values and include the same
logic for knowing when waypoints are achieved. The feasibility detector effectively simulates
the robot in the highest model (along a multi-fidelity model reference path translated into the
highest fidelity level) and the robot’s execution controller uses the control law to drive the robot
to follow the same reference path. When the feasibility detector does not match exactly how the
robot executes in the environment it either detects more collisions than occur in execution (is too
conservative) or does not find collisions that occur during execution (is not conservative enough).

If the feasibility detector determines when a switch occurs, then the model selector deter-
mines what model to switch to. The model selection stage also translates a path into the model
being checked xl(t) → xlh(t). This translation adds configuration state to match the higher
model it is checking in and uses the higher model transition functions for updating passive vari-
ables at each time-step ¯xlh(t). The difference between model selection and feasibility detection
is that the model selector does not always follow paths in the highest possible model h∗. The
model fidelity changes depending on what model the selector decides to check in. The model
selector also requires a definition of the control law uh(t) for following lower model paths in a
higher fidelity model. It is also possible to follow paths without collision checking which just
translates necessary parts of the path into higher models without checking the validity of the
configuration state. The model selector at each time-step of the path collision checks the validity
of the robot configuration, in this specific model, between the waypoints where a feasibility was
detected. Therefore it propagates for all t, but only collision checks for a partial part of the path,
m(uh(t), c(xh(t1 : t2)), t), where h can be of any model fidelity.

Now that we have discussed the formalities for translating between models, and inputs re-
quired for deciding when and what model is necessary to switch to for re-planning, we can show
completeness guarantees for our approach. Assuming that a plan can be generated in the highest
model (the straw man) then it is possible discuss probabilistic completeness with respect to the
highest model.

4.5.1 Probabilistic Completeness Guarantees
We start by re-showing Algorithm 1 and 2 so they can be more easily referenced by the prob-
abilistic completeness proof. The algorithms presented previously (1-3) form the basis of a
probabilistically complete planning algorithm.

Definition:
For probabilistic completeness, the probability that the highest fidelity model from the hierarchy
will find a solution approaches one as the number of states approaches∞, [54]. To illustrate this,
we must show in the worst case our algorithm generates a plan from the start state to the goal
state in the highest fidelity model in finite time.

We assume a model hierarchy exists where every model has at least one common model of
higher fidelity. Therefore, there exists a highest fidelity model that is higher than all models.

39

Algorithm 1 Robust plan generation algorithm repeated from earlier in the chapter.
[p , planResult] = generatePlan(m);
if planResult == success then

globalPlan = savePlan(p, globalPlan);
tm = translateToModel(p, highest);
[planCheck, b4repair, after] = propagateWhileValid(tm, highest)
if planCheck == infeasible then

m = MODELSELECTOR(globalPlan, b4repair, after);
[p, planResult] = multiTreeReplan(globalPlan, b4repair, after, m);
Goto line 2

else
executeResult = sendToRobot(globalPlan);

end if
else

Failed to find plan.
Goto line 7

end if

We also assume a transition functions defines transitions between states. For instance, steering
functions for the control input has been found to maintain probabilistic completeness in RRT
planning when there is a fixed time-step as discussed in [53].

Algorithm 2 The model selector repeated from earlier in the chapter.
1: function MODELSELECTOR(p, b4failIndex, afterfailIndex)
2: mLast = findModelFor(p.getNode(b4failIndex));
3: m = mLast;
4: p = resizePlan(p.getNode(b4failIndex), p.getNode(afterfailIndex));
5: setUsedModel(m); . Last model used becomes root node.
6: m = getNewModelBFS();
7: tm = translateToModel(p,m);
8: planResult = propagateWhileValid(tm, m); . Does collision checking.
9: if planResult == success then
10: Goto line 5
11: end if
12: return m
13: end function

Show: N path waypoints are generated in the lowest model (Ml) (Algorithm 1, Line 1). A
lower bound of N − 1 edges are checked in the highest fidelity model during feasibility detec-
tion (Mh, Ml <Mh) (Algorithm 1, Line 5). If an infeasibility is found the model selected for
re-planning always increases in fidelity.

The Worst Case: An infeasibility is detected (Algorithm 1, line 6) in the last edge. (Algorithm
2, afterFailIndex = N-1). If the next model selected, (Mn), fails the model check then all previous
start waypoints are elevated to at least the fidelity of Mn, and new re-plan trees of this dimension
are initialized. Once a re-planned path is found it is then included in the maintained global
path. If the partially re-planned path repair (Algorithm 1, Line 8) continues to have detected
infeasibilities, then by BFS (Algorithm 2, line 6), the re-planned path will continue to get elevated
until reaching Mh. This is also true for uncertainty models with added padding. The next higher
fidelity model (by BFS) is selected for switching to when the determined padding amount is too
high to find a plan, or there are no valid re-plan trees. Also, if a plan is not found during multi-
tree re-planning, the model search will still select a higher fidelity model (Algorithm 1, line 6).

40

If the highest model is used as the start of a re-planned tree then all previous waypoints along
the path are also elevated to this higher model. This is so lower model paths can not re-plan over
previous higher model paths. If the feasibility detector determines that a repaired edge planned
in the highest model Mh is also infeasible, the algorithm will re-plan from start to the end in the
highest model. Therefore, in the worst case all previous model edges are elevated to Mh during
tree re-planning generating a tree from the start to the elevated goal set in Mh.

41

42

Chapter 5

Implementation for Experiments

In this chapter we describe implementation details specific to the models and platform used
in our experiments. First, we introduce our simulation environment. Then we describe the
robot controller for executing in the high fidelity Gazebo simulator. Next we list the differential
drive robot models, and discuss collision checking. Then we describe how the differential drive
robot models are used in planning and model translation. We then give details on how partial
path repairs are merged back into the path maintained for robot execution. Following this, we
describe how that reference path is propagated and what we mean by propagation, path checking
and path translation. This includes a discussion for reducing the false positive and false negative
rates that occur between the feasibility detector and execution controller. Finally, we include
some implementation details for using a Voronoi diagram for the uncertainty model part of the
approach.

5.1 Simulation Environment
For this work, the real world is represented by the Gazebo simulator (gazebosim.org) which
models dynamics by simulating rigid-body physics. We simulate multiple hospital worlds which
highlight environments with two kinds of obstacles. The first are environments that contain
randomly placed gurneys. The other is an environment with an automatic swinging door which
opens as the robot approaches. Figure 5.1 shows a close view of hospital gurneys, Figure 5.1 (a)
and (b), and the swinging door, Figure 5.1 (c). The exact environments we simulate are described
further in Chapter 6.

5.2 Robot Controller
The simulated robot follows the execution path using a pure pursuit controller. The pure pursuit
controller implementation is described in [18]. Pure pursuit adjusts the angular velocity to stay
along the path based on a lookahead distance, measured along the path arc. Our lookahead
threshold is currently fixed to 0.5 meters, but could be adjusted to change with time as linear
velocity varies. The same controller is used regardless of the multiple model types in our final
robot path.

43

gazebosim.org

(a) World with gurneys. (b) Another world with gurneys. (c) World with automatic swinging
door.

Figure 5.1: Worlds with gurneys and an automatic swinging door.

The controller adjusts linear velocities to be within acceleration limits. At each time-step,
the linear velocity is constrained to be achievable from the previous velocity, given an accelera-
tion limit and time-step duration. This acceleration limit may change for any parts of the paths
generated using higher models that compute acceleration.

In order to index the robot position along the path, and note when the goal has been reached,
the controller checks if it has reached a target waypoint. This is done by checking if the position
of the robot is within a pre-defined range of the target or the robot has crossed a line perpendicular
to the path at the current target waypoint. This can easily be computed as the sign of the dot
product between the path heading and the robot-waypoint position difference.

It is important to note again that the feasibility detector used in our plan-time algorithm
checks paths similar to how the robot controller follows paths during execution. This includes
using the same checks for determining if the next waypoint has been passed, staying within
acceleration limits, and adjusting the angular velocity through pure pursuit.

5.2.1 Robot Controller More Details

As stated previously, we implemented a pure pursuit controller for waypoint following our multi-
model path. The controller takes the next target waypoint and velocities as input. The controller
first adjusts the value for the target waypoint based on the lookahead distance (0.5). This is
determined by first finding the closest perpendicular point between the robot and the path. If
this point is less than the lookahead threshold a closer point is found by interpolating along the
path. Therefore, the next point along the path that is within this lookahead distance, which can
be closer than the provided waypoint target, becomes the new target the robot goes towards. The
controller then determines the displacement of this target point from its current position. This
is done by computing the distance and bearing heading from the robot’s current position to the
target waypoint. Using this information, the vehicle’s curvature for steering towards this point
is determined. The steering curvature adjusts the angular velocity to stay along the path. Again
please refer to [18] for these specific equations.

The controller then sets output controls to the robot’s wheels. Therefore, the desired linear
and angular velocities for waypoint following are converted to left and right wheel velocities.
These equations are found below. We include the wheel separation ws (0.34), as a multiplier for

44

the angular velocity, and the wheel radius, wr (0.11).

desiredLW = (desiredL− (desiredA ∗ ws)/2.0)/wr (5.1)

desiredRW = (desiredL+ (desiredA ∗ ws)/2.0)/wr (5.2)

Our controller operates in discrete time-steps. The left and right wheel velocities are acceler-
ated at the acceleration limit provided by the plan until they reach the desired velocities. These
wheel velocities are maintained by using a PID controller for each wheel. Once the PID has
updated the commanded velocity for one time-step of the PID loop it is sent as the commanded
velocity for the robot’s wheel joint.

The next target waypoint is achieved if the waypoint is within 0.1 meters of the current
robot’s x, y position and 0.09 radians of the robot’s heading, or the waypoint has been crossed.
For knowing whether a target waypoint has been crossed, we first create a line segment that
crosses through the target waypoint at a 90 degree angle from the target heading. This segment
is set to a size of 0.25, range. The target waypoint’s x and y values are labelled as xT and yT,
and the segment’s end points are constructed using the following equations:

unitX = range ∗ cosine(goalHeading + 90) (5.3)

unitY = range ∗ sine(goalHeading + 90) (5.4)

newX1 = xT + unitX (5.5)

newY 1 = yT + unitY (5.6)

newX2 = xT − unitX (5.7)

newY 2 = yT − unitY (5.8)

Then we determine if the robot’s current position along the path has intersected this line
segment. The robot’s current position is set as the midpoint for a line segment of the same size as
the target segment. Intersection is determined between these two line segments by using vector
cross products where four cases are checked. The lines are either collinear, parallel and non-
intersecting, intersect at a point, or not parallel but also do not intersect. These descriptions of
the intersection of two line segments in three-space are found in [33]. If the line segments do not
intersect, then it is possible to use the cross product and the sign of the determinant to know if
the waypoint has been passed. This is the cross product between the vector perpendicular to the
target waypoint and the line segment created from the current position of the robot. A change
in sign of the determinant indicates that the robot’s position is on the other side of the vector
perpendicular to the target.

5.3 Robot Models
Our testing uses a simulated two-wheeled differential drive robot with a rear trailer attached to
the robot’s axle using a revolute joint. The robot geometry models are shown without (Figure 5.2
(a)) and with the trailer (Figure 5.2 (b))).

45

(a) Robot Model. (b) Robot Model with Trailer.

Figure 5.2: The robot model.

5.3.1 Model Hierarchy

We use seven different wheeled robot models in our testing. These comprise our base mod-
els. The unique variables used to describe the configuration of the robot at any point in time is
described by the vector ~q.

1. ~q = [x, y] = XY
The first model is geometric with no control inputs.

2. ~q = [x, y, θ] = XY θ
This model includes θ and constrains motions to s-curves. The linear velocity is held
constant.

3. ~q = [x, y, θ, θtrailer] = XY θθ1
This model generates the same motions as the XY θ model , but also includes simulating
the position for the trailer. The trailer’s position is calculated using θtrailer.

4. ~q = [x, y, θ, t, uv, uw] = XY θV
This model samples the continuous space of linear and angular velocities (where uv =
sampled linear velocity control and uw = sampled angular velocity control). Accelerations
are assumed to be infinite.

5. ~q = [x, y, θ, θtrailer, t, uv, uw] = XY θθ1V
This model is the same as model XY θV , but also models the trailer.

6. ~q = [x, y, θ, t, v, w, ua, uα] = XY θV A
This model samples the continuous acceleration space (where ua = sampled linear acceler-
ation controls and uα = sampled angular acceleration control), and now the linear (v) and
angular (w) velocity variables become part of the state.

7. ~q = [x, y, θ, θtrailer, t, v, w, ua, uα] = XY θθ1V A
This model is the same as model XY θV A, but also models the trailer.

For our switching experiments, we use the transitive reduction of the full model graph, as
shown in Figure 5.3. This model graph may be augmented to include models with additional
padding for our uncertainty experiments, as described in Section 3.1.1.

46

XY

XYθ

XYθθ1

XYθθ1V

XYθθ1VA

XYθV

XYθVA

Figure 5.3: Transitive reduction of full model graph.

5.3.2 Collision Checker

The purpose of the collision checker is to determine if a given pose of a robot collides with objects
in the environment, given the shape of the robot, footprint padding, and an optional trailer.

Before planning begins, collision meshes are created once and stored for each obstacle in
the environment. This is done by generating point clouds for obstacles within the gazebo world.
These clouds are then triangulated using a point-cloud library. As collision checking against
point-clouds is expensive, an occupancy grid is precomputed for the environment. The grid
contains obstacles with shapes inflated by the radius of a circumscribing circle around the robot
plus padding. If the state being checked overlaps an occupied cell in the grid, it is then checked
by the full point-cloud collision checker.

The collision checker is called in the RRT planner when determining valid states. We use
the Flexible Collision Library (fcl) [73] for collision checking between a robot and environment.
The collision checker is the same for all models, but the robot properties and environment being
checked can change. When checking the validity of a robot state we first decide which config-
uration variables to use based on our model. This includes the trailer, time indexed values, and
directional values such as: x, y, and θ. If the trailer is modeled, it is also checked for collisions.
If z is not present, the obstacles and robot footprint meshes sent to the collision checker are a
flat plane. The collision checker also takes as input a transform which describes the translation
and rotation of the robot mesh and the environment obstacle that are being checked. The robot’s
transform is set based on the x, y, and θ values for the state being checked, and if heading is not
present in the model, the robot mesh is checked with θ = 0.

47

Collision checking can change depending on our robot model as described below:
1. ~q = [x, y] = XY

Collision checking ignores the trailer and assumes the robot heading is fixed: θ = 0.

2. ~q = [x, y, θ] = XY θ
Collision checking models the robot angle, but ignores the trailer.

3. ~q = [x, y, θ, θtrailer] = XY θθ1
Collision checking includes both the robot and trailer, with their headings.

4. ~q = [x, y, θ, t, uv, uw] = XY θV
Collision checking again ignores the trailer, but now includes a time variable (t) which is
used to check collisions against time-sensitive obstacles such as swinging doors.

5. ~q = [x, y, θ, θtrailer, t, uv, uw] = XY θθ1V
This model is the same as model XY θV , but includes the trailer in collision checking.

6. ~q = [x, y, θ, t, v, w, ua, uα] = XY θV A
Collision checking is the same as with model XY θV : ignoring the trailer and including
time-sensitive obstacles.

7. ~q = [x, y, θ, θtrailer, t, v, w, ua, uα] = XY θθ1V A
This model is the same as model XY θV A, and includes the trailer in collision checking.

For our worlds with automatic swinging doors, the state’s time value is used to choose
between occupancy grids that have the doors positioned entirely opened, partially opened, or
closed. The partially open occupancy grid considers the entire swing area of the doors as an
obstacle as shown in Figure 5.4. If the time value does not exist for the model, the obstacle
representation of the doors is always in the open position. In our specific implementation the
time value is only set if the robot’s current propagation position is within two meters in the
x-direction and 1 meter in the y-direction of the center of the swinging doors. Otherwise, for
models with time, the value is set to a negative value (-99) which flags it to never be used for
collision checking time-indexed obstacles. This is also the case for environments that do not
include the swinging doors.

Collision checking with the full door swing area, between opening and closing, is an overly
conservative approach. This causes a high false positive rate since the feasibility detector (Chap-
ter 4.1.2) finds more collisions than actually occurs during execution, discussed more in Chapter
6.2.3. Alternatively, a less conservative approach would try to further discretize the door angles
to better approximate the continuous door swing variable. If the discretization is not fine enough,
paths could generate where the robot is located near the angled doors at one time-step and then
teleport to the other side at the next time-step. This increases false negatives since the checker
does not realize the door swings through the robot during execution. False positives are preferred
over false negatives so we choose the conservative approach.

5.3.3 Trajectory Generation with Models
In this section we describe how the planner generates trajectories for each model type. This
includes the variables sampled for selecting target waypoints and details for how to propagate
the path towards these targets. We use the OMPL library (ompl.kavrakilab.org) for RRT plan-

48

(a) Doors opening. (b) Collision mesh of the door swing area. (c) Doors closing.

Figure 5.4: Conservative collision checking for automatic door world when doors are swinging.

ning. The Runge Kutta method numerically integrates the ordinary differential motion equations
towards the next target point. Example trajectories generated with these different models are
shown in Figure 5.5.

1. Lowest model: XY
This is our only purely geometric model which does not use an integrated propagation
function. The two dimensional state space is randomly sampled for a target. If the target
exceeds a fixed maximum distance from the current waypoint (set to 1.0 meters), a target is
interpolated at this maximum distance toward the target. The planner then collision checks
in a straight line along that path by interpolating at some pre-set checking resolution. As
the heading is not captured, it is assumed to be fixed at zero. Similarly, the trailer is not
collision checked at all.

2. Models with heading: XY θ, XY θθ1
For models that include heading, targets are sampled in [x, y, θ]. The linear velocity is
set to a constant value. The angular velocity, ω is set based on the linear velocity, v, and
the radius, r of the circle arc created between the sampled target and the waypoint being
propagating from using v = ωr. Lastly, we constrain the change in curvature between
waypoints, and update the angular velocity accordingly, described below in 5.3.4. These
controls are sent to the respective motion equation for propagation and collision checked
at each time step based on a pre-defined step size. The propagation step count is sampled
as described in 5.3.4.

3. Models with velocity: XY θV , XY θθ1V
Models with velocity also sample targets in [x, y, θ]. They sample the next linear veloc-
ity using a Gaussian distribution centered around the current linear velocity, constrained
within the limits of the robot. This is to reduce the robot’s trailer swing. The angular
velocity is set as previously described, including the re-computation for curvature change
constraints (5.3.4). These velocity control values are set and reached instantaneously since
acceleration limits are not considered.
Velocity models also set a time variable. The time variable is updated by integrating the

49

durations. In our specific implementation the time value is only set if the robot’s current
propagation position is within two meters in the x-direction and 1 meter in the y-direction
of the center of the swinging doors. Otherwise, for models with time, the value is set to
a negative value (-99) which flags it to never be used for collision checking time-indexed
obstacles.
Again, the state and controls are numerically integrated, iteratively propagating until a col-
lision is found or the sampled propagation step count is reached.

4. Models with acceleration: XY θV A, XY θθ1V A
Acceleration models initially sample the next target linear velocity from a gaussian, they
also sample in [x, y, θ], constrain the angular velocity to follow an arc towards the next
sampled target, sample a propagation step count, and constrain the change in curvature.
After we have the velocity values, we sample a bounded wheel acceleration value. At
each time-step the delta velocity or maximum acceleration value is applied to the ODE
propagation. During propagation, the state and control are integrated one step and then
collision checked against any applicable obstacles. We continue propagating until a colli-
sion is found, or the total step count is reached. If the target velocity is achieved before the
total step count is met, the robot coasts at the target velocity for the remainder of the step
count.

Propagation equations

Models use the standard differential drive motion equations:

ẋ = uv cos(θ)

ẏ = uv sin(θ)

θ̇ = uw

Models that include the trailer have an extra equation for the trailer’s theta:

θ̇trailer = (uv/l) sin(θ − θtrailer)

Models with sampled acceleration use a double integrator in their motion equations where
velocities become part of the state:

ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = w

v̇ = ua

ẇ = uα

50

Different models create different motion trajectories as shown in Figure 5.5. The XY path
(Figure 5.5(a)) contains straight line geometric motions. The XYθθ1 path (Figure 5.5(b)) models
the trailer and follows s-curve motions. Finally, the XYθVA path (Figure 5.5(c)) varies acceler-
ations creating a smoother trajectory.

(a) Example XY path. (b) Example XYθθ1 path.

(c) Example XYθVA.

