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Abstract— Recent algorithms have demonstrated the feasi-
bility of underwater feature-based SLAM using imaging sonar.
But previous methods have either relied on manual feature
extraction and correspondence or used prior knowledge of the
scene, such as the planar scene assumption. Our proposed
system provides a general-purpose method for feature-point ex-
traction and correspondence in arbitrary scenes. Additionally,
we develop a method of identifying point landmarks that are
likely to be well-constrained and reliably reconstructed. Finally,
we demonstrate that while under-constrained landmarks cannot
be accurately reconstructed themselves, they can still be used
to constrain and correct the sensor motion. These advances
represent a large step towards general-purpose, feature-based
SLAM with imaging sonar.

I. INTRODUCTION

Imaging sonar sensors provide rich measurements in un-
derwater scenes which can be useful for the robotic tasks
of localization and mapping. However, the ambiguity in
the elevation angle of the measurements has been a major
obstacle to fully utilizing the data provided by these sensors.
Various efforts have been made to mitigate this problem,
including assuming a planar environment or using other prior
knowledge of the scene.

Monocular cameras and imaging sonars are analogous in
that both measure the 3D environment in the form of a
2D image. In the monocular case, using the pinhole camera
model, each pixel corresponds to a ray in 3D space. Using
the spherical point parameterization of bearing (or azimuth),
elevation, and range, the ray describes the bearing and
elevation angles of the 3D point measured by the pixel.
However, the range of the point along the ray is lost in the
projection. Analogously, while the bearing angle and range
are measured by a pixel in a sonar image, the elevation angle
of a point measurement is lost in the projection.

Using point correspondences between monocular images
of the same environment, bundle adjusment may be ap-
plied to disambiguate the range of point measurements
and generate full 3D reconstructions of feature points [17].
Acoustic structure-from-motion (ASFM) applies the bundle
adjustment framework from visual SLAM to sonar images
in order to recover the elevation angle of sparse feature
points using observations from multiple viewpoints [6, 7].
In doing so, no assumptions are made about the structure of
the imaged scene, and the 3D position of landmarks may be
reconstructed when sufficient constraints are present.
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Fig. 1: (a) The box used in our test tank experiments. Magnets are placed on
the sides of the box to provide features for proposed SLAM algorithm and
are circled in the image. The smaller spots are corrosion and do not appear
in the sonar images. (b) A sample imaging sonar frame from one of our
experimental datasets. The left image labels relevant structures in the scene,
and the right image shows the detected features and their corresponded
landmarks.

The original ASFM algorithm suffers from several notable
deficiencies limiting its applicability in real-world scenarios.
First, the algorithm relies on manually extracted and asso-
ciated features. Second, the algorithm models the belief of
all variables as normally distributed. This model is accurate
when the measurements of a landmark provide sufficient
constraints to disambiguate the elevation angle. However,
the elevation angle of a landmark may often be under-
constrained by the measurements, in which case the belief
of the elevation angle is closer to a uniform distribution over
the feasible range. The unconstrained nonlinear optimization
underlying ASFM may estimate such landmarks to lie out-



side of the field of view of the sensor, which can in turn
increase the error of the optimized sensor poses. Accurately
modeling landmark positions is crucial to constraining the
sensor motion and reducing error in localization.

In this work we address these short-comings of ASFM
to develop a fully-automatic, feature-based acoustic SLAM
algorithm that can be used to reduce localization error under-
water and accurately reconstruct landmarks when possible.
Specifically, the new contributions of this work are:

1) A fully-automatic acoustic SLAM pipeline for general-
purpose use with imaging sonar (i.e. no assumptions
made about scene geometry), including feature extrac-
tion and association

2) A method of detecting well-constrained landmarks,
which may be explicitly modeled and accurately recon-
structed without negatively influencing pose estimation

3) A novel formulation of the feature-based SLAM prob-
lem which appropriately handles wunder-constrained
landmarks to constrain and correct the sensor motion.

II. RELATED WORK

Johannsson et al. used imaging sonar to aid localization
by finding high-gradient pixel clusters and using the Normal
Distribution Transform (NDT) to register sonar images [10].
This method assumes the imaging target is a flat seafloor.
This assumption of global or local planarity has been utilized
to simplify the problem in other related works as well [5, 13].
While this assumption is reasonable in the case of mapping
the seafloor or the non-complex area of a ship-hull, it does
not apply to general environments where structures may be
complex and non-planar, such as the running gear of a ship,
coral reefs, or underwater pipelines.

