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Understanding Machine Vision through Biological Vision

by Nadine CHANG

Recent success in machine vision has been largely driven by advanced computer
vision methods, most commonly known as deep learning based methods. While
we have seen tremendous performance improvements in machine visual tasks, such
as object categorization and segmentation, there remain two major issues in deep
learning. Firstly, deep networks have been largely unable to adapt to novel yet sim-
ilar datasets unseen in training time. More specifically, deep neural networks lack
robustness. Secondly, there is still a lack of clear understanding at the inner mecha-
nisms that drive deep learning. More specifically, deep neural networks lack inter-
pretability. In this thesis, we explore the robustness of neural networks by generating
novel, harder images using Generative Adversarial Networks (GANs). Finally, we
propose to address both robustness and interpretability through the incorporation
of understandings in biological visual systems. We collect a novel, large-scale func-
tional magnetic resonance imaging (fMRI) dataset in order to gather sufficient data
on biological image perception. We show that our dataset contains brain activations
that positively correlate to presented visual images.
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Chapter 1

Introduction

In the past few decades, vision science has seen tremendous progress in biological
and machine vision due to advanced technology. Within biological vision, we have
been able to capture complex behavioral neural activity by measuring neural re-
sponses in conscious humans. Despite the availability of these neural responses, the
mapping of neural activity to visual processing of information in our environment
remains an open question. In particular, high-level vision processing and under-
standing are still difficult to extrapolate from these complex neural activities. Re-
cently, artificial vision models have been introduced as potential better models of
neural responses. The reason for the inclusion of artificial vision models is self-
evident when one considers the leaps in machine vision progress in the last few
years. The advent of big data has propelled significant development in large-scale
learning models, particularly deep learning models. These models, most commonly
neural networks, are able to achieve high performance in several high-level visual
tasks - scene recognition, object recognition, segmentation, detection, and action
recognition.

It is undeniable that high-level vision and machine vision perform similar vi-
sual tasks. Thus, modeling high-level vision through machine vision is theoreti-
cally intuitive. Several works have compared neural data to computer vision mod-
els prior to neural networks Leeds et al. (2013). Recently, many previous works
have leveraged the feed-forward hierarchical structure in neural networks to their
advantage. That is, they compare low/mid/high neural features in visual process-
ing extracted via neuroimaging with predicted similar level features in a pre-trained
network (network already trained on a dataset for a specific task). Previous success-
ful comparisons have been done across human brain activities for object and scene
recognition Kriegeskorte (2015); Aminoff et al. (2015). Neural networks have shown
to be more predictive of neural responses in higher layers in the visual hierarchy
Yamins et al. (2014); Guclu and van Gerven (2015). Additionally, neural networks
have also proven to better model human dynamics underlying scene representation
Cichy et al. (2016) compared to standard models of scene and object perception, GIST
descriptors Oliva and Torralba (2001) and HMAX models Riesenhuber and Poggio
(1999); Serre et al. (2005).



2 Chapter 1. Introduction

With increasing successes in modeling neural data ranging from scene under-
standing to object recognition, the incorporation of neural networks as models and
analysis tools for biological vision is unavoidable and imperative Groen et al. (2018).
Furthermore, increased visual perception understanding alludes that the study of
vision science can no longer be isolated into separate spheres of biological and ma-
chine vision. We argue that further progression in vision science will require in-
tertwined biological and machine vision approaches. However, one of the biggest
obstacles for integrating across the fields of biological and machine vision is data
Tarr and Aminoff (2016). There are two perspectives to consider for data sharing
across the two subfields of vision. One, for machine vision, what are the types of
neural data that will provide more insight or improvement in machine vision tech-
niques and tasks? Two, for biological vision, what are the types of image data that
will provide the best set of neural data that leverages the advantages of neural net-
works? More specifically, what are the types of neural data needed for the modeling
neural activities or for the best comparisons across models and neural representa-
tions? Further exploration yields that 3 major data considerations are necessary for
successful field integration.