Figure 5.5: Examples of paths generated using different models.

5.3.4 Trajectory Generation More Details

All models use the propagation functions except the purely geometric XY model. The propa-
gation equations are integrated for one time-step and then collision checked against applicable
obstacles. The time-step duration was set to 0.1. If the value is too large collisions with the
environment are missed because collision checking is not done at a fine enough resolution with
the environment, and if the value is too small it increases planning time. The propagation step
count is sampled from a control duration range. This range was set to be [10, 50]. The size of
this range affects the control duration between waypoints.

As stated previously, all models except for XY also constrain the change in curvature. This
curvature is constrained to minimize trailer swing during the execution of these trajectories. This
is done by comparing the curvature, k, (k = 1/r, r = v/w) of the previous linear and angular
velocity to the current values. If the magnitude of curvature is over a set curve threshold (we
set to 1.0), we sample a new constrained magnitude, less than 1.0, and use it to calculate a new
angular velocity.

51

Padding for Planning

An initial footprint padding amount added for planning also helps increase overall success rates
across simulation environments. We refer to this initial padding amount present on all base
models as the nominal planning padding value.

Our current pure pursuit controller does not match the path’s heading, instead adjusting the
robot’s heading to remain on the spatial path. This means that paths with waypoints close to
obstacles with slight heading variations have a higher chance of being clipped by the robot.
While this could be addressed with padding in the feasibility detector, nominal planning padding
has smaller plan-time costs and results in fewer model switches in the final plan.

In summary, all models have some footprint padding, which may vary according to the model
(whether it is a base model or an uncertainty model). The padding is used in collision check-
ing during path generation, Section 5.3.2. We also note there is the model used for feasibility
detection that has a different padding value that we describe in Section 5.4.1.

5.3.5 Model Translation

This section provides a more in-depth description for how we translate between models in our
graph, Figure 5.3. As stated in Section 4.1.2, translation is a multi-step process. First, configura-
tion variables are added as constants that were previously not considered as described in Section
3.1.2, and then translation for passive variables require knowing the next planned waypoint. We
give more details for path translation which requires knowing the planned waypoints next in
Section 5.3.6.

The model translation for each edge in the graph is described below.
1. XY → XY θ

This translation requires an additional θ variable, calculated as the arctangent from the next
waypoint along the planned path.

2. XY θ → XY θV
This translation assumes a constant linear velocity. We set the linear velocity to be the
midpoint of the velocity range that is sampled when generating a trajectory for models that
contain the velocity value. In our implementation, this is 0.17m/s. Time, t, is also added.

3. XY θ → XY θθ1
This translation adds the trailer heading, θ1, as a variable.

4. XY θV → XY θθ1V
Again, this translation adds the trailer heading.

5. XY θV → XY θV A
This translation updates velocity transitions to respect an acceleration limit, instead of
being instantaneous. This is set to 0.2m/s2. The robot is controlled by wheel velocities,
so explicitly computing the final acceleration profile from the velocity derivative is not
necessary.

6. XY θθ1 → XY θθ1V
This translation assumes a constant linear velocity. Again, time t is also added.

52

7. XY θθ1V → XY θθ1V A
This translation modifies the velocity profile to respect acceleration limits, as described
above.

8. XY θV A→ XY θθ1V A
Finally, this translation also adds the trailer heading.

Next we provide a detailed example of how the waypoint values change during path propa-
gation which includes a path translation of the variables.

5.3.6 Path Translation Detailed Example
We present a detailed example of path translation, we include a table of three waypoint values
that initially comprise an XY path, Table 5.1. The following tables contain the configuration
variables for each models in column one. Then the remaining columns populate values for each
variable of the three waypoints as the path gets translated into higher models. For each translation
we show the table with an updated row for these new configuration values. We include this
example here because we are showing the path translation as is done for each model during
model selection, and equivalently for the highest model during feasibility detection. This path
translation (which translates the waypoints) not only integrates the motion equations at each time-
step but also follows waypoints using pure pursuit, and decides when waypoints are achieved.
Therefore, paths can deviate depending on the model. We show the translation between two
models at a time. A lower reference model is translated into a higher model for each edge in the
model hierarchy. The waypoints between these models can deviate because of both pure pursuit
augmenting controls to stay along the path and the logic for achieving waypoints. Each of these
cause differences in the propagation towards the next waypoint. We note that every time we
translate into a specific model, it is deterministic. The translated path is always the same for that
model, and translated paths vary based on the model we are translating for.

Table 5.1: Initial XY path waypoints.

Model Waypoint 1 Waypoint 2 Waypoint 3
[x, y] [-2.5, -2] [-1.54,-1.72] [-0.65,-1.27]

1. XY → XY θ
An additional θ variable (in radians) is added to waypoints. This is calculated as the arct-
angent from the next waypoint along the planned path, Table 5.2.

Table 5.2: XY → XY θ path waypoints.

Model Waypoint 1 Waypoint 2 Waypoint 3
[x, y] [-2.5, -2] [-1.54,-1.72] [-0.65,-1.27]

[x, y, θ] [-2.5, -2, 0.28] [-1.54,-1.72, 0.47] [-0.65,-1.27, 0]

53

2. XY θ → XY θV
This translation assumes a constant linear velocity. The XYθ row shows the path translated
for this model using the motion equations where we set the linear velocity, as described
before, this is 0.17m/s. The angular velocity is set through geometric functions that cal-
culate the chord and radius for the central angle arc with the next target waypoint. This
constrains the robot to travel in arcs towards its next waypoint. Time, t, is computed by
integrating the durations of waypoint transitions, computed from the velocities, Table 5.3.
The duration between waypoints 1 and 2 is 5.4, and waypoints 2 and 3 is 6.3, where the
integration time-step is 0.1.

Table 5.3: XY θ → XY θV path waypoints.

Model Waypoint 1 Waypoint 2 Waypoint 3
[x, y, θ] [-2.5, -2, 0.28] [-1.62,-1.73, 0.39] [-0.64,-1.35, 0.14]

[x, y, θ, t, uv, uw]
[-2.5, -2, 0.28,

0, 0, 0]
[-1.62,-1.73, 0.39,
5.4, 0.17, 0.15]

[-0.64,-1.35, 0.14,
11.7, 0.17, -0.02]

3. XY θ → XY θθ1
This translation adds the trailer heading, θ1, as a variable, Table 5.4. It is computed using
the same propagation functions as models which have a θ1 value during plan-time, shown
in section 5.3.3.

Table 5.4: XY θ → XY θθ1 path waypoints.

Model Waypoint 1 Waypoint 2 Waypoint 3
[x, y, θ] [-2.5, -2, 0.28] [-1.62,-1.73, 0.39] [-0.64,-1.35, 0.14]

[x, y, θ, θtrailer] [-2.5, -2, 0.28, 0] [-1.62, -1.73, 0.39, 0.21] [-0.64, -1.35, 0.14, 0.29]

4. XY θV → XY θθ1V
Again, for translations that add the trailer heading, Table 5.5, the propagation functions are
used to populate this passive variable.

Table 5.5: XY θV → XY θθ1V path waypoints.

Model Waypoint 1 Waypoint 2 Waypoint 3

[x, y, θ, t, uv, uw]
[-2.5, -2, 0.28,

0, 0, 0]
[-1.62,-1.73, 0.39,
5.4, 0.17, 0.15]

[-0.64,-1.35, 0.14,
11.7, 0.17, -0.02]

[x, y, θ, θtrailer, t, uv, uw]
[-2.5, -2, 0.28,

0, 0, 0, 0]
[-1.62,-1.73, 0.39,

0.21, 5.4, 0.17, 0.15]
[-0.64,-1.35, 0.14,

0.29, 11.7, 0.17,-0.02]

5. XY θθ1 → XY θθ1V
This translation assumes a constant linear velocity, and the angular velocity is computed
as described above. Again, time t is computed by computing the durations between way-
points, Table 5.6.

54

Table 5.6: XY θθ1 → XY θθ1V path waypoints.

Model Waypoint 1 Waypoint 2 Waypoint 3
[x, y, θ, θtrailer] [-2.5, -2, 0.28, 0] [-1.62, -1.73, 0.39, 0.21] [-0.64, -1.35, 0.14, 0.29]

[x, y, θ, θtrailer, t, uv, uw]
[-2.5, -2, 0.28,

0, 0, 0, 0]
[-1.62, -1.73, 0.39,

0.21, 5.4, 0.17, 0.15]
[-0.64, -1.35, 0.14,

0.29, 11.7, 0.17, -0.02]

6. XY θV → XY θV A
This translation updates velocity transitions (Table 5.7) to respect an acceleration limit set
to 0.2m/s2. The time value and velocity values change slightly from the XY θV model
because the wheel velocities propagate differently to respect the acceleration limit. The
time-step duration is now 5.8 from waypoint 1 to waypoint 2, and stayed 6.2 from waypoint
2 to waypoint 3.

Table 5.7: XY θV → XY θV A path waypoints.

Model Waypoint 1 Waypoint 2 Waypoint 3

[x, y, θ, t, uv, uw]
[-2.5, -2, 0.28,

0, 0, 0]
[-1.62,-1.73, 0.39,
5.4, 0.17, 0.15]

[-0.64,-1.35, 0.14,
11.7, 0.17, -0.02]

[x, y, θ, t, v, w, ua, uα]
[-2.5, -2, 0.28,

0, 0, 0, 0.2, 0.2]
[-1.63,-1.73, 0.39,

5.8, 0.17, 0.03, 0.2, 0.2]
[-0.65,-1.35, 0.14,

12.0, 0.17,-0.08, 0.2, 0.2]

7. XY θθ1V → XY θθ1V A
This translation modifies the velocity profile to respect acceleration limits, Table 5.8., as
described above.

Table 5.8: XY θθ1V → XY θθ1V A path waypoints.

Model Waypoint 1 Waypoint 2 Waypoint 3
[x, y, θ,

θtrailer, t, uv, uw]
[-2.5, -2, 0.28,

0, 0, 0, 0]
[-1.62, -1.73, 0.39,

0.21, 5.4, 0.17, 0.15]
[-0.64, -1.35, 0.14,

0.29, 11.7, 0.17, -0.02]
[x, y, θ, θtrailer,
t, v, w, ua, uα]

[-2.5, -2, 0.28, 0,
0, 0, 0, 0.2, 0.2]

[-1.63,-1.73, 0.39, 0.21,
5.8, 0.17, 0.03, 0.2, 0.2]

[-0.65,-1.35, 0.14, 0.29,
12.0, 0.17,-0.08, 0.2, 0.2]

8. XY θV A→ XY θθ1V A
Finally, this translation also uses the propagation functions to add the trailer heading, Table
5.9.

In summary, for any translation that adds the trailer, θ1 is added and updated by propagating
towards the next waypoint along the path. For any translation that adds velocity: the linear veloc-
ity is set to a constant value, and the angular velocity is geometrically computed and constrained
to circle arcs towards the next waypoint. Time, t, is computed by propagating these velocities
along the full path. For any translation that adds acceleration, the linear and angular velocities

55

Table 5.9: XY θV A→ XY θθ1V A path waypoints.

Model Waypoint 1 Waypoint 2 Waypoint 3
[x, y, θ,

t, v, w, ua, uα]
[-2.5, -2, 0.28,

0, 0, 0, 0.2, 0.2]
[-1.63,-1.73, 0.39,

5.8, 0.17, 0.03, 0.2, 0.2]
[-0.65,-1.35, 0.14,

12.0, 0.17,-0.08, 0.2, 0.2]
[x, y, θ, θtrailer,
t, v, w, ua, uα]

[-2.5, -2, 0.28, 0,
0, 0, 0, 0.2, 0.2]

[-1.63,-1.73, 0.39, 0.21,
5.8, 0.17, 0.03, 0.2, 0.2]

[-0.65,-1.35, 0.14, 0.29,
12.0, 0.17,-0.08, 0.2, 0.2]

will change to be within proper acceleration limits that are initially set as a constant maximum
acceleration value.

5.4 Reference Path Propagation Details

In this section, we want to make clear the distinction between propagating a lower reference path,
collision checking, and translating a lower reference path into a higher model. Reference path
propagation occurs during feasibility detection and model selection. When we say propagating
along a path this means we are integrating the state variables at each time-step as defined by our
motion equations, and also waypoint following the path. The motions equations are the same
equations used for generating trajectories. The integration occurs between waypoint nodes that
are previously generated in a particular model. These nodes are then used as reference target
points for propagating between. Propagation between nodes along a reference path ends when
we determine the node is achieved. This occurs using the same logic as our robot controller,
previously described in Section 5.2.

When we refer to checking a path, this involves both propagating between target waypoints
and collision checking. This means that for each time-step of the propagation we then check the
validity of the current robot’s state by collision checking between the robot mesh and applicable
obstacles. This propagation and collision check continues until a collision is found or the goal
waypoint is achieved.

It is also possible to propagate along a reference path without collision checking. This just
updates the robot’s state variables according to the given control inputs and motion equations.
This is useful for translating a path into a higher model.

In the next subsections, we describe more details of when we propagate, translate, and colli-
sion check in our model selector, and when this is also done during feasibility detection.

5.4.1 Feasibility Detector and Model Selection

The major differences between the feasibility detector and the model selector are that they check
the reference path in different models and they check different parts of the path. The feasibility
detector always checks along the full multi-model reference path, and the model selector only
checks partial parts of this reference path. The feasibility detector checks the model reference
path in our highest possible model, and the model selector uses different models from the model
hierarchy.

56

Both the feasibility detector and model selector are trying to follow the reference path sim-
ilarly to how the robot executes in the environment. The feasibility detector is doing this most
accurately by always using the highest model, and the model selector is being less accurate when
using a model that is not the highest model. In both cases, the planner has a control law for
waypoint following the path that is the same as the robot controller. This is because the model
selector wants to choose a model that will both generate a path around the infeasibility and is
likely to work in execution (pass feasibility detection of the entire path). Since it is not possible
to know if a path will fail without executing it, checking the path is a cheap way of trying to
guess if the model will be useful. Checking the path is cheap because there is not a new search
of the space as occurs during planning. Therefore, to check the path there needs to be logic
for staying along the lower path (using it as a reference path) and knowing when a waypoint is
achieved in order to go towards the next waypoint. More explicitly, both the feasibility detector
and the model selector use pure pursuit to guide the propagation along the reference path. At
each time-step the planner compares the current position along the reference path with the next
target waypoint. If the waypoint is within 0.1 meters of the current robot’s x, y position and 0.09
radians of the robot’s heading, or the waypoint has been crossed (previously described in section
5.2.1), then the waypoint is achieved. If the waypoint is not achieved, propagation along the
path continues. First pure pursuit adjusts the angular velocity to stay along the path as necessary
(refer to Section 5.2), then depending on the model, a propagation integration step occurs for the
control inputs using that specific model’s motion equations.

Models differ in terms of fidelity because the controls and state variables used for propagation
and the state sent for collision checking can differ. We note that the only exception is our purely
geometric model XY which does not use controls but interpolation between points. Higher
models may need more configuration variables set. For example, models with velocity have an
additional time variable and so they can now collision check indexing time sensitive obstacles,
trailer models have the additional trailer variable which gets updated with propagation and is
used to collision check with the trailer, and models with acceleration change the velocity values
to respect those limits as well as using a double integrator for their ODE transition functions.
Therefore, while waypoint following the path, the model used determines what motion equations
are used for propagating the path, and what robot state is collision checked. We describe what
is collision checked for different models in the collision checker Section 5.3.2, and we show the
different motion equations propagated for our models when describing the trajectory generation
in Section 5.3.3. We also note that for each node that is a connection (as described in Section
5.5), we propagate towards the top connection.

It is possible to translate the path to a specific model as a separate step, but in our imple-
mentation path translation actually occurs during path propagation. For example, the feasibility
detector uses the highest model’s motion equations to propagate along the path updating the
passive trailer heading. After each integration step of the motion equations, the velocities are
updated to be within proper acceleration limits (dependent on the next target waypoint), and
the time variable is updated based on the number of control steps taken. Therefore, the only
setup path translation requires is saving additional state variables necessary for higher model
nodes. This is already done when saving our global path, discussed more in Section 5.5. Passive
variables can be set to zero because they are updated through the propagation of the reference
path. To be clear, for the highest model the velocities may also be augmented to stay within

57

acceleration limits at each time-step.
The model selector always propagates the reference path from the start state, but does not

always collision check during this propagation. The feasibility detector both propagates the lower
reference path and collision checks from the start to the goal in the highest model. However, the
model selector only collision checks a partial portion of the path. After the feasibility detector
determines which two waypoints the infeasibility is between, this information is sent to the model
selector. The model selector propagates the path in the model it is currently testing from the
start waypoint to the waypoint following the infeasibility. This is so the partial path around
the infeasibility is properly translated. Then collision checking only occurs between the two
waypoints that contained the infeasibility. This is because it is possible for models lower than
the highest model to prematurely detect a collision along the lower model reference path, and the
repair area should not change based on checking in a model that is not the same as the feasibility
detector (the highest model). For example, if the model being tested is not the highest model then
it is assumed to not be the best representation of how the actual robot moves in the environment.
So even if a lower model (say XY θ) deviates from the lower reference path (an XY portion)
in a location before where the feasibility detector determines a collision, this deviation is a less
informed evaluation of the robot moving in the world. The purpose of the model selector is to
choose the lowest applicable model to cover the collision detected in the highest model (using
the feasibility detector). Therefore, the model selector checks the reference path within lower
models from the hierarchy that do not move exactly as the robot does. The first model that finds
a collision in the same area as the feasibility detector is assumed to provide information beneficial
for circumventing the infeasibility without needing as much information as the highest model.

Padding for Feasibility Detection

We seek a balance between successful execution rates and shorter planning times. To achieve
this, it is important to balance between false positives (i.e. predicting collisions that do not
actually occur during execution) and false negatives (i.e. not predicting collisions that do actually
occur) that arise. These false positives and false negatives occur due to inconsistencies between
the planner’s feasibility detector, a model of how the robot interacts with the environment, and
how the robot actually interacts in the real (simulated) world, subject to full physics. We prefer
to minimize false negatives, as these represent unsuccessful executions of the algorithm.

The feasibility detector should match the real world as close as possible, meaning the highest
model checker should match to how the robot controller moves. Differences between the checked
path and execution path occur because our highest checking model does not model dynamics.
Our highest model is kinematic and does not account for mass which better approximates trailer
swing. Consequently, the trailer may graze an obstacle during execution which is undetected
by the feasibility detector. Thus, additional padding decreases these cases reducing the false
negative rate.

Robot footprint padding is added during feasibility detection. Additional padding is added
with uncertainty models, described previously in Section 3.1.1. The feasibility detector should
check with the least amount of padding necessary to minimize false negatives but also perform
with similar success as the real robot. If the detector has too much padding, plans are errantly
rejected and the false positive rate increases. To achieve this balance we chose padding values for

58

one gurney world, increasing the value until the false negative values were zero while keeping
false positive values less than 15. This should be optimized independent of the environment in
the future. The value was set to 4 centimeters which adds 2 cms of padding to the robot footprint
in both the x and y directions. There is also a relationship between the nominal footprint padding
at plan-time and the feasibility detector padding. The padding of the feasibility detector should
be less than or equal to this value. Otherwise the false positive rate is unnecessarily high.

5.5 Path Merging
We maintain a global path through out the planning process. The feasibility detector determines
areas along this path which need model switching, and the model selector determines the model
for re-planning in those specific areas. When re-planning occurs, using multiple re-plan trees, a
partial path repair is merged back into the global path. We first discuss this in Chapter 4.1.4. We
provide more implementation details of this below.

5.5.1 Path Merging More Details
We first generate a plan in the XY model and this is our first global path. When our global path
is saved we do a translation step that just updates waypoint state values to be equivalent to that
of the highest model. This is a model translation step and is not translating the path. For the
XY model, this implementation includes setting the θ value based on the next target waypoint,
setting the linear velocity to a constant value, the acceleration limit to a constant value, and
setting the angular velocity as described in the translation Section 5.3.5. The remaining values
(trailer heading, and time) are set to zero and are updated when the path is propagated.

Every path that is planned gets saved into the global path and each node of that path is updated
to include the same state as the highest model. During the re-planning phase the original global
path waypoints are tracked, Figure 5.6 (a). This is so that if any waypoints are skipped during
the re-plan process the original re-merge points are maintained. For example, a re-planning
tree that starts before the waypoint immediately proceeding the infeasibility could connect to
an intermediate goal after the waypoint directly following the infeasibility. The original path
waypoints from where the partially re-planned portion started and ends become the connection
points where the new partial path is re-merged in.