Acoustic structure from motion (ASFM) [6] was intro-
duced as a method of recovering the 3D position of sparse
point features from a moving imaging sonar. Taking inspi-
ration from visual structure from motion and bundle adjust-
ment, the SLAM problem is formulated as a nonlinear least
squares optimization and solved using Levenberg-Marquardt.
This work demonstrated the ability to disambiguate 3D
structure by utilizing multiple viewpoints. An evaluation of
several degenerate motion cases is performed, which high-
lights how certain types of motion do not provide sufficient
constraints to accurately estimate the elevation angle of
observed landmarks. However, this work does not examine
the effect that mapping such under-constrained landmarks
has on the pose estimates within the SLAM framework.
As we demonstrate in this paper, naively applying the
ASFM framework to under-constrained landmarks degrades
the sonar state estimate and results in higher localization
error. In this work, we take special care to address the
degeneracy of the under-constrained landmarks in order to
improve the sonar state estimate in a SLAM framework.

Several recent works have developed methods to automat-
ically extract and associate feature points for use in SLAM.
Ji et al. [9] utilize the Hough transformation to extract line
segments from sonar images. The endpoints are taken as
point features, which are automatically associated based on
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Fig. 2: Imaging sonar geometry. The gray grid shows the Cartesian image
projected on the zy plane. Any sound reflected by points along the elevation
arc (red dashed line) will contribute to the corresponding pixel intensity. The
pixel’s location within the image specifies the measurement’s bearing angle
and range.

geometric criteria. While the efficacy is demonstrated by
reconstructing corner points on a triangular prism placed
in a test tank, using lines to determine feature points does
not generalize to other types of structure which may en-
tirely lack straight edges. [14] applied KAZE / A-KAZE
(accelerated KAZE) features for automatic feature detection.
A RANSAC homography estimation method is provided to
reject correspondence outliers. Like other works, though,
this method assumes that all detected points lie on a flat
seafloor or test tank floor. High-dimensional features have
been extracted from sonar images and used for underwater
localization with promising results [12], although this is
done under the framework of performing loop closures
relative to a locally planar surface, rather than explicitly
tracking and mapping specific 3D points. In contrast, we
extract and associate geometric point features, which can
be reconstructed accurately when sufficient constraints are
present and may be useful for mapping.

III. ASFM BACKGROUND

In this section we describe the geometry of imaging sonar
measurements and the basics of the fundamental ASFM
algorithm.

A. Imaging Sonar Geometry

ConsiderapointC' =[ = y =z ]T parameterized in the
local Cartesian sonar coordinate frame. The point may also
be expressed as S using the spherical parameterization, and
the conversion between the two is

T cos 1) cos 0
C=|y |=r| sinygcosb (D
| 2 sin 6
[ arctan2 (y, r)
S=|r|= Va2 4+ y? + 22 )
| 0 arctan2 (z, 22 + y?)

where v is the bearing angle, r is the range, and 6 is
the elevation angle. An imaging sonar generates partial
spherical measurements by using a one-dimensional array of
transceivers to send out acoustic signals into a target volume,
called the frustum, and receive the reflected signals. r is



Fig. 3: Factor graph representing the basic ASFM algorithm. A two-
dimensional bearing-range measurement relates a sensor pose node x¢ to
a point landmark node /;. This type of factor provides a two-dimensional
error function in the bearing-range space, which is the difference between
the raw measurement and the predicted bearing-range measurement. The
prediction is based on the estimate of the 3D position of landmark [;, which
is parameterized in spherical coordinates relative to its base pose.

determined by the time of flight and the speed of sound in
water. The array of transceivers allows the bearing angle v
of a received reflection to be calculated to within < 1° of
accuracy. However, the measurements do not provide any
information about the elevation angle 6. Therefore, detected
sonar returns that are reflected from surface patches that lie
on the same elevation arc will project to the same pixel
in the resulting imaging sonar image, as seen in Figure
2. Compiling all measurements within the sensor field of
view results in a grayscale polar coordinate image, where
columns correspond to discrete bearing angle bins and rows
correspond to discrete range bins. For a pixel p, let m =
M(p) = (¥, r) denote the transformation from pixel space
to bearing-range space. The intensity of a pixel corresponds
to the intensity of the sound reflected from the elevation arc
at the specified bearing angle and range.