The first data consideration is size. The general success in neural networks can
be largely attributed to large-scale datasets. High performing neural networks are
trained and evaluated on several standard large-scale image datasets. In contrast, al-
though large-scale learning models have been applied to human neuroimaging data,
the image datasets used in neural studies often rely on significantly fewer images -
typically a few hundred due to time-constrained experimental procedures.

The second data consideration is diversity. The small size of datasets also trans-
lates to a limited diversity of images used in neural studies. The images com-
monly used in neural studies only encompass a small subset of the entire image
space. While object recognition has been studied intensively Khaligh-Razavi and
Kriegeskorte (2014) and in isolation, the typical amount of object categories are not
more than 100 categories. However, image datasets used to train and evaluate neu-
ral networks encompass a wide range of naturalistic and realistic images with up to
thousands of categories. For example, a facial image for neural studies is generally
center focused on a face with no noisy background, while a facial image in most
artificial vision datasets contains a rich, complicated, and semantically meaningful
background with no guarantees of a centered face.

The small scale of neural data and the lack of image feature diversity inherently
limit 1) the ability to compare model and measured neural representations and 2)
the amount of data that can by modeled by networks.

The third data consideration is image overlap. While many neural represen-
tations have been successfully compared to and modeled by neural networks, the
types of images used to evoke neural responses are typically divergent from the set
of images used to train artificial models. Some images used for neural studies in-
clude a complicated and cluttered context, but most of these images are not from
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computer vision image datasets. The lack of overlapping images for neural studies
and for deep learning restricts the ability to directly compare the neural and model
feature representations of standard deep learning evaluative images. In other words,
we are unable to explore whether network features or neural encodings are richer or
more meaningful in terms of image representation.

We address these 3 data concerns in our newly gathered slow-event related func-
tional magnetic resonance imaging (fMRI) dataset collected from four subjects. To
address data size, we dramatically increase the image dataset size deployed in an
fMRI study of visual scene processing, scaling the number of images by over an
order of magnitude relative to most earlier studies: 5,254 discrete image stimuli
were presented to each of four participants. While previous works have gathered
large-scale naturalistic fMRI data with movie stimuli Huth et al. (2016); Hasson et al.
(2004), no large-scale diverse dataset with isolated slow events currently exist. Thus,
all current analysis on large-scale fMRI data requires various techniques to disen-
tangle which stimuli is responsible for which neural response.

To address both data diversity and image space overlaps with computer vision
datasets, we include images from two standard artificial learning datasets in our
stimuli: 2,000 images from Common Object in Context (COCO) Lin et al. (2014); 2
images per category from ImageNet (∼ 2000) Deng et al. (2009). Also included are
1,000 hand-curated indoor and outdoor scene images from 250 categories largely in-
spired by a third artificial learning dataset, Scene UNderstanding (SUN) Xiao et al.
(2010). SUN, COCO, and ImageNet respectively cover these image domains: indoor
and outdoor scenes, objects interacting in complicated realistic scenes, and lastly
centered objects in realistic images. These three image collections cover a wide va-
riety of image types, thereby enabling fine-grained exploration into visual represen-
tations ranging from natural scenes to human interactions to object categories. Fur-
thermore, all large-scale artificial learning datasets are generally curated by scraping
the web for images and later de-noised by humans. In other words, there is a no-
ticeable lack of neural or behavior data on the images that are standard benchmarks
for rapidly advancing neural networks. This image overlap across computer vision
datasets and neural imaging datasets enables novel neural exploration into these
benchmark machine vision images. The size of the neural data on computer vision
datasets also allows for novel neural network training directly on neural data, with
potential to provide additional insight into network training.

The scale advantage of our diverse dataset and the use of a slow event-related
design enables, for the first time, joint computer vision and fMRI analyses that span a
significant and diverse region of image space using high-performing models. While
it is clear that a large-scale neural dataset is necessary for integrating across vision
subfields, it is imperative to note that a large-scale neural dataset is equally crucial
in order to understand how vision is processed and represented in the human brain.
On a daily basis, the average human visual system observes a wide range of objects
and scenes in complicated backgrounds and perspectives. In order to coherently
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and comprehensively encapsulate how vision is processed, the types of images that
evoke neural data must reflect the realistic and complex views of the visual domain.

