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Abstract 

The creation of a diabetes management assistant that can remotely collect data, increase com-

munication between patient and care provider, and automatically analyze all available information 

could improve the health of many diabetics. Individual models, taking into account nutrition, med-

ication, and exercise, with appropriate mathematical modeling, can learn accurate representations 

of specific patients suitable for providing therapy advice. 

The fundamental goal of effective diabetes management is for the patient to select behaviors 

that maintain glycemic homeostasis. Thus the goal of an intelligent diabetes assistant is to help 

the patient select optimal behaviors. To do this the assistant must be able to learn how a patient's 

choices will affect blood glucose. From the care providers perspective a system should be able to 

provide detailed and accurate data about the patient, increase interaction between patient and 

expert, and be efficient. This thesis describes an intelligent diabetes assistant (IDA) designed to 

meet these goals. 

IDA uses a mobile phone application and other devices to measure the three primary compo-

nents that affect blood glucose: meals, medication, and exercise. The data are used to learn models 

for predicting how behaviors around meal times affect postprandial blood glucose, and to create 

a new continuous physiological model that includes exercise. These models can then be used in a 

variety of ways to generate therapy advice for the patient and health care provider. The complete 

system is presented in this thesis. 
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The best way to escape from a problem is to 
solve it. 

Alan Saporta 

Chapter 1 

Introduction 

The creation of a diabetes management assistant that can remotely collect data, increase com-

munication between patient and care provider, and automatically analyze all available information 

could improve the health of many diabetics. Individual models, taking into account nutrition, med-

ication, and exercise, with appropriate mathematical modeling, can learn accurate representations 

of specific patients suitable for providing therapy advice. 

The fundamental goal of effective diabetes management is for the patient to select behaviors 

that maintain glycemic homeostasis. Thus the goal of an intelligent diabetes assistant is to help 

the patient select optimal behaviors. To do this the assistant must be able to learn how a patient's 

choices affect blood glucose. From the care providers perspective a system should be able to provide 

detailed and accurate data about the patient, increase interaction between patient and expert, and 

be efficient. This thesis describes an intelligent diabetes assistant (IDA) designed to meet these 

goals. 

The specific goals that were presented when this research project was initiated are listed below. 

The methods IDA uses to address these goals are described in the following chapters. 

• Demonstrated a functioning system that can 

Collect data. 

Share data. 

Analyze data. 

1 
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• Demonstrate an improvement over previous methods of prediction. 

• Demonstrated policy search to suggest behavior modifications. 

IDA uses a unique mobile phone based telemedicine system for collecting and sharing data. 

The data is used to train individualized models using Gaussian Process regression to predict the 

effect that medication, exercise, and nutrition has on postprandial blood glucose. These models 

are able to predict postprandial blood glucose with better accuracy than previous systems. A 

new physiological model that includes exercise was implemented as an Extended Kalman Filter 

to continuously model glucose dynamics and the uncertainty in the system. This model was 

compared with a model without exercise and auto-regressive models to determine the best method 

for modeling glucose dynamics. These models are used to generate useful therapy advice for the 

patient and analysis for the health care provider. 

1.1 Motivation 

In the United States there are approximately 20 million diabetics which is a prevalence rate of 

approximately 6% [8]. In Qatar, where this research took place, the prevalence rate of diabetes 

is approximately 15%. In the US the disease and its related complications are the 6th leading 

cause of death [41, 7, 83], but with proper management the risks of complications can be reduced 

[101, 102, 103, 104, 105, 106, 45]. However, many diabetics have a difficult time managing the 

disease on their own; a intelligent assistant could help such individuals. IDA is a system that links 

data from patients to care providers while processing patient behaviors. This work contributes to 

robotics in three areas: the construction of the diabetes assistant, the creation of a rich diabetes 

database, and the development of data modeling algorithms to process the data. 

The overall goal of IDA is to provide physicians with the tools to improve the health of diabet-

ics. It does this through the innovative combination of remote patient monitoring with feedback 

produced by a physician and intelligent system. IDA utilizes technologies that have emerged on 

the market in the last few years to collect high quality datasets in situ. Figure 1.1 represents the 

difference between the traditional diabetes self-management loop and our new proposed system. 
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•The expert often 
receives sparse 

•The patient rarely 
gets input from the 
expert. 

Figure 1.1: Adjustments to the diabetes management loop. On the left, the typical pattern for di-
abetes management rarely involves the care team. The diabetic is responsible for self-measurement 
and therapy decisions. The right image describes how the Intelligent Diabetes Assistant provides 
the care team with better information and more contact with the patient. 

This research project uses this data to learn individually tuned models for the glucose regulatory 

system. The goal is to create a system that simplifies both the data collection process for the patient 

and the data analysis process for the care provider without compromising quality. Our success of 

the first goal will be measured by comparing predicted blood glucose values to the measured value. 

The fundamental task in diabetes management is to select behaviors that maintain optimal 

levels of blood glucose. Thus the primary goal of modeling diabetes is to help the diabetic with 

this task. Before a decision support system can be developed, the system needs to be able to predict 

the outcome of a given behavior. The model can then be used to suggest a therapy adjustment 

which will move the system towards optimal levels of blood glucose. 

1.2 Background 

This project is multidisciplinary and may interest readers from a wide range of backgrounds. This 

section includes a detailed introduction to the physiology of diabetes and its treatment, as well as 

an introduction to machine learning. 
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Figure 1.2: Normal blood glucose regulatory cycle. Glucose is introduced to the system by food 
intake, and removed by insulin independent organs, the kidney, and insulin dependent organs. The 
pancreas monitors glucose levels and releases insulin to regulate glucose. 

1.2.1 Phys io logy of D iabe te s 

Diabetes is a chronic condition that occurs when a person's body does not properly regulate blood 

glucose levels. In a healthy person the concentration of glucose is maintained between 70-110 mg/dl 

with a biological control loop. Figure 1.2 shows the transfer of glucose from ingestion to removal in 

a normal individual. If the glucose level rises, the pancreas releases insulin to increase the transfer 

of glucose from the blood to muscle and fat and to increase the uptake of glucose into the liver. 

When the blood glucose level decreases, the insulin level drops as well and a person's liver increases 

glucose production to bring the glucose level back to normal. In a diabetic, this biological control 

loop fails, and an artificial correction must take place to correct the problem. 

The type of diabetes present depends on the location of the failure in the control loop. Type 

1 diabetes (T1DM) occurs when the pancreas does not produce insulin, so rising glucose levels 
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cannot be controlled. Figure 1.3 shows how the glucose regulatory cycle changes for a person with 

T1DM. Type 2 diabetes (T2DM) occurs when the insulin sensitivity of cells is decreased. Even 

though insulin is present to promote the transfer of glucose from blood to muscle and fat cells, the 

decrease in insulin sensitivity causes blood glucose to remain high. The glucose regulatory cycle 

for T2DM is diagrammed in Figure 1.4. 

Figure 1.3: Blood glucose regulatory cycle in a patient with Type 1 diabetes. The pancreas is no 
longer capable of producing insulin, so glucose cannot be controlled. 

Diabetes Therapy 

When diabetes occurs the primary treatment goal is to maintain the optimal level of blood glucose 

by adjusting the inputs into the system. Many factors can influence blood glucose levels, but 

the most significant three are diet, exercise, and medication. These inputs are all controllable by 

the patient. Other factors that affect blood glucose, like stress and hormone changes, cannot be 

controlled by the patient, so the goal of a diabetic is to adjust the amounts and timing of diet, 
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Figure 1.4: Blood glucose regulatory cycle in a patient with Type 2 diabetes. Decreased insulin 
sensitivity causes elevated levels of blood glucose. 

exercise, and medication to control blood glucose levels. 