This type of sonar may be used with a lens that results
in an elevation field of view as small as 1°, which is often
referred to as “profiling mode.” This significantly reduces
the ambiguity in the elevation angle of measurements, which
can simply be estimated as 0° with little error. However, the
imaged volume is so small that very little overlap between
volumes is attained as the vehicle moves. For this reason a
spreader lens, which provides a 28° elevation field of view, is
often utilized to image larger volumes. The ASFM algorithm
is designed to address the problem of reconstructing points
detected in this configuration with a large elevation field of
view, often referred to as “imaging mode”.

B. ASFM Algorithm

We follow Huang et al. [6, 8] in formulating ASFM
as a nonlinear least-squares factor-graph optimization, a
framework that is commonly used to solve the SLAM
problem [11]. A factor graph is a bipartite graph in which
variable nodes, which represent the unknown variables to
be optimized, connect to factor nodes, which represent the
measurements. An example factor graph depicting the ASFM
problem is shown in Figure 3.

At each timestep ¢, the pose x; is added as a new node
to the factor graph along with the odometry measurement
us—1, which provides a motion estimate between x;_; and
. A bearing-range measurement my of the jth landmark
is added to the graph, connecting the 3D point node [; to

the pose from which it was observed. Two different param-
eterizations of the point landmarks may be used: Cartesian
with respect to the global frame and spherical with respect
to the frame of the “base pose” (the first pose at which the
landmark was observed). In this work, we use the spherical
parameterization, as it is more amenable to our proposed
methods and generally results in a more linear system, as
described in [8]. The initial estimate for a point landmark
may be generated either by assuming 0° elevation or utilizing
the linear triangulation method described in [18].

The factor graph is solved as a nonlinear least squares
optimization using the Levenberg-Marquardt algorithm. The
overall objective function that is minimized is is the sum of
all of the costs defined by each factor:

argmin }  [[1i(X) = 53, @)

where the state vector X = [z, 21, ...,lo, 1, .. .]T contains
all unknown variables: the poses and landmarks. The tth
factor specifies a prediction function h; (X), a measurement
zi, and a measurement uncertainty 3;. In the case of a
bearing-range measurement of landmark j from pose z;, the
prediction function is h; (X) = 7 (a4, ;), which transforms
the estimated 3D landmark position into the sonar coordinate
frame of pose x;, and projects the point into the 2D bearing-
range space according to Equation 2. The corresponding
backprojection function 7~ (3, my, #) computes a 3D land-
mark position based on the base pose xp, a corresponding
bearing-range measurement my;, and a provided elevation
angle 6. See [6] for additional technical details.

IV. AUTOMATIC FEATURE EXTRACTION AND
CORRESPONDENCE

The low signal-to-noise ratio and nonlinear geometry of
sonar sensors present significant challenges to the tasks of
identifying and corresponding environmental features. A-
KAZE features [1] are specifically designed to handle images
with high speckle noise by utilizing diffusion in nonlinear
scale spaces. This type of diffusion smooths the image but
maintains high-gradient boundaries. Such features were used
for underwater sonar mapping in [14] under the assumption
that all feature points lie on a flat seafloor. A sample sonar
image with A-KAZE features is shown in Figure 1.

As in [14], we extract A-KAZE features from the sonar
images. We associate features based only on geometric
criteria, rather than descriptor similarity, due to the similar
appearance of features in our experiments and the relatively
low bandwidth of sonar images. We find feature correspon-
dences from the current image to a database of all previously
identified features. Algorithm 1 details the projective data
association algorithm used to correspond a feature measure-
ment m; = (¢, ri)T. All detected features from the current
frame are processed by the algorithm in arbitrary order, with
no duplicate assignments being accepted. The algorithm is
conservative—a detected feature will only be corresponded
with a previously identified feature (or identified as a new