Merging partial paths into the global path requires the addition of a connection node. A
connection node is created if the new partial path needs to be added to an old existing part of
the global path. A connection node consists of a top part and a bottom part, Figure 5.6 (b). The
bottom part of the connection node is the start of a model path (our new re-planned path). When
adding the start connection for a newly merged path, we keep the node from the old global path
as the top, and then add the start node of the new partial path as the bottom connection. We add
the start node the same way as before where state variables are added to translate the node into
the highest model regardless of what model was used for re-planning. This continues for every
new node in the merged partial path until the end goal of the partial path. The goal from the new
partial path is added as the top connection to the old path’s bottom connection, Figure 5.6 (b).
The merged path is shown in Figure 5.6(c). The values between the top and bottom connection

59

WP2
WP3

WP4 WP5 WP6 WP7
WP1

S
G

1

(a) Global path which needs repair between waypoints 4 and 5.

WP7

S

G

3

WP2

WP3

WP6

WP1

(b) Connection nodes are created for waypoint 3 and 6.

WP2
WP3

WP4 WP5 WP6 WP7
WP1

S
G

WP2
WP3

WP6 WP7
WP1

S
G

2

(c) A new partial re-planned path is merged back into the global path.

Figure 5.6: Path merging example.

60

are then updated as necessary, and in our implementation the only additional step that is needed
is XY paths require the old θ value for these connections to be updated appropriately to point
towards the next target waypoint along the path. It is ok if top and bottom connection nodes do
not match exactly, as achieving a waypoint during propagation is defined by a range, and the
waypoint follower keeps propagation along the path as described in the next Section 5.4.

By maintaining the global path with state variables which include those of the highest model,
the feasibility detector and model selector can take paths directly from the global path. The model
selector can take a partial path from the global path that only includes the configuration variables
necessary for the particular model it is checking in. Therefore, the configuration variables have
been appropriately added for this model (model translation) and then the configuration variables
are updated by propagating along the path (path translation).

5.6 Voronoi Implementation for Uncertainty Models
The Voronoi diagram uses distances between points to partition the space. These partitions are
created based on cells, edges, and vertices. A cell is defined as the collection of points closest
to this cell center over any other. Edges are placed equidistant between the center points of each
cell, and a vertex is an equidistant point between three cell centers.

A generalized form of the Voronoi diagram is often used in path planning, [44], where ob-
stacle edges are approximated with points such that cells contain the center of obstacles. One
way of generating the generalized Voronoi is to approximate the edges of obstacles with points,
generate the Voronoi edges and vertices, and then remove all edges that intersect an obstacle.
Alternatively, we utilize the boost library (www.boost.org/doc/libs/1_55_0/libs/
polygon/doc/voronoi_main.htm) to generate a Voronoi diagram based off poly line
segments used to approximate the outside of obstacles. Any edges that intersect obstacles are
ignored. Below we show a picture of a gurney environment Figure 5.7 (a) with its corresponding
Voronoi diagram in Figure 5.7 (b).

G

(a) Environment 0.

S

G

(b) Voronoi Diagram for Environment 0.

Figure 5.7: Gurney world with corresponding Voronoi diagram.

We define helper functions for gathering information from the Voronoi Diagram to use in our
implementation. One is finding the closest point perpendicular to a Voronoi edge from a path.
This is used when creating the padding model as described in Chapter 4.2.1. Finding the closest

61

www.boost.org/doc/libs/1_55_0/libs/polygon/doc/voronoi_main.htm
www.boost.org/doc/libs/1_55_0/libs/polygon/doc/voronoi_main.htm

point along a path to a Voronoi edge is also useful when determining which homotopy class a
current path matches in the Voronoi Diagram.

(a) Original path placed in the diagram. (b) Increasing the resolution along the path for better
matching Voronoi edges.

Figure 5.8: Various Voronoi diagrams illustrating finding the best matching homotopy path
through the diagram.

Homotopy partitions paths into equivalence classes [49]. The equivalence class of two con-
tinuous paths is homotopic if for a fixed start and end point one path can be deformed into another
without going through an obstacle. Since homotopy classes can be obtained from a Voronoi dia-
gram, [5], it is possible to determine the equivalent homotopy class that matches along Voronoi
edges for a given planned path.

To determine the path in the Voronoi diagram that best matches a given path we use the
following steps:

1. construct the Voronoi diagram from the environment

2. add additional waypoints along the path to increase the waypoint resolution, Figure 5.8(b)
(this is used for determining edges in the Voronoi that are closest to points along this given
path).

3. for every point on the path, find the shortest distance between each point and every edge (
a line segment) in the Voronoi diagram.

4. maintain these closest edges. This results in edges that may contain gaps where there is
not a continuous path yet from start to end, Figure 5.9(a).

5. bridge the gaps: for every close edge get all groups of connected edges. Starting with the
group that contains the start edge find the closest vertices of the edges between groups.
Create a bridge between the groups by adding edges, from the Voronoi diagram, to the
group until the vertices are connected. Keep connecting groups until there is a connected
group that contains both the start and end edges.

6. eliminate spurs: for all of these connected edges find the edges that are only connected
by one vertex to another edge, Figure 5.9(b). If it is not the start or end edge eliminate it
from the group. Keep doing this until the only edges connected by one vertex are the start
and end, so there are no more spurs. This results in a continuous path in the Voronoi that
is closest to the passed in path, and represents the homotopy equivalent class path for this

62

Bridge

(a) An example of a bridge gap in the diagram.

Spur

(b) An example of a spur in the diagram.

Figure 5.9: Example gap and spur in the Voronoi diagram.

63

path, Figure 5.10.

Figure 5.10: The final matching Voronoi homotopy path.

We also use the Voronoi diagram to determine if finding a plan with a desired padding amount
is achievable. This is also first described in Chapter 4.2.1. First we determine source points for
the cell used to create every Voronoi edge and compute the distance until we have found the
minimum distance from the source point to any point on this edge. This is the minimum distance
between the source and edge for a given edge. Then when checking if there is a traversable path
for a given padding value, we compare the allowed padding amount to the minimum traversable
distance for a given edge. If there is enough allowance for the padding amount with the robot
to traverse for this particular edge, meaning it is within the minimum distance to a source point,
then this edge is marked as traversable.

The last step is to find a traversable path among those edges marked as such. This is a
traversable path which contains continuous connected edges that include the start and goal loca-
tions. We mark the start edge and the goal edge by projecting a point perpendicular to the closest
edge for each start and goal location. Then we get all connected neighbors to the start edge by
finding edges that share a vertex with the start edge. We repeat this process until we have found
the goal edge. If we do not find a connection to the goal edge, and have exhausted all edges, then
a traversable path for this padding value is not found.

64

Chapter 6

Testing Environments and Experiments

As first introduced in Section 5.1, experiments are run using a differential drive robot with a
rear attached trailer in the high fidelity Gazebo simulator (http://gazebosim.org/). The simula-
tor models dynamics by simulating rigid-body physics. Our testing environments are motivated
from that of a hospital environment with automated swinging doors and gurneys in the hallways.
Therefore, we showcase these obstacle types by running experiments using ten different environ-
ments with randomly placed gurneys and three environments which include an automatic door
set to open for different amounts of time. We discuss how well our approach performs over these
environments.

The specific models used in all of our experiments are described in detail in Section 5.3, and
the model graph is shown again in Figure 6.4 for reference.

We present our results in three sections. First we discuss single model performance, then we
present results for switching among the multiple models, and finally we evaluate switching with
additional uncertainty models. For single models, we plan using each model from our graph
in Figure 6.4, without any switching. Evaluating single model performance includes statistics
on success rate, planning-time, and path lengths. We also show false positive and false negative
rates for single model runs for different environment. We describe these values using a confusion
matrix in Section 6.2.3. The confusion matrix for each model describes the accuracy between
the feasibility checker and execution controller. For multi-model switching results, we present
statistics for our three tree-weighting heuristics from Section 6.3.1, and further evaluate consid-
erations for comparing switching to single model planning. Lastly, we discuss the addition of
uncertainty models and how that affects overall switching results for a particular environment.

In each of our sections, we present results for our two environment types. We start with
presenting results for our gurney environments. We first provide overall statistics for the different
gurney worlds, then highlight one gurney environment, and lastly present interesting results for
a subset of the remaining gurney environments. This includes any interesting aspects of single
model evaluation, switching, and switching with uncertainty models for any particular gurney
model. Then we show results for our automatic swinging door environments.

65

6.1 Testing Environments

6.1.1 Gurney Environments

The gurney environments contains multiple hospital gurney obstacles placed in a hallway that
the robot must plan through. (Figure 6.1). The top center world we constructed by hand, and the
remaining nine worlds contain randomly generated gurney positions. For each world the goal is
indicated by the black ’G’ and the environments are labelled E1 through E9. These environments
contain examples that are more open (E1, E3), and progressively more constrained. For example
qualitatively, E4 seems difficult due to the gurney close to the start, then E6 and E7 contain
gurneys concentrated between the start and goal, with E9 having a gurney very close to the goal
state. We hypothesize environments with more constrained areas for the robot to pass through
will require more switching than those without.

E0

G G G

G

G G G

G G G

E1 E2 E3

E5E4 E6

E9E8E7
1

Figure 6.1: Many hospital environments with multiple gurneys.

66

6.1.2 Swinging Door Environment
An automatic swinging door is displayed in Figure 6.2(a). The goal is displayed by a black ’G’.
We ran experiments for three variants of the swinging door where the length the door stays open
changes. The door is open for either 12, 14, or 16 seconds. The door swings open by applying a
constant velocity to the hinge joints and takes 2.5 seconds to open, and then closes in the same
time.

(a) The automatic swinging door world. The doors are closed before and after being
opened.

(b) The doors partially
opening or closing.

(c) The doors fully
opened.

Figure 6.2: Swinging doors world and various stages of the door opening and closing.

The pictures in Figure 6.2 show the door as fully open, Figure 6.2 (b), or swinging open/closed,
Figure 6.2 (c). The door is activated (to first open) when the robot is in front of the doors within
2m of the x-axis and 1m of the y-axis. The door stays open for a specified interval of time (12,
14, or 16 seconds) and then closes. The amount of time the door takes to close is fixed for all
environments. The doors swing at a constant velocity and re-open as long as the robot is within
the activation range.

The swinging doors are meant to show the importance of planning with velocity and accel-
eration. As an example, a path generated in this world using the highest acceleration model is

67

shown in Figure 6.3. The black rectangles highlight the door opening that must be collision
checked at different time intervals. The waypoints are closer together before the door, then they
become farther apart as the robot accelerates through the door opening.

Figure 6.3: A path generated in the swinging doors world using model XY θθ1V A.

6.2 Single Model Performance for Various Environments

In this section, we display statistics over various environments for single models shown again in
Figure 6.4, for reference. For our single model experiments, we run 100 trials for each model. To
produce good plans, we generated 20 RRT plans for each trial and choose the best (shortest) one
for execution. This is because we do not otherwise smooth our paths. After we generate the plan,
we send it to the (simulated) robot for execution and record if the robot executed successfully.

Figure 6.4: Full model graph used for experiments.

6.2.1 Single Model Performance for Gurney Environments

In the following subsections, we describe the single model performance for our gurney environ-
ments.

68

Average Performance

We start by presenting statistics for the average performance over all of the gurney environments.

Table 6.1: Average performance for single models over all gurney environments.

Model Success (SD)
Plan Time (SD)

(s)
Path Length (SD)

(m)
[x, y] 0.62(0.40) 0.12 (0.23) 6.29(0.68)

[x, y, θ] 0.56(0.46) 65.19(178.22) 6.08(0.63)
[x, y, θ, θ1] 0.92(0.12) 92.40(193.49) 6.23(0.80)
[x, y, θ, V] 0.62(0.38) 9.83(7.14) 6.33(0.84)

[x, y, θ, θ1 ,V] 0.93(0.12) 26.29(36.34) 6.44(0.92)
[x, y, θ, V, A] 0.63(0.39) 12.38(5.49) 6.36(0.87)

[x, y, θ, θ1, V, A] 0.97(0.06) 30.07(35.75) 6.42(0.89)

In Table 6.1 we see that models with the trailer are more successful across gurney environ-
ments than those without. But, planning times with the trailer take longer than the same models
without the trailer. We also see that success rates for models without the trailer are comparable.
The [x,y,θ] model performs worse in some gurney environments.

Planning times also do not increase monotonically with fidelity. Times for the [x, y, θ] and [x,
y, θ, θ1] models are higher than others, but with a very high variance. The high variance suggests
that the environments where these models take longer are not the majority.

Performance for Specific Gurney Environments

In this section, we highlight interesting examples of other gurney environments for single model
runs. We first describe our E0 gurney environment in Figure 6.1 and environments that gave
similar results. Then we highlight an example environment from the subset of more open en-
vironments. Lastly, we give an example of an environment that did not preform well with our
approach.

We first present singe model performance for an initial representative world with gurney
obstacles, this is our E0 model in Figure 6.1. For this environment, we notice that success rates
increase with models that include the trailer. Planning times increase for higher fidelity models,
and models that include the trailer have higher planning times than those without. Similarly with
path length, longer paths for models with the trailer than without.

In Table 6.2, We noticed that the [x,y,θ] model had lower success than the [x,y] model for this
particular environment. This is due to implementation details for [x,yθ] as compared to [x,y]. For
our [x,y] model we do not account for different θ values when collision checking and therefore
are always collision checking the robot footprint with θ equal to zero. Since the robot footprint
and our gurney obstacles are both rectangles, collision checking the robot footprint at θ equal to
zero creates paths that are further from obstacles than paths generated for a robot whose θ value
can vary. This is most evident for the gurney’s corners. Due to this, we find that [x,y,θ] paths,
for this environment, are closer to the gurney’s corners which causes the robot’s trailer to collide
more with obstacles during execution.

69

Table 6.2: Single Model Results for the E0 Environment. Planning time increases with fidelity,
and success and path length increases with the modeling of the trailer.

Model Success
Plan Time (SD)

(s)
Path Length (SD)

(m)
[x, y] 0.48 0.05(0.01) 5.94(0.13)

[x, y, θ] 0.18 7.33(1.95) 5.78(0.09)
[x, y, θ, θ1] 0.98 9.12(2.51) 5.94(0.08)
[x, y, θ, V] 0.60 10.53(2.95) 6.00(0.21)

[x, y, θ, θ1 ,V] 0.99 17.69(6.78) 6.12(0.14)
[x, y, θ, V, A] 0.77 11.84(3.22) 6.05(0.17)

[x, y, θ, θ1, V, A] 1 18.35(6.08) 6.13(0.13)

Environments that had very similar performance as our example gurney world include en-
vironment E6 and E9 as shown in Figure 6.1. These worlds also have higher success rates and
planning times for models that include the trailer. They also have very low success rates for the
[x,y,θ] model. Models without the trailer for both E6 and E9 do not have success rates over 20%.
We believe this is due to trying to reach the goal at the finish of a turn. We also note that for
world E9 our highest model only achieved a 98% rate.

We found that half of our environments were more open, and the lowest model actually fails
less often. These environments include E1-E4 and E8 shown in Figure 6.1. They generate paths
more directly to the goal with fewer turns. We focus on environment E8 as our representative
example. These are the types of environments we would expect the robot to encounter most
often, that is, environments where the majority of the time the current lowest model the robot
plans in is sufficient.

Table 6.3: Single model performance for the more open environment E8.

Model Success
Plan Time (SD)

(s)
Path Length (SD)

(m)
[x, y] 0.92 0.02(0.01) 5.81(0.14)

[x, y, θ] 0.97 6.46(1.67) 5.67(0.09)
[x, y, θ, θ1] 1 6.91(1.88) 5.67(0.07)
[x, y, θ, V] 0.98 8.72(2.57) 5.94(0.32)

[x, y, θ, θ1 ,V] 1 8.34(2.32) 5.90(0.25)
[x, y, θ, V, A] 1 9.45(3.03) 5.92(0.30)

[x, y, θ, θ1, V, A] 1 10.12(2.90) 5.97(0.30)

Table 6.3, shows an environment where most all of the models are successful. Again, models
with the trailer are more successful than those without. We also see planning time increases with
fidelity with the exception of the velocity model with and without the trailer being very similar.

The two remaining gurney environments, E5 and E7, have obstacles more concentrated in the
center. Both of these environments caused higher planning times for [x,y,θ,θ1] than the higher

70

models. We believe this is due to the position of the gurneys. We highlight success and planning
times for single model runs in environment E5 in Table 6.4.

Table 6.4: Single model performance for a more constrained environment E5.

Model Success
Plan Time (SD)

(s)
Path Length (SD)

(m)
[x, y] 0 6.10(60.30) 6.60(0.43)

[x, y, θ] 0.36 582.0(134.0) 6.67(0.15)
[x, y, θ, θ1] 0.83 609.0(144.0) 6.70(0.16)
[x, y, θ, V] 0.26 18.10(2.61) 7.63(1.01)

[x, y, θ, θ1 ,V] 0.69 29.7(5.65) 7.30(0.86)
[x, y, θ, V, A] 0.19 20.10(3.77) 7.78(.0.97)

[x, y, θ, θ1, V, A] 0.84 32.80(5.87) 11.30(10.10)

Planning times were longer overall for both E5 and E7. We believe the poor performance
for the trailer model without velocity is because it assumes a constant linear velocity. The close
gurneys create small openings that are difficult for the planner to determine how to have the robot
get through those openings.. It is possible planning stalls due to constraining the curvature which
makes it harder for the robot to take tight turns through the space.

.

6.2.2 Single Model Performance for Automatic Swinging Door Environ-
ments

We have three swinging door environments where the door open times are 12, 14, or 16 seconds,
and the time it takes for the doors to swing open is 2.5 seconds and then close is 2.5 seconds.
When planning without velocity, the door is always assumed to be open. Models with veloc-
ity consider the time dimension and index the time with the door opening and closing during
collision checking.

Average Performance

We first present a table, Table 6.5, of the average performance for single models over all swinging
door environments.

We see that higher models which include velocity and acceleration are always successful
regardless of the door opening times. Planning times are also highest for models that include
both the trailer and velocity. Including the trailer increases the time it takes for the RRT to
find a plan through the door opening because both the robot and trailer footprints must clear the
door opening. The success rates for lower models hovers around 50%. This is because when
the door is open longer lower models are successful every time, and when the door is open
shorter lower models are not successful. The path length for the [x,y] model is longer and with a
higher variance due to the implementation for the geometric path generation. These paths have
a maximum extension between waypoints which creates intermediary waypoints near the door

71

Table 6.5: Average performance for single models over the automatic swinging door environ-
ments.

Model Success (SD)
Plan Time (SD)

(s)
Path Length (SD)

(m)
[x, y] 0.46(0.48) 0.03(0.05) 5.30(0.21)

[x, y, θ] 0.57(0.51) 12.04(4.39) 4.99(0.04)
[x, y, θ, θ1] 0.57(0.52) 13.46(4.88) 4.99(0.04)
[x, y, θ, V] 1(0) 26.25(12.81) 5.11(0.09)

[x, y, θ, θ1 ,V] 1(0) 75.88(48.74) 5.10(0.09)
[x, y, θ, V, A] 1(0) 29.50(14.84) 5.11(0.10)

[x, y, θ, θ1, V, A] 1(0) 77.72(48.73) 5.10(0.10)

opening. The path target waypoints are sampled randomly, and since the robot heading is always
assumed to be zero, in some cases the connections between waypoints are not very straight which
contributes to the larger variance.

Performance for Specific Swing Door Environments

The table below gives statistics for single model runs when the doors are open for 14 seconds.
Then we discuss trends that we see for door opening times that are longer or shorter.

Table 6.6: Single model performance for an automatic swinging door set to open for 14 seconds.

Model Success
Plan Time (SD)

(s)
Path Length (SD)

(m)
[x, y] 0.43 0.04(0.08) 5.28(0.18)

[x, y, θ] 0.70 13.78(5.20) 4.99(0.04)
[x, y, θ, θ1] 0.72 16.09(4.84) 4.99(0.04)
[x, y, θ, V] 0.98 23.15(11.99) 5.09(0.09)

[x, y, θ, θ1 ,V] 1 49.2(20.6) 5.11(0.09)
[x, y, θ, V, A] 0.99 25.80(12.37) 5.11(0.09)

[x, y, θ, θ1, V, A] 1 49.13(21.60) 5.11(0.09)

In Table 6.6, we observe higher success rates for models that include both velocity and the
trailer. The success rate for lower models increases with fidelity. We believe this is just due
to chance. All models without velocity assume a constant linear velocity for execution. For
this particular door opening time, the robot makes it through the doors more often for [x, y, θ]
models than the [x, y] model. The [x, y] model paths do not always go straight through the door
opening, and sometimes deviate slightly due to random sampling next target nodes in the RRT at
a maximum allowed distance. The s-curves generated for [x, y, θ] paths tend to be slightly more
direct through the doors, so it’s possible that’s why execution success is greater.