If blood glucose is not controlled then hyperglycemia or hypoglycemia may occur. Hyper-

glycemia means that the blood glucose level is too high. It is often defined as having a fasting 

blood glucose greater than 140 mg/dl or greater than 180 mg/dl if measured postprandial, within 

two hours after a meal. It typically does not result in immediate danger, but it is strongly associ-

ated with long term complications [101]. Hypoglycemia is the result of low levels of blood glucose 

when it falls below 60 mg/dl. If immediate action is not taken and glucose levels continue to fall 

it can result in unconsciousness and death. Hypoglycemia is a major limiting factor blocking the 

development of an artificial pancreas [33, 34, 67]. 

Behaviors that cause one patient to become hypoglycemic may not have the same effect on 

other patients because each diabetic is different. When treating diabetics it is important for the 

care team to treat each patient as an individual. 
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In an ideal setting, the treatment plan for managing diabetes involves a support team. In the 

Standards of Medical Care for Patients with Diabetes Mellitus published by the American Diabetes 

Association [6] the ideal management plan is described as follows. 

The management plan [for diabetes] should be formulated as an individualized thera-

peutic alliance among the patient and family, the physician, and other members of the 

health care team. 

In contrast to this quote describing the ideal plan, the department report from the endocrinology 

department at Hamad Medical Center in Doha, Qatar describes the common state of diabetes care 

in many clinics around the world. 

Diabetes and Endocrine disorders are quite common in Qatar, the patient load per staff 

in Endocrine and diabetes is high, therefore the time allocated per patient is short, in 

spite of adding more and more clinics,... 

The physicians and care providers in Qatar, as in many hospitals worldwide, work hard to care 

for their patients, but they are constrained by time. This limits their ability to form an ideal "indi-

vidualized therapeutic alliance." The adjustments to the diabetes management loop implemented 

in IDA, Figure 1.1, incorporate tools that shift the typical management pattern towards the ideal 

alliance. While IDA was not tested on a large patient population, the practical management of 

large numbers of diabetics might be improved with the data collection and communication tools 

implemented in IDA. It is designed to do the following. 

• Measure all the primary inputs for diabetes. 

• Simplify data collection for the patient. 

• Share data between the care team and patient. 

• Assist both patient and care team with data analysis. 

This system implements these goals by collecting nutrition, medication, and exercise data to 

represent the primary inputs. The devices used to collect the data are simple for the diabetic to use. 
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Patient and care team share data using a cellular network and the Internet. And individual models 

of the patients' physiology are created to assist with data analysis and blood glucose optimization. 

To achieve widespread use a system must be cost-effective, safe, and effective. This project 

addresses the effectiveness of the machine learning components of IDA and discusses possible ways 

it can improve cost-effectiveness and safety. 

1.2.2 D iabe te s and Machine Learning 

Supervised learning is the process of identifying a function to represent a system based on a set 

of sample data. Sample data usually includes input data, X, and output data, g, that is to 

be predicted. There are many methods used to select the function that minimizes some error 

metric. The primary method discussed in this work is Gaussian Process regression. Rasmussen 

and Williams provide a detailed reference for Gaussian Process regression in [90]. This learning 

method is both flexible and robust. 

There is a long history of using computer technology to assist in the management and under-

standing of diabetes. General guidelines for diabetes information systems and diabetes modeling 

have been presented by Young et al.[ 112] and the American Diabetes Association [88]. Below is a 

summary of previous work that has led to this project. 

Initial information systems for diabetes were limited to blood glucose databases. In the early 

1990's work began to make the databases more useful by adding telemedicine, modeling blood 

glucose, and incorporating decision support. 

A study done by Montori et al. [82] determined that treatment of diabetes using telemedicine 

to transmit glucose values and receive feedback significantly improves glycemic control compared 

to telemedicine without feedback. 

Farmer et al. [39] built a similar telemedicine system to test the benefit of having real time 

feedback about blood glucose results. They found an improvement in blood glucose with the 

telemedicine system, but believe that real-time decision support for medication therapy and lifestyle 

choices is needed to see significantly improved glycemic control. 

Diabetes education by telemedicine was found to be as effective as in-person education by 
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Izquierdo [56]. In this study one group received in-person education, and the other education by 

telemedicine, and both groups experienced similar improvement. 

The first noted physiological model for blood glucose was created by Bergman [15, 14] in order 

to determine insulin sensitivity during a glucose tolerance test. This model, commonly referred 

to as Bergman's minimal model, is strictly tailored for this test and therefore is not applicable 

to everyday use. Prom this starting point many other groups developed variants of the Bergman 

minimal model. One version [1] used a Bayesian approach to fitting the model to data. Other 

groups added parameters to model /3-cell mass and insulin receptor dynamics [51] . A summary of 

other versions of this model can be found in [76]. 

The dynamics of blood glucose are complicated and non-linear, so an ideal model should include 

the major input and output variables. The primary inputs into the glucose regulatory system are 

carbohydrate intake, medication, and exercise. Many models have been developed to simulate 

the influence of carbohydrates and insulin on blood glucose [76], but these models usually ignore 

exercise. Autoregressive models were used by Bremer [22] to try to predict future blood glucose 

values based only on previous blood glucose measurements. 

The influence of exercise on blood glucose is difficult to model. In order to maintain adequate 

blood glucose levels during exercise the liver releases glucose into the blood. Muscles, on the other 

hand absorb and utilize glucose if insulin is present. Therefore, depending on the patient's current 

blood glucose and insulin levels, exercise can cause hyperglycemia or hypoglycemia [31, 85, 84]. 

This is one reason why exercise is often left out of physiological models. Another reason is the 

challenge of measuring exercise accurately in everyday life. 

The most successful method for modeling diabetics has been through the use of compartmen-

tal models. Compartmental models are commonly used to model the flow of material between 

different containers[57, 79]. Many groups have developed physiological models based in part on a 

compartmental system. The diabetes educational software package AIDA 1 developed by Lehmann 

[72, 71, 73] uses compartmental models to simulate the glucose kinetics for type 1 diabetics. He 

lists reasons why simulating blood glucose is difficult, and one of his first observations is that the 
1 http: / /www. 2aida. net 



CHAPTER 1. INTRODUCTION 10 

quality of data collected is lacking in quantity and accuracy. He also says that the effects of exercise 

and stress are not well understood. 

Tresp and Briegel [108, 23] have created a model that combines a compartmental model with 

a neural network. This model is unique because it includes a binary variable for exercise. Other 

groups have also used neural networks [107]. Tresp and Briegel used this model within a Monte 

Carlo framework to estimate uncertainty information. 

The ability to estimate the uncertainty in a measurement is vital towards modeling any noisy 

system [92]. This idea has been pursued by Hovorka and Andreassen in their development if DIAS2. 

In this system they use Causal Probabilistic Networks or Dynamic Hidden Markov Models[10, 52, 

53]. These models benefit from the ability to give an estimate for the probability of having a blood 

glucose measurement at a given time. Other groups have also investigated the use of Bayesian 

belief networks to understand diabetes [89]. 

More recent models have built on previous models and have focused on refining the components. 

Chen [27] created a model that is a mixture of Bergman's minimal model and AIDA. Man [78, 

77] has focused on improving the models simulation of glucose production by the liver and the 

absorption of mixed meals (meals with varying composition of carbohydrate, fat and protein). 

Many of these models have been used to try to optimize insulin dosage. Lehman and Deutsh 

used heuristic rules to generate therapeutic advice[100]. McCausland and Mareels also use rule-

based control to give advice on insulin therapy [80]. DIAS has also been used for optimization [50]. 

One of the key problems in the field of diabetes modeling has been the lack of quality data that 

represent the major inputs to the system. Our system aims to overcome this problem by the use 

of new monitoring equipment and custom software to simplify data collection. 