Algorithm 1 Projective data association algorithm to match
detected feature f; with a previously observed feature. D;
and D5 are empirically selected thresholds in units of pixels.
Input: the feature measurement to be associated m; =
(%,ri)—r, the current estimated pose x;, the first mea-
surement of all features in the database g1, . . ., gn,, their
corresponding base pose estimates, xg,,..., %, , and
the set of database features J that have already been
matched to features from the current image
Output: index j* of the matched feature (—1 if no match,
ny + 1 if identified as a new feature)
j -1
dmin <~ 00
Ny 0
O <« {Omin, Omin + A0, ... 0o —
for j € {1,--- ,ns} do
dj — mingee
1M (i) =M= (o (0,7 (,,95:6))) 2
if dj < dymin then
dmin — dj
10: if d; < D; then
11: Ny < Ny + 1
12: end if
13: end if
14: end for
15: if n, = 0 AND d,,,;n > D> then
16: Jremnp+1
17: else if n, # 1 OR j* € J then

A0, Omax}

AN

® 3

18: g — —1

19: else

20: J—JUjg*
21: end if

feature to track) when there is little ambiguity. Otherwise,
the feature measurement is disregarded.

V. ASFM WITH UNDER-CONSTRAINED FEATURES

Utilizing the automatic feature extraction and correspon-
dence method described in Section IV with the basic ASFM
algorithm will actually degrade the overall sensor motion
estimate (see Section VI for examples using simulated and
experimental data). This is because a large number of point
landmarks observed by an imaging sonar from multiple
views will be under-constrained. Consider the case in which
a point feature is observed by a sonar wherein the sensor is
purely rotated about the z-axis between two poses (pure yaw
rotation), as in Figure 4. The elevation arcs along which the
point may lie according to each measurement are exactly
the same—the elevation angle of the point is completely
ambiguous despite having measured the point from multiple
poses. Under the standard ASFM framework, a landmark
constrained by such measurements would make the overall
optimization rank-deficient and degenerate. With noise in the
measurements, the optimization may be solvable, but the
landmark’s estimated elevation angle would be determined
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Fig. 4: (a) The elevation arcs corresponding to measurements of the same
point from pose 0 (red points) and pose 1 (blue points) separated by pure
yaw motion are exactly aligned and the point’s elevation angle is entirely
ambiguous. (b) The elevation arcs have minimal overlap when the poses
are separated by pure roll rotation—the observed point’s elevation angle is
well-constrained.

entirely by the noise, not by constraints provided by the
measurements. This would result in large errors in landmark
estimation, which will negatively impact the accuracy of the
pose estimation as well.

We utilize a two-tiered system that categories observed
feature points as either under-constrained features or well-
constrained features. After a feature is detected and corre-
sponded, it is tested to see if the measurements sufficiently
constrain its elevation angle, by a process described in
the following subsection. If so, it is added to the factor
graph as a well-constrained landmark using the standard
parameterization from [6]. Otherwise, it is added as a under-
constrained landmark. We propose two different parame-
terizations of under-constrained landmarks that model the
elevation angle non-parametrically, rather than assuming a
normally-distributed belief, as detailed in sections V-B and
V-C. Whenever a under-constrained landmark is observed,
the same check is performed to determine if it may be
upgraded. Upon upgrading a under-constrained landmark, its
corresponding node and / or factor are removed from the
graph, and the landmark is re-added using the standard 3-
DOF spherical parameterization, along with its correspond-
ing measurements.

A. Identifying Well-constrained Features

In order to determine if a point landmark is well-
constrained, we formulate an additional nonlinear optimiza-
tion in which the state consists of only the landmark [;, using
the 3-DOF spherical parameterization:

[;‘ = arglminz [hi(ly) — Zz||221 @
J i
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(a) ASFM using non-parametric factors fo and fa to represent under-
constrained landmarks. The under-constrained landmarks’ positions are
not explicitly modeled and are therefore not part of the overall state
vector.
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(b) ASFM using a semi-parametric representation of under-constrained
landmarks. Nodes sp and sg represent the bearing and range compo-
nents of the corresponding landmarks, which are explicitly modeled as
normally distributed variables in the overall optimization.

Fig. 5: The three different ASFM frameworks evaluated. In this example,
landmarks [g and l2 are under-constrained, while /7 is well-constrained.