The purpose of this paper is to present this dataset that is publicly available. We
present a number of results to demonstrate the strength of this dataset both in relia-
bility and quality, in the application of scene understanding, and in the comparison
to neural networks. The results presented in this paper focus on the fMRI blood
oxygen level dependent (BOLD) response extracted from specific regions of interest
(ROI) that are known to be involved in high level vision. Independent localizers
were used to define scene selective ROIs: the parahippocampal place area (PPA), the
retrosplenial complex (RSC), and the occipital place area/transverse occipital sulcus
(OPA) Epstein and Kanwisher (1998); Park and Chun (2009); Dilks et al. (2013); ob-
ject selective ROIs: the lateral occipital sulcus Grill-Spector et al. (2001); and a region
in early visual cortex. Whole brain data will be available within the accompanying
dataset. Our intention of making this dataset available is to provide a resource for
both biological vision and computer vision research to use to move the field of vision
science forward.



5

Chapter 2

Methods

We will be discussing our methods for data collection, data stability, and data quality
analysis in the following sections.

2.1 Subject Selection and Background

Subjects are recruited primarily from the graduate students in the Psychology De-
partment of Carnegie Mellon University. Due to the long duration of the study, we
need to ensure that our subjects are capable of scanning for the full duration of the
study with minimum effect on data quality. Thus, we targeted a known population
sample that has prior experience with fMRI scanning.

Additionally, subjects report no history of psychiatric of neurological disorders
and no current use of any psychoactive medications.

2.2 Stimulus Background

The visual stimuli presented to each subject is comprised of a total of 5,254 images, of
which 4,916 images are unique. Images are chosen from three general visual datasets
in order to represent higher image diversity. The images breakdown into these three
datasets: i) 1,000 images from scenes, indoor and outdoor. ii) 2,000 images from the
Common Object in Context (COCO) dataset. iii) 1,916 images from the ImageNet
dataset. Summary is shown in Table 2.1. Chosen samples used for stimuli from
each of the three major datasets are shown in Figure 2.1.

We chose these three datasets of images to select from because of the image di-
versities across these categories. The scenes dataset contains images categories that
are inspired and largely taken from the Scene UNderstanding (SUN) dataset meant
for scene categorization. In detail, the images are more correlated with scenic like

TABLE 2.1: The number of images per dataset included in stimuli.

Scenes COCO ImageNet Repeated

1000 2000 1916 113
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FIGURE 2.1: Sample images from each dataset.

images, with less focus on any particular object, action, or person. We chose scene
images from both outdoor (i.e. mountain scenes) and indoor (i.e. restaurant) scenes.

Contrarily, the COCO dataset is geared for a detection task. Due to this compli-
cated task, the dataset contains images that are likewise complicated with several
provided annotations. Specifically, images focus on a particular object in a realistic
context and frequently its interaction with other inanimate or animate objects. One
unique aspect in some of these images is that we are able to observe basic human
social interactions. We deem these images as ‘social scenes’. The ImageNet dataset
is geared for an object categorization task. Thus, ImageNet images tend to have
one object as the focus of the picture. Additionally, the object is often centered and
clearly distinguishable from the image background.

Summarily, we purposefully compiled a list of images that can be generally char-
acterized as ‘scene’ images, ‘social’ or ‘complicated’ images, and ‘object’ images.
Furthermore, the SUN, COCO, and ImageNet datasets represent some of the most
commonly used large-scale datasets for the common visual tasks in the computer
vision field. SUN is a standard dataset for scene categorization. COCO is a standard
benchmark dataset for object detection. ImageNet is not only a standard bench-
mark dataset for object classification, but also a popular dataset for pre-training deep
learning models, neural networks.