At a recent meeting of world leading glucose modeling researchers they identified three primary 

challenges facing future research [99]. The primary challenge they identified was the physiological 

variance in the glucose regulatory system. They also discussed the lack of openness within this 

research community; researchers rarely make models or data available for evaluation by outside 

sources. IDA addresses these challenges by collecting a rich database that can be shared with 
2 ht tp : / /www.miba.auc .dk/ spp 

http://www.miba.auc.dk/
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outside researchers. 

11 

1.3 Introduction to IDA 

The glucose regulatory system can be modeled to allow patient data to automatically be analyzed. 

Otherwise the health care team would face the burden of processing additional data, and the 

efficiency of diabetes management would decrease. There are two modeling problems that this 

thesis focuses on: predicting postprandial blood glucose, and continuously modeling blood glucose. 

The first step of modeling is monitoring. Chapter 2 describes the data collection devices and 

software in detail along with a discussion on the design choices made to improve patient usability 

and system efficiency. 

Data is a basic requirement for learning models. The clinical data collection protocol and 

descriptive statistics are in Chapter 3. The data is used to train and test the models. The 

two broad modeling problems discussed are the prediction of postprandial blood glucose and the 

continuous dynamic modeling of glucose. 

1.3.1 Predict ing Postprandial Glucose 

Chapter 4 describes the modeling methods used to predict postprandial blood glucose. Postprandial 

blood glucose is typically measured two hours after a meal. This measurement is used to evaluate 

the management decisions made just before a meal; diabetics make most therapy decisions before 

eating a meal. They decide when and how much medication to take and how much food to eat. 

Predicting the outcome of these decisions would cover most therapy decisions made to improve 

blood glucose. Also, continuous glucose measurements are not required to learn or evaluate this 

predictor. 

This problem can be viewed as optimizing an open loop control system for meals. The data 

set becomes the set of inputs immediately prior to a meal, Xt~, and the estimated inputs for the 

meal, xt. The output becomes the blood glucose reading 2 hours after the meal, gt+2hours-

This model is applicable to both type 1 and type 2 diabetics. It could be used to help select 
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an insulin dose, meal portion, or exercise to optimize glucose levels. 

1.3.2 Continuously Mode l ing B l o o d Glucose 

Chapter 5 details a new physiological model for continuously modeling blood glucose that incorpo-

rates energy expenditure. This new model is compared to a physiological model without exercise, 

an autoregressive (AR) model, and an autoregressive model with exogenous inputs (ARX). For the 

continuous modeling problem the system should predict the immediate change in blood glucose 

based on recent inputs to the system. The inputs to the system include Xt~, where the delay is 

chosen based on the length of influence of the system inputs. For example, fast acting insulin has 

an impact for about 4 hours after injection, so the lag time should be at least 4 hours. The output 

is the next value of blood glucose, gt+i-

Machine Learning Approach to Prediction 

There are two different prediction methods that can be used to solve the continuous modeling 

problem. One method is to use a parametrized physiological model. The second method is to use 

a black-box statistical method such as an AR or ARX model. 

These problems are usually approached using physiological models, though no model currently 

exists that incorporates continuous energy expenditure. A modified physiological model that in-

corporates energy expenditure is presented in Chapter 5. Physiological models are useful because 

they can cover the entire space of patient behavior while giving an prediction that is justified by 

physiology. The biggest challenge to physiological modeling is the complexity of human physiology 

and impossibility of accurately modeling every component of the system. 

Physiological models can also be used to generate advice that is optimal according to the model. 

For example if the patient wants to determine the best meal for a certain dose of insulin, the model 

could find the nutritional content that optimizes the predicted blood glucose. It can do this even 

if the patient has never recorded data from a similar event. 

Additionally the problems have been set up to fit into many black-box statistical learning 

algorithms for regression or classification, and from a machine learning point of view these problems 



CHAPTER 1. INTRODUCTION 13 

poses many challenges. First, physiological data is noisy because the system is complex and direct 

measurement is difficult. Also, the size of the training sets is limited. Fortunately humans have 

habits, so their behaviors are not dispersed throughtout the space of possible actions. Instead, 

behaviors tend to repeat. 

The repetition of behaviors means that the patient will have data recorded that represents their 

common actions and states. In these cases the data can be the model, as it inherently captures the 

complexity of the biological system. 

Generating therapy advice using a strictly statistical regressor is limited by the inability to 

predict effects for behaviors that have never been seen. This is the exploration/risk problem seen 

in policy search. Since, in this case, the risk is death, the best approach is to gradually adjust 

therapy. 

1.3.3 Therapy Adv ice 

Chapter 6 describes some methods for generating therapy advice from the postprandial and con-

tinuous glucose models. Learning to simulate the system is useful for education purposes, therapy 

advice, and closing the blood glucose control loop. An educator could let a patient manipulate 

inputs to a simulator to learn how the inputs affect blood glucose. Because the simulator would be 

trained on the patient's data, the education would better reflect the patient's individual system. A 

simulator could also be used to find appropriate inputs to optimize blood glucose levels. It could 

suggest an insulin dose or food portion that would result in better control. Finally, it could be used 

with an insulin pump and continuous monitoring system to develop a personalized feed-forward 

control strategy that could function as an artificial pancreas. 

The problem of optimizing future blood glucose levels for diabetics is often reduced to finding 

the needed insulin intake to optimize future blood glucose. This leads directly to the artificial 

pancreas control problem. In general a blood glucose simulator is more applicable for patients with 

type 1 diabetes. 
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1.3.4 Other interesting results 

Diabetes management is such a large problem that other interesting results came about while 

collecting this data and studying this problem. Chapter 7 describes some of these initial results 

related to calculating meal portions and recognizing meals. These are very preliminary, but they 

may lead to future research projects. 

1.3.5 Conclusions and Future Direct ions 

Chapter 8 contains a summary of the conclusions from this thesis and a discussion on the future 

of robotics in chronic care management. As the prevalence of chronic conditions such as diabetes 

continue to grow more opportunities will arise for developing intelligent assistants to help patients 

and health care providers manage the diseases. 



To linger in the observation of things other than 
the self implies a profound conviction of their 
worth. 

Charles-Damian Boulogne 

Chapter 2 

IDA Measurement System 

The first step toward predicting blood glucose and optimizing therapy is the system of devices 

that interacts with the patient and health care provider. The Intelligent Diabetes Assistant's data 

collection system, described in the chapter, was designed to be simple to use, efficient for the 

patient and health care provider, and complete in its measurements of the behaviors that affect 

glucose. This chapter describes the data collection system in detail and the system for interacting 

with the health care team. 

2.1 Introduction 

In order to learn to model how a patient's behaviors impact blood glucose, an intelligent diabetes 

assistant must first be able to accurately measure data that capture the input and output of the 

system. This requires a balance between the accuracy of a measurement method and simplicity 

of use. If a collection method is too complex or time consuming for a patient then one ends up 

with less data because of the extra burden placed on patients. Also, the patients must be able 

to go places and live life without being burdened by the data collecting equipment. This chapter 

describes IDA's data collection methods. 

When learning models for prediction from patient data, the prediction performance is limited 

by the uncertainty in measurements. To model diabetes a system should collect measurements of 

15 
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meal consumption, exercise, medications, and blood glucose. While there are other factors that 

affect blood glucose, these are the inputs to the system that are controllable by the patient. Stress 

can elevate blood glucose, but it is difficult to both measure and control. 

There have been numerous diabetes telemedicine studies, but IDA uses a unique set of data 

collection equipment. Most studies include measurements of medications, carbohydrates, and blood 

glucose. IDA augments this data by also collecting exercise data and images of meals. These two 

data provide insight into the behaviors of the patient and place blood glucose measurements into 

the context of the patient's life. 

In addition to the type of measurements, it is important to collect data that accurately reflect 

the patients typical lifestyles. To do this, the equipment must be mobile and convenient to use. In 

some cases this requirement causes the gold standard of data collection methods to be infeasible 

because of the impracticality of daily using the method. 

