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Abstract

The ability to predict depth from a single image - using recent advances in CNNs
- is of increasing interest to the vision community. Unsupervised strategies to learn-
ing are particularly appealing as they can utilize much larger and varied monocular
video datasets during learning without the need for ground truth depth or stereo.
In previous works, separate pose and depth CNN predictors had to be determined
such that their joint outputs minimized the photometric error. Inspired by recent ad-
vances in direct visual odometry (DVO), we argue that the depth CNN predictor can
be learned without a pose CNN predictor. Further, we demonstrate empirically that
incorporation of a differentiable implementation of DVO, along with a novel depth
normalization strategy - substantially improves performance over state of the art that
use monocular videos for training.
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Chapter 1

Introduction

Depth prediction from a single image using CNNs has had a surge of interest in recent years [/,
20, 22]]. As from the cognitive point of view, it attempts to mimic human’s ability to estimate
depth through cues such as perspective, occlusion, scaling relative to the known size of familiar
objects, lighting and shading [27]. Moreover, it has various applications such as, 2D-3D view
synthesis [33]], depth perception for grasping in robotics [21], and improving robustness and
accuracy in SLAM systems [29].

Recently, unsupervised methods that rely solely on monocular video for training (without
depth or stereo groundtruth) have captured the attention of the community. Of particular note
in this regard is the work of Zhou et al. [34] who proposed a strategy that learned separate pose
and depth CNN predictors by minimizing the photometric consistency across monocular video
datasets during training. Although achieving impressive results this strategy falls noticeably
behind those that have been trained using rectified stereo image pairs [13, [19]. These rectified
stereo methods have shown comparable accuracy to supervised methods [7, 24, 27]] over datasets
where only sparse depth annotation is available. However, the assumption of using calibrated
binocular image pairs excludes itself from utilizing monocular video which is easier to obtain
and richer in variability. This performance gap between stereo [13| [19] and monocular [34]
learning strategies is of central focus in this thesis.

In this thesis, we attempt to close this gap by drawing inspiration from recent advances in
direct visual odometry. Specifically, we note that the major difference between stereo and monoc-
ular strategies stems from: (i) unknown camera pose between frames, and (i1) ambiguity in scale.
Existing methods [30, 34] for learning depth from monocular video address these differences
only partially by adding an extra CNN pose prediction module. In this thesis we argue that these
previous strategies do not adequately address the scale ambiguity issue - causing divergence dur-
ing training. Further, we advocate that the incorporation of an additional CNN pose prediction
module is unnecessary. Instead we argue that one could employ a differentiable and deterministic
objective for pose prediction which is now commonly employed within the SLAM community
for direct visual odometry [2, 16, 8. 9.

Contributions: We make the following contributions. First, we characterize theoretically and
demonstrate empirically why scale ambiguity in current monocular methods is problematic.
Specifically, the problem lies in the scale sensitivity of the depth regularization terms employed
during training. Inspired by related work in direct visual odometry [8] we propose a simple nor-
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Zhou etal.

Figure 1.1: Our depth prediction (3rd row) compared against Zhou [34] (2nd row) on KITTI
dataset. Our method recovers more fine details such as tree trunks and advertising board.

malization strategy that circumvents many of these problems and leads to noticeably improved
performance over Zhou [34](see Fig. [I.T|for qualitative comparison).

Second, we suggest that learning an additional pose predicting CNN (which we shall refer to
herein as the Pose-CNN) is not the most effective strategy for estimating a depth predicting CNN
from monocular video. The Pose-CNN employed by Zhou does not fully exploit the relation
between camera pose and depth prediction, and ignores the fact that pose estimation from depth
is a well-studied problem with known geometric properties and well performing algorithms. We
instead propose the incorporation of a Direct Visual Odometry (DVO) pose predictor into
our framework as: (i) it requires no learnable parameters, (ii) establishes a direct relationship
between the input dense depth map and the output pose prediction, and (iii) it is derived from the
same image reconstruction loss used for minimizing our entire unsupervised training pipeline.
To incorporate DVO into end-to-end training, we propose a differentiable implementation of the
DVO (DDVO module), so that the back-propagation signals reaching the camera pose predictor
can be propagated to the depth estimator.

Finally, since DVO is a second order gradient descent based method, a good initialization

point can lead to better solution. So instead of starting our DDVO module from the identity pose,
we propose a mixed training procedure - use a pretrained Pose-CNN to provide pose initialization
for DDVO during training. We demonstrate empirically that this hybrid method provides better
performance compared to training with Pose-CNN or DDVO alone, and achieves comparable
results to Gordard [13], which is the state of the art method trained with calibrated binocular
pairs on KITTI dataset [[12].
Notation: lowercase boldface symbols (x) denote vectors, uppercase boldface symbols (W)
denote matrices, and uppercase calligraphic symbols (Z) denote images. We also use the nota-
tions Z(x) : R? — R¥ to indicate sampling of the K-channel image representation at subpixel
location x = [z,y]".



