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Abstract— The established processes for measuring phys-
iological and morphological traits (phenotypes) of crops in
outdoor test plots are labor intensive and error-prone. Low-cost,
reliable, field-based robotic phenotyping will enable geneticists
to more easily map genotypes to phenotypes, which in turn will
improve crop yields. In this paper, we present a novel robotic
ground-based platform capable of autonomously navigating
below the canopy of row crops such as sorghum or corn. The
robot is also capable of deploying a manipulator to measure
plant stalk strength and gathering phenotypic data with a
modular array of non-contact sensors. We present data obtained
from deployments to Sorghum bicolor test plots at various sites
in South Carolina, USA.

I. INTRODUCTION
Plant phenotyping is a critical step in the process of breed-

ing crops for higher yield, disease resistance, drought tol-
erance, and other desirable traits. Plant genome researchers
must empirically confirm that new cross-breeds exhibit asso-
ciated phenotypes, such as stalk width, leaf area, leaf angle,
and color. Unfortunately, the rate at which these associations
are measured and analyzed is slower than the rate of plant
genome research.

This deficiency is well-recognized by the scientific com-
munity, which has deemed it the Phenotyping Bottleneck [1].
This bottleneck is caused by a variety of factors, including
labor-intensive processes, their associated costs, and the
necessity of replicated trials. The laborious process of plant
phenotyping is currently performed by highly skilled plant
scientists and breeders who must assess thousands of plants
under field conditions. Unless the rate of plant phenotyping is
accelerated, the agricultural promise of plant genomics will
not be fully realized.

In this paper, we outline the design and testing of a novel
ground robot capable of autonomously navigating within
sorghum rows. The robot gathers phenotypic data using
a custom manipulator and non-contact sensors such as a
custom side-facing stereo camera, and offers significantly
higher throughput than manual measurements performed on
plant structure beneath the crop canopy. The robot was
tested in fields located in Clemson, SC and Florence, SC
in July and August of 2016. These tests demonstrate that the
platform is capable of navigating fields exhibiting a variety
of soil conditions and phenotyping a wide array of sorghum
accessions.

The development and deployment of this novel mobile
system has yielded the following contributions to the field
of agricultural robotics:

*This work was supported by the ARPA-E TERRA Program
T. Mueller-Sim, M. Jenkins, J. Abel, and G. Kantor are with The Robotics

Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh PA,
USA tmueller@andrew.cmu.edu

Fig. 1. The Robotanist in sorghum breeding plots near Clemson, SC.

• A platform capable of navigating between row crops
and deploying phenotyping sensors for sub-canopy data
collection

• What we believe is the first-ever demonstration of
outdoor contact-based automated phenotyping

The rest of this paper is organized as follows: Section 2
describes related work on this topic and the current state
of the art. Section 3 provides an overview of the system
and validation in the field. Future work and conclusions are
presented in Sections 4 and 5.

II. RELATED WORK
A. High-Throughput Phenotyping

Lemnatec has developed an outdoor phenotyping platform,
the Scanalyzer Field, which is an overhead gantry with a
sensor payload consisting of multi-spectral cameras, fluores-
cence imaging, and LiDAR [2]. Two of these gantry systems
are commercially deployed, each capable of measuring up to
0.6 hectares of crops. While gantry systems will yield very
detailed information, they are expensive and constrained to
a relatively small plot size.

Researchers associated with the University of Arizona
and the United States Department of Agriculture (USDA)
developed a tractor-based platform for phenotyping Pima
cotton. The system consists of sonar proximity sensors,
GPS, infrared radiometers, and NIR cameras to measure
canopy height, temperature and reflectance [3]. However,
the data collected by the system is restricted to overhead



Fig. 2. The Robotanist enters a row of sorghum.

views, and the tractor’s maximum boom height (1.93 m)
limits the height at which plants could be phenotyped. Texas
A&M University is also developing an overhead phenotyping
platform [4]. Both of these systems require a trained operator.