IDA primarily uses a mobile phone based data collection system because it is very common, 

portable, and networked. This allows patients to have the data collection equipment with them at 

all times without requiring additional devices. It also provides a mechanism for providing feedback 

to the patient. While this study did not specifically look at health outcomes when providing 

feedback to the patient, IDA was designed with these features. 

The data collected by this study are unique, so one of the goals is to determine the feasibility 

of collecting this data. If collection is feasible, a second goal would be to determine a minimal 

set of data necessary to model the glucose dynamic system in order to optimize blood glucose. 

Measurements that do not provide benefit would not need to be collected so that the collection 

would be more efficient. 

The mobile phone platform selected for this study was the Nokia N70 seen in Figure 2.1. 

This was selected based on its implementation of J2ME APIs. Originally the mobile application 

was written as one monolithic piece of software; but after testing, it was divided into a modular 

design that could easily be customized for each patient. Diabetes management can vary greatly 

among patients, and diabetes management software needs to be flexible. This phone also allowed 

individually customized shortcuts to be placed on the home screen to make entering data more 
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efficient. 
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Figure 2.1: IDA was implemented using Java on a Nokia N70 Mobile phone. 

To summarize the requirements of the data collection system before going into specific detail, 

it is important for the data collection equipment to be: 

• In situ - measuring a patient's typical behavior in real life 

• Accurate - minimizing the uncertainty of the measurement 

• Efficient - minimizing patient time and effort 

• Complete - measuring all controllable inputs to the system 

• Networked - capable of telemedicine 

2.1.1 B l o o d Glucose 

Blood glucose was measured by the patient with a OneTouch Ultra-Mini glucose meter, displayed 

in Figure 2.2, provided to each patient for the study. The gold standard for measuring blood 
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glucose is the venous glucose concentration, but this cannot be practically used to measure glucose 

concentrations in a patient's everyday life. Capillary glucose concentrations measured by the 

patient using a glucose meter are a reasonable substitute for this standard. However, this does add 

error to the system, glucose meter measurements taken by an expert following the correct protocol 

have an uncertainty of ±6% mg/dl, but measurements take by patients have an uncertainty of 

±15% mg/dl because patients often do not follow the correct protocol [97]. 

Figure 2.2: OneTouch Ultra-mini glucose meter 

In an ideal system the glucose meter should be built into or linked wirelessly to the mobile 

phone, but in its current stage of development IDA requires the user to input the measurement 

into the mobile phone application displayed in Figure 2.3. This introduces another source of error 

as the patient might enter the wrong number. To minimize this effect on the outcomes of the study, 

measurements that were outside of the physiological possible range of blood glucose were omitted 

from analysis: glucose concentrations greater than 1000 were omitted from the study. 

Blood glucose measurements taken with a glucose meter are fairly accurate but very sparse. 

Continuous glucose measurements (CGM) can be collected once every five minutes, but their 
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Figure 2.3: IDA blood glucose data entry application. 

accuracy is significantly lower than blood glucose measurements. CGM are collected by measuring 

the concentration of glucose in the interstitial fluid. This quantity is closely related to blood 

glucose, but it has been shown to be less accurate during times of rapid increase or decrease of 

blood glucose. The CGM value tends to lag behind the blood glucose concentration. Figure 2.4 

compares CGM measurements and BG measurements taken using IDA at identical times. The 

average error between CGM and BG measurements is ±20% and only 67 percent of the points are 

in region A of the Clarke Error grid. 

2.1.2 Food Intake 

Determining the nutritional content of a meal outside of a lab is the most challenging measure-

ment to make. The primary value to estimate is the amount of carbohydrates in a meal because 

carbohydrates are quickly absorbed as glucose into the blood, but blood glucose is also affected 

by the type of carbohydrate and overall composition of the food. Generally, patients are asked to 

perform carb counting: which is estimating the amount of carbohydrates they are about to eat. 

Even with training, patients estimate carbohydrates with an error of ±30% [63]. Meal consumption 
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Figure 2.4: Comparison of CGM and BG measurements. The average error is ±20%. 

is the input with the largest amount of uncertainty while also causing the largest disturbance to 

the system. 

Meal consumption is also a large source of patient individuality. This study includes a wide 

variety of meals eaten by patients from Qatar, Egypt, India, Philippines, Australia, and other 

cultures. However, most carbohydrate counting educational material comes from Western sources 

and does not directly apply to many of the common meals in other cultures. This is one reason 

why it is important to collect more than a patient's estimation of carbohydrates. 

In addition to estimated carbohydrates, IDA lets patients photograph each meal. Figure 2.5 

displays the mobile application used to collect meal images. An image provides important addi-

tional information that a single carbohydrate estimation omits. It allows a dietitian to evaluate 

a patient's ability to estimate carbs. It can be used to estimate the amounts of fat, protein, and 

other nutrients. An image can be used to estimate the portion size of food items. The values 

derived from an image have a high degree of uncertainty, but the extra information is valuable. 
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Figure 2.5: Meal image collection application 

Another advantage to collecting images of meals is its simplicity. Most modern mobile phones 

include a camera, so patients do not need to carry additional equipment or log books. A photograph 

can be taken in seconds compared to hand writing each food included in a meal in a log book. 

The nutrition data contains the following measurements for a meal: 

Nutrition Data Units 
Carbohydrates grams 
Protein grams 
Fat grams 
Total Calories Kcal 
Additional nutritional values are also available 

Most data collection systems only record a patient's estimate for the carbohydrates in a meal. 

By also estimating the protein, fat, and total calories, IDA can capture mixed meals as well. 

2.1 .3 Medicat ions and Insulin 

Patients with diabetes may use many different types of therapy plans that require different med-

ications. The medications can be grouped into three main therapy strategies. The first group 
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Figure 2.6: Medication settings 

is oral medication. This primarily applies to patients with type 2 diabetes. The second group 

includes patients with both type 1 and 2 diabetes who require insulin injections. Sometimes these 

patients also take oral medications. The final group is patients using an insulin pump. IDA can 

be customized for any combination of these three therapy groups. 

Figure 2.6 is a screen-shot of the options for patient therapy. Selecting one of these options 

customizes other interfaces to simplify data entry for the patient in order to make the process more 

efficient. 

In an ideal system, medication types and doses would be collected automatically using smart pill 

dispensers and injectors. Because networked versions of these products are not readily available, 

patients were required to enter doses manually into the mobile phone. 

Medications 

Most patients with T2DM are started on a therapy regimen of oral diabetes medications, diet, 

and exercise. For some of these medications the timing is important, so IDA contains a simple 

application for recording timestamped medication data. The medication data contains the following 
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Figure 2.7: The medication application is customized for the patient so that data entry is efficient. 

measurements: 

Medication Data Notes 
Medication type 
Dose Dependent on type 

Additional medication if necessary 

Figure 2.7 displays two screen shots of the medication entry application. The application is 

customized based on the types of medications selected in the settings application. Most patients 

take a consistent dose so the default dose can be remembered as well. 

Insulin 

All patients with type 1 diabetes, and many with type 2, are required to take insulin. There are 

many types of insulin classified by their time to peak action. The most common types of insulin 

are listed below. 

• Rapid Insulin - This insulin reaches peak activity after 45 minutes. The most common 
types are Humalog and Novalog. 
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Figure 2.8: Insulin injection application 

• Long Acting Insulin - There is no peak in this insulin as the absorption rate is fairly 
constant. The most common commercial type is Lantus. 

• Regular Insulin - This is also referred to as human insulin. The time to peak activity is 
closer to two hours. 

• Mixed Insulin - Mixed insulin contains a mix of regular or rapid acting insulin and a longer 
acting insulin. The most common type is a 70/30 mix of long acting and regular insulin. 