Chapter 2

Learning depth estimation from videos

Our goal is to learn a function f; (modeled as a CNN)- parametrized by 6,- which predicts the
inverse depth map D from a single image Z. Instead of doing supervised learning, we want to
learn from more widely available data sources without groundtruth depth. Moreover, instead of
restricting ourselves to calibrated binocular images [11, 13, 19], we go for more general case of
monocular video sequences.

Before introducing our end-to-end training pipeline, it is worth to mention an alternative
approach. Given the temporal cues between sequential video frames, it is possible to first get
auxiliary depth annotation from some structure-from-motion (SfM) algorithm, and then use its
output as supervision to learn the depth estimator. Suppose that the SfM algorithm can be over-
simplified as doing photometric bundle adjustment, which minimizes a cost function combining
appearance error L,,, measuring dissimilarity of pixel-wise correspondences, and some prior
cost Lyyior, €ncouraging the smoothness of the depth map. This procedure can be summarized as
a two-step optimization:

1. Compute inverse depth maps and camera poses with SfM:

D*,p* = argmin Ly, (D, ) + Lpior(D) 2.1)
’p

2. Use inverse depth maps from Eq. [2.1]as supervision to learn the depth estimator:

min L(fo(Z;04), D7) (2.2)

We argue that this two-step optimization is sub-optimal in theory. Since we are assuming that
the SfM’s cost function in Eq. [2.]reflects the quality of the depth map prediction, what we really
want is to find 8, which leads to the minimum of this cost. However, minimizing Eq. in the
second step does not necessarily lead to minimizing Eq.

Therefore, end-to-end learning of a depth predictor by directly minimizing the cost function
in Eq. 2.1]is, in principle, the best approach. In practise, however, since Eq. [2.1]is an oversimpli-
fication of a real StM pipeline, it is still possible to get better supervision from the above two-step
optimization approach compared to an end-to-end training with gradient descent. Hence, as cov-
ered in section [3, one of our contribution is to bring one piece of the sophistication of modern
SLAM algorithms - direct visual odometry into the training framework.
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Overall, the end-to-end training objective is written as:
Ienlg £ap. (fd (I; ed) ) p) + Eprior (fd (Iv ‘gd)) (23)
d>

Taking apart the joint minimization, we have the following equivalent formulation:

Héil’l mgn ﬁap. (fd (I, Hd) ) p) + ‘Cprior (fd (17 ed)) (24)
d
Minimizing L, over camera pose p in Eq. 2.4 can be viewed as a function which takes inputs
from sequential images Z,, . .. ,Z, and current depth estimation:
fo(D, Ty, ..., T,) £ argmin Ly, (D,p). (2.5)
P

Here, we omit Z; from the input of £,, for conciseness, and we refer f, as an auxiliary pose
predictor. Substitute Eq. to the end-to-end training objective function(Eq. [2.4)), we have our
final formulation of the training objective:

min Lap. (fa(Z;0a) , fo (fa(Z;04))) + Losior (fa (Z;04)) - (2.6)

Detailed definition of our appearance and prior smoothness loss is given in section[2.3]
Optimizing this loss function meets two crucial issues, which we will address over the fol-
lowing subsections.

2.1 Scale ambiguity

Unlike training from calibrated binocular pairs with known baseline, estimating depth and pose
from monocular sequence bears scale ambiguity. Any two inverse depth maps differing only
in scale (with the pose scaled correspondingly) are equivalent in the projective space. Hence,
they have the same appearance dissimilarity loss, or in other words, L, is scale-invariant in
this sense. However, for the regularization term Ly, usually formulated with derivatives of
the inverse depth map [19, [34]], smaller inverse depth scale always results in smaller loss value.
This scale-sensitive property of the regularization term leads to a catastrophic effect, the loss
function in Eq. does not even have local minima, let alone global minima. The proof for this
is simple: given any inverse depth estimation, we can construct a new inverse depth map through
decreasing its scale (and updating the pose accordingly), which always results in lower loss.

Surprisingly, none of the previous works [30, 34] address this issue. Empirically, we find
that this critical defect of the loss function not only leads to inferior results compared to training
with binocular pairs, but also results in divergence during training. As shown in Fig. 2.1] with
our re-implementation of Zhou ’s architecture, the scale of inverse depth prediction is decreasing
throughout each training epoch. After several epochs, the training diverges and finally breaks
due to the inverse depth prediction saturates to close to zero.