When the door timing changes, we found that the success rates did not change for the higher
models, but do for lower models. When the doors are open longer, the constant linear velocity

72

is enough for all models without velocity to successfully clear the door opening. When the door
open time is less, these models fail more often.

Higher models are equally successful regardless of how long the doors are open because
they increase their velocity to get through the doors in time. The acceleration models were
also equally successful. We believe this is because the acceleration limit during execution for
velocity models (0.2m/s2), is enough to increase velocity to the amount required to clear the
door opening.

In general, planning times are longer for models that contain the trailer. The trailer causes
the RRT to fail more often when trying to extend nodes near the door opening. Plan times for
models without velocity did not vary with the door times because models without velocity always
assume the doors are open.

For models that contain velocity, we would expect the planning time to increase as the door
time decreases. As the door opening time decreases there are more node expansions necessary
for generating paths which causes longer planning times. This could be due to the planner failing
to expand nodes more often in cases where it, by chance, chooses a slower velocity. The more
often this happens, the longer it takes to find a plan. These occurrences increase when the door is
open for a shorter time because the robot is required to go faster for a longer duration of the plan
to be successful. We observed that the planning times for the doors open for 14 and 16 seconds
were comparable, and the environment with the door open for 12 seconds had higher planning
times for the higher models (and more so for those with acceleration). We believe the planning
time is comparable for the 14 and 16 second doors because there is a minimum door open time
where the robot’s average linear velocity is enough to always be successful. If the door times
continued to be less than 12 seconds the planning time would continue to increase.

6.2.3 Confusion Matrix for Evaluating Checker Versus Controller Perfor-
mance

In table 6.7, we define the confusion matrix for evaluating the feasibility checker’s performance.
The columns show ground truth which equates to collisions for the simulated robot during ex-
ecution. The rows are the feasibility checker’s prediction on if the robot will collide with the
environment. The false positive rate is when the feasibility checker incorrectly predicts a colli-
sion and there is no collision. The false negative rate is when the feasibility checker incorrectly
predicts no collision but one occurs.

Adding the top row (True Positive + False Positive) gives the number of trials that will switch
during an experiment. This answers the question of when our algorithm decides to switch models.
The number of trials that do not switch at all is the total across the bottom row. We note that the
number of switches within a given trial can be greater than one. This means that the feasibility
checker may repair a part of the path, and may still detect an infeasibility further along the same
reference path. Additionally, the feasibility checker could determine that the area previously
repaired requires another re-plan in a higher model. Therefore, this number gives us the value of
trials that will switch, but does not indicate the total number of overall switches. We will present
histograms for showing the switching numbers over multiple trials.

The experiment success rate is the accumulation of values in the last column (False Positive

73

+ True Negative) divided by the total number of trials.

Table 6.7: The confusion matrix for comparing the performance between the feasibility checker
and the robot controller. The false positive rate is when the feasibility checker incorrectly predicts
a collision and there is no collision. The false negative rate is when the feasibility checker
incorrectly predicts no collision but one occurs.

Ground
Truth

Collision No Collision

Prediction Collision True Positive False Positive = Number of re-plan trials.

No Collision False Negative True Negative
= Number of successful trials.

Recording the False Positive and False Negative Rates

To generate the false positive and false negative rate, we first generate a plan in a model. Then we
use the feasibility checker to check it in the highest model and record if the check is successful.
Regardless of what the feasibility checker determines, the plan is sent to the (simulated) robot
for execution. We then compare the success of the executed plan to the checked plan. Their
outcomes fall under four categories: both are successful (a true negative), both fail (a true
positive), the checker fails when the robot executes successfully (a false positive), or lastly, the
checker succeeds and the execution of the path fails (a false negative).

Confusion Matrix Results for Single Model Performance

Here we present the false positive and false negative rates averaged over all gurney environments
and then a separate table for average rates for the three automatic swinging door environments.

Table 6.8: False positive and negative rates for single model performance averaged over all
gurney environments.

Model
False

Positive (SD)
True

Negative (SD)
False

Negative (SD)
True

Positive (SD)
[x, y] 0.08(0.08) 0.54(0.40) 0.01(0.01) 0.37(0.39)

[x, y, θ] 0.07(0.06) 0.50(0.45) 0.01(0.03) 0.44(0.46)
[x, y, θ, θ1] 0.14(0.20) 0.78(0.31) 0.02(0.05) 0.06(0.11)
[x, y, θ, V] 0.08(0.06) 0.53(0.40) 0.01(0.01) 0.38(0.38)

[x, y, θ, θ1 ,V] 0.10(0.15) 0.83(0.23) 0.02(0.04) 0.05(0.08)
[x, y, θ, V, A] 0.07(0.06) 0.56(0.42) 0(0) 0.37(0.40)

[x, y, θ, θ1, V, A] 0(0) 0.97(0.06) 0.03(0.06) 0(0)

74

We describe our overall false positive and negative rates shown in Table 6.8 by discussing
specific gurney environments. We found that more open worlds, such as E4 and E2, had higher
false positive rates for models that do not model the trailer. For E4, we believe this is because
the feasibility checker thinks that the robot is going to hit the gurney that is close to the start, but
it successfully clears it during execution. This could be an issue with how the feasibility checker
propagates the acceleration or trailer swing from a stopped state along a lower model path that
did not initially consider the trailer. One possibility being that the mass of the trailer allows the
executing robot to follow the path more exactly than the feasibility checker predicts.

We also believe that false positive rates are higher for more open worlds for models without
the trailer because the trailer swings less in these environments. Therefore, the trailer is directly
behind the robot for much of the planning environment and most often faces close to the theta
zero direction. Since the trailer is wider than the robot, it has the effect of adding padding
to create more distance from obstacles. We believe paths generated without the trailer in open
environments are closer to obstacles than paths generated with the trailer. The additional padding
added to the feasibility checker would cause paths closer to obstacles to have higher false positive
rates than those that are not.

For more constrained environments, the opposite case is true. We found for worlds E6 and
E7 false positive rates were higher for models with the trailer rather than without. This could
have something to do with the over arching turn the robot takes to get to the goal in these envi-
ronments. Since we do not properly model mass, it is possible that the actual trailer tracks the
path better than our feasibility checker because the trailer may swing less when approaching the
turn (avoiding collisions) and then swings away faster than predicting for rounding the turn.

We observed that E9 has high false positives for all models and more so for models with the
trailer being higher than those without. Again, the trailer seems to track better for the actual
robot than what the feasibility checker predicts. This could be caused by not properly modeling
the trailer’s mass.

Table 6.9: False positive and false negative rates for single model performance averaged over
all the swinging door environments.

Model
False

Positive (SD)
True

Negative (SD)
False

Negative (SD)
True

Positive (SD)
[x, y] 0.46(0.47) 0(0.01) 0(0) 0.54(0.48)

[x, y, θ] 0.56(0.51) 0(0.01) 0(0) 0.43(0.51)
[x, y, θ, θ1] 0.57(0.51) 0.01(0.01) 0(0) 0.43(0.52)
[x, y, θ, V] 0.08(0.10) 0.92(0.10) 0(0) 0(0)

[x, y, θ, θ1 ,V] 0(0) 1(0) 0(0) 0(0)
[x, y, θ, V, A] 0.10(0.15) 0.90(0.15) 0(0) 0(0)

[x, y, θ, θ1, V, A] 0(0) 1(0) 0(0) 0(0)

Even though the lower models are more successful when the door is open for longer, the total
number of trials where switching will occur (False Positives + True Negatives) does not change.
The higher false positive rates for models without velocity, Table 6.9, are due to our overly
conservative way of collision checking the full door swing area when the doors are determined to

75

be opening or closing. This is discussed in Chapter 5.3.2. Models that do not contain velocity do
not properly index door swing with time. Without time, the doors are always assumed to be open.
Therefore, even though the door timing changes, these lower models do not change how they
plan paths, but the probability the robot successfully makes it through does. The constant linear
velocity from the lower model is sent to the executing robot which successfully gets through the
doors more or less often based on how long they are open. Alternatively, the feasibility detector
properly indexes the time dimension (knows the doors close), but since collision checking is
overly conservative (the entire door swing area is considered an obstacle) it is always predicting
that the lower model will collide. The doors are collision checked as open for the door open time,
then the entire swing area of the doors are collision checked as an obstacle when the doors are
opening or closing, and the doors are collision checked as closed when the robot is outside the
activation area. This means there is a very small window when the doors are collision checked as
open for indexing by time. Since lower models do not vary their velocity and assume the doors
are always open, they do not generate paths that the feasibility detector determines successful.
All of this leads to very high false positive rates for models without velocity and do not consider
the time dimension.

For models with velocity and without the trailer we saw the false positive rate increase as the
door timing decreased. Therefore, the feasibility detector predicts more collisions than actually
occur. We believe this also has to do with how a partially open door is modeled for collision
checking.

6.2.4 Single Model Performance Summary
It is important note that while we organize our models hierarchically by fidelity the notion of
higher fidelity does not always mean higher success rate. This is shown in the gurney environ-
ments where the lowest [x,y] model can perform better than other higher models without the
trailer. It is also the case that models with added velocity and acceleration, for those without
the trailer, are not strictly better than those without. The trailer model was most beneficial for
execution success in the gurney environments. For the swinging door environments, models with
added velocity and acceleration are more successful than those without.

Both the swinging door environments and gurney environments show higher planning times
for models which include the trailer.

We expect our switching results to have plan times consistent with choosing the most suc-
cessful models for the environments. For the gurney environments, this suggests that the [x, y,
θ, θ1], [x, y, θ, θ1, V], and [x, y, θ, θ1, V, A] will be chosen most often for switching. There
could be issues with planning times for the gurney switching results as compared to the highest
model because the [x, y, θ, θ1] has a high success rate, but also seems to have much higher plan-
ning times than the highest model. For the swinging door environment, the high success rates
for models with velocity and acceleration suggest that these models will be chosen most often
during switching.

Planning times are also affected by our false positive rates. The false positive rates for models
that also have high success rates imply that the switching algorithm could choose to switch
unnecessarily to other models. For example, the gurney environment has a false positive rate
of 14% for model [x, y, θ, θ1] which suggests that there are environments where even when

76

choosing to re-plan with [x, y, θ, θ1] the feasibility detector may determine that the re-planned
portion of the path needs to switch to an additional model. This is also the case in the swinging
door environments where both [x, y, θ, V] and [x, y, θ, V, A] have false positives which may
cause unnecessary switching.

For the swinging door environments, we also see that based on the false positive rates of
lower models, the feasibility detector will decide to always switch. This should in general lead
to higher planning times for our switching results.

Switching success rates are affected by our false negative rates. For the gurney environment,
there are false negatives present for the highest model which could lead to lower overall switching
success rates as compared to the highest model. For the swinging door environment, the lack of
false negatives suggests that the success rates should be consistent with the highest model.

6.3 Plan-Time Model Switching
In this section, we discuss our switching results. First, we provide results for the heuristic used
to weight our re-planning tree expansions. Then we organize the section, as before, first high-
lighting results for average performance with our gurney environments, then highlighting some
individual environment cases, and lastly presenting results for our automatic swinging door en-
vironment.

For each environment, we present results for switching among the model hierarchy. We also
note that the false positive and false negative rates discussed starting in Section 6.2.3 directly af-
fect the success and planning times of our switching results. False negatives affect our switching
success rates. Our goal is to produce robust plans so preference is to minimize the false negative
rate at the expense of false positives. False positives affect our switching planning times, as it
indicates times our approach chooses to unnecessarily switch to a different model.

We present tables for execution success, plan time, path length, and number of switches.
The number of switches gives an indication of the number of times the checker signals that the
current underlying reference path is insufficient for execution. We also include analysis on how
our planning times compare with single model runs.

We note that the choice of RRT re-plan iterations per trial is a subject of future work. As
stated, we generate 20 RRT path iterations, and choose the shortest to execute for each single
model trial. This is for path consistency over trials, and for an overall smoother reference path
for our switching algorithm. For example, we found that using two RRT iterations for each sin-
gle model trial resulted in longer paths, and increased false negative rates for higher acceleration
models. We also observed that switching success rates were lower when the initial path, gener-
ated in the lower model, was chosen only after two iterations. Therefore, we believe paths which
use a low number of initial iterations for path consistency produce more trailer swing and are
more difficult for the robot to follow.

We did experiments for model switching each consisting of 100 trials. Each trial starts with
generating a path in the initial [x,y] model for 20 iterations and then choosing the shortest. Then
for each model switch the re-planning cycle multi-tree re-plans for 2 iterations, and keeping the
shortest. The resulting mean and standard deviations are recorded and displayed for different
environments. The choice of re-plan iterations was chosen because it was determined sufficient.

77

In other words, we used two re-plan iterations for every detected model switch within a trial
because increasing the re-plan iteration did not improve success rates.

Since single model runs use 20 planning iterations for each trial, and each switching trial has
20 initial RRT iterations and then 2 re-plan iterations per switch, we did not think it was fair
to compare these plan times directly. Therefore, we normalize the plan time to better compare
single model trials with our switching trials. We normalize the times by dividing each single
model trial by 20, and recording the mean and standard deviation. Then for each switching trial
we divide the number of initial RRT iterations by 20 and each re-plan, required for switching, by
2. We retain the running total per trial and record the mean and standard deviation. These results
are displayed in the respective normalized planning time tables. For each table, we also discuss
if the time differences are statistically significant

6.3.1 Multi-Tree Weighting Heuristic for Switch Tests
The path is repaired by re-planning from multiple start trees towards a corresponding set of
intermediate goals. It is possible to probabilistically weight the node expansion of each start
tree and the sampling for which intermediate goal the tree is re-planning towards. This is useful
for more efficiently searching the planning space. The different tree weighting heuristics are
described in Chapter 5. The first heuristic weights all re-plan trees by an inverse distance metric.
This encourages the expansion of re-plan trees closer to the detected infeasibility for favoring
re-use of the original reference path. The second variation weights the re-plan tree expansion by
an inverse distance metric and then adds planning time until the weight for expanding all trees
becomes uniform. This is to help prevent cases where node expansions may have difficulty for
re-plan trees that are too close to the infeasibility such as in a tight hallway. The third switching
heuristic uses a logistic function to favor re-plan tree start waypoints and intermediate goals to
be further from obstacles. This is based on the observation that it is not known how close the
infeasibility is to other reference path waypoints, but also it is unknown if other reference path
waypoints are close to obstacles. Node expansion is difficult for waypoints closer to obstacles.
These heuristics build into a combined final heuristic. Our initial testing included varying each
model switching trial by incrementally testing each tree weighting heuristic.

Table 6.10 shows results for different variants of our multi-tree weighting heuristic averaged
over all of our automatic swinging door environments. This environment demonstrates statically
significantly better performance for the combined heuristic over the other variants, (t(300)=4.28,
p<0.00001, for a paired t-test between heuristic 1 and heuristic 3). Although, there was no
statistical significant difference between the first two variations of the heuristic.

We believe this environment demonstrates the best use of this heuristic because the swinging
door is centered in the environment. This weights the expansion for the start of re-plan trees
further from the door (the environment’s obstacle) towards intermediate goals, with a weighted
sampling, also further from the door. Re-planning further from the door opening allowed for
faster planning times because the RRT node expansions did not get stuck as often.

For these weighting heuristics we found that the final heuristic which combines the pieces
from all previous heuristics had strictly better planning times than those without. We also found
that using the combined heuristic never performed worse over environments. It always achieved
planning times that either showed no statistical significant difference in the environment or pro-

78

Table 6.10: Planning times for different heuristic weighting averaged over all the swinging door
environments.

Experiment
Type

Plan Time (SD)
(s)

Heuristic 1 16.93(16.38)
Heuristic 2 15.41(14.34)
Heuristic 3 12.28(11.79)

duced a lower average mean planning time that was statistically significant. Therefore, we chose
to run all of our tests that involved model switching with the combined heuristic.

6.3.2 Switching for Gurney Environments
We explain results for average switching performance over all gurney environments and then
highlight results for specific environments.

Average Performance

Table 6.11: Switching Results for all gurney environments.

Models
Switched Success (SD)

Plan Time (SD)
(s)

Path Length (SD)
(m)

All Models 0.94(0.12) 9.88(26.21) 6.39(1.19)
Switching Lowest
and Highest Model 0.93(0.11) 2.14(5.53) 6.48(0.96)

The statistic for the number of trials that switch describes the mean over all gurney environ-
ments for the percentage of trials that switch. The standard deviation for the trials that switch is
the standard deviation over the average number of trials that switch, so for the gurney environ-
ments this is divided by the number of worlds which is 10.

For Table 6.11, we see statistically significant improvement in planning time when switching
between just the lowest and highest model versus all models. (t(1000) = 9.33, p<0.00001) This
is due to gurney environments (E5 and E7) that cause large planning times for lower models,
and because our model selector uses Breadth First Search it spends lots of time planning in these
lower models. This is an example of where it would be beneficial to have a more informed search
which switches more directly to the model which has the most efficient plan time and execution
success for a given environment.

If we re-analyze the results without environments E5 and E7, shown in Table 6.12, we see
that as hypothesized switching with the complete model hierarchy is better. The average planning
time for switching with all models is now statistically significantly better than that of switching
between just the lowest and highest model where t(800) = 2.30, p<0.021. Note this t-test was
for 200 less trials because environments E5 and E7 are removed.

79

Table 6.12: Switching Results for all gurney environments except E5 and E7.

Models
Switched Success (SD)

Plan Time (SD)
(s)

All Models 0.99(0.01) 0.86(1.80)
Switching Lowest
and Highest Model 0.98(0.03) 1.06(2.20)

The success rates over all gurney environments for switching as compared to that of the
highest model is not statistically significantly different. We see that the average success rate for
model switching is lower than the highest model but has a large standard deviation, in Table
6.11. We believe this is due to the high false negative rates that are observed in two of the gurney
environments. We have confirmed this hypothesis by showing in Table 6.12 that success rates
are better and the variance is lower without environments E5 and E7.

Table 6.13: Normalized plan times for gurney environments.
Experiment

Type
Plan Time (SD)

(s)
[x, y, θ, θ1, V, A] 1.45(1.77)

Switching all Models 4.12(11.87)
Switching Lowest
and Highest Model 0.94(2.52)

In Table 6.13, we believe our normalized planning time for switching among all models was
higher on average for all gurney environments due to outlier environments (E5 and E7) where
lower models take higher to plan than the highest model causing a very large variance. This is
further supported by our results where we switch only between the highest and lowest model.
The mean plan time for switching between these two models is statistically significantly lower
than both planning in the highest model alone and switching between all models. This is because
exclusively switching between these two models avoids being overly conservative with switching
to a lower model with longer planning times first.

Table 6.14: Normalized plan times for gurney environments without E5 and E7.
Experiment

Type
Plan Time (SD)

(s)
[x, y, θ, θ1, V, A] 0.92(0.68)

Switching all Models 0.37(0.86)
Switching Lowest
and Highest Model 0.48(1.09)

Once again we removed environments E5 and E7 to see if planning times would be con-
sistent with the hypothesis that these outlier environments contribute to higher than expected

80

planning times for the full hierarchy switching results. These two environments are removed
when averaging the normalized planning time results for the highest model, switching among all
models, and switching between just the lowest and highest model. These results are shown in
Table 6.14. We see that planning times for switching with the full model hierarchy is statistically
significantly lower than the highest model, (t(800) = 15.2, p<0.000001), and also lower than just
switching between the lowest and highest model (t(800) = 2.59, p<0.01). Switching between the
lowest and highest model switches to the highest model unnecessarily because for most of our
tested environments switching among the full model hierarchy does better. We also note that the
plan time for the lowest and highest model is cut in half when removing those two environments
which also suggests that these environments are more difficult for even the highest model.

Performance for Specific Gurney Environments

We discuss additional switching results by highlighting our E0 gurney environment from Figure
6.1, an open gurney environment E4, and an environment that performed less well E5.

We found that for our E0 gurney world we achieved lower on average planning times with
our switching algorithm as compared to the highest model. The difference is also statistically
significant (t(100) = 3.97, p<0.0001). These normalized values are shown in Table 6.15.

Table 6.15: Normalized plan times for gurney environment E0.