Aerial-based research platforms are easy to deploy and can
collect data over large distances in relatively short periods
of time. However, they are limited by sensor resolution,
payload, and flight time. Drone-based sensors are also unable
to directly measure sub-canopy phenotypes such as stalk
strength, stalk count, and leaf angle. Rotorcraft such as the
DJI Inspire or Yamaha RMAX have flight times that range
from 8–120 minutes, depending on payload, and maximum
payloads range from 0.8–8.0 kg [5].

B. Plant Manipulation

Few intelligent agricultural manipulation systems have
been deployed in field conditions. A team from the Nether-
lands describes a recently-developed system for autonomous
harvesting of sweet peppers, but operation is constrained to
the controlled conditions of a greenhouse [6]. A Belgian
team developed an apple-picking robot that retrieves 80%
of fruit at an average rate of one apple every 9 seconds,
but the system requires a shade covering the entire tree
when deployed outdoors [7]. Several commercial systems
provide mobile platforms for harvesting, but laborers must
still pick the fruit [8]. To the best of our knowledge, the only
automated system that manipulates vegetation, rather than
fruit, is a grapevine pruning system developed by Vision
Robotics Corp [9]. However, this system also requires a
shade positioned over the entire plant.

C. Unmanned Ground Vehicles

Ground-based research platforms have been developed
for applications such as precision pesticide spraying, soil
sampling [10] and weeding [11], for a wide variety of field
conditions and crops [12]. Several commercial ground-based
robotic platforms were also investigated for their viability.

Clearpath Robotics Inc. has developed a family of field
tested all-terrain robots which have been used under a wide
range of conditions, from mapping underground mines to
navigating in dense forests [13]. Robotnik Automation S.L.L.
has developed several robotic platforms that have been used
to deploy sensors within an agricultural setting [14]. QinetiQ
North America sells a small tracked robot primarily used

by military and police organizations for explosive ordinance
disposal and reconnaissance [15], and Omron Adept Tech-
nologies, Inc. offers a variety of wheeled platforms used
primarily for robotics research [16]. Rowbot Systems has
developed a platform [17] that is designed to travel between
crop rows autonomously.

While a variety of ground-based robotic vehicles are
currently available, none meet the specific functional, quality,
performance, and modularity requirements of this project.

D. Perception, Localization, and Navigation

Image-based plant phenotyping using commodity sensors
is a growing field within the computer vision and bioinfor-
matics communities. Researchers associated with the Univer-
sity of Bonn developed a method of segmenting plant stalks
from plant leaves using indoor laser scan data [18]. Another
team reconstructed corn plants indoors using a time-of-
flight camera, a turntable, and 3D holographic reconstruction
techniques [19]. While a significant amount of research
focuses on image-based plant segmentation indoors, very few
of these methods have been applied in field conditions.

Localization and navigation within agricultural settings
has been the focus of significant research. A group from
Carnegie Mellon University (CMU) used a monocular cam-
era [20] and data from a LiDAR sensor [21] to navigate
between rows of an apple orchard, while a group from
the University of Illinois investigated the use of a variable
field-of-view camera to navigate within corn [22]. Most
previous work was performed in monoculture fields, which
do not contain the wide phenotypic variation inherent in
sorghum breeding plots. This phenotypic variation, such as
stalk height and leaf angle, causes significant visible clutter
within rows (see Figure 2). Prior work does not address
reliable navigation from early season through to late season
growth stages.

III. SYSTEM OVERVIEW

The state-of-the-art systems outlined above exhibit limita-
tions ranging from payload capacity to geometric limitations
to weather rating to cost. For this reason, we have devel-
oped our own custom intra-row autonomous mobile sensor
platform - the Robotanist.

The Robotanist is a wheeled skid-steer, electrically pow-
ered ground vehicle that is capable of autonomously navi-
gating within sorghum rows. It can travel at speeds up to 2
m/s for more than 8 hours per charge. The robot is equipped
with LiDAR, RTK GPS, RGB cameras, inertial measurement
units, and the computing power necessary to run perception
and localization algorithms in real time. The system houses a
custom manipulator capable of taking contact measurements
from sorghum stalks, and is capable of deploying a wide
range of non-contact phenotyping sensors.