To solve this problem, we propose a simple yet effective approach - apply a non-linear oper-
ator to normalize the output of the depth CNN before feeding it to the loss layer. The operator
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Figure 2.1: Effect of inverse depth map normalization. top right: Without normalization, the
scale (blue curve, quantified by the mean of inverse depth) decreases throughout each epochs
during training, and finally saturates to zero; with normalization, the scale stabilizes within a
reasonable range(red curve); bottom: Due to the decrease in scale, the prior loss penalizes less
on the smoothness of the depth estimation. As a result, the model makes increasingly more
structure mistakes. And the training finally breaks before the 15th epoch, where the prediction
degenerates to zero; top mid: With normalization, the depth prediction is more precise.

n(-) we use here is dividing the input tensor by its mean:
Nd,;
Z;'V:l d;

Although this normalization trick has also been used in LSD-SLAM [8] for keyframe selec-
tion, it has not been used in the context of learning depth estimation from monocular videos. Em-

pirically we find that this simple normalization trick significantly improves results (see Fig. 2.1)
as it removes the scale sensitive problem of the loss function.

n(d;) £ 2.7)

2.2 Modeling pose predictor

In previous works, the pose predictor is approximated as a feed-forward CNN, which takes input
only from a sequence of frames. Though this approach enjoys the simplicity of using a black
box, and is easy to integrate into end-to-end training, it ignores the geometric relation between
camera pose and depth as summarized in Eq.[2.5] which could be exploited for better training.
We propose an alternative approach which attempts to close this discrepancy between theory
and practice through noticing the fact that Eq. 2.3] relates to a class of well-studied geometry-
based methods, direct visual odometry (DVO). Given the current depth estimation from f;, DVO
solves for camera pose through minimizing the photometric reprojection error between a ref-
erence image and a source image. DVO relates to a more general class of image registration
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method — the Lucas-Kanade(LK) algorithm. It applies the same Gauss-Newton minimization as
in LK for faster convergence, and use the inverse composition trick for computational efficiency.

However, to incorporate DVO as the pose prediction module f,, in the end-to-end training, we
need to be able to evaluate the derivatives of DVO. Inspired by recent differentiable implementa-
tion of inverse compositional LK for object tracking [31]] and planar alignment [4], we propose a
(sub)differentiable DVO implementation which is described in detail in section[3] With it, during
training, the gradient of estimated depth with respect to loss £,, comes from two sources: partial
derivative of loss over depth and partial derivative of loss over pose:

ALy L . OLu 0f,
dfa 0fa ofp 0fa

It is worth to mention that Eq. demonstrates one of our major theoretical difference to Zhou
[34] - our depth estimator gets additional back-propagation signals from the pose prediction,
while they ignore the role depth estimation plays in getting camera pose.

We experiment with two versions of applying our differentiable direct visual odometry (DDVO)
module in training: 1) we train our Depth-CNN from scratch with DDVO; 2) we first pretrain
the Depth-CNN with Pose-CNN, then we fine-tune the Depth-CNN by using the output of Pose-
CNN as initialization for DDVO. The motivation for the second approach can be explained in
both ways: compared to initializing from the identity pose, Pose-CNN provides a better starting
point for DVO; on the other hand, DVO refines the output of Pose-CNN with geometric cues.

(2.8)

2.3 Training loss

Our training loss is a combination of appearance loss and prior smoothness loss, aggregated
through 4 scales. The appearance loss measures dissimilarity of pixel-wise correspondence be-
tween a triplet of images(illustrated in Fig. [2.2)); and the prior loss enforce smoothness for the
inverse depths D; of the images in the triplet. The loss on the kth scale is expressed as:

E(k) - Z Eap-(Dz(k)v Pij; Ii(k)vz-(‘k))

J
i#j€{1,2,3}

3 (2.9)
+ A Loon(DP).
=1

We use weighting parameter A to control the penalty from smoothness prior.

2.3.1 Appearance dissimilarity loss

As illustrated in Fig. [2.2] we measure appearance dissimilarity loss between three sequential
images. Given inverse depth maps predicted from these images respectively, and two camera
extrinsics estimated relative to the second image, we compare the inversely warped first and last
images to the second image. We also do it reversely, comparing the inversely warped second
image to the other two images. This bidirectional appearance loss allows us to augment the
training set with minimum extra computational cost.
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Figure 2.2: Illustration of our unsupervised learning pipeline. The learning algorithm takes three
sequential images at a time. The Depth-CNN produces three inverse depth maps for the inputs,
and the pose predictor (lower part) estimates two relative camera pose between the second image
and the other two. The appearance dissimilarity loss is measured between the second image 75
and the inversely warped images of Z;, Z3; In addition, the loss is evaluated in a reverse direction
(marked by orange arrows) - it is also measured between Z;, 73 and two warped images of Zs.
Lower part of the figure illustrates three architectures we evaluated for pose prediction: 1) Pose-
CNN, 2) use our proposed differentiable Direct Visual Odometry (DDVO), the initialization of
pose is set as zero (identity transformation), and 3) a hybrid of the above two - use pretrained
Pose-CNN to give a better initial pose for DDVO.




Appearance dissimilarity is aggregated through four scales of the output of the Depth-CNN.
For the three coarser scales, we use L1 photometric loss; For the last finest scale, we adopt a
linear combination of L1 photometric loss and single scale SSIM [32] loss, which is the same as
in [[13]].