Model
Plan Time(SD)

(s)
[x, y, θ, θ1, V, A] 0.91(0.29)

All Models 0.59(0.74)
Switching Lowest
and Highest Model 0.83(1.14)

More open environments, such as E8 and E4, saw significant improvements in planning time
for switching between multiple models compared to the highest model. This is because the lower
models were very successful and the approach did not choose to switch very often. When it did
switch models, it often did so only once. Planning times for many of the environments were
comparable to planning in the lowest model from start to goal. Table 6.16 shows a more open
environment, E4, where there is a significantly reduced planning time for switching among the
model hierarchy as compared to just switching between the lowest and highest model (t(100) =
4.91, p<0.000003).

An example of where switching does not improve planning times over the highest model is
shown for environment E5. Planning times are shown in Table 6.17 for comparing the highest
model with switching experiments. While planning times for switching are larger than the high-
est model, we did observe that time for switching between just the lowest and highest model
was statistically significantly lower than the highest model. (t(100) = 4.12, p<0.0001). E5 is an
environment where a lower model with high success rates, and high planning times compared to
the highest model, increases overall switching time. This is because the model selector chooses
this lower fidelity model, [x,y,θ,θ1], before the highest model causing higher planning times.

81

Table 6.16: Normalized plan times for gurney environment E4.

Model
Plan Time(SD)

(s)
[x, y, θ, θ1, V, A] 2.21(0.67)

All Models 0.05(0.12)
Switching Lowest
and Highest Model 0.94(1.82)

Table 6.17: Normalized plan times for gurney environment E5.

Model
Plan Time(SD)

(s)
[x, y, θ, θ1, V, A] 1.67(0.27)

All Models 37.23(18.04)
Switching Lowest
and Highest Model 1.20(0.89)

Figure 6.5 shows the number of switches for all gurney environments. About half the trials
do not switch at all. Then most of the remaining trials choose to switch just once where in most
cases the model chosen to switch to was the first model with trailer heading.

6.3.3 Switching for Automatic Swinging Door Environments

Average Performance

Our switching results for the swinging door environment show larger planning times than switch-
ing between the lowest and highest model, and a very high variance, Table 6.18. All trials switch
due to the feasibility detector always predicting a collision in the lowest model. This is due to
extremely high false positive rates for the swinging door environment that has doors open the
longest, and the high true positive rate for the swinging door environment that has the doors
open the shortest.

Table 6.18: Average Switching Results over all swinging door environments.

Models
Switched Success (SD)

Plan Time (SD)
(s)

Path Length (SD)
(m)

Trials That
Switch

All Models 0.98(0.2) 12.28(11.79) 5.64(1.41) 1(0)
Switching Lowest
and Highest Model 1(0) 3.32(3.93) 5.27(0.65) 1(0)

We re-iterate here, as in Section 6.2.3, that these false positive rates are high for our lowest
models because of how we collision check in our highest model. We are being too conservative
with how we determine how much of the door swing area to collision check against for when the

82

Figure 6.5: A histogram showing the number of switches for 100 trials of each gurney environ-
ment.

doors are opening and closing. An alternative approach is to discretize the door swing but we
found this lead to a higher false negative rate where the highest model does not properly detect
that the door can swing through an area. So, invalid paths are created where the robot can teleport
around partially open doors which fail when followed during execution.

Table 6.19: Normalized plan times for the automatic swinging doors environment.

Model
Plan Time(SD)

(s)
[x, y, θ, θ1, V, A] 3.88(2.44)

Switching all Models 6.35(6.62)
Switching Lowest and Highest Model 1.64(1.98)

In Table 6.19, we see that while the planning times for switching among all models is larger
than the normalized time of the highest model, the standard deviation is also high. This large dif-
ference in variance is show in Figure 6.6. Again this is due to our switching algorithm switching
higher than necessary because of high false positive rates. More specifically, this is caused by
the false positive values that exist for both [x, y, θ, V] and [x, y, θ, V, A]. These two models have
high success rates so they are chosen often by the switching algorithm, and if they also have false
positives it is possible that a re-planned portion of the path with this model will be detected as
needing to switch again which causes a higher model (with even longer planning times) to be re-
planned unnecessarily. It is also the case that false positive rates increase for these two models,
causing our switching algorithm to switch more often per trial, as the door time decreases. This
causes switching to occur for more models than necessary. This can be seen in the histograms
for each door opening times in Figure 6.7(c). We do see improvement in the average plan time

83

for switching between the highest and lowest model. This shows that if we did not switch unnec-
essarily between two models with equivalent success rates, in our 12-second door environment,
our average planning time would have been less.

(a) The normalized plan times for the highest model are more
concentrated.

(b) The normalized plan time for switching between all models
contains more outliers.

Figure 6.6: The two histograms show that the planning times for switching have a greater spread
than the highest model.

We also include histograms for the number of switches per trial for each of our automatic
swinging door environments as shown in Figure 6.7. We observed that when the door time gets
less the number of switches per trial actually increases. This is due to a high false positive
rate which emerges for velocity models in the environment with the shortest door open time
(12 seconds). This false positive rate indicates that partial paths repaired in these models are
incorrectly detected as having a collision which causes an additional unnecessary switch to an
even higher model. A false positive rate also exists for these models in the 14 second door
environment but it was much less. The 16 second door environment had no false positives for
higher models and properly chose to switch only once more than 95% of the trials, Figure 6.7
(a). We believe the false positive rate increases for these models because the feasibility detector
indexes the door time and overly conservatively collision checks against the entire door swing
area which occurs more often when the RRT has trouble extending nodes in this narrow passage
when the doors are open less.

6.4 Plan-Time Model Switching with Uncertainty
In this section we compare switching results with and without additional uncertainty models. We
expect that adding uncertainty to models encourages the switching approach to choose to plan
with lower models more often further reducing planning times. We show that this is the case for
the majority of environments.

84

(a) Switches swinging environment 16 (100 trials). (b) Switches swinging environment 14 (100 trials).

(c) Switches swinging door environment 12 (100 trials).

Figure 6.7: The number of switches increases as the door time decreases due to an increase in
false positives with higher models.

6.4.1 Switching for Gurney Environments
Average Performance

As expected, Table 6.20 shows the difference between success rates with adding uncertainty
models was not statistically significant. The difference between path length is statistically sig-
nificant with paths for switching with uncertainty models being greater than without (t(1000) =
5.97, p<0.00001). This is because adding padding moves the robot further from obstacles, so
when it turns it cannot cut corners as much and generates longer paths. Unexpectedly, switching
among all models with uncertainty has higher planning time than without. We believe this is due
to some outlier environments where the robot can get stuck planning in a lower [x,y,θ] model.
Switching just between the highest and lowest model demonstrate lower planning times as seen
previously.

Table 6.21 shows the normalized planning times for the highest model averaged over all

85

Table 6.20: Switching Results for all gurney environments with added uncertainty models.

Models
Switched Success (SD)

Plan Time (SD)
(s)

Path Length (SD)
(m)

Trials That
Switch

All Models 0.94(0.12) 9.88(26.21) 6.39(1.19) 0.48(0.38)
All Models

with Uncertainty 0.93(0.13) 12.42(34.72) 6.58(1.24) 0.42(0.41)
Switching Lowest
and Highest Model 0.93(0.11) 2.14(5.53) 6.48(0.96) 0.43(0.38)

gurney environments with switching and added uncertainty. The normalized planning times
show a similar trend as previously described. We compare this table directly to the following
table which removes environments E5 and E7 (Table 6.22). In Table 6.21, we hypothesize that
adding uncertainty when switching in the full model hierarchy increases planning time (with
a higher variance) due to outlier environments which cause the switching algorithm to select
lower models (with higher planning times than the highest model) even more often. Table 6.22
confirms this result, as we see statistically significantly lower planning times for switching among
all models with uncertainty than both full switching, t(800)=6.12,p<0.000001, and switching of
just the lowest and highest model, t(800) = 7.42, p<0.000001, when these outlier environments
are removed.

Table 6.21: Switching Results for all gurney environments with added uncertainty models and
normalized planning times.

Models
Switched Success (SD)

Plan Time (SD)
(s)

[x, y, θ, θ1, V, A] 0.97(0.06) 1.45(1.77)
All Models 0.94(0.12) 4.12(11.87)
All Models

with Uncertainty 0.93(0.13) 5.03(17.91)
Switching Lowest
and Highest Model 0.93(0.11) 0.94(2.52)

We also see how the number of switches increases per trial with adding uncertainty as shown
in Figure 6.8. This is expected because the ability to add uncertainty models causes lower models
with additional padding to be used more often and it is possible that for particular environments
these lower models are not sufficient for going through particular parts of the space. For example,
perhaps an [x, y] model with additional padding is often chose for planning, but in particular areas
with gurneys the robot will only be successful when considering trailer heading. This is a case
where the algorithm may always choose a lower padding model before considering the trailer
heading model which creates more switches on average.

86

Table 6.22: Switching Results for all gurney environments with added uncertainty models and
normalized planning times except E4 and E5.

Models
Switched Success (SD)

Plan Time (SD)
(s)

[x, y, θ, θ1, V, A] 0.99(0.01) 0.92(0.68)
All Models 0.99(0.01) 0.37(0.86)
All Models

with Uncertainty 0.99(0.01) 0.17(0.63)
Switching Lowest
and Highest Model 0.98(0.03) 0.49(1.09)

(a) The number of switches for all gurney environments. (b) The number of switches for adding uncertainty for all gur-
ney environments.

Figure 6.8: The two histograms show that the spread for the number of switches increases when
considering additional uncertainty models.

Performance for Specific Environments

Our E0 world demonstrates even more efficient plan-time performance over the highest model
for switching with models that also include uncertainty as shown in Table 6.23. For this particular
environment, lower [x, y] models with added padding were often sufficient for planning a feasible
path, so higher models were rarely needed. We found that average planning time for switching
with uncertainty was statistically significantly lower than switching without uncertainty models.
(t(100) = 5.92, p<0.00001).

As was the case for our switching experiments without uncertainty, more open environments,
such as E8, saw significant improvements in planning time for switching between multiple mod-
els compared to the highest model. Again this is because of the high success rates for the lowest
model, so the approach chose to switch rarely. Therefore, there was no added benefit to adding
models with uncertainty. Results were comparable for switching with and without uncertainty

87

Table 6.23: Normalized plan times for gurney environment E0.

Model
Plan Time(SD)

(s)
[x, y, θ, θ1, V, A] 0.91(0.29)

All Models 0.59(0.74)
All Models

with Uncertainty 0.11(1.13)
Switching Lowest
and Highest Model 0.83(1.14)

for these environments.
In general, we expected that planning times would be lower for switching among all model

and uncertainty as compared to just switching between the lowest and the highest model. The
caveat is for environments like E5, where normalized times are shown in Table 6.24. This envi-
ronment is an example where the implementation of the [x,y,θ] and [x, y, θ, θ1] models for this
environment cause these lower models to have longer planning times than the highest model. The
high success rates for the [x, y, θ, θ1] model also cause it to be chosen by the model selector more
often. This is why experiments which only use the lowest model and highest model have lower
average planning times than the full set of models because [x, y, θ, θ1] is no longer a possible
model to choose from (It is not the lower or highest model). This further motivates the need for
a more informed search so that the [x, y, θ, θ1] model is skipped due to it having larger planning
times than an equivalently successful higher fidelity model with lower planning time.

Table 6.24: Normalized plan times for gurney environment E5.

Model
Plan Time(SD)

(s)
[x, y, θ, θ1, V, A] 1.67(0.27)

All Models 37.23(18.04)
All Models

with Uncertainty 41.45(22.02)
Switching Lowest
and Highest Model 1.20(0.89)

6.4.2 Switching for Automatic Swinging Door Environment
The swinging door environments see no benefit from adding robot footprint padding. This
demonstrates correct usage of the algorithm which chooses the correct model, and does not
switch to added uncertainty if it’s not useful. This result also suggests the type of uncertainty
matters. For example, adding padding to the robot’s footprint addresses uncertainty in the robot’s
motion and obstacle placement. (spatial uncertainty). Footprint padding uncertainty is not as
useful in (have as much impact) in a world that is more concerned about uncertainty in the

88

time dimension. Having uncertainty in the time dimension for adapting the duration of collision
checking door swing would have been better for this type of world.

6.4.3 Plan-Time Model Switching with Uncertainty Discussion
The algorithm correctly chooses to not use models with uncertainty when they do not provide
added benefit, but our approach is still overly conservative by favoring models with uncertainty
in our Breadth First Search. This is most evident in environments where adding padding made
it difficult to find paths. We believe there is benefit to including uncertainty models but there
should be further evaluation to determine the point at which too much padding for a model ac-
tually negates its benefit for a specific environment. For example, one example is environment
E9 where a gurney is close to the goal. Our approach limits the padding to only the amount
that ensures a valid path can be found, therefore this particular environment did not benefit from
additional padding. This is because either uncertainty models were not chosen, due to no valid
re-plan trees existing when added padding invalidates the goal, or the few uncertainty models
that were valid actually caused increased planning times. We believe outliers in Figure 6.8 (b)
are caused by these types of environments. Even though our model selector correctly goes to
the most appropriate model, the model selection is overly conservative by model selecting un-
certainty models before higher fidelity models even in these cases. A more informed model
selection would be useful in this scenario as well.

Another example of cases where using uncertainty is an overly conservative approach, is
when models with uncertainty create paths in areas of the environment where higher models
have difficulty finding a plan. This already occurs when switching between models without
uncertainty, but additional uncertainty models can exacerbate the situation by planning more in
lower fidelity models which create these scenarios. We do note that this is highly dependent on
the environment. For example, [x,y] paths that have been checked and fail in a tight hallway
may find a successful re-planned path with uncertainty that creates a longer route around the
top gurneys. Yet, this is another location that plans generated in higher models rarely considers.
Unfortunately, for gurney environment E0 this will never be successful since the area above
the gurneys is too tight for a turning trailer to fit. If a path above the gurney is chosen as the
next partial plan repair it will always have to be repaired with a model that contains the trailer.
This also causes the variance for plan times to be higher for switching with uncertainty in this
particular environment. This is an example of how planning times could improve if there was a
way to go directly to the appropriate repair model (with informed model selection) rather than
testing a lower uncertainty model first.

6.5 Results Summary
We discuss single model performance and false positive and false negative rates for our single
models which help evaluate our switching results. We then present switching results for both the
gurney and swinging door environments. We evaluate results averaging over all gurney environ-
ments and all swinging door environments. We also highlight specific environments to further
explain our results.

89

The experiments show how our approach generalizes over non-uniform environments. We
show that the majority of our environments benefit from switching with the entire model hierar-
chy, but that for particular environments planning times are longer due to implementation details
and an overly conservative switching design. For the gurney environments, we show how adding
uncertainty padding models can improve planning times and discuss cases where more padding
can cause longer planning times. For our swinging door environments, we conclude that adding
uncertainty is not beneficial for these particular environments.

90

Chapter 7

Future Work

In this chapter we discuss improvements with our approach which include improving the highest
model used during feasibility detection, Section 7.1, improving planning search with adaptive
sampling, Section 7.2, and better representations for uncertainty, Section 7.3. We also discuss
some ideas for establishing more formal guarantees for our approach in Section 7.4. Our com-
plete system would also need to consider execution time extensions shown in Section 7.6. The
system would start with our work for generating an initial executable path. Then the system
would close the loop by also re-planning during execution. Model selection for both plan-time
and execution time could start the same. Extensions to the model selection process would include
a more informed approach that depends on previous experience, Section 7.5. During execution,
it may be possible to also anticipate dynamic obstacles as described in Section 7.7.

To introduce these future directions, we illustrate an example for a hospital robot which must
prioritize recovery. For example, a hospital robot traveling through the environment delivering
medication may commonly access models for navigating a long hallway and then entering an
elevator. There could be an unanticipated day where the janitor leaves a mop bucket near the
elevator entrance. The robot may try to approach the entrance in the same way it always has and
constantly fail to enter the elevator. The amount of time the robot spends trying to correct itself
is important. If the recovery process takes too long the state of the robot might be so bad that
no recovery is possible. This could occur when recovery actions taken by the robot causes the
robot to become more stuck. This could also occur from conditions outside the robot’s control.
This includes scenarios like: repeating the recovery process for so long it runs out of battery, or
prompting a person to intervene because they assume it’s broken. In the worst case scenario, a
robot that consistently fails could cause a person to place it in an unrecoverable state, such as
being turned off and stored.

Recovery is more expensive as recovery attempts increase because the robot could re-iterate
the same task causing it to get more stuck than it was initially, or if the robot is doing something
unusual for long enough it may cause human intervention. Based on the example we imagine
that multiple models could help for allowing the robot to try increasingly complex models. This
requires using models at execution time. Additionally, the time it takes to recognize a reliable
recovery strategy and generate that recovery strategy is paramount. We believe our initial plan-
time work which focuses on efficient planning is helpful for future work that re-plans recovery
paths quickly. As the recovery time of the robot gets progressively worse the recovery strategy

91

would change. Initially the robot could try something with simple model switching in which
it is less informed, the next step would be to have a more informed intuition of what model is
applicable based on past experience which requires previous data Section 7.5, and if all these
recoveries fail the robot would resort to human intervention.

Human intervention and teleoperation are a very expensive recovery option. The ability to
explain and properly diagnose how the robot got into a situation that disrupted autonomy is
important for the robot’s ability to adapt and not repeat the same failure. Even in this undesirable
scenario we believe that models are important for explaining to a user the robot’s current state.
Models are also important for more informed actions for the robot to know not only when to
give up in its own recovery process but to also be able to signal to a user that it requires help.
For recognizing recovery issues quickly, we believe that the use of multiple models is helpful for
diagnosing unexplained robot behaviors for operators and assisting in the robot recovery process.
We touch on this idea in Section 7.8.

7.1 Improving Feasibility Checking in the Highest Model
Our work has shown that how well the feasibility checker matches how the robot moves in
the world directly impacts the effectiveness of our switching algorithm. As stated previously,
false positive rates can cause our approach to switch more than necessary adding unnecessary
planning time, and false negatives affect the execution success rates. This is why the model
used for feasibility checking needs improving. One way to better match the robot’s real world
interactions is by increasing the model fidelity used for feasibility checking. This would include
modeling trailer dynamics. We refer to work done in [12], where a system of equations for
the trailer now include mass and inertia parameters. An improved model could also allow the
padding for feasibility checking to vary. For example, the padding for checking along the path
could change as uncertainty grows with time.

Alternatively, it may be very difficult to hand-tune a model that properly accounts for the
robot’s execution motion. Therefore, it may be possible to better approximate the highest model
for feasibility checking through unsupervised learning. In one case, a very good optimized trajec-
tory could act as a guide for feasibility checking and represent the most accurate model. Another
technique would be to combine the model with learning. The hand-tuned model could provide
the learner with initial assumptions of the world, and learning techniques could be applied to
improve upon it.

7.2 Adaptive Sampling for Smarter Planning Search
Future work could be done for investigating how to improve planning time by better sampling
target points. Adaptive sampling in configuration space has been done to speed up planning times
[106]. Similarly, we could consider adaptive sampling that changes based on the model fidelity
we are planning in. For example, certain models may have more difficulty in particular types
of environments, and it would be useful to change how targets are sampled in these spaces to
save planning time. This includes favoring the expansion of nodes to areas where it is easier for

92

RRTs to find paths (outside of tight spaces). Related work in multi-robot planning [56] favors
the expansion of different nodes such that different ”classes” of paths are selected based on a
weighted cost. Weighting the edges allows higher penalties to be placed on expansions that
cause the search to stall which encourages an exploration of more open parts of the environment.
One possible future direction is to penalize edge expansions during the planning search that cause
models to go to undesirable locations of the search space. This includes areas of the search space
that may be difficult for higher models.

Another possibility is to use previous search information to improve the algorithm such as
using the waypoints of previous searches as target points. Our current work generates plans, and
uses multi-tree re-planning to generate partial path repairs. After we find a plan, we throw away
previous searches done during the node expansion process. Previous search information could
be utilized for providing additional target waypoints to guide re-plan repairs. For example, re-
planning in higher models could also consider connecting to the previous search space of lower
models. This would allow a finer resolution of re-planning start trees and intermediate goals to
plan with rather than forcing re-plans just along the lower model path. This may be beneficial
in a highly complex environment where having many more waypoints to plan from and towards
gives a more thorough search of the space than the model path provides. Forcing higher models
to generate plans guided along lower model reference paths could increase planning time by
guiding higher models to plan in difficult parts of the environment it would not otherwise sample.
Maintaining previous higher model searches could help guide future sampling for knowing when
particular higher models are more or less useful for repairing a path in a particular area of the
environment.