2.3 Stimulus Collection

To ensure the quality of the fMRI data, we must first ensure the quality of the stimuli
presented to each subject. Therefore, in the stimulus collection phase, we impose a
few filters to select the best possible images for the best possible brain activation. The
basic quality checks include image resolution, image size, image blurring, and a hard
constraint on RGB images only. Lastly, because sequentially viewing images with
different sizes (i.e. a vertical image versus a horizontal image) can cause a change
in brain activation, we ensure that all stimuli are square and of equal size. First,
we address the method for collecting all 1,000 scenes images. For the scene images,
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we have 250 unique scene categories chosen mostly from the SUN dataset. We then
need 4 exemplars per category to add to a total of 1,000 scene images. For each scene
category, we query Google Search with the scene category name and select from the
provided top results. Specifically, after applying filters for a large enough image size
and resolution, we filter through the images provided from Google Search. If the
image looks clear and free of watermarks, the image is selected. In this manner, we
select all 1,000 scene images. The final images are downsized to 375 x 375 pixels, the
final size for all stimuli.
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FIGURE 2.2: Here we show the number of images that contain a cer-
tain number of categories. Left graph: for all COCO 2014 training set,
which we sampled from. Right graph: for all 2,000 images selected

from COCO 2014 training set.
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FIGURE 2.3: Here we show the number of images that are in each cat-
egory. Left graph: for all COCO 2014 training set, which we sampled
from. Right graph: for all 2,000 images selected from COCO 2014

training set.

Second, for the COCO images, we randomly select 2,000 images with a random
sampling that follows a set of rules. The goal in our random sampling scheme is to
ensure that our chosen stimuli set is an accurate representation of the original train-
ing set we sample from. Thus, the random sample scheme is structured such that
it considers the various annotations that accompany each COCO image. COCO an-
notations contain 80 object class labels, number of object instances, bounding boxes,
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FIGURE 2.4: Here we show the number of object instances in each
image. Left graph: for all COCO 2014 training set, which we sampled
from. Right graph: for all 2,000 images selected from COCO 2014

training set.

and segmentation polygons. Our final 2,000 images follow these criteria: i) the num-
ber of categories in the selected images is proportionally similar to that of the train-
ing set as shown in Figure 2.2. ii) the number of images per category is propor-
tionally similar to that of the training set as shown in Figure 2.3. iii) the number of
instances per image is proportionally similar to that of the training set as shown in
Figure 2.4. iv) the final cropped images contain at least 70% of the original bounding
boxes, where boxes are counted if there is an intersection over union of at least 50%
between boxes and cropped image. v) the images are bigger than 375 x 375. We go
through several rounds of random sampling, where each round we randomly sam-
ple according to the above-mentioned criteria before taking a 375 x 375 center crop
of the image. However, due to the complicated realistic scenes in these images, of-
ten center crops do not contain the main image content. Thus, every passed center
cropped image goes through manual inspection. If the center crop contains the rele-
vant image content, the crop is retained. If the center crop does not contain relevant
image content, we select a new region of the image to crop from. If there is no rea-
sonable new region to crop from, then the image is rejected. We repeat this process
until we reach 2,000 images.

Third, for ImageNet images, we use the standard 1,000 class categories in Ima-
geNet for our image selection. However, due to the violent nature of these images
that might evoke emotional responses, we remove 42 categories. For each category,
we randomly select 2 exemplars per ImageNet category from the ImageNet training
set that fulfill our image size and resolution criteria. With 958 categories and 2 ex-
emplars per category, we have a total 1,916 ImageNet images. However, ImageNet
images all have varying sizes and resolutions. Thus, we only consider images that
are bigger than 375 x 375 before taking a 375 x 375 center crop. For all randomly
sampled center crops, we manually filter through to determine if a) the crop does
not exclude a large portion of the image content, b) the image resolution is high
enough. We continue this process until we have exactly 2 exemplars per category.
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Lastly, note that we have 5,254 images, with only 4,916 unique images. We ran-
domly select 112 images to be shown exactly 4 times and 1 image to be shown 3
times to each subject. The 113 images are selected such that the image dataset break-
down is proportionally the same as that of the 4,916 images. Specifically, 1/5 of the
images are scene images, 2/5 of the images are COCO images, 2/5 of the images are
ImageNet images.