IDA also allows the insulin application to be customized for each patient. The types of insulin 

used by the patient can be selected so that data entry is quick. Figure 2.8 displays screen shots of 

the insulin injection data entry application and the settings options. 

This application is only for patients using insulin injections. Patients using an insulin pump 

require a more complex application to capture the additional capabilities of insulin pumps. 

Insulin Pump 

There are two components to insulin pump therapy: the basal insulin profile and bolus doses for 

meals. The basal profile specifies an insulin dose rate for each 30 minute time window in the day. 
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Figure 2.9: Insulin 

Most pumps allow the user to define and save multiple basal profiles. IDA mimics this functionality 

by allowing users to save multiple basal profiles. 

Most insulin pumps can also give different types of bolus insulin patterns. The three most 

common types of bolus patterns are listed below. 

• Normal Bolus - All the insulin is infused at once. 

• Square Bolus - The insulin is infused at a constant rate over a period of time. 

• Dual Bolus - This is a combination of a normal and square bolus defined by a percentage 
of insulin to give as a normal bolus. 

Figure 2.9 displays a screen shot of the bolus application and the bolus type selection. Figure 

2.10 displays the basal profile editor. In future systems the bolus and basal entry procedures could 

be simplified if an insulin pump could be wirelessly interfaced to a mobile phone. 

2.1.4 Meal Wizard 

Around meal times patients often measure their blood glucose, inject a dose of insulin, and estimate 

meal carbohydrates. To make data entry around meals more efficient, a meal wizard application 
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bolus application 
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Figure 2.10: Basal Profile Application 

was developed that combines the blood glucose, bolus, and meal image applications to step the 

patient through the process. 

2.1.5 D a t a Collection Alerts 

To help patients adhere to data collection protocols IDA notifies the patient if a blood glucose 

measurement was not taken before a meal or two hours after a meal. It will also notify patients 

on insulin injection or insulin pump therapy if no insulin dose is recorded before a meal. Other 

measurement protocols can also be programmed into IDA to improve patient adherence. 

2.1.6 Exercise 

The three controllable inputs that affect blood glucose are meals, medication, and exercise, but 

most diabetes management systems overlook physical activity. Exercise can have a significant 

impact on blood glucose, and it should be included in a complete diabetes management system. 

Like meals, exercise can be difficult to measure. There is debate over the most useful metric 

for quantifying exercise for diabetes research. The main three forms of exercise data collection 
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Figure 2.11: The Bodymedia Sensewear armband is used to estimate energy expenditure. 

are exercise logs, measuring the heart rate, and accelerometers to measure movement. The device 

selected for exercise measurement for IDA is the Bodymedia Sensewear Armband. It uses a com-

bination of thermometers to measure skin temperature, accelerometers to measure movement, and 

sensors to measure galvanic skin response to estimate the amount of calories burned per minute. 

The Bodymedia Armband, displayed in Figure 2.11, is worn on the upper arm. The exercise 

data measured and calculated by the armband contains the measurements in Table 2.1 taken every 

minute. 

The data collected by the armband can potentially be used in many other ways beyond esti-

mating exercise. For example, the estimate for sleep could be used to adjust the device behavior 

to minimize patient annoyance. 

The Armband has wireless capabilities, but it currently cannot be interfaced wirelessly to a 

mobile phone. Ideally the data would be available in real-time. Currently IDA only uses the 

exercise data in retrospective analysis. 

2.1.7 Addit ional S y s t e m Capabil it ies 

In addition to the data collection capabilities, IDA can also record text messages, audio messages, 

and hemoglobin Ale. It can also receive text messages from a health care provider. These specific 
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Exercise Data Units 
Energy expenditure Kcal/min 
Physical activity Binary 
Sleeping Binary 
Lying down Binary 
Galvanic skin response //Siemens 
Number of steps steps 
MAD acceleration lateral 9 
MAD acceleration transverse 9 
Average acceleration lateral 9 
Average acceleration transverse 9 
Peak acceleration lateral 9 
Peak acceleration transverse 9 
Cover temperature °C 
Skin temperature °C 
Heat flux W/m2 

Table 2.1: Measurements recorded by the Bodymedia armband 
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Figure 2.12: Other IDA capabilities include recording audio and text messages and receiving 
messages from a health care provider. 
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capabilities were not used in the clinical study, but they could be used in future studies. 

2.12 contains screen shots of IDA's additional applications. 

30 

Figure 

2.2 Conclusions 

The design goals for the data collection devices and applications used by IDA along with how IDA 

addresses each goal are listed below. 

Previous Data Collection Methods New Collection Methods 

1.5 2 
T ime (days) 

Figure 2.13: Data collected with a CGMS, glucose meter, Bodymedia armband, along with user 
recorded food and medication intake. 

• In situ - Patients can easily take the mobile phone and armband with them to collect data 
that represents their real-life behavior. 

• Accurate - The devices selected provide the best balance of accuracy and portability. 

• Efficient - The mobile phone application was designed to minimize the number of key presses 
necessary to enter data. Whenever possible the application is customized to simplify data 
collection. 

• Complete - IDA measures meal intake, medications, and exercise along with blood glucose. 

• Networked - The mobile phone provides network access for the patient. 

The devices and software created for IDA achieve the design goals for a useful telemedicine 

diabetes management system. With this proposed system all the data necessary can be collected 

to evaluate the diabetes models. Figure 2.13 demonstrates the quality of data from previous 
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measurement techniques. The data is sparse and lacks a measure of exercise. It is placed next to 

a plot containing the detailed data that has been collected using IDA. 



As we acquire more knowledge, things do not 
become more comprehensible, but more 
mysterious. 

Albert Schweitzer 

Chapter 3 

Telemedicine and Clinical Protocol 

3.1 Introduction 

A clinical study was designed to evaluate IDA as a means of remotely collecting diabetes lifestyle 

data and to develop algorithms for automatically analyzing the data. Chapter 2 described the 

devices and applications that IDA uses to interact with patients, and this chapter describes IDA 

from the health care providers point of view. Unfortunately no company currently has a system 

available to collect all the data necessary for this project, so part of this project was to develop a 

system that is flexible enough to include data from different sources and combine it into a single 

usable source. Figure 3.1 diagrams the flow of data from the devices used in IDA by the patient, to 

the database and analysis system, and then passed through the care provider back to the patient. 

This chapter will present the web-based interface the health care team uses to view data, process 

meals, and communicate with the patient. Then the clinical data collection protocol used to collect 

patient data will be presented followed by descriptive statistics of the patients included in the study. 

3.2 Telemedicine System 

To make the data useful for physicians a web-based graphical front-end to the database was created. 

The interface allows the user to view and interact with the data and communicate with the patient. 

After the data are collected they are transmitted instantly to a secure MySQL database server. 

32 
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Figure 3.1: IDA data flow from patient to database where therapy advice is generated and returned 
back to the patient through the care provider. 

A custom web interface has been developed to allow the patient or care provider to access, interact 

with, and process the data. The web application has three primary interfaces that allow the patient 

or care provider to view and analyze data. The first is a data plot that displays all the collected 

data on a time-line. This lets the user visually identify patterns in the diabetics management in 

order to improve therapy. For example a dietitian could view an image of the patients meal with a 

plot of the effect the meal had on the patients blood glucose. Figure 3.2 displays a screen capture 

of the data plot interface. 

The second interface is designed to allow a dietitian to evaluate the nutritional content of a 

meal based on an image of the meal. The interface displays an image of the meal and an text box 

to search a food database. Foods are identified and the total nutritional content of the meal is 

calculated. For the study the dietitian hand labeled the outline for each food in the meal. Figure 

3.3 displays this interface. In this example the meal selected is high in carbohydrates and results 

in postprandial hyperglycemia. 