A. Robot Base

1) Requirements: System requirements were driven by
the need to reliably traverse a typical breeding plot (1–2
hectares) within a few days in order to avoid significant plant
growth throughout a single measurement period. Functional
requirements include the ability to autonomously transport



Fig. 3. Rendering of the Robotanist: (a) Hokuyo UTM-30LX; (b) Novatel
SMART6-L GPS; (c) 900 MHz antenna; (d) robotic manipulator; (e) Xsens
MTi-30 AHRS; (f) linear stage for mast sensor payload; (g) 2.4 GHz
antenna; (h) SICK TiM561; (i) IDS UI-5240CP RGB camera; (j) custom
stereo camera with active lighting; (k) SICK Visionary-T.

contact and non-contact sensor payloads between rows of
biofuel sorghum crop, navigate from one row to another au-
tonomously, transmit robot state, sensor and diagnostic data
to a nearby base station, and be tele-operable. Performance
requirements include the ability to maintain ground speeds
of 1.5 m/s, operate from 5 °C to 45 °C, traverse 3 hectares
per day, carry a sensor payload up to 50 kg, reliably traverse
the minimum 0.61 m row space available prior to harvest,
wirelessly communicate with a base station up to 500 m
away, localize within the crop row with a nominal accuracy
of <5 cm relative to a global coordinate frame, have a turning
radius of <2 m, and be robust to dust and water ingress.

2) Hardware: The mobile platform is 1.34×0.56×1.83
m (L×W×H), with a total mass of approximately 140
kg including the manipulator. The chassis of the robot is
comprised of 5052-H32 aluminum sheet metal with riveted
and bolted connections. A usable volume of 103 L for
electrical hardware and wiring was obtained within the sealed
frame of the robot. Structural members were strategically
placed within the frame of the robot to not only minimize
compliance under expected loading but to also provide con-
venient connections for hardware mounting plates. Louvers
fitted with air filters were placed on the side, front, and rear
panels to act as inlets and outlets for thermostat-controlled
cooling fans placed inside the chassis. A cutaway of the
interior of the base is shown in Fig. 4.

Each of the four pneumatic tires are driven by a 200 W
brushless DC (BLDC) motor connected to a 50:1 hollow
shaft gearhead, both sourced from Oriental Motor USA Corp.
The motors are capable of outputting a combined torque of
108 Nm and driving at speeds up to 2.0 m/s. The BLDC
motors are in turn controlled by custom–built HEBI Robotics
motor drivers which expose position data from the Hall
effect sensors and current draw through a C++ API. Motor
velocity commands are sent via Ethernet to the HEBI motor
controllers, which are then achieved through a PID controller
on the motor driver.

Computing is handled by three Intel NUC Mini-PCs, each
with a 3.4 GHz Intel i7 processor, 16 GB RAM, and a 1 TB
SSD storage drive. Each computer is connected to a bank
of unmanaged Gigabit network switches to provide a means
of communication between themselves, sensors, and radios.
Due to its reliability and robustness, communications within
the system are provided primarily with Ethernet via shielded
Cat5 cabling. Sensor selection opted for Ethernet variants
where possible.

Four DC-DC converters provide regulated power to var-
ious subsystems. A Vicor VIPAC Array DC-DC converter
with 500 W, 12V output provides the majority of regulated
power, while subsystems which require 5V and 24V regu-
lated voltage are powered by two CUI Inc. PQA50-T DC-
DC converters. A 200 W, 12V DC-DC converter provides
isolated power to the phenotyping sensor payload. All four
DC-DC converters can be controlled via switches present on
the bulkhead near the rear of the robot.