Finally, we must consider the RGB and luminance distribution across all of the
selected images. Because brain activation is subject to the luminance of the image,
we ensure that our images are invariant to this additional factor. To this end, for
each image we calculate its hue, saturation, and value (HSV). The value represents
the brightness of the image. We find the average brightness per image and find its
difference between the gray brightness. We then multiple all values in the image by
this new scale. This is otherwise known as grey world normalization. In this way
we have ensured the luminance is as uniform as possible throughout all images.

2.4 Stimulus Presentation

The fMRI data is collected from a total of 4 subjects, with only half the data collected
for 1 subject and the full data collected for the remaining 3 subjects. Each subject
participates in exactly 16 full sessions. All 5,254 images are presented exactly once
through a total of 15 sessions. The remaining session contains anatomicals and dif-
fusion scans.

The following session details apply for each subject. Each session is 1.5 hours
long with 9 or 10 image runs. More specifically, there are exactly 8 sessions with 9
image runs and 7 sessions with 10 image runs. In the sessions with only 9 image
runs, we include an additional localizer run at the end of the session. Thus, we have
a total of 8 localizer runs.

The following run and session details apply for each subject. Each run contains
37 stimuli. In order for each run’s images to accurate represent the entire image
dataset, each run’s stimuli dataset category is proportionally the same as the overall
dataset. More specifically, in our dataset roughly 1/5th is scene images, 2/5th is
COCO images, and 2/5th is ImageNet images. Similarly, the run stimuli break down
into 1/5th scenes, 2/5th COCO, and 2/5th ImageNet. Of the 37 stimuli, roughly 2
are repeated images. Thus with 35 unique stimuli per run, 7 are scene images, 14 are
COCO images, and 14 are ImageNet images. However, because the total number
of images do not divide nicely into 7s, some sessions contain a slightly imbalanced
portion of categorical images by a factor of 1 image.

The following image presentation details apply for each run, each session, and
each subject. Before and after each run, in the middle of the black screen seen by
the subjects a fixation cross is shown for exactly 6 seconds and 12 seconds respec-
tively. Following the initial fixation cross, all 37 stimuli are shown sequentially. Each
stimulus is shown for exactly 1 second followed by a 9 second fixation cross. With
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10 seconds spent on each image, we set our repetition time (TR) to 2 seconds. Since
each run contains 37 stimuli, we have a total of 370 seconds of stimuli presentation
and fixation time. With 6 and 12 seconds of fixation time prior and after the stimuli
presentation, we have a total of 388 seconds (6:28 minutes) attributed to each run.

Additionally, each subject is asked to perform a basic valency task for every stim-
uli. They have to respond how much they like an image using this metric: ’like’,
’neutral’, ’dislike’. They respond after the stimuli is presented during the 9seconds of
interstimulus fixation. They use their fingers to push on a buttons attached through
a glove.

Finally, the order of the stimuli presented are randomly selected for each subject.
Thus, each subject has a unique stimuli presentation order. The stimuli presentations
are also fixed before the start of any sessions for all subjects.

2.5 fMRI Data Acquisition

Functional MRI data was acquired on a 3T Siemens Verio MR scanner at the Sci-
entific Imaging and Brain Research Center at Carnegie Mellon University using a
32-channel head coil. Functional images were collected using a T2*-weighted echo-
planar imaging pulse sequence. Acquisition spatial parameters: 69 slices parallel to
the AC/PC; in-plane resolution 2 x 2mm; 2mm slice thickness; no gap; acquired in
an interleaved order; FoV of 212mm; phase partial Fourier scheme of 6/8. Acqui-
sition timing parameters: TR = 2000ms, TE = 30ms, a flip angle of 79 degrees, with
194 measurements for each of the scene scans, and 141 measurements in each of the
functional localizer scans. Fat suppression was used. Slices were acquired with a
multi-band acceleration factor of 3, no other acceleration factor was implemented.

2.6 Nearest Neighbor Analysis

To demonstrate that our neural data is semantically meaningful in the visual do-
main, we perform nearest neighbor analysis with euclidean distance on neural data
from various regions of interests (ROI). The ROIs we will be examining are PPA,
RSC, TOS, LOC, and Early Visual Region. We perform this analysis over all images
for all subjects and all TRs. Further, we demonstrate good signal to noise ratio in our
data by examining the stimuli corresponding to the 4x repeated images.