2.3.2 Inverse depth smoothness loss

We use second order gradients as smoothness cost to encourage the depth prediction has flat
slopes. To encourage sharpness of the depth prediction, we employ two strategies:

(1) We give different weightings to the smoothness cost at different pixel locations according to
the Laplacian of the image intensity. If the Laplacian is higher, meaning the pixel is more likely
on an edge or corner, we impose a lower smoothness cost at that location:

Lovior(ds) = €™V IED (10,0d;] + |0ayds| + |0,y d:i)) (2.10)

(2) Instead of directly compute smoothness cost from the final inverse depth estimation, we
downsample the inverse depth map by factor 2 to three coarser scales. We aggregate smoothness
cost only from the two coarsest scales.



Chapter 3

Differentiable direct visual odometry

3.1 Direct visual odometry

Steinbriicker [28]] first proposed the direct visual odometry in the form of minimizing pixel-wise
photometric error between sequential RGB-D frames. It was latter improved with more robust
cost functions [[15}17] and features [/1]], and extended to photometric bundle adjustment [2, 6, 8]
Compared to visual odometry methods using sparse feature correspondences, direct methods
offer better accuracy when inter-frame motion is small, since they make use of the whole dense
information contained in the image. Hence direct methods have been widely used in current
state-of-the-art visual SLAM systems [, [10].

Direct visual odometry takes input from a reference image Z, its corresponding depth map
D, and a source image Z'. Let the intensity and inverse depth of a pixel coordinate x; € R?
at the reference image be respectively stated as Z(x;) and d;; camera pose be represented by
the concatenation of translation t € R? and exponential coordinates w € R?; and the camera
intrinsics be known, the projection from the reference image coordinates x; to source image
coordinates x; is computed as:

x; = W(xi;p,d;) £ (RX; +djt), (3.1
where rotation matrix R is computed from exponential coordinates w by the Rodrigues’ for-
mula [26]; %X; is the homogeneous coordinate for x;; and (-) projects 3D points to the image
plane:

<[w y Z]T> = [g Q}T 3.2)

zZ Z

The objective of direct visual odometry is to find an optimum camera pose p which mini-
mizes the photometric error between the warped source image and the reference image which is
assumed to be always at the identity pose O:

mpinz |7 W(x4:p, di)) — ZOW(x:: 0, d;)) || (3.3)



This nonlinear least square problem can be solved efficiently through Gauss-Newton method. For
computational efficiency, instead of linearly approximating the source image as in vanilla Gauss-
Newton method, the Inverse Compositional algorithm [3] reverses the roll of source image and
reference image and compute the parameters update for the reference image. As a result, the
Jacobian and Hessian matrix do not need to be re-evaluated per iteration. We summarize the
algorithm as following:

1. Precompute the Jacobian matrix, and its pseudo inverse:

1

J= |VI(x;) V)| | gt — (373)7 g7, (3.4)

op
0

2. Warp the source image by the current estimate of camera pose p, and convert it to a vector
denoted as I},. Form a binary diagonal matrix W whose iy, diagonal element represents if
projected coordinate X/ is in view. We use this weight matrix to exclude out-of-view pixels
from taking part in computing pose update.

3. Compute pose update:
Ap=J"W(I-T), (3.5)
and compose it to get a new pose estimation:
p < Apop, (3.6)
here, we define the operator o such that it applies a left multiplicative update to the pose.

4. Return to step 2, and repeat till converge.

The main restriction of direct methods is that inter-frame motion must be small. To handle
larger motions, we form pyramids of images and depths map through downsampling, and update
the pose estimate through coarse-to-fine approach.

3.2 Differientiable implementation

Our differientiable implementation of DVO is similar to the inverse compositional spatial trans-
former network [23]]. Both methods iteratively update the geometric transformation parameters
and inversely warp the source image through bilinear sampling. The difference is that, instead
of using regression network layer with learnable parameters, our “regressor” is deterministically
formed with Eq. Computing derivatives with respect to Eq. involves differentiating ma-
trix pseudo-inverse, which we follow similar implementation as in [31].

3.3 Differentiable vs non-differentiabel direct visual odome-
try module

As an alternative approach, instead of end-to-end optimizing the objective defined in Eq.
we could employ an EM style optimization procedure — first estimate the camera pose p* given

10



100 200 300
# iteration

Figure 3.1: Compare training with differentiable DVO (“DDVO”) to non-differentiable DVO
module (“DVQO”) on one short clip of video. right: “DDVO”(red) converges faster and reaches
better local minimum compared to “DVO”(blue); left-mid: “DDVO” gives a good reconstruction
of the scene; left-bottom: “DVO” results in wrong depth estimation.

current depth prediction; then with the pose estimation fixed, we minimize the loss with respect
to depth estimation. This is summarized as iteratively performing the following two steps:

p* :fp(fd(z;ed)azb'“az.n)' (37)
I%in Lap, (fd(Iy 9d)7 p*) + Eprior (fd(I7 gd)) . (38)

The implication of this approach is that we no longer need to do back propagation through the
direct visual odometry module, since in the second step we pretend p* to be some constant.
Hereby, we refer this approach as using non-differentiable direct visual odometry module (de-
noted as “DVO” in Fig. [3.1).

To test this approach, we did a toy experiment which trains the depth estimator to overfit
a short video clip. As shown in Fig. [3.1] this approach (referred as “DVO”) converges slower
(see the blue curve in right) than the differentiable direct visual odometry module(“DDVO”, red
curve) proposed in the paper, and it stucks in a poor local minimum(visualized in bottom left).