The final interface allows the user and care provider to send text messages between the web 

interface and the mobile phone. This facilitates instant feedback from the care provider. Combined, 

these three interfaces provide the care team with better information and tools to monitor the 

patients health and the means to communicate advice. Figure 3.4 contains a screen-shot of the 

messaging interface. This interface lists both text messages and audio messages from the patient. 
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Figure 3.2: The time-line interface combines all data on one time-line and allows the health care 
provider and patient to explore the impact that behaviors have on blood glucose. 

During the data collection, the web interface allowed the research team to monitor patients 

participating in the study. The study did not use the communication features to measure the 

impact of the system on patient health. It was designed primarily as a data collection. 

3.3 Data Collection Protocol 

Prior to the data collection phase each subject was taught how to use the data-collection devices, 

answered a questionnaire, and had standard blood-work done. The subjects were informed in detail 

about the project, including the potential benefits and risks, and required to sign a consent form. 

This experiment was conducted under the review of the Hamad Medical Corporation Research 

Committee (#7017/07) and the Carnegie Mellon University Institutional Review Board (HS08-

139) in compliance with the Helsinki Declaration. 

The patient questionnaire was used by a collaborating dietitian to evaluate the subject's knowl-

edge of diabetes, nutrition, and other lifestyle factors that can affect blood glucose. Blood was 

drawn by a medical practitioner and used to assess each subjects health status. The sample was 
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Figure 3.3: The meal analysis interface lets the dietitian search a food database to label foods 
contained in the meal image. The interface calculates the total fat, protein, carbohydrates, and 
calories for the meal. 

be used to measure lipids, blood glucose, and HbAlc. If the subject had blood work done in the 

past month then it would be used. 

Subjects who were younger than eighteen, pregnant, or experiencing diabetes related compli-

cations were excluded from the study. The study also required that patients be able to understand 

basic English. 

During the data collection phase the subjects used IDA's mobile phone application to enter 

medication information, blood glucose readings, audio and text messages, and meal images. The 

data entered on the phone was transmitted wirelessly to a secure database. The software is written 

to work on most modern mobile phones. If a subject had a compatible phone and wished to install 

the software on it, they were allowed; otherwise a phone was provided. Costs incurred by the 

subject for data transmission related to this project were covered by providing the patients with 

enough prepaid minutes to complete the study. The patients were financially responsible for any 

additional charges. 
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Name: 

Weight: 

Height: 

BMI: 

Patient Information 

137206 

100 kg 

170 cm 

25 

Patient List Data Plot Nutrition 

Date: Wed 24 Oct 2007 03:07:00 PM AST 
From: 137206 

No insulin afternoon 

IDA 
Intel lirent Diabetes Assistant Q*U> 

Analysis 

I Previous j l Message List | | Next 

| | Date | Text MB3BW 
C 7/11/2007 Upload... 137206 

C 25/10/2007 B G is 91 fasting. 137206 

K* M EfcMIMRIlHMB 
1" 24/10/2007 Test... 

•lElGaai 
137206 

T 24/7/2007 We are happy too (... clinician 

C 24/7/2007 Realy i am very happ... 137206 

Reply 

Figure 3.4: The messaging interface is designed to be similar to an email Inbox with both the sent 
and received messages listed on the right side in order to track the time-line of a conversation. 

The subjects also used a Bodymedia Sensewear Armband and to monitor their energy expen-

diture. The subjects were instructed to wear the armband continuously, except for during showers 

or swimming. Exceptions were made for subjects who experienced discomfort when wearing the 

armband at night. After the study the data were downloaded from the armband and uploaded 

into the database. Detailed instructions for each device were provided to each subject along with 

a phone number where they could call for additional help. 

The data-collection lasted for two weeks and included two weekends. Each day the subject was 

instructed to follow their normal self-management routine as prescribed by their care-providers 

while recording the specified data. The subjects measured blood glucose before and two hours 

after each meal, recorded all diabetes related medications, and photographed each meal. Figure 

3.5 contains a diagram of the data collection protocol. 

This data-collection is designed to capture data that reflects the subject's lifestyle patterns, so 

therapeutic advice was not be given until after the collection was complete. However, a physician 

monitor the data, and if at any time the physician noticed a harmful pattern in the data, they 

were to contact the subject. All patient data was stored securely and anonymously by a random 
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Figure 3.5: During a day each subject was instructed to measure blood glucose before each meal 
and two hours after each meal. 
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Continuous Data 

Time 

Figure 3.6: Sample data collected using the protocol described 

patient id. Only the primary physician will have access to the patient identification. 

Following the data collection the subjects returned the devices and had the opportunity to 

discuss the data with care-providers. All subjects also received a printed report containing detailed 

data that they could keep for reference. After successfully completing the study the subjects were 

given a glucose meter, kitchen scale, and a small gift of appreciation. 

3.3 .1 Sample D a t a 

Some sample data measured over the first week of a data collection is plotted in Figure 3.6. Ideally 

if the patient followed the protocol then they would have data from about three meals a day for a 

total of about 52 meals over the two weeks. Each meal should have two associated blood glucose 
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Parameter Mill Mean Max 
Age (yrs) 
BMI 
Weight (lbs) 
Mean BG (mg/dl) 
Std BG (mg/dl) 
Mean Carb (gm) 
Std Carb (gm) 
Mean Exercise (cal/m) 
Std Exercise (cal/m) 
Number BG measurements 

19 46 56 
21 29 43 

121 170 232 
108 147 229 
15 55 83 
35 66 116 
17 35 68 

1.25 1.74 2.73 
0.40 0.92 1.76 

18 60 115 

Table 3.1: Descriptive Statistics for the Study Population 

measurements, so each patient should have about 104 recorded glucose measurements. In the 

sample data most of the meals have an associated insulin bolus. The error in CGM data can also 

be seen in this figure. 

3.3.2 Descript ive Stat is t ics 

In all, the study recruited 16 subjects to take part in the data collection. Two subjects failed to 

collect enough useful data by not following the protocol. These two subjects were omitted from 

the data analysis. All subjects were able to use the devices and software, so IDA achieved one goal 

of being simple to use. 

The subjects were selected to represent a broad range of diabetes. There were seven subjects 

with type 1 diabetes and nine with type 2. Seven of the subjects are male and nine are female. 

Among the subjects there were some with tightly controlled diabetes while others were not very 

controlled. 

Table 3.1 lists the descriptive statistics of the subject population. The population included 

both young and old subjects ranging in age from 19 to 56 years. Subject BMI ranged from the 

normal range, 21, to obese, 43. One of the subjects had tightly controlled diabetes with a mean 

blood glucose of 108 mg/dl while the subject with the most uncontrolled blood glucose had a mean 

of 229 mg/dl. Some subjects rarely exercised while others exercised regularly. On average subjects 

recorded 60 blood glucose measurements representing an average of thirty meals. 
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The goal of the clinical study was to collect data from a diverse set of people with diabetes 

representing a wide range of behaviors. Based on the descriptive statistics, the study achieved this 

goal. IDA was designed to have practical uses for all types of patients with diabetes, so it was 

important for the study to sample across the spectrum of the disease. This allows models to be 

tested on a wide range of real-life scenarios. 



The first law of dietetics seems to be if it tastes 
good, its bad for you. 

Isaac Asimov 

Chapter 4 

Postprandial Prediction 

Managing diabetes is a control problem; patients try to choose combinations of behaviors that 

they believe will optimize their future blood glucose. Patients make many of these choices just 

before meals, but in general they are not able to correctly predict the outcome of their behaviors. 

Gaussian process regression provides a significant improvement over human prediction and, with a 

Gaussian kernel, is able to represent nonlinearities in the system. The nonlinearities are important, 

so the Gaussian kernel performs significantly better than a linear kernel. Additionally the phys-

iology of each patient is unique, so models that are trained specifically for an individual patient 

predict outcomes better than a generic model trained from a joint dataset. The model performance 

improves enough after being trained with about three days of data, representing nine meal events, 

to use for making predictions on similar meals. The glucose regulatory system is very complex and 

any data collected in a patient's real life setting will be very noisy. 