2.6.1 Data Format

First, we have to format our data in such a way that it can be properly analyzed.
To achieve this, we must also consider all aspects of our neural data that need to
be analyzed. More specifically, we need to examine our neural data 1) Intra-subject,
2) Intra-TR, 3) Intra-ROI. Thus, for each subject, each TR, each ROI, we present our
data as an N x D matrix, where N is the number of stimuli and D is the number of
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FIGURE 2.5: Sample ROI matrix for nearest neighbors.

voxels of the ROI we are examining. This can be seen in Figure 2.5. In this example,
this data represents subject 1 at TR4. We see each row as a vector of voxels for the
PPA, and each row corresponds to a unique stimuli.

2.6.2 All Stimuli

First, we look at all ROI data for each stimuli presented to each subject. We explore
stimuli to neural data correlation through nearest neighbor on all ROIs neural data
of all stimuli. More specifically, for each subject, for each TR, for each of their ROI we
perform nearest neighbor analysis on all stimuli present to the subject. In total we
perform nearest neighbor on all 5,524 stimuli presented to each subject. We make
each stimuli’s vector of voxels a query and perform nearest neighbor search over
the remaining 5,253 stimuli’s vector of voxels. Finally, we visualize the results by
viewing the corresponding stimuli for all voxel vectors.

2.6.3 Repeated Stimulus

Second, we explore overall signal to noise ratio in our data by examining the stim-
ulus that are shown 4x to each subject across all 15 sessions. Note that repeated
stimulus means that we have 4 unique neural representations for the same stimu-
lus. Since the stimulus is the same, so must be the neural representations, with the
exclusion of noise and session to session variance. Thus, we leverage the extra neu-
ral representations to our advantage. We do so by examining the nearest neighbor
results over the repeated stimulus, which with 4 repeats of 113 images comes to a
total of 451 images. We use the 451 images responses as queries and also as the pool
of representations to search for its immediate nearest neighbor. Again, we visualize
the results by viewing the corresponding stimulus for all nearest neighbors. Here,
we examine whether or not one of the repeats of the query image appears in the top
k nearest neighbor. We do so by performing basic recalls on all nearest neighbor
results. More specifically, if the same stimulus appears in the top k nearest neighbor
of a stimuli, then we consider that a positive recall. Thus, for all 451 images, we get
a recall of x/451.
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2.6.4 Normalization

Finally, we perform all of our analysis described thus far on normalized neural data.
We normalize our data by z-scoring across voxels for each stimulus. Let’s consider
our N x D matrix of voxels. We perform z-score normalization column wise on each
N x D matrix.
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Chapter 3

Results

We will be discussing data quality analysis in the following sections. We show that
our neural data contains rich semantic information about the corresponding stimuli.
We demonstrate this through nearest neighbor evaluations, both qualitatively and
quantitatively.

FIGURE 3.1: Sample nearest neighbor results for subject 1’s PPA at TR
4.

3.1 Nearest neighbor on all stimuli

Through qualitative results, we show our results on nearest neighbor performed
over all 5,254 stimuli intra-subject, intra-TR, intra-ROI. Through our results, we see
that the top 10 nearest neighbors contain semantically similar stimuli to that of the
query stimuli. For example in Figure 3.1, we examine stimulus to voxel correlation
through the PPA. We see the monkey stimulus query has other animal stimulus ap-
pear in its top 3 nearest neighbor. Additionally, we observe human sport stimuli
stimulus has other human sport stimuli stimuli in its top 3 nearest neighbor. It is
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imperative to note that while the same sport stimulus does not appear in its top
nearest neighbor, the fact that other sport stimulus appear implies that general se-
mantics is captured more significantly than fine-grained semantics. Finally, we ob-
serve that cluttered indoor seating stimulus query has similar indoor scenes in its
nearest neighbor.

FIGURE 3.2: Sample nearest neighbor results for subject 1’s Early Vi-
sual Region at TR 4.