Therefore, we conclude that using differentiable DVO module is necessary for training a
depth estimator from monocular videos.
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Chapter 4

Experiments

This section extensively evaluates our method of unsupervised training depth estimator from
monocular videos. Following the other relevant works [11} 13} 19, 30, 34] we employ KITTI
dataset [[12] to train our approach. We use the same train/test split used in [7], meaning that
we use 28 sequences for training and 28 sequences for testing in the categories of “city”, res-
idential” and “road”. Since each of the sequences are captured with a stereo pair, we have 2

monocular sequences giving 56 monocular sequences for training.

4.1 Implementation details

Training set construction We follow [34] to preprocess the training sequences. To do so, we
first remove the static frames by inspecting if the mean magnitude of optical flow is less than
1 pixel. Each training sample is a short clip of 3 sequential video frames resized to 128 x 416
pixels.

Depth-CNN architecture We use the same network architecture as in [13)]. The network re-
sembles a U-Net structure. It consists of an encoder-decoder design with skip connections of
intermediate features between the encoder and decoder network, and uses VGG as its encoder
network architecture. We also output multi-scale inverse depth predictions at the end of the de-
coder. Since inverse depth is bounded between O (at infinity) and the inverse of minimum depth
to the camera, we apply sigmoid non-linearity to the network output. Moreover, we multiply the
final inverse depth output by 10 to constrain it inside a reasonable range, and add a small value
0.01 to improve numerical stability.

Pose-CNN architecture We use a similar CNN architecture as in [34)], which takes input from
a concatenation of three sequential frames. The differences are 1) instead of outputting rotation
as Euler angles, we train our Pose-CNN to predict exponential coordinates; 2) we divide the
predicted translation by the mean value of estimated depth, so that the scale of the translation is
aligned to the depth prediction.

Training hyper-parameters Our training loss is a weighted sum of appearance dissimilarity loss

13



and smoothness loss. We set the weighting for the smoothness loss as 0.01. We empirically found
that this weighting parameter offers a desired balance between sharpness and overall structure
correctness of the depth prediction.

We train the network through Adam optimizer [16], with a small learning rate of 0.0001,
B = 0.9 and [y = 0.999. Restricted by the non-conventional operation used in our DDVO
module, and for the sake of computational efficiency, we set the batch size for training to 1. This
compromise on batch size is solely due to implementation issues, not an implication of theory.
Empirically, we observe no negative effect on overall performance.

4.2 Training configurations

For a complete study of our proposed method, we conduct experiments with four different set-
tings:

¢ QOurs (Baseline) To understand the effect of our proposed normalization trick in Sec. [2.1]
we setup a baseline configuration. We use Pose-CNN as the pose predictor and turn off
the inverse depth map normalization. This setup is equivalent to Zhou [34]]’s method
modified with our loss function definition (see Sec. [2.3) and implementation. Due to the
training diverges after 10 epochs (see Fig. [2.1)), we report the result at the 10th epoch.

¢ Ours (Pose-CNN) We perform inverse depth normalization, and still use Pose-CNN as the
pose predictor. We report result at the 10th epoch.

¢ Ours (DDVO). We replace the Pose-CNN with our proposed DDVO module. The DDVO
is initialized with the identity pose. To account for large motion in the training set, we set
the module to run through five scales in a coarse-to-fine manner. We train the model from
scratch, and result is reported at the 10th epoch.

¢ Ours (Pose-CNN + DDVO). We use the Depth-CNN and Pose-CNN from “ours (Pose-
CNN)” as pretrained model. Then we fix the Pose-CNN, use its output as pose initialization
for our DDVO module, and fine-tune the Depth-CNN for 2 epochs. Since Pose-CNN
already gives us a roughly acceptable estimation, DDVO does not need to account for large
motion in this case. Hence, to speed up training, instead of performing coarse-to-fine, we
directly run DDVO over the finest scale.

4.3 Results on KITTI

In this section, we evaluate performance on the same 697 KITTI images from the Eigen’s test
split [7]. We compute all the errors from the same cropped region using the same performance
measures as in [11} 13, 134] and without capping to a maximum depth. Our method cannot
recover the true scale of the scene due to the monocular settings of the problem. Therefore,
we align the scale of our prediction to the groundtruth through multiplying the former by s =
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median(Dy) /median(Dpregic) as in [34]].

Effect of depth map normalization. We compare the result of “ours (Baseline)” to “ours (Pose-
CNN)” since these two configurations only differ in whether inverse depth normalization is per-
formed or not (see section[2.1). As shown in Table the simple normalization approach gets
a significant improvement in all the measures using the same architecture. Moreover, with the
results of depth normalization, “Ours (Pose-CNN)” not only beats Zhou [34]’s work by a large
margin, and also gets very close results to the one trained on rectified stereo pairs by Godard et
al. [13].