4.1 Introduction 

The largest disturbance to glucose homeostasis occurs after meals, so the decisions patients make 

surrounding their meals are very important for controlling blood glucose. The challenge of optimiz-

ing postprandial blood glucose could be aided by creating models that learn to predict how patient 

behaviors around meal times will affect their glucose. Meals are when diabetics make most of their 

41 
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decisions. They decide how much to eat and an appropriate amount of medication to correct the 

glucose excursion. 

Modeling the behaviors and outcomes at meal times is useful for both type 1 and type 2 

diabetics. Optimizing therapy to correct meal excursions would provide significant health benefits 

for diabetics, and potentially lead to better heal outcomes. This is a very challenging problem, but 

it is a necessary one to solve. Patients will be attempting to predict the results of their choices, so 

any system that outperforms humans is an improvement. 

Learning models to predict postprandial glucose values poses many difficult problems. The 

first is the noise in the system and the uncertainty of measurements. Additional noise comes from 

patient error and unmodeled factors. Besides all the sources of uncertainty, diabetes datasets often 

have few measurements for training and evaluating models. Finally, patients are all unique and 

may have different outcomes after the same input. Predicting postprandial glucose values can be 

expressed as learning a noisy function from sparse input data. 

Methods for predicting postprandial blood glucose values are well represented in literature. 

IDA adds to these studies by incorporating energy expenditure and nutrition estimates based on 

IDA's unique meal image analysis. The inclusion of exercise and meal images helps capture the 

behavior of the patients: it places blood glucose readings into the context of daily life. 

In this chapter the postprandial prediction problem will be explored in five experiments. The 

first experiment is designed to identify the most important input measurements and establish an 

order for including measurements into a model. The second experiment will compare modeling 

methods ranging from basic linear regression to nonlinear kernel based methods. The third exper-

iment will compare models trained with an individual's data to models trained with data from a 

mixture of patients. The fourth experiment compares the performance of models on a new patient 

as more measurements become available for training the model. Finally, the quality of prediction 

will be compared to patient descriptive statistics to determine whether it is possible to identify 

ideal candidates for this method. 
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To train the model the system is given a set of recent past measurements, Xt, and anticipated 

inputs in the near future, Xt+, associated with a meal at time t. The anticipated measurements 

typically include planned exercise and estimated meal content. The output of the model is the 

predicted glucose measurement, gt+2, taken two hours after a meal. The inputs to this system are 

energy expenditure, nutrition, medication, time-of-day, and the blood glucose measurement taken 

just prior to the meal. The clinical study was designed to prompt patients to collect data in this 

format. The primary problem is to learn a function of Xt and Xt+ to predict gt+2-

f(XuXt+)^gt+2 (4.1) 

While this is the ultimate goal, many other problems need to be addressed. One problem 

is that the raw input set is probably not the best set of input measurements. The best set of 

input variables will minimize the error while also minimizing the burden on the patient. Thus 

measurements that are not correlated with postprandial glucose would not be necessary to collect 

on a regular basis. 

The best modeling method also needs to be determined. The data collected is sparse, noisy, 

and nonlinear. A model needs to be able to robustly represent the underlying function without 

over-fitting. 

Another challenge is the initial learning phase for a diabetic. Incremental learning can be used 

to update the model when new data is available. It is important to understand how a model will 

perform as the input data set grows and when the model can be used to make predictions with 

confidence. 

Similarly, a patient's model might be improved by using input data from other patients. Par-

ticularly in the cases where the patient has few training data and in cases where the patient is 

trying new behaviors, using training data from other patients may help. The data from patient p, 

out of P patients, will be labeled as X'^. Similarly the postprandial glucose measurements for a 

patient will be referred to as The complete set of input data from all patients will be labeled 
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as In this case a model learned from an individual's data will be compared to models learned 

from the joint data set. 

Finally, these models might perform better for certain classes of patients. In the study patients 

were recruited that represent a broad range of diabetics. Correlations may exist between the 

descriptive statistics of a patient and the performance of the models. 

4.2 .1 D a t a Preparat ion 

To prepare the raw data for analysis, it is processed to identify meals that meet certain criteria. A 

meal is included if the patient collected pre-meal and 2 hour postprandial glucose measurements. 

Postprandial glucose measurements are considered valid if they are taken between 1.5 and 2.5 hours 

after a meal. The energy expenditure measurements are averaged into four samples, each lasting 

one hour, ranging from two hours before the meal to two hours after. The resulting input data set 

contains the variables listed in Table 4.1. 

In addition to pre-meal glucose, medications, meals, and exercise, the input data set includes 

the time of day of the meal. This is included to allow for the dawn phenomena [95] and other time 

related glucose patterns. After identifying data that meets the requirements, the data are centered 

and normalized. 

4.2 .2 Error Metrics 

Two metrics will be used to evaluate the quality of predictions. The first is the R2 coefficient. 

This metric reflects the amount of variance explained by the model and is a standard measure of 

regression performance. All results are listed using the R2 statistic defined as follows: 

't+2 (4.2) 

ESS 
AT . ~ J- m n si (4.3) 

In this equation gi is the reference value, gt is the estimate from the model, and g is the mean 
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Description Units 
1 Pre-meal blood glucose mg/dl 
2 Postprandial time of BG measurement min 
3 Average exercise from 2-1 hr before meal cal/min 
4 Average exercise from 1-0 hr before meal cal/min 
5 Average exercise from 0-1 hr after meal cal/min 
6 Average exercise from 1-2 hr after meal cal/min 
7 Time of Day hrs 
8 Patient estimated carbs gm 
9 Expert estimated carbs gm 
10 IDA calculated carbs gm 
11 IDA calculated fat gm 
12 IDA calculated protein gm 
13 IDA calculated calories gm 
14 recent calculated carbs gm 
15 recent calculated fat gm 
16 recent calculated protein gm 
17 recent calculated calories gm 
18 Rapid Insulin units 
19 Regular Insulin units 
20 Recent Mixed Insulin units 
21 Earlier Mixed Insulin units 
23 Sulfonylureas 
24 Meglitinides 
25 Netaglinide 
26 Biguanides 
27 Thiazolidinediones 
28 Alpha-Glucosidase Inhibitors 

9t Output Variables 
1 2 hr Postprandial blood glucose mg/dl 

Table 4.1: Input data and output data for postprandial glucose prediction 
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glucose value. This can be summarized as one minus the residual sum of squares error, ESS, 

divided by the total sum of squares, TSS. This metric can be thought of as the amount of variance 

explained by the model. A perfect value for R2 is one and a value of zero signifies no correlation. 

The second error metric is the Clarke Error grid developed by Clarke in [28]. This plot is 

designed specifically for the diabetes blood glucose domain by identifying the clinically significant 

types of errors between predictions and reference values. The Clarke error grid labels five clinically 

significant areas in a regression plot between the prediction and reference data. Figure 4.1 is an 

example of a Clarke error grid. 

The areas are typically labeled alphabetically A, B, C, D, and E. Region A contains data 

where the predictions are within ±15% of the reference values. Region B contains data that have 

significant quantitiative error, but would still be labeled identically as hypoglycemic, normal, or 

hyperglycemic. Region C contains data that are in the normal glucose range but labeled incor-

rectly as hypoglycemic or hyperglycemic. Region D contains points that are falsely labeled as 

normal when they are actually hypoglycemic or hyperglycemic. Finally, region E contains data 

that are dangerously mislabled. In region E hypoglycemic data is labeled as hyperglycemic, and 

hyperglycemic data is labeled as hypoglycemic. This type of error could lead a patient to choose 

a dangerous therapy. 