Since the sensor poses are not state variables, they are con-
sidered constant and the prediction function h;(l;) uses the
latest estimates available from the overall factor graph state
estimate. Note that this formulation requires a prediction of
the most recent pose, which may come from any sensor that
estimates odometry, such as an inertial measurement unit
(IMU), or a motion model. Taking an initial estimate of the
landmark [° as a linearization point, we use the Taylor series
expansion of the measurement function

hi (1;) =h (I3 + A;) = h (1) + H;A; 5)
. Ohi(ly)
H, = |, (6)

to simplify the optimization as a linear least squares problem

Q

argminz [Ri (1) + HiA; — ZZHQE )
A, 5 '

= argmin |AA,; —b|® (8)
Aj

where A = [; — l? is the state update vector [3] . A and b
are obtained by stacking the blocks

A; =3, ?H, 9)
b; :2;1/2 (2 — hi (19)) - (10)
The linearization point l? is taken to be the first bearing-
range measurement backprojected at zero elevation (the
linear triangulation method from [18] may also be used here,

although it may not provide a good estimate if sufficient
constraints are not present).

As discussed in detail in [19], examining AT A is the key
to determining if the optimization is well-constrained by the
measurements. The 3 x 3 matrix AT A will be rank deficient
if the elevation angle is entirely unconstrained, as in the case
of pure yaw rotation with noiseless measurements, depicted
in Figure 4. As the elevation angle becomes more con-
strained, the smallest eigenvalue of AT A, A3, will increase
in magnitude relative to the first two eigenvalues A\; and
Ao. Landmarks are therefore required to meet the criterion
i—i < p in order to be considered well-constrained, where
p is a user—defined tunable threshold. Other criteria based
on the eigenvalues may be used here instead, such as the
degeneracy factor, inverse maximum covariance eigenvalue,
or inverse condition number [19, 2]. All of these criteria
perform the same basic function, and we do not compare
the performance of these criteria in this work. If the criterion
is not met, the landmark is classified as under-constrained.
Note that this optimization is never fully solved - we only
examine the eigendecomposition of AT A at the linearization
point.

B. Method 1: Non-parametric Representation

The first method we propose is to remove under-
constrained landmarks from the state vector entirely, so that
their position is not explicitly modeled in the optimization.
The measurements corresponding to the landmark [; are
collected into one combined non-parametric factor, f;, as
shown in Figure S5a. This factor treats the landmark’s first
bearing-range measurement my, taken from its base pose
Tp, as constant, fixing two of the landmark’s spherical
coordinates. At every iteration in the optimization, the factor
performs a search in the feasible elevation range by sampling
elevation angles at uniform increments, and selects the
elevation angle with the lowest total reprojection error as
the current estimate:

0* = argmin
0ce

Z (O

Where © = {Gmim Omin + A0, ... 0maz — A, O oz b The
reprojection error is computed as the Mahalanobis distance
between the projection of the 3D point into the frame of
pose xj and the measurement my, using the measurement
uncertainty . The cost function for this factor is then the
total reprojection error evaluated at the optimal elevation
.
- k”zk

angle:
Z H’IT Tk, T
12)

The nonlinear optimization using these non-parametric fac-
tors is solved using Levenberg-Marquardt, as in the original
ASFM algorithm.

This formulation is advantageous because it disassociates
the under-constrained landmarks’ elevation angles from the
nonlinear optimization’s Gaussian model — it essentially
treats the belief of the elevation angle as a uniform distribu-

1 xb7mb79)) _mkH;k (11)

hi 7Z’L xbamb,e ))



tion. This has the benefit of being able to freely update the
elevation estimate to the best elevation angle at any iteration
in the optimization, in addition to preventing the optimization
from estimating the elevation angle to lie outside of the
feasible range. At first glance, one main drawback of this
formulation is that is takes a single bearing-range measure-
ment as constant and does not refine the estimate. We next
present an alternative formulation to address this concern.