DDVO vs Pose-CNN We also test the effect of changing the Pose-CNN module by the DDVO
module proposed in section 3| In this case, we have no parameter to learn in the pose estimation
module. In Table @.1] we show the results with label “ours (DDVO)”. As the DDVO module
performs Gauss-Newton optimization, we initialize the pose between each pair of training images
as the identity. On the other hand, Gauss-Newton approaches are sensible to the initialization
point. This is the reason for getting slightly worse results with DDVO pose estimation (“ours
(DDVO)”) than with a learned Pose-CNN pose estimator (“ours (Pose-CNN)”). In any case the
results are still very close to the stereo pairs training method of Godard [13]].

Finally, in order to improve the pose initialization point in the DDVO module we have exper-
imented a new way of training. The pose between a pair of images in a video sequence is initial-
ized by a pretrained Pose-CNN module and then refined with the DDVO module. In Table [4.1]
we show that this strategy (“ours (Pose-CNN+DDVO)”) improves both “ours (Pose-CNN)” and
“ours (DDVO)”, and gives the best results of the unsupervised trained methods trained on KITTI
dataset. Qualitative results from this approach are visualized in Fig.

Pretrain on Cityscapes As shown in [[13,34]] pretraining the model on a larger dataset, Cityscapes [5],
and then finetuning on KITTI improve the results. Hence, we also perform a similar experiment.
First, we train on Cityscapes with “ours (Pose-CNN)” architecture for 10 epochs, then finetune

the model on KITTI with “ours (Pose-CNN)” for the first 5 epochs and “ours (Pose-CNN +
DDVO)” for the next 3 epochs. We observe a slight performance improvement over training
only on KITTI but still outperformed by Godard [[13]]. This states a bottleneck of our approach,
where our method is not modeling the non-rigid part of the scene. This prevents us to get more
benefit from a dataset with a lot of objects in motion.

4.4 Estimate pose from depth prediction

Tateno [29] demonstrates that one plausible usage of monocular depth estimator is to initialize
the depth estimation for the visual SLAM systems. Hence, to test the implication of the im-
provement in depth map accuracy under this usage scenario, we run the direct visual odmetry
algorithm(described in section 3.1) over depth maps predicted by Zhou [34] and our method.
Through inspecting the pose errors (measured by absolute trajectory error), we find that the
improvement in our depth map accuracy results in significantly better pose estimation (see Ta-

ble 4.4).
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[ Method [ training set [ absrel  sqrel RMSE RMSE(log) [§ < 1.25 § <1.257 § < 1.25% |

Eigen [7] KD) | 0203 1548 6307 0282 0702 0.890 0.958
Liu [24] K@) | 0202 1614 6523 0275 0.678  0.895 0.965
Godard T3] K®B) | 0148 1344 597 0247 0803 0922 0.964
Zhou [34] K(M) | 0208 1768 6856  0.283 0.678  0.885 0.957
ours (baselinc) K(M) | 0213 3770 6925 0294 | 0758 0909 0.958
ours (Pose-CNN) KM) | 0155 [L193] 5613 0229 0797 0935 0.975
ours (DDVO) KM) | 0159 1347 578 0234 | 079% 0933 0.973
ours (Pose-CNN+DDVO) | KM) | [0.151] 1257 [5583] [0228] | [0810] [0936]  0.974
Godard [13] CS+K(B) | 0.24 1076 5311 0219 0847 0942 0.973
Zhou [34] CS+K (M) | 0.198  1.836 6565 0275 0718 0.901 0.960
ours (Pose-CNN+DDVO) | CS+K (M) | 0.148 1187 5496 0.226 0812 0.938 0.975

Table 4.1: Evaluation of depth map accuracy on KITTI test set. The methods trained over KITTI
dataset are denoted by K, and also pretrained on Cityscapes are denoted by CS+K. We use (D)
to represent methods trained with depth supervision, (B) to refer methods trained using rectified
binocular image pairs and (M) to denote methods trained on monocular video sequences. We
show in bold the overall best results trained only on KITTI, and with a blue box to highlight the
best results within the (M) methods. Gordard and Zhou’s results are taken directly from [34]].

| Method | Seq.09 | Seq.10 |
ORB-SLAM(full) 0.01440.008 | 0.01240.011
ORB-SLAM(short) 0.0640.141 | 0.06440.130
Zhou [34] 0.06340.126 | 0.085+0.115
Ours(Pose-CNN + DDVO) | 0.045+0.108 | 0.03340.074

Table 4.2: Absolute Trajectory Error (ATE) on the KITTI odometry split averaged over all 5-
frame snippets. ORB-SLAM results are copied from [34]. “full” means ORB-SLAM is per-
formed on the full video while “short” means it’s only performed on the 5-frame snippets. For
both Zhou and ours, we use the Depth-CNNs trained from the combined dataset of Cityscapes
and KITIL.
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input image Ground truth Zhou etal. Ours

Figure 4.1: Qualitative results on KITTI test set (Eigen split). Here, groundtruth depth maps
are interpolated from sparse point clouds captured by Lidar (2nd column), thus only serves for
visualization purpose. Compared to Zhou [34] (3rd column), our depth map prediction (last
column) preserves more details such as tree trunks, roadway stakes, and gives more precise
reconstruction of objects near view, such as the van and tree in the 3rd and 4th rows.