The energy requirements of the mobile platform were
calculated using the sum of average predicted current draw
of each subsystem. A conservative estimate of the rolling
resistance was calculated as described in [23] to be roughly
51.8 N, which was used to calculate the average current draw
of the drive motors on flat terrain. To allow for 8 hours
of continuous operation a required energy capacity of 2125
Wh was calculated, therefore a 24V, 100 Ah LiFePO4 battery
pack was chosen for the power source. The battery chemistry
offers a higher specific energy and volumetric energy density
than a typical lead-acid battery while also offering a slower
rate of capacity loss when compared to Lithium-ion battery
chemistries.

3) Navigation Sensors: Reliably localizing, detecting ob-
stacles, and navigating within the highly occluded and dy-
namic environment of a sorghum breeding plot is a difficult
task, particularly as plant height begins to exceed the height
of the GPS antenna. To attempt to resolve this issue, a suite of
perception sensors was selected that would enable modularity
and provide a broad range of sensor data.

Navigation sensors are shown in Fig. 3. The design of
the base is such that all of the navigation sensors are config-
urable; there are multiple mounting points for various sensors
and the pitch of the navigation cameras are configurable to
15° increments. A Novatel SMART6-L GPS antenna/receiver
is mounted at the top of the mast of the robot to provide

Fig. 4. Rendering of the interior of the Robotanist: (a) Freewave 900
MHz radio; (b) 3x 8 port Gigabit network switch; (c) Ubiquiti Networks
BM2-Ti 2.4 GHz Radio; (d) 3x Intel NUC; (e) 4x DC-DC converters; (f) 4x
Hebi BLDC motor drivers; (g) 4x Oriental Motors BLVM620K-GFS and
GFS6G50FR BLDC gearmotors; (k) 24V, 100 Ah LiFePO4 Battery



Fig. 5. A block diagram of the Robotanist.

a clear view of the GPS constellation. GPS carrier phase
signals are broadcast to the Novatel receiver using a 900
MHz radio from a base station set up approximately 2.2 km
away, allowing for a nominal horizontal accuracy of 0.010 m
+1 parts-per-million (RMS) relative to the calculated position
of the base station.

Two planar LiDARs, the Hokuyo UTM-30LX and the
SICK TiM561, are both mounted in a pushbroom orientation
in opposing directions of travel. A SICK Visionary-T time-
of-flight sensor is mounted in the front of the robot and pro-
vides a means of detecting fallen stalks and other obstacles
in the row beneath the canopy. Two IDS UI-5240CP-C-HQ
cameras with Kowa LM5NCL fixed focal length (4.5mm)
lenses are also mounted to the front and rear of the robot.
This camera and lens configuration provides a field of view
of 74°x62° at a pixel resolution of 1280x1024.

An Xsens MTi-30 Attitude and Heading Reference System
(AHRS) is mounted midway up the mast and provides
attitude information along with raw sensor data. The AHRS
uses an Extended Kalman Filter (EKF) to fuse the inertial
data from the tri-axial accelerometer and gyroscope and
the tri-axial magnetometer data into an estimate of the 3D
orientation of the sensor with respect to an Earth fixed
coordinate frame.

4) Phenotyping Sensors: Two types of plant phenotyping
cameras have been mounted to the robot base. A custom
stereo camera described in [24] and shown in Figure 3
gathers high-quality side-facing stereo images. Point Grey
Flea3 cameras outfitted with fish-eye lenses capture upward-
facing images to measure canopy light penetration.

5) Software: Robot Operating System (ROS) and a variety
of its open source packages are used for the software
framework. Nodes were written or sourced to communicate
with sensor hardware, to communicate with the base platform
remotely to query data and send commands, to perform co-

Fig. 6. Data from planar laser scanners in push-broom configurations
collected in a Sorghum bicolor breeding plot is transformed to an Earth
referenced fixed frame.

ordinate frame transform calculations for individual sensors,
to fuse sensor data and perform state estimation, and to
visualize sensor data.