Similarly, we observe results from the Early Visual Region. Although, the Early
Visual Region is not known for high level semantic processing, we observe seman-
tically similar stimuli to that of the query stimulus. For example in Figure 3.2, we
see food stimuli query have other food stimuli in its nearest neighbor. Additionally,
we observe visually similar stimuli to that of the query stimulus. For instance, we
observe indoor scene stimulus query with other indoor scene stimuli in its nearest
neighbor.

However, as demonstrated in Figure 3.3, we still observe noise in our neural
data. We observe several nearest neighbor results with seemingly random visual
correspondence. This suggests that additional noise pruning may be necessary to
increase our signal to noise ratio.
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FIGURE 3.3: Sample noisy nearest neighbor results for subject 1’s
Early Visual Region at TR 4.

3.2 Nearest neighbor on repeated stimulus

Here, we show our qualitatively and quantitative nearest neighbor results on aver-
aged repeated stimulus’ voxel representations.

FIGURE 3.4: Sample nearest neighbor results for repeated stimulus
for subject 1’s PPA at TR 4. We see the same image in the query’s

immediate nearest neighbor.



16 Chapter 3. Results

In our results, we demonstrate that signal is stable across sessions. We show
this by observing for a few stimuli that the same stimulus appear in the repeated
stimulus’s nearest neighbor as seen in Figure 3.4. This indicates that the noise across
sessions does not affect the overall neural representation of an image. Although
some stimuli queries do not contain its own stimuli in its top nearest neighbor, we
observe semantically similar stimuli in those positions as seen in Figure 3.5.

FIGURE 3.5: Sample nearest neighbor results on repeated images ROI
voxels for subject 1’s PPA at TR 4.
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Finally, we show quantitative results on recalls for the top 10 nearest neighbor.
We calculate our recalls based on whether or not the stimulus appears in its own top
10 nearest neighbor. In Figure 3.6, we see high recalls for all subjects.

Note that chance is
1 −

(
447
10

)
/
(

450
10

)
= 0.653

Furthermore, we observe a clear increase in recall as we approach TRs 2 and 3. In
the case of subject 1, we see highest recalls at TRs 4. Additionally, we show that com-
bining hemispheres also leads to an increase in recalls in Figure 3.6. However, note
that while z-scoring the voxels generally leads to higher recalls, we see more perfor-
mance boosts in earlier TRs in Figure 3.7. Thus, it is unclear whether normalizing
assists in boosting signal to noise ratio.
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FIGURE 3.6: Recalls for nearest neighbor on repeated images ROI
voxels for all subjects. Column 1 shows results for separated hemi-

spheres. Column 2 shows results for combined hemispheres.
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FIGURE 3.7: Recalls for nearest neighbor on repeated images’ ROI
voxels for combined hemispheres. Voxels are normalized before near-

est neighbor analysis.
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Chapter 4

Discussion

Further progression in vision science will require intertwined biological and ma-
chine vision approaches. In this paper, we address one of the biggest obstacles for
integrating across the fields of biological and machine vision - data. Thus far, neu-
ral datasets are lacking in 1) size, 2) diversity, and 3) stimuli overlap with existing
computer vision datasets. We address all concerns in our new dataset where we
successfully collect a large-scale, diverse fMRI dataset on 5,254 stimuli that is pub-
licly available. Our data is 1) significantly larger than existing slow-event neural
datasets by an order of magnitude, 2) extremely diverse in stimuli, 3) considerably
overlapping with existing computer vision datasets.

Additionally, we leverage the magnitude of our data and demonstrate the stabil-
ity and quality of our data through nearest neighbor. The nearest neighbor results
illustrate that we can discern image content form individual scenes. Further, we are
able to explore the stimuli relation to other images. The success of our nearest neigh-
bor results is a proof of concept that we have the ability to analyze images through
neural data. More importantly, semantically similar stimuli in top nearest neighbors
of various stimuli suggests that we have curated a new set of rich image represen-
tations. Similar to how neural networks have been able to provide rich semantically
meaningful representations, these neural image representations likewise contain se-
mantics beyond language. Without the restriction and bias of human language, this
neural dataset provides the potential to explore visual semantics that have yet to be
considered in both neuroscience and computer vision.
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