4.5 Results on Make3D

We directly apply our model trained from KITTI (Ours (Pose-CNN + DDVO)) to the Make3D
test set [27]. Due to the difference in camera aspect ratio, we only evaluate our method on the
central crop of Make3D’s test images. We find that our method generalizes moderately well
on this dataset. As shown in Fig. #.2] our method can recover details such as the road sign in
distance, and wooden pole in close view. Table 4.3] shows that our method achieves similar or
better results compared to other state of the art approaches.
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Figure 4.2: Qualitative results on Make3D dataset. We directly apply our model trained from
KITTI without any tuning for this dataset.

| Method | Supervision | Abs Rel | Sq Rel | RMSE | RMSE(log) |
Train set mean depth 0.876 13.98 | 12.27 0.307
Karsch [14] depth 0.428 | 5.079 | 8.389 0.149
Liu [25] depth 0.475 | 6.562 | 10.05 0.165
Laina [20] depth 0.204 | 1.840 | 5.683 0.084
Godard pose 0.544 1094 | 11.76 0.193
Zhou none 0.383 | 5.321 | 1047 0.478
ours none 0.387 | 4.720 | 8.09 0.204

Table 4.3: Results on the Make3D dataset [27]. Following Zhou [34], we do not use any of
the Make3D data for training. We directly apply the model trained on KITTI to the test set.
Following the evaluation protocol of [34], we first match the scale of our depth prediction to the
groundtruth, then the errors are computed only for pixels in a central image crop with groundtruth
depth less than 70 meters.
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Figure 4.3: Failure cases of our method. Our method is sensitive to 1) dynamic scenes like
pedestrians and cyclists (1st row); 2) over-exposure of the road, which cause large texture-less
regions (2nd row); 3) vast open areas with large texture-less regions (3rd row).
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Chapter 5

Conclusion

We have found that, as in monocular SLAM algorithms [8]], scale ambiguity has to be taken
into account when training with monocular videos. As shown in Fig. this was a missing
point in previous approaches training from monocular videos. Additionally, we have shown
that Direct Visual Odometry can be used to estimate the relative camera pose between frames
instead of learning a predictor with a CNN (Pose-CNN). This strategy needs less parameters to
learn and potentially less images to train. We plan to investigate the number of images needed
in the future. Finally, we have found that DDVO and Pose-CNN pose prediction modules can
be improved with a hybrid architecture of Pose-CNN initialization and DDVO pose refinement
giving the best results.

The current major bottleneck for our approach is that we’re not modeling the non-rigidity
of the world. As shown in Fig. our current method does not perform well for articulated
objects like bikers and pedestrians. Possible future work for this is to incorporate techniques
from non-rigid SfM [18]] to the pipeline.

21



May 16, 2018
DRAFT

22



Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

Hatem Alismail, Brett Browning, and Simon Lucey. Direct visual odometry using bit-
planes. arXiv preprint arXiv: 1604.00990, 2016.

Hatem Alismail, Brett Browning, and Simon Lucey. Photometric bundle adjustment for
vision-based slam. In Asian Conference on Computer Vision, pages 324-341. Springer,

2016.

Simon Baker and Iain Matthews. Lucas-kanade 20 years on: A unifying framework. Inter-
national Journal of Computer Vision, 56(3):221-255, Feb 2004.

Che-Han Chang, Chun-Nan Chou, and Edward Y Chang. Clkn: Cascaded lucas-kanade
networks for image alignment. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2213-2221, 2017.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler,
Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset
for semantic urban scene understanding. In Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016. [4.3]

Amaél Delaunoy and Marc Pollefeys. Photometric bundle adjustment for dense multi-view
3d modeling. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1486-1493, 2014.

David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction from a single
image using a multi-scale deep network. In Conf. Neural Information Processing Systems,

pages 2366-2374, 2014.
J. Engel, T. Schops, and D. Cremers. LSD-SLAM: Large-scale direct monocular SLAM.
In Proc. European Conf. Computer Vision, September 2014. 5]

J. Engel, V. Koltun, and D. Cremers. Direct sparse odometry. In arXiv:1607.02565, July
2016.

Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct sparse odometry. [EEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2017.