The GPS antenna is placed at the highest point on the
robot, but in order to reliably navigate within the narrow
corridors of a sorghum breeding plot pitching and rolling
of the vehicle needs to be accounted for. A ROS node was
written which uses the relative poses of the AHRS, GPS
antenna, and base coordinate frame of the robot along with
orientation data from the AHRS to calculate the corrected
GPS coordinate of the vehicle at the base frame. Vehicle
state estimation is performed using an Unscented Kalman
Filter (UKF). This node takes data from the AHRS, Hall
effect sensors, and orientation-corrected GPS data and fuses
them to provide a current state estimate of the 3D pose and
velocity of the robot in an Earth fixed coordinate frame.

When the sorghum crop is short enough that the GPS
antenna has a clear view of the satellite constellation, naviga-
tion within the crop rows is designed to be handled through
GPS way point following. GPS coordinates were collected at
regular intervals along the desired path, and the Pure Pursuits
algorithm [25] with a fixed look-ahead distance was used to
perform path following of a line drawn between GPS way
points. While this method of navigation is widely used in
the field of robotics and agriculture, it does not account for
any obstacle that may be present in the narrow corridor, and
is not robust to signal dropout from either the GPS satellites
or the base station. In an effort to reliably navigate under
GPS-denied conditions, pose corrected data from a 2-second
sliding window from the laser range finders is combined
into a single point cloud. Current development is focused
on utilizing this data to localize within the crop row and
detect obstacles.

6) Field Validation: The vehicle and its subsystems were
tested at two breeding sites operated by Clemson University
in South Carolina over 13 days during July and August of
2016. Maximum daily outdoor temperatures during deploy-
ment were 31–38 °C, with occasional rain showers during
testing. The vehicle was driven more than 44.7 km over
the course of deployment with no major system failures.
Vehicle mobility was more than sufficient under dry and wet



Fig. 7. (Left) An aerial view of sorghum test plots in Clemson, SC.
(Center) Laser scan data of the same test plots corrected using calculated
vehicle pose estimate. (Right) Overlay of two images, indicating accuracy
of pose estimation.

conditions at both test sites. Sensor data was collected as
the vehicle was driven through test plots, and a visualization
of this data can be seen in Figs. 6 and 7. The coherence of
the images is a testament to the accuracy of the UKF when
calculating the vehicle pose estimate.

B. Robot Manipulator

1) Requirements: The manipulator design was motivated
by a need to reliably servo to a sorghum stalk, apply a
rind penetrometer, and log the output within 30 seconds.
The manipulator architecture also needed to accommodate
future applications such as core sampling and spectroscopy,
and have a maximum reach of 0.53 m. The manipulator and
end-effector must also be safe to operate, robust to dust and
water ingress, and lightweight.

2) Hardware: Sorghum stalk geometry was the primary
influence on hardware design. When fully grown, the stalks
are roughly vertical, exhibiting a variation of approximately
15° from vertical. Given this structured environment, it was
concluded that a 3 degree of freedom (DOF) manipulator
would be sufficient to grasp the majority of stalks. A
SCARA-style arm configuration was chosen, consisting of a
vertical prismatic joint followed by two horizontal revolute
joints. X5 motor modules developed by HEBI Robotics,
Inc. were selected for their small package, light weight,
and safety. The X5 motor modules feature a series-elastic
gearbox, making them safer than traditional gearmotors. The
prismatic joint, a Movopart M75 manufactured by Thomson
Linear Motion, is belt-driven for fast operation and slide-
guided for weather resistance.