Further research could also investigate when searching in a higher model is no longer benefi-
cial. This means there could be a point during the re-planning process where continuing to search
in the higher model is not contributing more information and is actually increasing computation
resource. For example, it may be useful to search in a higher model until the search has switched
to a different homotopy class, and once this has occurred go back to searching in a lower model.
By considering previous tree searches, we can reason more intelligently about the benefits of
searching in models to preemptively end the search process and further save planning time.

7.3 Representing Uncertainty
It would be possible to represent uncertainty in different forms. This includes the ability to add
uncertainty to different dimensions of the configuration state. Three possible forms include: as
a uniform set-bounded distribution over states or particular dimensions, as a parametric Gaus-
sian distribution, or as a non-parametric particle distribution. Note that each form increases the
previous representation’s complexity.

As an extension, the amount of padding could also vary along a particular dimension. If a
robot’s straight-line motions are more accurate than turns, uncertainty can exist as a bounding
space only in the theta direction. One disadvantage of representing uncertainty uniformly is the
generality in reasoning about uncertainty in this way. For example, representing uncertainty as
padding covers both state and execution information, acting as a catch all, making it difficult to
know exactly what information is known.

93

Related work has represented uncertainty as a parametric Gaussian distribution [80], [24],
[67]. Again, for tasks that need to save computation time marginalizing hypothesis space (belief)
as a Gaussian is more tractable than reasoning about separate hypotheses. This is effective in
domains with simple unimodal observation dynamics. For instance, one might assume that the
object a robot is going to retrieve has a normally distributed location. This implies that the object
is only slightly shifted around some mean location.

In more complex domains, uncertainty can also be reasoned about probabilistically as a non-
parametric distribution. For instance, [79] represents uncertainty using sample particles that act
as possible hypotheses in the space. Similarly, [65] uses a particle filter to represent a state’s
belief at particular times. When uncertainty is reasoned about explicitly, in a distributed belief
space, it increases computation time but is more constrained to the correct underlying model.
One such example is with localization. If the robot’s localization information becomes so bad
that there are multiple distinct areas where the robot could be, a single Gaussian or uniform
rectangle would be unable to capture this information.

Related work in capturing uncertainty in the belief space is often formulated as a Partially
Observable Markov Decision Process (POMDP) problem. Here the state space observability
is represented as a belief over a distribution of states, and action uncertainty is captured in the
model’s state transition probabilities. Solving POMDPs exactly is an intractable problem [74].
Rather than use a POMDP and assume the entire state space is unobservable [70] uses a mixed
observability approach. They assume some components of the state are observable while others
are not. This idea motivates applying uncertainty to different parts of the model space (like single
dimensions or specific state features).

The organization of models with different types of uncertainty would grow from uniform to
parametric to nonparametric. In statistics, the probability integral transformation states that data
values, modeled as random variables, from any given continuous distribution can be converted
to random variables having a uniform distribution. This suggests that under certain assumptions
bounded sets may be translated into Gaussian distributions. Similarly, parametric distributions
could transform into a higher fidelity nonparametric form.

7.4 Expansions for Theoretical Guarantees
We use this section to briefly describe ideas for expanding the provable guarantees of our ap-
proach. The following subsections touch briefly on ideas for discussing guarantees related to a
model’s success rates, a bound on the system’s planning time, and lastly a more formal definition
for model translation.

7.4.1 Guarantees for a Best Model
In this section we discuss ideas for providing more formal guarantees on how specific models
may be successful over areas of the environment. This may be able to be represented as a notion
of regret with respect to being able to evaluate if a model chosen for re-planning an infeasible
portion of a path was the best model to use in hindsight. Regret is often characterized in machine
learning domains. The discussion of minimizing regret refers to reducing the number of actions,

94

in our cases which models were necessary for re-planning, by deciding in hindsight if there was a
better model choice. Minimizing regret minimizes the idea of sub-optimal actions. It is difficult
to formalize a notion of optimality in our framework, but we believe characterizing regret could
be a first step to discussing a best model choice.

We note that the cost of an optimal plan that reaches a goal region can be characterized in
many ways. Often it is described as a function based on the plan’s length and the vehicle’s
speed [47]. In our case, we would like to assess the cost of the use of a model when it is
chosen for re-planning. While it may be possible to discuss the cost in terms of path length,
planning time, and execution time, we are most concerned with robustness and how success-
ful a planned path will be for allowing the robot to execute collision free through the environ-
ment. Therefore, the notion of success is a bit more difficult to capture. If it is possible to
discuss the cost of a model’s contribution towards an executable path, it may also be possi-
ble to discuss the inverse,1-cost, which represents the reward. If we are trying to estimate an
unknown reward distribution between multiple models to determine which one would be best
for re-planning with next it may be possible to formulate this as a multi-armed bandit problem
en.wikipedia.org/wiki/Multi-armed_bandit. The idea would be to maximize the
reward of an unknown distribution by performing a tradeoff between exploiting the model with
the highest payoff versus exploring to get more information about the expected payoff. This
could be another learning approach for estimating which models are most beneficial for a partic-
ular area of the environment. This also could be a way to frame the model selection part of the
approach where it is possible to discuss bounds on the payoff for particular models based on what
previous models have been selected (bandit arm selection) or optimality in terms of converging
with model choice towards a maximum expected reward.

Lastly, it may be possible to discuss a bound on a model’s success by leveraging its position
in the model hierarchy. Although, we have seen that sometimes higher fidelity does not always
equate to better model success it may be possible to still hypothesize that neighboring models in
the model graph will perform with similar success. This may allow discussing bounds on success
where lower or higher models that are in a pre-defined neighborhood of the current model in the
hierarchy limit how successful the model is in a particular environment.

7.4.2 Guarantees for System Planning Time
The planning time for the system could initially be described by considering what is the worst
case. We recognize that this is very difficult to conjecture since it is possible for models to re-
plan with an infinite amount of node expansions. For discrete space planners, it my be possible
to discuss the bound on the search of the space based on a branching factor for that particular
model. Randomized algorithms, such as sample based planners, bound the computation time in
order to avoid infinite loops. Therefore, perhaps it is sufficient to discuss the worst case in terms
of the max node expansions, for a particular model, before a planner times out. Assuming that
it is possible to determine the maximum number of node expansions generated during a re-plan,
then we can discuss planning times with respect to the highest model. This assumes that the
highest fidelity model takes the longest time to plan in. We will refer to these max expansions as
q.

The worst case for planning time would then be if the lowest fidelity model takes qlowest to

95

en.wikipedia.org/wiki/Multi-armed_bandit

plan an initial path, and each edge (between waypoints) gets re-planned in every model with each
taking the max time qhighest up to the highest model. The planning time for planning between
only two waypoint would need to be discussed for each model. If planning between two way-
points represents the time for planning an edge, then each model would include an edge planning
time ex where x is the number of the model used for planning an edge and we will define m as
the total number of models. If there are n waypoints, then there are n − 1 edges. One model
would then take tx = ex×n−1 time to re-plan for one expansion. In the worst case, the planning
time is then tworst =

∑m
0 ex × n− 1× qx.

It may be possible to also assume that in an adversarial designed (worst case) system each
model takes as long as the highest model. This would represent the upper bound. We note
that if a model takes longer than the highest model it would be removed since we will assume
that the highest model is the worst case for model planning time. Therefore, the upper bound
could be, tupper = m × n − 1 × qhighest, the number of models times the number of edges
times the max expansions for the highest model. This value would potentially also need to be
multiplied by some constant number of threads to represent the time lost to other threads when
doing concurrent multi-tree re-planning.

7.4.3 Guarantees for Path Translation
It may be possible to more formally define the translation between models with differential con-
straints by using Lie algebra as described in [55]. We discussed the topology of the state space in
Chapter 4.5, as defined for our planning models, we can also discuss the set of all velocity vectors
belonging to a vector space [23] as curves on manifolds. This can be referred to as the tangent
space. By discussing the tangent space we can discuss differentiable manifolds and describe how
the tangent space can also be described as a manifold. Therefore, we can imagine the motions
the robot takes as actions between states as a differentiable mapping. This mapping is better de-
scribed as a Lie group that contains a collection of vector fields. Lie groups are models for config-
uration spaces of mechanical systems where each point of the space allows continuous motions as
defined by a differentiable manifold [92]. A Lie group forms a differentiable manifold. Any Lie
group gives rise to a Lie algebra (https://en.wikipedia.org/wiki/Lie_algebra).

There could also be guarantees for translation between model fidelity by characterizing Lie
algebra as Lie brackets for a specific model. Formalizing the definition of state reachability, in
higher models when tracking lower fidelity reference paths, would give guarantees on the ability
to translate between particular models. One possibility is to define reachability for configuration
states in higher models as controllability. Controllability describes the ability to move a sys-
tem in its entire configuration space as defined in https://en.wikipedia.org/wiki/
Controllability. The Lie brackets of vector fields describe controllability. This describes
if a robot can reach any given point in the configuration space. It is possible to determine the Lie
bracket of the Lie algebra, and this is used to determine if a system is integrable. From Lavalle’s
book [55], the Lie brackets can characterize all possible directions for each configuration state.
Therefore, it could be useful in more formally characterizing movement in translation and prop-
agation of lower model paths in higher model configuration space. For formal guarantees, it may
be possible to discuss if translation is even possible between particular configuration spaces by
proving if a particular higher model’s configuration space is even reachable.

96

https://en.wikipedia.org/wiki/Lie_algebra
https://en.wikipedia.org/wiki/Controllability
https://en.wikipedia.org/wiki/Controllability

7.5 Model Selection Extension: Informed Search

While a model’s order in the hierarchy is often a good indication of its performance (both in
terms of planning time and success), it does not necessarily give any indication of how well it
will do in a particular environment. While we would expect higher models to perform closer to
how the real robot interacts with the world, it is unclear if what that model captures is useful for
a particular environment.

This section discusses ideas for directly selecting the next applicable model in the hierarchy
rather than using a Breadth First Search. Breadth First Search is flawed in not distinguishing
between the choice of models when they have comparable fidelity. We define comparable fidelity
as those models that are present along the same level of the graph hierarchy. These are models
that are not translatable between and therefore are not comparable in a BFS selection strategy.
The ordering of the models is arbitrary and therefore the model selection may not be as good for
a particular environment when it is uninformed. Direct selection requires more information to be
stored with each model based on past data of model usage in similar environments. We would
like to be able to have a more informed model selection which skips levels of the hierarchy to
directly choose the most appropriate model.

7.5.1 Model Selection for Base Models Using Informed Search

The lower model path is checked in the highest possible model. If the check fails, such that
an impediment is found, a model must be selected to re-plan in. The model search starts with
the next highest model of the current lower model path. If multiple higher models of the lower
fidelity model are found to fail, and are along the same level of the tree hierarchy, a choice must
be made between models. The choice in the original algorithm was through Breadth First Search
(BFS). A more informed choice utilizes a utility function to decide between models by choosing
the model with lower expected cost.

For estimating a utility function for model selection:

1. Organize the initial static planning models in a hierarchy.

2. Obtain a Probability of Success P (s) within the current environment P (s | m, e).

3. Obtain a path generation cost C within the current environment C(m, e).

The P (s | m, e) can be calculated from multiple simulations over a large variety of environ-
ments in order to generalize this value for new environments. The C(m, e) would also need to be
estimated in a way that allows it to be obtained even in unseen environments, perhaps there is a
way to estimate this value by recording path lengths over varied environments. This path length
is represented as an interval. It may also be possible to extrapolate the probability of execution
success and potential path length of this model on future environments with a learning approach,
as suggested in Section 7.5.3. Thoughts on how to compute these values are given in subsequent
sections, but for now we assume they can be determined.

The informed utility function created for deciding which model to switch to is:

minP (s | m, e) ∗ C(m, e) + (1− P (s | m, e)) ∗R (7.1)

97

Where R is a constant recovery cost equivalent for all models.
In the following subsections, we describe considerations attributed to more informed selec-

tion, and how risk affects model choices.

7.5.2 Model Selection for Uncertainty Models Using Informed Search

While the general hypothesis is that adding a model with increased uncertainty should be cheaper
than a higher order model with more explicit detailed information and constraints, it is not clear
if plan generation actually will be. Plan generation can be more expensive with a model of higher
uncertainty when the padding amount is large enough to make path finding difficult. This can
also occur if it’s difficult to find a path within narrow corridors or a tight turn where otherwise
the padding amount is sufficiently small.

Since it is not clear that choosing to switch to a model with uncertainty is actually more
beneficial and under what context of the environment it is truly mode useful, this makes a case
for choosing models based on utility rather than a search order. Search order forces an ordering
to what is believed is higher fidelity than other models which we have demonstrated can shift
depending on the environment. The issue is that we may try to be too conservative by choosing
a model with less padding first because of the search order (meaning we are checking more
models than necessary). For example, if we choose a model to re-plan in that subsequently fails
and then find a more useful which also addresses the failure, then both models contribute useful
information, but the initial model chosen for re-planning did not cover all of the information in
that failure. Or alternatively, by choosing to re-plan in a particular model we then move to higher
models that we have labelled as ’higher’ for this model, but this labelling for this particular
environment is incorrect. In which case, we are effectively skipping lower models that could
have been helpful for addressing the failure and settling on a model higher than would have been
necessary if we had chosen using a utility.

Estimating Success of Uncertainty Model

The probability of success P (s) of the uncertainty model for a given environment could be
estimated using the lower model path, the probability of success of the lower base model, and a
resulting Voronoi diagram which all contribute to a success curve. A curve is determined where
minimal padding provides zero success and max padding is closer to 100% successful (minus
some ε value to assume a path can be found). This estimates P (s | m, e).

Uncertainty always increases the padding amount of the base model. Therefore, the success
probability with additional uncertainty is hypothesized to be greater than that of the base model.

The max padding amount at the top of the probability curve is determined using the lower
model path within the voronoi diagram. Every voronoi diagram cell that intersects with the lower
model path is determined. Since voronoi edges are equidistant between obstacles they provide
a value for a max possible padding amount between obstacles. The max amount necessary to
guarantee success will be this max amount minus ε, and used as the top of value of the success
curve. This curve for probability is fit between the minimum padding amount used in the base
model and the max padding amount.

98

Estimating Cost of Uncertainty Model

This cost is an equivalent estimate for what the model’s path length would be. To estimate this
value, we need to determine how much longer the path would be if an uncertainty model is
used. The value increases if the new path creates a bifurcation causing it to switch to a different
homotopy class. For example, if the model with less uncertainty is able to find a particular path;
the question is whether the model with more padding can possibly find the same path. If it is, the
costs are comparable if the current path has enough space to fit the model with the larger padding
and, if not, we try to quickly approximate the length of an alternate path that would be feasible.

The cost for the dynamic uncertainty model for a given environment is estimated using a
distribution of lower model paths and the resulting voronoi diagram. Every voronoi diagram cell
that intersects the lower model paths is determined. The minimum amount of padding that was
added during the construction of the dynamic model is then compared to each edge for every
intersecting cell. If the minimum padding fits within this path distribution the deviation is small
and only a small path increase from the base model is determined. If the minimum padding
requires a large deviation outside the path distribution then the deviation is large and requires a
larger cost value.

When calculating the path length, calculations start from the point perpendicular to the start
waypoint then follow along edges until the point perpendicular to the end point. This is because
the end edge may be much longer than where the final end point actually is, and we want to keep
the cost closer to the voronoi path length for similar homotopy classes.

The model choice now includes models with added uncertainty. Now switching must decide
to go to a higher fidelity static model, or to go to a more conservative model which has increased
uncertainty. Again the choice is to minimize the expected cost where the probability of success
and costs of the uncertainty models are also included.

7.5.3 Selecting the Model Based on Environment Features

One possibility for obtaining P (s | m, e) is through a classification approach. It might be pos-
sible to find this value based on experience with running models over a large set of training in
environments, and then evaluating the algorithm on a separate environment test set. One caveat
is that it could take a very long time to simulate enough examples with every model to obtain a
good coverage that generalizes over many environments. The goal would be to learn an estima-
tion of the probability given the environment features. The main question is what environment
features would be best for predicting success.

It is important to allow the classification to be updated online because unanticipated failures
could happen that were not captured during initial training. The robot can start with an informed
prior based on simulation trials. Then the classification for success probabilities would change
as the robot encounters more failures during execution. We imagine that as the robot travels to a
part of the environment for which it does not currently have a good estimation of success, it could
start by using the initial uninformed model selection algorithm and then update the correlation
between model and environment feature set as it encounters more examples. As an example, a
robot is going through the world and gets stuck (unable to find a plan in 1 second) then it goes
offline or takes some time to optimize the correct parameters to be unstuck for that particular

99

scenario instance. Next time the robot gets stuck in the same area it uses nearest neighbor to
try and match parameters similar to the current instance, if it gets stuck again it again tries to
optimize for that particular instance and adds it to its database.

We would like to be able to answer the question: When given an arbitrary model, How do I
know how well it will help in the given environment? (without knowing the environment) One
way is by attempting to leverage environment features that indicate models that generate suc-
cessfully executable paths for that part of the environment. Another could be to use the behavior
of previous models in the model graph to give some indication of how a future model would
perform based on its position or relationship to these previous models. This allows leverage of
the hierarchical model graph to focus on a particular group of related models which perform
better for a particular area of the environment. For example, an environment with different coef-
ficient of friction on the terrain would do better with a model that took into account the robot’s
wheel contacts. This would also depend on how much the environment varied for differences in
terrain interaction. If this value was constant this model would be less necessary. If this value
varied greatly (maybe determined with an entropy parameter) then this variable could be more
important. Another example is an environment with a time-dependent obstacle. If a model has
configuration variables that relate to the robot’s time- dependent trajectory than these would be
important variables that could improve the model’s success in environments where time is more
constrained.

7.5.4 Switching with Risk
Incorporating risk attitudes captures the trade-off between variance and mean in the distribution
of reward outcomes. For instance, risk-seeking policies tend to have a lower mean and larger
variance (more upside, but also more downside) than risk-neutral policies. Utility theory pro-
vides structure for making decisions under varying risk attitudes [81]. A utility function maps
an agent’s value to a plan of wealth that represents the agent’s rational choice. Linear util-
ity functions maximize expected cumulative reward and represent risk-neutral decision makers,
while exponential functions model risk-sensitive decisions. Concave utility functions reflect risk-
averse decisions, and convex utility functions characterize risk-seeking decisions. The convexity
of these functions changes for different risk factors.

The notion of risk can be considered during model selection. At any point during the task
a robot can decide which model balances a high probability of success with its cost of use.
Example costs associated with a model include recovery path length, recovery time, amount of
uncertainty, and computation time. For example of a robot choosing between a model with an
increased uncertainty footprint versus no uncertainty. This tradeoff between choosing a model
that does or does not have uncertainty is a function of how much risk the robot should take.
If the robot chooses to not consider uncertainty, it assumes a higher risk of failure, but with a
possible reward payoff of a much shorter, faster path. The variance of the robot’s utility is very
large. It will either create a low cost path that accomplishes its task or it will fail trying and
need to recover. If the robot does consider uncertainty, it acts much more risk-averse. Overall,
it will tend to fail less often, but its expected path cost is lower than in the risk-seeking minimal
uncertainty case. Adding uncertainty also brings in a different kind of risk associated with the
ability to generate a plan. Even though plans will tend to be more successful when considering

100

uncertainty than without, there is a higher risk of not being able to find a plan at all. If the robot
is able to find a plan, it has a higher chance of success without a lot of variance in the path cost.

Risk also plays a part in choosing which model to use in order to satisfy an overall task
constraint. Since the choice of model is tied to a probability of success, the cost of failure may
be adjusted to generate more or less risky decisions. This allows the robot to have a more risk-
averse or risk-seeking strategy for task completion. Example task constraints include: time to
complete the task, computation time, or throughput. The robot would choose which model at
any given point in which to re-plan in to fulfill a constraint. For example, suppose the robot has
a constraint on task throughput which is determined by the number of objects it can transport in
a certain time limit. Let’s say the robot is reaching the end of its task and it has only moved 3 of
the 10 boxes. For the robot to try to maximize its throughput (move all 10 boxes) it may decide
to risk carrying all the remaining boxes at a higher speed. The risk is if any boxes are dropped it
may take more time for the robot to re-plan to pick them up then had it just moved two boxes at
a time. The closer the robot gets to reaching the task’s end the more the planner would choose
models that increase throughput but have a higher probability of failure (much more risky). If the
task was well within the throughput limits, the planner could be more conservative in choosing
models that increase time costs while safely moving boxes. The architect could set limits on how
much risk they are willing to allow the robot to take when trying to meet the constraint.