C. Method 2: Semi-parametric Representation

The second method we propose is to only remove the
under-constrained landmarks’ elevation angle from the state
vector. A under-constrained landmark is then explicitly
modeled as a two-dimensional bearing-range point in the
factor graph, as shown in Figure 5b. As in Method 1, all
of the measurements of under-constrained landmark [; are
combined into a single joint measurement factor s;. This
joint measurement factor is identical to the non-parametric
factor in Method 1, except that it uses the landmark’s
explicitly modeled bearing and range estimate in computing
reprojection error, rather than the base pose’s measurement.
In this framework, the bearing and range of the landmark
are explicitly modeled as normally-distributed and are able
to be updated by the nonlinear optimization algorithm.

VI. RESULTS AND DISCUSSION
A. Simulation Results

The proposed methods are evaluated quantitatively in
simulation. A sequence of 50 sonar poses is generated with
landmarks uniformly distributed throughout the environment
near the sensor. In each frame, artificial measurements of
point landmarks that fall within the sonar’s viewable frustum
are generated and taken as inputs to the ASFM system. We
use a 28.8° bearing field of view, 28° elevation field of view,
and a range of 1—3m, which are comparable to the operating
characteristics of the sensor in our real-world experiments.
Varying levels of isotropic Gaussian noise are added to the
odometry measurements and the simulation is repeated for
200 independent trials for each level of odometry noise. A
constant level of Gaussian noise is also added to the bearing-
range measurements (oy = 1°, o, = 0.01m), which are
consistent with the capabilities of the sonar used in our
real-world experiments. Two different types of trajectories
are tested: pure roll rotation and pure y translation, using
increments of 0.1 radians and 0.1 m between each timestep,
respectively. Roll rotation is a motion type that constrains
the point landmarks well, while pure y translation does not
constrain the landmarks well [6, 18]. In these simulations
we use an elevation discretization of Af = W and
p=20.

We evaluate the absolute trajectory error (ATE, as defined
in [16]) and average landmark error (ALE) for the original
ASFM framework and our two proposed frameworks. The
ATE aligns the estimated trajectory with the ground truth
trajectory, and computes the average translation error be-
tween corresponding poses - it is a measure of the error
accumulated along the entire trajectory. The ALE simply

Dataset DR ASFM Method 1  Method 2
Stationary 1 1.1 1.2 0.67 0.65
Stationary 2 0.9 1.4 1.5 1.1
Stationary 3 1.0 1.3 0.60 0.57
Stationary 4 0.9 4.1 1.3 0.8

y-axis 1 43 7.2 4.3 4.3

y-axis 2 3.1 27.0 32 2.8

y-axis 3 33 6.0 32 33

y-axis 4 3.2 4.4 2.8 3.0

TABLE I: Absolute trajectory error (ATE) in cm of the proposed methods
on test tank datasets. The lowest ATE on each dataset is bolded.

computes the average Euclidean distance between all well-
constrained reconstructed landmarks and their ground truth
locations. Our implementations of all frameworks use the
GTSAM library [4] and the Levenberg-Marquardt algorithm
for optimization.

Figure 6 shows the results of the simulations. Under pure
roll rotation, the proposed methods result in similar errors in
localization (ATE) as the original ASFM algorithm since this
motion provides good constraints on the landmarks’ eleva-
tion angles. Likewise, the average landmark error improves
slightly with the proposed approaches, as only landmarks that
are sufficiently well-constrained are reconstructed. Under
pure y translation, the original ASFM algorithm significantly
increases localization error compared dead-reckoning due to
the prevalence of under-constrained landmarks. The proposed
methods actually improve on the dead-reckoning localization
errors when there is significant noise present in the odometry
measurements. Likewise, landmarks are reconstructed more
accurately by the proposed methods as well, as only land-
marks with sufficient constraints are explicitly reconstructed.

B. Experimental Results

The proposed methods are also evaluated experimentally
on real-world data recorded in a test tank. A SoundMetrics
DIDSON imaging sonar [15] was used in 1.8 MHz mode
with a spreader lens to achieve 28° elevation field of view.
The sonar is mounted on a Bluefin hovering autonomous
underwater vehicle (HAUV), shown in Figure 7, along with a
1.2MHz Teledyne/RDI Workhorse Navigator Doppler Veloc-
ity Log (DVL) and a stereo camera (not used in these experi-
ments). The sonar and DVL are fixed pointing down, toward
the bottom of the tank. Measurements from the DVL and a
tactical grade, ring-laser Honeywell HG1700 IMU are fused
to estimate vehicle odometry in the DVL frame. While dead-
reckoning with these odometry measurements will inevitably
drift during long-term operation, the odometry estimates are
highly accurate for short-term operation. Manually measured
DVL-sonar extrinsics are used to obtain ground truth sonar
poses for our evaluation.