A traditional rind penetrometer consists of a digital force
gauge modified with a needle at the end of its probe. It
is applied to a plant stalk using one hand to support the
back of the stalk while the other hand pushes the needle and
force gauge into the stalk. This process is automated on the
Robotanist by deploying two aluminum fingers to support the
back of the stalk while a motorized plunger drives a needle
into the stalk. The mechanism is actuated using a single
motor and ball screw: a Maxon Precision Motors Inc. EC-16
brushless DC motor and a GP16S ball screw. The plunger is
constructed out of acetal plastic, and the mechanical fingers
are positioned by a track in the plunger (see Figure 8). Data

Fig. 8. The robotic manipulator for stalk strength measurements: (a) Maxon
Motor EC16 brushless DC motor; (b) Maxon Motor GP16S ball screw; (c)
acetal plunger block; (d) v-block for centering plants; (e) Code Laboratories
DUO3d stereo camera; (f) sun shield; (g) needle for penetrating stalk walls;
(h) Futek llb215 load cell; (i) track for actuating fingers; (j) instrumentation
amplifier and A2D converter.

collection is performed using a Futek LLB215 miniature load
cell, a LabJack LJTick-InAmp instrumentation amplifier, and
a Teensy 3.2 USB development board.

Stalk detection is performed with a DUO MLX stereo
camera produced by Code Laboratories, Inc. The stereo
camera has a minimum range of approximately 0.10 m which
is critical for operation in sorghum fields where plants will
be less than 0.60 m away from the camera at all times. The
camera is designed for indoor operation, so linear polarizing
lenses manufactured by Edmund Optics Inc. were installed
to reduce the amount of incoming light.

3) Software: The stalk detection algorithm is based solely
on geometry due to highly variable lighting and partial
occlusion by leaves. RANSAC cylinder detection is ap-
plied to the stereo camera point cloud, and operates at 4-
5 Hz. For added robustness, the manipulator maintains a
stationary position and collects 50 point cloud frames. The
location of each cylinder’s centroid is recorded, and the
centroid with the most neighbors is deemed the optimal
stalk centroid. This data collection and processing framework
takes approximately 10 seconds. The manipulator is then
commanded to the location of the optimal centroid. The end-
effector position is controlled using PID joint position control
available through HEBI software.

4) Field Validation: The robotic manipulator was tested in
Florence, SC on bio-energy sorghum (Sorghum bicolor) mea-
suring approximately 3 m tall. A single pass was performed
down 7.5 m of a crop row and the robot was stopped every
0.6 m. At each stop, the manipulator was deployed at a fixed
height of 1 m to capture a single stalk on each side of the
row. The stalk detection algorithm successfully identified 25
out of 26 stalks and successfully grasped all of the identified
stalks.

IV. FUTURE WORK
One can envision an agricultural robot able to au-

tonomously deploy itself from a docking station to breed-
ing plots and begin traversing between rows. This robot



Fig. 9. Field data from the DUO3d stereo camera: (Left) 2D grayscale data
from the left camera - the stalk is highly occluded and a vine is wrapped
around it; (Right) the geometry-based stalk detection algorithm successfully
registers the stalk.

could make data collection decisions in real-time, such as
informing researchers which regions of a field require further
inspection. The Robotanist does not yet exhibit these capa-
bilities, but the current system architecture can accommodate
this additional functionality.

Navigation within the sorghum plots is currently handled
by path following between GPS way points. As the season
progresses and the sorghum grows taller than the GPS
antenna, that capability will be lost. Developing algorithms
that make use of laser scan and navigation camera data
will be required to autonomously traverse the field reliably
throughout the entire growing season.

Future manipulation tasks include grasping leaves, which
requires more sophisticated computer vision and 3D recon-
struction from multiple viewpoints.

The phenotyping images have been processed but not
validated. Currently, phenotypes extracted from 2D images
include leaf erectness, leaf necrosis, and plant greenness
using Green-Red Vegetation Index (GRVI) spectral indices.
Future work will include validation of preliminary results and
investigation of 3D stereo data for extractable phenotypes.

V. CONCLUSION

This paper presented a ground vehicle capable of au-
tonomously navigating rows of sorghum while applying
a suite of contact and non-contact sensors. It specifically
outlined the hardware and software architecture of the ground
platform as well as the architecture of the manipulator and
end-effector. Field validation of the developed hardware is
presented, including full 3D reconstruction of a sorghum
breeding field and what we believe is the first-ever demon-
stration of contact-based automated phenotyping.
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