A constraint over the entire task ties choices made at each time in the planning process. As
shown above, constraining the throughput affects which models are chosen to either meet or
stay within the throughput limit. One approach is to formulate this as a problem that is solved
through Dynamic Programming techniques. We can break up the choice of model recovery
into maximizing the reward of successive subproblems. The current payoff R(s, a) of choosing
model m over a feature region f between states st to st+1 transitions to the next state T (s,m)
based on a probability of success. The value of the cumulative discounted reward is: V (s0) =
max

∑∞
t=0 β

tR(st,mt) subject to some constraint, c. This is the robot’s utility function.

This then follows as an optimization of the Bellman Equation subject to some constraint,
where β is a discount factor.

V (s) = max{R(s,m) + βV (T (s,m))} (7.2)

Pervious work, described in [46], varies a risk parameter that generates different ’risky strate-
gies’ by transforming transition probabilities. These strategies are precomputed policies that
choose more or less risky actions based on a risk parameter subject. An agent then switches be-
tween these policies at run time based on a constraint (specifically a reward threshold tied to task
completion time). Risk seeking agents assume a higher variance for the chance of maximizing a
threshold. We can extend this approach to allow generating more conservative policies. It would
also be possible to augment the utility function used for informed model selection directly by
incorporating a risk attitude Risk sensitive planning is further described in [51], [60].

101

7.6 Thoughts on Expansion to an Execution-Based Frame-
work

For extending our approach to using the model selector at execution time, we would also want
to consider how to detect the failure without actually colliding. This would require anticipating
the failure by having the robot reason about failure symptoms before a failure occurs. It would
also be useful to determine an initial recovery routine so that subsequent re-plans do not cause
an immediate failure. A current (naive) approach is to have the robot move a small distance from
the direction the failure occurs to give it enough space to generate a new plan. Movement of a
robot to this initial safer state is what we mean by initial recovery.

Model selection occurs after a collision is detected and the robot has initially recovered to
a safe state. A possible initial recovery could be to plan a recovery action in a higher fidelity
model. A poor initial recovery strategy could actually cause the robot to be unrecoverable. For
example, a robot could become wedged in a tight corner, become high-centered, or even flip
over, which would be an unrecoverable state. Another example is traveling through a muddy
area. Depending on the wheel direction and speed the robot could become more stuck.

The initial recovery strategy also should consider footprint padding when choosing a recovery
location. For example, when uncertainty adds padding to the robot footprint it is larger than the
robot’s actual size. If the robot initially recovers to a space very close to a wall, this additional
padding could cause the planner to think that all possible waypoint to re-plan from are invalid.
A possible initial recovery, when reasoning about uncertainty, might be to try footprints that are
less than this current padding amount and have the padding amount be reduced towards the actual
robot’s size to increase the chances of finding a successful plan. Or, one could plan the recovery
action using the model with uncertainty, which would ensure that the robot’s position would be
valid for that model.

7.7 Thoughts on Dynamic Obstacles

In this section we discuss thoughts on extending our approach to handle dynamic obstacles not
known at plan-time. Our current hierarchy only considers known obstacles. For dynamic ob-
stacles discovered during execution-time, the feasibility detector could constantly re-check the
plan against new information. If the plan fails feasibility checking, we could stop the robot and
execute our normal model selection and re-planning process. The model hierarchy would have
to be augmented with new models that could consider and model observed dynamic obstacles to
varying fidelity. For environments without any dynamic obstacles, there should be little overhead
as these models could be skipped at plan-time.

Example models might exclude dynamic obstacles altogether, model them as static at their
last known position, or linearly extrapolate their observed motion. Even more expensive models
could be constructed leveraging known semantics about how obstacles might move through a
particular environment, such as a hospital.

In another case, we assume that we do not have a model of the dynamic obstacle and must
learn to avoid it by exploring and re-planning in the environment. This is not a well formed

102

idea, but it is inspired by related work with real-time motion planning and re-planning for un-
predictable obstacles as described in [71]. In this work, unpredictable obstacles are avoided by
re-wiring the search path using RRT subtrees. We believe that it might be possible to do some-
thing similar with our multi-model approach. It is unclear which model would be selected for
re-planning around the discovered dynamic obstacle, but one possibility is to create a uniform
padding area that conservatively avoids the obstacle entirely and have the padding shrink or
expand depending on the exploration of the space.

7.8 Notes on Explainability
The idea of multiple models with various amounts of information is something that might be
beneficial for explaining to a user. This could be done at both plan-time and execution time.
The model variables in our framework are known. The robot could explain the path generated at
plan-time based on the models used to generate the initial execution path. During execution, the
robot would have a notion of state based on the current model it plans with, and models it has
tried that were not beneficial. The robot could provide information on what models it is currently
using or even give updates. This includes tracking when the number of model switches seems
higher than expectation or decisions are approaching the use of the highest fidelity model.

We believe combining learning with hand-tuned models is best, but there is more difficulty
for explaining what is happening in a learned model. Hand-tuned models can start as the prior
for which learning continues, and has the added benefit of using a model that is more explainable
if things go awry. This includes a better understanding of how a path is generated.

Our model selection process provides knowledge about what models have been attempted at
a particular point in the task. The hierarchical model graph is leveraged for deciding what model
to use next. If the robot has a set order of recoveries to try that end when it reaches the highest
model, then the robot knows at what point its possible model choices are about to be exhausted.
If the robot is about to try re-planning in the highest model, it knows at this point that if a solution
is not found for the highest model it may not be able to recovery. The robot will at this point
either run out of options or could fail if it proceeds. At this point, the robot could alert the user
knowing its next option is to wait and ask for help.

7.9 Future Work Summary
In summary, we believe there are many extensions and directions to our current work that would
lead to the ultimate goal of increasing reliable robot autonomy. In this chapter we touch on
some of the major ideas for being smarter about model selection and closing the loop of the
system by allowing multi-model re-planning during execution time. We begin with extensions
that would improve switching success rates and planning times. This includes thinking more
about what model is used for feasibility checking the path Section 7.1, and reasoning more about
re-using search during the re-planning process Section 7.2. We go on to address extensions for
uncertainty representations, Section 7.3, as well as ideas for providing more formal guarantees
in our approach, Section 7.4. We also believe that a more informed model selection process

103

would decrease planning times as we discuss in Section 7.5. Informed model selection would be
even more impactful when moving towards an execution time approach because there could be
situations where execution time operation highly depends on a fast recovery solution achieved
by going straight to the applicable model rather than checking through multiple models in the
hierarchy. Lastly, informed model selection can consider a risk parameter to change the utility
for model selection to favor different types of recovery strategies. Therefore, informed selection
could select models outside of expectation to reach other task objects rather than just selecting
the next model which has the best expected value for both being robust and plan efficient. During
execution, we could also consider dynamic obstacles, Section 7.7, and we finish with some
thought on the benefits of using hand-tuned models for explainability, Section 7.8.

104

Chapter 8

Conclusions

Robots often operate in non-uniform environments, and over time will encounter unexpected
environment interactions. These unstructured environments may include large open areas ap-
propriate for simple models as well as cluttered, constrained areas that require modeling more
detailed environment interactions. Planning in these environments benefits from a multi-model
approach.

In this thesis we presented a probabilistically complete plan-time model switching approach
for path generation over a hierarchy of multiple models in continuous space. The framework
determines when to switch between models and what model to switch to for producing a single
mixed-model plan. A model includes the robot’s configuration space, environment workspace,
and motions that connect configurations. In continuous space, motion equations describe actions
that include differential and dynamic constraints. Our model hierarchy includes multi-fidelity
models and models with variable uncertainty in the form of additional footprint padding.

The planning framework switches models to minimize planning resources while maintaining
robust execution success over varied environments. Our results show comparisons for single
model performance versus switching among models with varying fidelity including those with
variable uncertainty padding.

When switching between just the lowest and highest model, we see equivalent execution suc-
cess with statistically significantly faster planning times on average. In the multi-model switch-
ing experiments, while we see comparable execution success, the average normalized plan time
is worse than that of the highest model albeit with a very large variance. Therefore, while we
make an effort to minimize planning times and maintain execution success with our switching
approach, we saw that depending on the environment and implementation this is not always
achievable.

We also found that higher fidelity models are generally better than lower fidelity models for
success rates as well as planning times, but not always. We believe this is due to a combination of
implementation (how different models sample and propagate their robot state through the space)
and the environment (areas that are particularly more difficult for a model to plan through). We
touch on specific cases of this in our results Chapter 6.

105

8.1 Execution Success

A higher fidelity model does not always have higher success rates, depending on the environ-
ment. Initially we were expecting execution success rates to monotonically grow with fidelity.
Therefore, while we organize our models hierarchically by fidelity, the notion of higher fidelity
does not always equate to a higher success rate. As shown in our single model performance
results in Chapter 6, the implementation of the model may be directly influenced by the type of
environment. Although, in most of our environments higher fidelity models were the most ben-
eficial. For example, a robot traveling through very constrained areas, was most successful with
paths generated from models that include the trailer. A robot traveling through an autonomous
swinging door benefited from models that included velocity. For the few environment cases
where this did not occur, it further argues for the ability to match environment features to models
that perform well in those areas. We touch on this extension in future work, Chapter 7.

8.2 Plan-Time Efficiency

Average planning times across environments while switching models are not always better than
planning from start to goal using just the highest model. Again we found that this is affected
by a combination of the environment and how well a model’s implementation performs in that
particular environment.

In the worst case, switching between multiple models which eventually require the highest
model have higher planning times than planning in just the highest model. This is because the
number of re-plans required to plan from the start to the goal in the highest model would have
to be at least one. Therefore the initial planning time for generating the lower model reference
path plus re-planning in the highest model from start to goal will be greater than planning in
the highest model alone. The plan savings for model switching comes from using lower fidelity
models in areas of environments where higher fidelity models are a waste of resources. These are
situations where comparable execution success rates are achieved with either the use of multiple
lower models or a combination of lower and higher models.

Our approach is geared towards the average case. There will always be situations where just
planning in the highest model is better, but on average, using the model hierarchy is preferred.

In general, we conclude that planning times for switching are greatly affected by the follow-
ing things:

1. Discrepancies between the feasibility checker and how the robot executes leads to false
positives which require more switching than necessary.

2. The environment could include tight corridors where partial path repairs stall due to RRTs’
tendency to increase node expansion in constrained spaces.

3. Forcing higher models to generate plans guided along lower model reference paths may
cause higher models to be re-planned in areas which are difficult for the RRT to find plans.
Possible improvements are described in future work.

The last two items are examples where having a more informed way of knowing which mod-
els are more applicable to particular environment features could better guide model selection.

106

This would prevent the selection of re-plan models which could take longer or have difficulty
generating paths in these particular parts of the environment.

Lastly, we also believe our longer planning times are largely attributed to making overly
conservative design decisions. We preference robust paths (higher execution success and the
reduction of false negatives) over efficient planning times. Due to this we always choose to be
more conservative when our approach allows. We’ve included examples of this throughout the
document. This includes the design of how we collision check against our automatic swinging
door environment, the addition of padding to our feasibility checker, and how we choose to
re-plan first in a lower model with uncertainty before trying a model with higher fidelity.

8.3 Contributions
Overall our approach describes when to switch models by feasibility checking lower reference
paths in the highest model. We have discussed implementation of this as well as the performance
described by false positive and false negative rates.

Our framework also explicitly reasons about what model to switch to and re-plan in. We
include analysis for describing how we switch among models of varying fidelity and how we
decide to add models with variable footprint padding. Once a model is selected, we also discuss
details of path repair and the advantages of re-weighting different re-planning trees that expand
towards a set of intermediate goals.

To re-iterate our contributions more explicitly:
1. We provide a framework for multi-fidelity plan-time model switching.

2. We incorporate uncertainty by automatically determining variable padding models in the
model graph hierarchy.

3. We developed a model selection strategy for models with higher fidelity and variable
padding.

4. We demonstrate advantages of the multi-fidelity model switching framework.
Overall, the results show that, in general, the use of a hierarchy of models produces com-

parable success rates but with improved planning times to that of the highest model. We also
demonstrate examples where switching with the full model hierarchy is more beneficial than just
planning between the lowest and highest model, but there are still issues that need to be better
understood in order to increase the situations for which this approach is applicable.

107

108

Chapter 9

Appendix

9.1 Larger Demo Environment
Here we show screen captures of a full hospital environment with swinging doors, a nurse’s
station, and gurneys in the hallway. We show this environment as a demo and therefore only
discuss what is occurring for one switching experiment to demonstrate the approach. The upper
picture shows the plan-time path as it is generated, Figure 9.1, and the bottom picture shows
the simulated robot in Gazebo. In this experiment, there are two places the approach chooses to
switch to a higher model, Figure 9.1 and Figure 9.3. Figure 9.2 shows where the path is corrected
to plan in XY θV for going through the swinging doors, and Figure 9.4 shows where the path
chooses to switch toXY θθ1 for going around the nurse’s station and gurneys. The robot executes
this path after it is determined feasible and in Figures 9.5 it goes through the doors, avoids the
nurse station, and then goes through the gurneys.

109

Figure 9.1: A collision is detected at plan-time near the swinging doors.

110

Figure 9.2: A model is selected and the path near the doors is repaired with model XY θV .

111

Figure 9.3: The feasibility detector detects a second collision near the a gurney.

112

Figure 9.4: A model is selected and the path near the gurney is repaired with model XY θθ1 .

113

(a) Robot goes through the automatic sliding doors. (b) Robot continues through the automatic doors.

(c) Robot drives around the nurse’s station. (d) Robot continues around the nurse’s station and
a gurney.

(e) Robot continues through the gurneys to the hall-
way.

Figure 9.5: If the path is determined feasible at plan-time it is then sent to the robot for execution
in the real (simulated) world, with full physics.

114

Bibliography

[1] Alfred V. Aho, Michael R Garey, and Jeffrey D. Ullman. The transitive reduction of a
directed graph. SIAM Journal on Computing, 1(2):131–137, 1972. 3.2

[2] Sandip Aine, Siddharth Swaminathan, Venkatraman Narayanan, Victor Hwang, and
Maxim Likhachev. Multi-heuristic a. The International Journal of Robotics Research,
35(1-3):224–243, 2016. 2.3.1

[3] Brian Axelrod, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Provably safe robot
navigation with obstacle uncertainty. arXiv preprint arXiv:1705.10907, 2017. 2.2.2

[4] Christopher Baker, Aaron Morris, David Ferguson, Scott Thayer, Chuck Whittaker,
Zachary Omohundro, Carlos Reverte, William Whittaker, D Hahnel, and Sebastian Thrun.
A campaign in autonomous mine mapping. In Robotics and Automation, 2004. Proceed-
ings. ICRA’04. 2004 IEEE International Conference on, volume 2. IEEE, 2004. 1

[5] Bonny Banerjee and B Chandrasekaran. A framework for planning multiple paths in free
space. In Proceedings of 25th Army Science Conference, Orlando, FL, 2006. 5.6

[6] Michael Barbehenn and Seth Hutchinson. Efficient search and hierarchical motion plan-
ning by dynamically maintaining single-source shortest paths trees. Robotics and Automa-
tion, IEEE Transactions on, 11(2):198–214, 1995. 2.3.1

[7] Jennifer Barry, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. A hierarchical approach
to manipulation with diverse actions. In IEEE Conference on Robotics and Automation
(ICRA), 2013. 2.1

[8] Sven Behnke. Local multiresolution path planning. In Robocup 2003: Robot Soccer
World Cup VII, pages 332–343. Springer, 2004. 2.1, 2.3.1

[9] Richard Bloss. Mobile hospital robots cure numerous logistic needs. Industrial Robot:
An International Journal, 38(6):567–571, 2011. 1

[10] Jim Blythe. An overview of planning under uncertainty. In Artificial intelligence today,
pages 85–110. Springer, 1999. 2.2.1

[11] Abdelbaki Bouguerra. Robust execution of robot task-plans: A knowledge-based ap-
proach. 2008. 2.2.1

[12] Alejandro Bravo-Doddoli and Luis C Garcı́a-Naranjo. The dynamics of an articulated
n-trailer vehicle. Regular and Chaotic Dynamics, 20(5):497–517, 2015. 7.1

[13] James Bruce and Manuela Veloso. Real-time randomized path planning for robot navi-
gation. In Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on,

115

volume 3, pages 2383–2388. IEEE, 2002. 2.2.1, 4.1.4

[14] Adam Bry and Nicholas Roy. Rapidly-exploring random belief trees for motion plan-
ning under uncertainty. In Robotics and Automation (ICRA), 2011 IEEE International
Conference on, pages 723–730. IEEE, 2011. 2.2.2

[15] Shih-Yi Chien, Michael Lewis, Siddharth Mehrotra, Nathan Brooks, and Katia Sycara.
Scheduling operator attention for multi-robot control. In Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference on, pages 473–479. IEEE, 2012. 1

[16] Wonyun Choi, David Zhu, and J-C Latombe. Contingency-tolerant robot motion planning
and control. In Intelligent Robots and Systems’ 89. The Autonomous Mobile Robots and Its
Applications. IROS’89. Proceedings., IEEE/RSJ International Workshop on, pages 78–86.
IEEE, 1989. 2.3.1

[17] Shushman Choudhury, Oren Salzman, Sanjiban Choudhury, and Siddhartha S Srinivasa.
Densification strategies for anytime motion planning over large dense roadmaps. In
Robotics and Automation (ICRA), 2017 IEEE International Conference on, pages 3770–
3777. IEEE, 2017. 2.3.1

[18] R Craig Coulter. Implementation of the pure pursuit path tracking algorithm. Technical
report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST, 1992. 5.2, 5.2.1

[19] Jacob W Crandall, Mary L Cummings, Mauro Della Penna, and Paul MA de Jong. Com-
puting the effects of operator attention allocation in human control of multiple robots.
Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 41
(3):385–397, 2011. 1

[20] Richard Dearden and Chris Burbridge. An approach for efficient planning of robotic
manipulation tasks. In Twenty-Third International Conference on Automated Planning
and Scheduling, 2013. 2.1

[21] Mehmet Dogar, Ross A Knepper, Andrew Spielberg, Changhyun Choi, Henrik I Chris-
tensen, and Daniela Rus. Towards coordinated precision assembly with robot teams. In
Proceedings of the 2014 International Symposium on Experimental Robotics, page TBD,
2014. 2.1

[22] Mehmet R Dogar, Kaijen Hsiao, Matei Ciocarlie, and Siddhartha S Srinivasa. Physics-
based grasp planning through clutter. In In RSS. Citeseer, 2012. 2.1

[23] Silvia Ebetiuc and S Harald. Applying differential geometry to kinematic modeling in
mobile robotics. In WSEAS international conference on dynamical systems and control,
Venice, Italy, pages 2–4, 2005. 4.5, 7.4.3

[24] Tom Erez and William D Smart. A scalable method for solving high-dimensional contin-
uous pomdps using local approximation. arXiv preprint arXiv:1203.3477, 2012. 3.1.1,
7.3

[25] Dave Ferguson, Nidhi Kalra, and Anthony Stentz. Replanning with rrts. In Robotics
and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on,
pages 1243–1248. IEEE, 2006. 2.2.1

[26] J-A Fernández-Madrigal and Javier González. Multihierarchical graph search. Pattern

116

Analysis and Machine Intelligence, IEEE Transactions on, 24(1):103–113, 2002. 2.1,
2.3.1

[27] Richard E Fikes, Peter E Hart, and Nils J Nilsson. Learning and executing generalized
robot plans. Artificial intelligence, 3:251–288, 1972. 2.2.1

[28] Paul A Fishwick and John A Miller. Ontologies for modeling and simulation: issues and
approaches. In Simulation Conference, 2004. Proceedings of the 2004 Winter, volume 1.
IEEE, 2004. 2.1

[29] Moritz Göbelbecker, Charles Gretton, and Richard Dearden. A switching planner for
combined task and observation planning. In AAAI, 2011. 2.2.1, 2.3.1

[30] Kalin Gochev, Benjamin Cohen, Jonathan Butzke, Alla Safonova, and Maxim Likhachev.
Path planning with adaptive dimensionality. In Fourth Annual Symposium on Combinato-
rial Search, 2011. 2.3.1

[31] Kalin Gochev, Alla Safonova, and Maxim Likhachev. Planning with adaptive dimension-
ality for mobile manipulation. In Robotics and Automation (ICRA), 2012 IEEE Interna-
tional Conference on, pages 2944–2951. IEEE, 2012. 2.3.1