A Aft x 2ft x 2ft aluminum box was placed in the test
tank with several stacks of small, round magnets (2.5 cm
diameter) attached to one of the faces. The magnets on the
vertical sides of the box are used as features for SLAM, as
shown in Figure 1. We use minimum and maximum range
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Fig. 6: Under pure roll rotation, (a) the absolute trajectory error (ATE) and (b) average landmark error (ALE). Subfigures (c) and (d) show the ATE and
ALE for pure y translation, respectively. The noise in odometry measurements is isotropic, using units of meters for the translation directions and radians

for the rotation directions.

thresholds to disregard spurious features detected on the top
of the box or the bottom of the test tank. Note that while the
features lie on a planar surface, we do not use any planar
scene assumptions at any point in the proposed algorithms.
We artificially add noise to the ground-truth poses to
generate a noisy odometry trajectory, which is used to
simulate a dead-reckoning trajectory estimate using a lower
quality IMU and no DVL. We evaluate the same methods
as in our simulations: dead reckoning (DR) using the noisy
odometry and the three SLAM frameworks. The three SLAM
methods all incorporate the noisy odometry measurements in
the optimization, as depicted in Figures 3, 5a, and 5b.
Precisely evaluating the accuracy of our underwater
SLAM algorithms is difficult in a real-world experiment, due
to the lack of a motion-capture system and uncertainty in
the extrinsics relating the vehicle’s odometry frame to the
sonar frame. Because of this, we carefully select two types
of trajectories in order to minimize the effect of the imprecise
DVL-sonar extrinsics on ground-truth pose estimates: (1) no
motion and (2) translation along the y-axis of the sonar. The
stationary datasets average 25 sonar frames each, while the

y-axis datasets average over 100 sonar frames. To highlight
the advantage of our proposed landmark parameterizations,
we consider all landmarks as under-constrained in these
datasets. In these experiments, we use D; = 10 pixels,
Dy = 25 pixels, and Af = % .

Table I shows the ATE for the four localization methods,
evaluated on the eight test tank datasets (four stationary, four
translation along the y-axis). The original ASFM algorithm
increases the localization error compared to dead-reckoning
in all of the datasets, due to the incorrect estimation of the
under-constrained points. Both of the proposed formulations
improve localization error compared to dead-reckoning and
ASFM on almost all of the datasets as well, with the
semi-parametric Method 2 generally outperforming the non-
parametric Method 1. The proposed algorithms achieve this
enhanced localization accuracy despite some sub-optimal
feature correspondences (most of the features are duplicated
and represented by multiple landmarks in the SLAM frame-
work due to the conservative nature of the data association
algorithm).



Fig. 7: Bluefin HAUV robot used to gather experimental data in a test tank.

VII. CONCLUSION

In this work, we have addressed several of the short-
comings of the basic ASFM algorithm and proposed a
fully-automatic pipeline that enables real-time ASFM for
underwater localization and mapping. Our method automat-
ically extracts and corresponds features using a nonlinear
scale space to reduce the effect of the speckle noise which
is present in sonar images. We provide an algorithm for
identifying well-constrained features whose 3D positions
may be accurately estimated for mapping purposes. Finally,
we describe two viable frameworks for integrating under-
constrained features in order to constrain the sensor motion.
We have demonstrated that while under-constrained features
can be used to improve the sensor localization estimate, it
is detrimental to explicitly model their elevation angle, and
may also be detrimental to include the bearing and range of
such measurements in the state vector of the optimization.

The ASFM algorithm would greatly benefit from features
that are more viewpoint-invariant than the A-KAZE feature
points used in this framework, although the nonlinear
projection of the sensor presents great challenges for
this task. The data association process could potentially
be improved by implementing a JCBB framework, at the
expense of greater computational cost, or by tracking features
frame-to-frame. In future work, we hope to implement a
more robust data association framework and evaluate our
methods more rigorously in real-world experiments by using
a more accurate ground-truth trajectory than the on-board
odometry.
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