Ravi Garg, Vijay Kumar B.G., Gustavo Carneiro, and Ian Reid. Unsupervised cnn for single
view depth estimation: Geometry to the rescue. In Proc. European Conf. Computer Vision,

pages 740-756, 2016. 2| {]

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving?
the kitti vision benchmark suite. In Proc. IEEE Conf. on Computer Vision and Pattern

23



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Recognition, 2012. [1] {]

Clément Godard, Oisin Mac Aodha, and Gabriel J. Brostow. Unsupervised monocular
depth estimation with left-right consistency. In Proc. IEEE Conf. on Computer Vision and

Pattern Recognition, July 2017. 2.3.1]

Kevin Karsch, Ce Liu, and Sing Bing Kang. Depth transfer: Depth extraction from video
using non-parametric sampling. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 11(36):2144-2158, 2014. [4.5]

Christian Kerl, Jiirgen Sturm, and Daniel Cremers. Robust odometry estimation for rgb-d
cameras. In Robotics and Automation (ICRA), 2013 IEEE International Conference on,
pages 3748-3754. IEEE, 2013. [3.1]

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014. A.1]

Sebastian Klose, Philipp Heise, and Alois Knoll. Efficient compositional approaches for
real-time robust direct visual odometry from rgb-d data. In Intelligent Robots and Systems
(IROS), 2013 IEEE/RSJ International Conference on, pages 1100-1106. IEEE, 2013. @

Suryansh Kumar, Yuchao Dai, and Hongdong Li. Monocular dense 3d reconstruction of

a complex dynamic scene from two perspective frames. arXiv preprint arXiv:1708.04398,
2017.

Yevhen Kuznietsov, Jorg Stuckler, and Bastian Leibe. Semi-supervised deep learning for
monocular depth map prediction. In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition, July 2017.

Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Federico Tombari, and Nassir Navab.
Deeper depth prediction with fully convolutional residual networks. In Proc. Int’l Conf. on
3D Vision, pages 239-248, 2016.

Ian Lenz, Honglak Lee, and Ashutosh Saxena. Deep learning for detecting robotic grasps.
The International Journal of Robotics Research, 34(4-5):705-724, 2015.

Bo Li, Chunhua Shen, Yuchao Dai, Anton van den Hengel, and Mingyi He. Depth and
surface normal estimation from monocular images using regression on deep features and

hierarchical crfs. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pages
1119-1127, 2015. [1]

Chen-Hsuan Lin and Simon Lucey. Inverse compositional spatial transformer networks.

2017.3.2

Fayao Liu, Chunhua Shen, Guosheng Lin, and Ian D. Reid. Learning depth from single
monocular images using deep convolutional neural fields. IEEE Trans. Pattern Analysis
and Machine Intelligence, 38(10):2024-2039, 2016. [T} @.3|

Miaomiao Liu, Mathieu Salzmann, and Xuming He. Discrete-continuous depth estimation
from a single image. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 716-723, 2014.

Richard M Murray, Zexiang Li, S Shankar Sastry, and S Shankara Sastry. A mathematical
introduction to robotic manipulation. CRC press, 1994,

24



[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

A. Saxena, M. Sun, and A. Y. Ng. Make3d: Learning 3d scene structure from a single
still image. IEEE Trans. Pattern Analysis and Machine Intelligence, 31(5):824-840, 2009.

[([document)} [T} .5, 4.3

F. Steinbruecker, J. Sturm, and D. Cremers. Real-time visual odometry from dense rgb-d
images. In Proc. Int’l Conf. Computer Vision Workshops, 2011. [1}[3.1]

Keisuke Tateno, Federico Tombari, Iro Laina, and Nassir Navab. Cnn-slam: Real-time
dense monocular slam with learned depth prediction. arXiv preprint arXiv:1704.03489,

2017. A4

Sudheendra Vijayanarasimhan, Susanna Ricco, Cordelia Schmid, Rahul Sukthankar, and
Katerina Fragkiadaki. Sfm-net: Learning of structure and motion from video. CoRR,
abs/1704.07804, 2017. URL http://arxiv.org/abs/1704.07804. 1 2.1 4

Chaoyang Wang, Hamed Kiani Galoogahi, Chen-Hsuan Lin, and Simon Lucey. Deep-lk
for efficient adaptive object tracking. arXiv preprint arXiv:1705.06839, 2017. 2.2 [3.2]

Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment:
From error visibility to structural similarity. IEEE Trans. Image Processing, 13(4):600-612,
April 2004. ISSN 1057-7149.

Junyuan Xie, Ross Girshick, and Ali Farhadi. Deep3d: Fully automatic 2d-to-3d video
conversion with deep convolutional neural networks. In European Conference on Computer
Vision, pages 842-857. Springer, 2016.

Tinghui Zhou, Matthew Brown, Noah Snavely, and David G. Lowe. Unsupervised learning
of depth and ego-motion from video. In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition, July 2017. OO IR 22 G R 2[5 A4 B3 ETE2)
BIE5A3

25


http://arxiv.org/abs/1704.07804

	1 Introduction
	2 Learning depth estimation from videos
	2.1 Scale ambiguity
	2.2 Modeling pose predictor
	2.3 Training loss
	2.3.1 Appearance dissimilarity loss
	2.3.2 Inverse depth smoothness loss


	3 Differentiable direct visual odometry
	3.1 Direct visual odometry
	3.2 Differientiable implementation
	3.3 Differentiable vs non-differentiabel direct visual odometry module

	4 Experiments
	4.1 Implementation details
	4.2 Training configurations
	4.3 Results on KITTI
	4.4 Estimate pose from depth prediction
	4.5 Results on Make3D

	5 Conclusion
	Bibliography