[32] Kalin Gochev, Alla Safonova, and Maxim Likhachev. Incremental planning with adaptive
dimensionality. In Twenty-Third International Conference on Automated Planning and
Scheduling, 2013. 1, 2.3.1

[33] RONALD Goldman. Graphics gems. Graphics gems, page 304, 1990. 5.2.1

[34] Birgit Graf, Matthias Hans, and Rolf D Schraft. Care-o-bot iidevelopment of a next gen-
eration robotic home assistant. Autonomous robots, 16(2):193–205, 2004. 1

[35] Kris Hauser and Jean-Claude Latombe. Multi-modal motion planning in non-expansive
spaces. The International Journal of Robotics Research, 2009. 2.1, 2.3.1

[36] Kris Hauser, Victor Ng-Thow-Hing, and Hector Gonzalez-Baños. Multi-modal motion
planning for a humanoid robot manipulation task. In Robotics Research, pages 307–317.
Springer, 2011. 2.3.1

[37] Frederik W Heger and Sanjiv Singh. Robust robotic assembly through contingencies, plan
repair and re-planning. In Robotics and Automation (ICRA), 2010 IEEE International
Conference on, pages 3825–3830. IEEE, 2010. 1, 2.2

[38] Jörg Hoffmann. Ff: The fast-forward planning system. AI magazine, 22(3):57, 2001. 2.2.1

[39] Thomas M Howard et al. Adaptive model-predictive motion planning for navigation in
complex environments. 2009. 2.3.1

[40] Adele E Howe. Improving the reliability of artificial intelligence planning systems by
analyzing their failure recovery. Knowledge and Data Engineering, IEEE Transactions
on, 7(1):14–25, 1995. 2.2

[41] Ajinkya Jain and Scott Niekmun. Efficient hierarchical robot motion planning under un-
certainty and hybrid dynamics. arXiv preprint arXiv:1802.04205, 2018. 2.2.2

[42] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Hierarchical task and motion planning
in the now. In Robotics and Automation (ICRA), 2011 IEEE International Conference on,

117

pages 1470–1477. IEEE, 2011. 2.1, 2.2.1, 2.3.1

[43] Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and Stefan
Schaal. Stomp: Stochastic trajectory optimization for motion planning. In Robotics and
Automation (ICRA), 2011 IEEE International Conference on, pages 4569–4574. IEEE,
2011. 2.2.1

[44] Nidhi Kalra, Dave Ferguson, and Anthony Stentz. Incremental reconstruction of general-
ized voronoi diagrams on grids. Robotics and Autonomous Systems, 57(2):123–128, 2009.
5.6

[45] Subbarao Kambhampati and Larry Davis. Multiresolution path planning for mobile
robots. Robotics and Automation, IEEE Journal of, 2(3):135–145, 1986. 2.1, 2.3.1

[46] Breelyn Melissa Kane and Reid Simmons. Risk-variant policy switching to exceed reward
thresholds. In ICAPS, 2012. 7.5.4

[47] Sertac Karaman, Matthew R Walter, Alejandro Perez, Emilio Frazzoli, and Seth Teller.
Anytime motion planning using the rrt. In Robotics and Automation (ICRA), 2011 IEEE
International Conference on, pages 1478–1483. IEEE, 2011. 7.4.1

[48] Ross A Knepper and Matthew T Mason. Improved hierarchical planner performance
using local path equivalence. In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ
International Conference on, pages 3856–3861. IEEE, 2011. 1, 2.3.1

[49] Ross A Knepper, Siddhartha S Srinivasa, and Matthew T Mason. An equivalence relation
for local path sets. In Algorithmic Foundations of Robotics IX, pages 19–35. Springer,
2010. 5.6

[50] Sven Koenig and Maxim Likhachev. D* lite. In AAAI/IAAI, pages 476–483, 2002. 2.2.1

[51] Sven Koenig and Reid G Simmons. Risk-sensitive planning with probabilistic decision
graphs. In Proceedings of the 4th international conference on principles of knowledge
representation and reasoning, page 363, 1994. 7.5.4

[52] Benjamin Kuipers. A hierarchy of qualitative representations for space. In Spatial Cogni-
tion, pages 337–350. Springer, 1998. 2.1

[53] Tobias Kunz and Mike Stilman. Kinodynamic rrts with fixed time step and best-input
extension are not probabilistically complete. In Algorithmic foundations of robotics XI,
pages 233–244. Springer, 2015. 4.5.1

[54] Steven M LaValle and James J Kuffner. Randomized kinodynamic planning. The Inter-
national Journal of Robotics Research, 20(5):378–400, 2001. 2.2.1, 4.1.1, 4.5.1

[55] Steven Michael LaValle. Planning algorithms. Cambridge university press, 2006. 1.2,
3.1, 4.5, 7.4.3

[56] Duong Le and Erion Plaku. Cooperative multi-robot sampling-based motion planning
with dynamics. 2017. 7.2

[57] Daniel Lecking, Oliver Wulf, and Bernardo Wagner. Variable pallet pick-up for auto-
matic guided vehicles in industrial environments. In 2006 IEEE Conference on Emerging
Technologies and Factory Automation, pages 1169–1174. IEEE, 2006. 1

118

[58] Maxim Likhachev, Dave Ferguson, Geoff Gordon, Anthony Stentz, and Sebastian Thrun.
Anytime search in dynamic graphs. Artificial Intelligence, 172(14):1613–1643, 2008.
2.3.1

[59] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971, 2015. 1

[60] Yaxin Liu and Sven Koenig. Risk-sensitive planning with one-switch utility functions:
Value iteration. In AAAI, pages 993–999, 2005. 7.5.4

[61] Sara Ljungblad, Jirina Kotrbova, Mattias Jacobsson, Henriette Cramer, and Karol Niech-
wiadowicz. Hospital robot at work: something alien or an intelligent colleague? In Pro-
ceedings of the ACM 2012 conference on Computer Supported Cooperative Work, pages
177–186. ACM, 2012. 1

[62] Tomas Lozano-Perez. Spatial planning: A configuration space approach. IEEE transac-
tions on computers, (2):108–120, 1983. 2.3

[63] Brian MacAllister, Jonathan Butzke, Alex Kushleyev, Harsh Pandey, and Maxim
Likhachev. Path planning for non-circular micro aerial vehicles in constrained environ-
ments. In Robotics and Automation (ICRA), 2013 IEEE International Conference on,
pages 3933–3940. IEEE, 2013. 2.2.2

[64] Eitan Marder-Eppstein, Eric Berger, Tully Foote, Brian Gerkey, and Kurt Konolige. The
office marathon: Robust navigation in an indoor office environment. In Robotics and
Automation (ICRA), 2010 IEEE International Conference on, pages 300–307. IEEE, 2010.
2.2.2

[65] Nik A Melchior and Reid Simmons. Particle rrt for path planning with uncertainty. In
Robotics and Automation, 2007 IEEE International Conference on, pages 1617–1624.
IEEE, 2007. 3.1.1, 7.3

[66] Juan Pablo Mendoza, Manuela Veloso, and Reid Simmons. Plan execution monitoring
through detection of unmet expectations about action outcomes. In Robotics and Au-
tomation (ICRA), 2015 IEEE International Conference on, pages 3247–3252. IEEE, 2015.
2.2.1

[67] Scott A Miller, Zachary A Harris, and Edwin KP Chong. Coordinated guidance of au-
tonomous uavs via nominal belief-state optimization. In American Control Conference,
2009. ACC’09., pages 2811–2818. IEEE, 2009. 3.1.1, 7.3

[68] Dennis M Moyles and Gerald L Thompson. An algorithm for finding a minimum equiva-
lent graph of a digraph. Journal of the ACM (JACM), 16(3):455–460, 1969. 3.2

[69] Illah R Nourbakhsh and Michael R Genesereth. Assumptive planning and execution: a
simple, working robot architecture. Autonomous Robots, 3(1):49–67, 1996. 2.2

[70] Sylvie CW Ong, Shao Wei Png, David Hsu, and Wee Sun Lee. Planning under uncer-
tainty for robotic tasks with mixed observability. The International Journal of Robotics
Research, 29(8):1053–1068, 2010. 7.3

[71] Michael Otte and Emilio Frazzoli. {\mathrm {RRTˆ{X}}} rrt x: Real-time motion

119

planning/replanning for environments with unpredictable obstacles. In Algorithmic Foun-
dations of Robotics XI, pages 461–478. Springer, 2015. 7.7

[72] Ali Gurcan Ozkil, Zhun Fan, Steen Dawids, Henrik Aanes, Jens Klestrup Kristensen, and
Kim Hardam Christensen. Service robots for hospitals: A case study of transportation
tasks in a hospital. In 2009 IEEE International Conference on Automation and Logistics,
pages 289–294. IEEE, 2009. 1

[73] Jia Pan, Sachin Chitta, and Dinesh Manocha. Fcl: A general purpose library for collision
and proximity queries. In Robotics and Automation (ICRA), 2012 IEEE International
Conference on, pages 3859–3866. IEEE, 2012. http://gamma.cs.unc.edu/FCL/. 5.3.2

[74] Christos H Papadimitriou and John N Tsitsiklis. The complexity of markov decision
processes. Mathematics of operations research, 12(3):441–450, 1987. 7.3

[75] Liam Pedersen, David Kortenkamp, David Wettergreen, and I Nourbakhsh. A survey of
space robotics. In Proceedings of the 7th International Symposium on Artificial Intelli-
gence, Robotics and Automation in Space, pages 19–23, 2003. 1

[76] Mihail Pivtoraiko and Alonzo Kelly. Differentially constrained motion replanning using
state lattices with graduated fidelity. In Intelligent Robots and Systems, 2008. IROS 2008.
IEEE/RSJ International Conference on, pages 2611–2616. IEEE, 2008. 2.3.1

[77] Erion Plaku, Lydia E Kavraki, and Moshe Y Vardi. Discrete search leading continuous
exploration for kinodynamic motion planning. In Robotics: Science and Systems, pages
326–333, 2007. 2.3.1

[78] Erion Plaku, EE Kavraki, and Moshe Y Vardi. Motion planning with dynamics by a
synergistic combination of layers of planning. Robotics, IEEE Transactions on, 26(3):
469–482, 2010. 2.3.1

[79] Robert Platt, Leslie Kaelbling, Tomas Lozano-Perez, and Russ Tedrake. Non-gaussian
belief space planning: Correctness and complexity. In Robotics and Automation (ICRA),
2012 IEEE International Conference on, pages 4711–4717. IEEE, 2012. 3.1.1, 7.3

[80] Robert Platt Jr, Russ Tedrake, Leslie Kaelbling, and Tomas Lozano-Perez. Belief space
planning assuming maximum likelihood observations. 2010. 3.1.1, 7.3

[81] J.W. Pratt. Risk aversion in the small and in the large. Econometrica: Journal of the
Econometric Society, pages 122–136, 1964. 7.5.4

[82] Nathan Ratliff, Matthew Zucker, J Andrew Bagnell, and Siddhartha Srinivasa. Chomp:
Gradient optimization techniques for efficient motion planning. In Robotics and Automa-
tion, 2009. ICRA’09. IEEE International Conference on, pages 489–494. IEEE, 2009.
2.2.1

[83] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning
and structured prediction to no-regret online learning. In Proceedings of the fourteenth
international conference on artificial intelligence and statistics, pages 627–635, 2011.
2.2.1

[84] Ricardo Samaniego, Joaquin Lopez, and Fernando Vazquez. Path planning for non-
circular, non-holonomic robots in highly cluttered environments. Sensors, 17(8):1876,

120

2017. 2.2.2

[85] Neal Seegmiller and Alonzo Kelly. Enhanced 3d kinematic modeling of wheeled mobile
robots. 2.1

[86] Neal Seegmiller, Jason Gassaway, Elliot Johnson, and Jerry Towler. The maverick planner:
An efficient hierarchical planner for autonomous vehicles in unstructured environments.
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
2018–2023, 2017. 2.3.1

[87] Gregory A Silver, OA-H Hassan, and John A Miller. From domain ontologies to modeling
ontologies to executable simulation models. In Simulation Conference, 2007 Winter, pages
1108–1117. IEEE, 2007. 2.1

[88] Siddhartha S Srinivasa, Dave Ferguson, Casey J Helfrich, Dmitry Berenson, Alvaro
Collet, Rosen Diankov, Garratt Gallagher, Geoffrey Hollinger, James Kuffner, and
Michael Vande Weghe. Herb: a home exploring robotic butler. Autonomous Robots,
28(1):5–20, 2010. 1

[89] Ricarda Steffens, Matthias Nieuwenhuisen, and Sven Behnke. Multiresolution path plan-
ning in dynamic environments for the standard platform league. In Proceedings of 5th
Workshop on Humanoid Soccer Robots at Humanoids, 2010. 1, 2.3.1

[90] Anthony Stentz. The focussed dˆ* algorithm for real-time replanning. In IJCAI, vol-
ume 95, pages 1652–1659, 1995. 2.2.1

[91] Benjamin Stephens. Humanoid push recovery. In Humanoid Robots, 2007 7th IEEE-RAS
International Conference on, pages 589–595. IEEE, 2007. 2.1

[92] Herbert K Struemper. Motion control for nonholonomic systems on matrix lie groups.
Technical report, MARYLAND UNIV BALTIMORE, 1998. 4.5, 7.4.3

[93] Ioan Alexandru Sucan and Lydia E Kavraki. Mobile manipulation: Encoding motion
planning options using task motion multigraphs. In Robotics and Automation (ICRA),
2011 IEEE International Conference on, pages 5492–5498. IEEE, 2011. 2.3.1

[94] Wen Sun, Luis G Torres, Jur Van Den Berg, and Ron Alterovitz. Safe motion planning
for imprecise robotic manipulators by minimizing probability of collision. In Robotics
Research, pages 685–701. Springer, 2016. 2.2.2

[95] Jur Van Den Berg, Pieter Abbeel, and Ken Goldberg. Lqg-mp: Optimized path planning
for robots with motion uncertainty and imperfect state information. The International
Journal of Robotics Research, 30(7):895–913, 2011. 2.2.2

[96] Jur Van Den Berg, Rajat Shah, Arthur Huang, and Ken Goldberg. Ana*: anytime non-
parametric a*. In Proceedings of Twenty-fifth AAAI Conference on Artificial Intelligence
(AAAI-11), 2011. 2.3.1

[97] Glenn Wagner and Howie Choset. M*: A complete multirobot path planning algorithm
with performance bounds. In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ
International Conference on, pages 3260–3267. IEEE, 2011. 2.3.1

[98] Minlue Wang and Richard Dearden. Planning with state uncertainty via contingency plan-
ning and execution monitoring. In SARA, 2011. 1, 2.2.1

121

[99] Jason Wolfe, Bhaskara Marthi, and Stuart J Russell. Combined task and motion planning
for mobile manipulation. In ICAPS, pages 254–258, 2010. 2.1, 2.3.1

[100] Sung Wook Yoon, Alan Fern, and Robert Givan. Ff-replan: A baseline for probabilistic
planning. In ICAPS, volume 7, pages 352–359, 2007. 2.2.1

[101] Stefan Zickler. Physics-based robot motion planning in dynamic multi-body environ-
ments. Technical report, DTIC Document, 2010. 2.3.1

[102] Stefan Zickler and Manuela Veloso. Efficient physics-based planning: sampling search
via non-deterministic tactics and skills. In Proceedings of The 8th International Confer-
ence on Autonomous Agents and Multiagent Systems-Volume 1, pages 27–33. International
Foundation for Autonomous Agents and Multiagent Systems, 2009. 2.1

[103] Stefan Zickler and Manuela M Veloso. Variable level-of-detail motion planning in envi-
ronments with poorly predictable bodies. In ECAI, pages 189–194, 2010. 2.3.1

[104] Shlomo Zilberstein and Stuart J Russell. Anytime sensing, planning and action: A practi-
cal model for robot control. In IJCAI, volume 93, pages 1402–1407, 1993. 2.3.1

[105] Matthew Zucker, James Kuffner, and Michael Branicky. Multipartite rrts for rapid replan-
ning in dynamic environments. In Robotics and Automation, 2007 IEEE International
Conference on, pages 1603–1609. IEEE, 2007. 2.2.1

[106] Matthew Zucker, James Kuffner, and James A Bagnell. Adaptive workspace biasing for
sampling-based planners. In Robotics and Automation, 2008. ICRA 2008. IEEE Interna-
tional Conference on, pages 3757–3762. IEEE, 2008. 2.2.1, 7.2

122

	1 Introduction
	1.1 Motivating Robot Examples
	1.2 Problem Statement
	1.3 Thesis Statement
	1.4 Contributions
	1.5 Overview

	2 Related Work
	2.1 Models in Robotics
	2.2 Mitigating Model Approximation Error
	2.2.1 Robust Planning in Robotics
	2.2.2 Models with Uncertainty for Navigating Safely

	2.3 Balancing Planning Time and Execution Success
	2.3.1 Switching Between Approximate Models

	3 The Model Hierarchy
	3.1 Model Definition
	3.1.1 Adding Uncertainty to Models
	3.1.2 Defining Higher Fidelity and Model Translation

	3.2 Model Organization
	3.2.1 Augmenting the Planning Model Hierarchy for Uncertainty Models

	4 Planning with a Hierarchy of Models
	4.1 Plan-Time Model Switching
	4.1.1 Motion Plan Generation
	4.1.2 Feasibility Detection
	4.1.3 Model Selection
	4.1.4 Intermediate Goals and Multi-Tree Re-Planning

	4.2 Plan-Time Model Switching and Uncertainty Models
	4.2.1 Feasibility Detection
	4.2.2 Model Selection with Uncertainty
	4.2.3 Intermediate Goals and Multi-Tree Re-Planning with Padding Models

	4.3 Plan-Time Model Switching Discussion and Enhancements
	4.3.1 False Positive and False Negative Rates
	4.3.2 Multi-Tree Re-Plan Weighting

	4.4 Plan-Time Model Switching Summary
	4.5 Formalization of the Approach
	4.5.1 Probabilistic Completeness Guarantees

	5 Implementation for Experiments
	5.1 Simulation Environment
	5.2 Robot Controller
	5.2.1 Robot Controller More Details

	5.3 Robot Models
	5.3.1 Model Hierarchy
	5.3.2 Collision Checker
	5.3.3 Trajectory Generation with Models
	5.3.4 Trajectory Generation More Details
	5.3.5 Model Translation
	5.3.6 Path Translation Detailed Example

	5.4 Reference Path Propagation Details
	5.4.1 Feasibility Detector and Model Selection

	5.5 Path Merging
	5.5.1 Path Merging More Details

	5.6 Voronoi Implementation for Uncertainty Models

	6 Testing Environments and Experiments
	6.1 Testing Environments
	6.1.1 Gurney Environments
	6.1.2 Swinging Door Environment

	6.2 Single Model Performance for Various Environments
	6.2.1 Single Model Performance for Gurney Environments
	6.2.2 Single Model Performance for Automatic Swinging Door Environments
	6.2.3 Confusion Matrix for Evaluating Checker Versus Controller Performance
	6.2.4 Single Model Performance Summary

	6.3 Plan-Time Model Switching
	6.3.1 Multi-Tree Weighting Heuristic for Switch Tests
	6.3.2 Switching for Gurney Environments
	6.3.3 Switching for Automatic Swinging Door Environments

	6.4 Plan-Time Model Switching with Uncertainty
	6.4.1 Switching for Gurney Environments
	6.4.2 Switching for Automatic Swinging Door Environment
	6.4.3 Plan-Time Model Switching with Uncertainty Discussion

	6.5 Results Summary

	7 Future Work
	7.1 Improving Feasibility Checking in the Highest Model
	7.2 Adaptive Sampling for Smarter Planning Search
	7.3 Representing Uncertainty
	7.4 Expansions for Theoretical Guarantees
	7.4.1 Guarantees for a Best Model
	7.4.2 Guarantees for System Planning Time
	7.4.3 Guarantees for Path Translation

	7.5 Model Selection Extension: Informed Search
	7.5.1 Model Selection for Base Models Using Informed Search
	7.5.2 Model Selection for Uncertainty Models Using Informed Search
	7.5.3 Selecting the Model Based on Environment Features
	7.5.4 Switching with Risk

	7.6 Thoughts on Expansion to an Execution-Based Framework
	7.7 Thoughts on Dynamic Obstacles
	7.8 Notes on Explainability
	7.9 Future Work Summary

	8 Conclusions
	8.1 Execution Success
	8.2 Plan-Time Efficiency
	8.3 Contributions

	9 Appendix
	9.1 Larger Demo Environment

	Bibliography