In two studies, patients were able to predict their postprandial glucose values with 28.5 percent 

in region A [96] and 41.5 percent in region A [47]. Other computational prediction systems have 

achieved results with 34 percent and 51 percent in region A [3, 4], Finally in a simulation study 

the theoretical bound for prediction performance was estimated at 43.6% when using typical data 

collection methods [63]. These are the baselines that IDA needs to improve upon for predicting 

postprandial blood glucose. 

4.3 Statistical Models 

There are many potential models to evaluate for predicting postprandial glucose. An ideal model 

for a problem should match the nature of the data it is intended to represent, so the ideal model for 
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Clarke's Error Grid Analysis 

Reference Concentration [mg/dl] 

Figure 4.1: Example Clarke Error grid: The labeled regions identify clinically significant errors in 
predictions. 
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this problem should be robust, nonlinear, and able to learn from small datasets. The ideal model 

should also be transparent. A physician needs to be able to understand the process that created 

the prediction. Both patients and physicians are hesitant to trust a black box. 

Postprandial Glucose Prediction Models 
Gaussian process regression with a linear kernel using individual data. 
Gaussian process regression with a linear kernel using joint data. 
Gaussian process regression with a linear kernel using weighted data. 
Gaussian process regression with a Gaussian kernel using individual data. 
Gaussian process regression with a Gaussian kernel using joint data. 
Gaussian process regression with a Gaussian kernel using weighted data. 
Reduced rank regression using Mixture data. 

Table 4.2: Postprandial prediction models 

The models listed in Table 4.2 will be described in detail in this chapter and used to address 

specific aspects of postprandial glucose prediction. They will be used to determine whether the 

system can be approximated by a linear function or whether a nonlinear function is necessary. The 

models will also be used to test how individualized a model needs to be for a patient. Each model 

will be described in detail in the following sections. 

4.3.1 Gaussian Process Regress ion 

Gaussian Process regression applies a probability distribution across an infinite function-space to 

identify underlying functions that are consistent with the training data. The method does not 

require an explicit parameterization of all possible models, but instead bases predictions on the 

likelihood of functions given a prior distribution in function-space and the training data. It differs 

from regression methods, such as linear regression, that estimate coefficients of a parameterized 

model. The predictions are in the form of a full predictive distribution, providing both the mean 

and variance of the predictions. This difference makes Gaussian Process regression an appealing 

choice when the system being modeled is complex and difficult to parameterize. 

In this type of complex system the best model is often the training data. Gaussian Process 
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regression is a data driven method which allows it to model unknown interactions. The downside 

is that it is only as good as the training data. If a variable has no variation in the training set then 

Gaussian Process regression cannot identify any correlation with the output variable. A model 

built on expert information might be able to account for such variables. 

The key to Gaussian Process regression is the covariance function. It governs the properties of 

the resulting functions; it can be changed to produce linear or nonlinear results. The covariance 

function can be thought of as a kernel function similar to those used in support vector machines 

and other kernel based learning algorithms. For this research project two covariance functions are 

used: a linear function and a Gaussian radial basis function. These two functions will be used 

to determine the complexity of model needed to predict postprandial glucose. If a linear function 

works, the the more complex nonlinear is unnecessary. 

Derivation 

The solution for Gaussian process regression is often presented as finding the maximum of a predic-

tive probability distribution in function-space. For realistic modeling scenarios it is assumed that 

the training function values, g, are noisy representations of the true output. Assuming additive 

input, the covariance of g can be expressed as the following. 

cov(g) = K{X, X) + fil (4.4) 

With this noise term, the joint distribution of the observed glucose values and predicted glucose 

values for test input under the prior can be written as the following. 

9 
/ K(X,X) + IAI K{X,X*) \ 

0, 
K(X,X) + IAI K{X,X*) 

9* V 
K(X*,X) K(X*,X*) / 

(4.5) 

The joint distribution can be used to derive the predictive distribution for Gaussian process 

regression by conditioning on the training glucose values, g. 
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p(g*\X,g,x*)~M(g*,cov(g*)) (4.6) 

Where the mean of the predictive distribution are calculated with the following equation. 

g* ± K\g*\X,g,x*] = K(X*, X)[K(X, X) + ^ g (4.7) 

And the covariance is calculated with 

cov(g*) = K(X*,X*) - K(X*,X)[K{X, X) + nl\~xK(X, X*). (4.8) 

A key benefit of Gaussian process regression is that it provides a full predictive distribution. 

For diabetes applications, automated decision support can benefit from using both the predicted 

value and the uncertainty of the prediction. 

The mean of the solution can also be expressed as a minimization of least squares problem. 

The least squares method is presented here. Given a set of training data, (X,g), containing input 

data, X, and postprandial glucose, g, least squares minimization is used to find the coefficients 

that will minimize the error of the following regression equation. 

g = K(X,X)f3 (4.9) 

Where K(X, X) is the covariance function evaluated on the training set and (3 a set of coefficients 

to estimate. The solution for /3 is found by minimizing the following error function. 

E(0) = \\g-K(X,X)P\\2 (4.10) 

The solution is found by inverting the covariance function . 

P = K(X,X)~1g (4.11) 

This solution, however, assumes that there is no noise in the training data and that the kernel 
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matrix is invertible. Left this way, it will tend to over-fit noisy data, and diabetes data is noisy. 

This can be fixed by adding a regularization parameter to the error function. This is similar to 

ridge regression. The specific error function that includes the regularization parameter is below. 

E(J3) = ^ ||G- K(X, X M 2 + I \\K(; X)F3\\2 (4.12) 

This can be minimized by taking the partial with respect to /?, setting it to zero, and solving 

for p. 

= ~ K { X , X f g + ±K(X, X)TK(X, X)(3 + ^ K ( X , X ) (4.13) 

The solution for j3 that minimizes equation 4.12 is the well known solution for Gaussian Process 

regression. 

P=[K{X,X)+liI]-lg (4.14) 

This can be inserted into equation 4.9 to make predictions at new test points, X*. 

g* =K(X*,X)[K(X,X)+vI]-1g (4.15) 

All that remains to complete the regression method is a definition of the covariance function. 

Linear Covariance Function 

Gaussian process regression with a linear covariance function is very similar to basic linear re-

gression. More accurately, it mimics ridge regression. The linear covariance function is given in 

equation 4.16. 

K L ( X i , X j ) = x T x j (4.16) 

When this covariance function is inserted into equation 4.17 the solution for new data becomes 

the following. 
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g* = X*T [XTX + fil] 1 XTg (4.17) 

This solution is identical to ridge regression or Tikhonov regularization. It should be noted 

that the Gaussian Process regression framework can be used to mimic other regression techniques, 

in this case ridge regression, by the choice of covariance function. 

This model will form a baseline for comparison with more complex nonlinear models. It will 

also identify correlations between input data and postprandial glucose values. Finally, it will be 

used to compare models learned from a single individual to models learned from the combined data 

from all patients. 

Gaussian Covariance Function 

A Gaussian kernel function will be used in Gaussian Process regression as a covariance function 

to account for nonlinearities in the system. The glucose regulatory system is complex so the 

best modeling method may be to use a data driven method. The Gaussian kernel captures the 

similarity between data and is not constrained by a rigid parameterization. It can model unknown 

interactions that are not explicitly included in a physiological model; however, it can also easily 

over fit the noise in the data. 

The Gaussian covariance function is given in equation 4.18. The width of the kernel, E, is used 

to balance between over-fitting and, in a sense, over-smoothing: losing the fine detail in the system. 

Prior to processing, the data collected by IDA were centered and normalized. The data were 

normalized using the standard deviation calculated with the data from all the patients in order to 

have a uniform kernel width for all patients. A kernel width of 0.5a was found to work well for 

modeling when comparing experiments done with different kernel widths. Because the data were 

normalized, the same width was applied to all variables. 

There is a significant amount of noise in diabetes data, so smaller kernel widths suffered from 

KaiX^Xj) = (4.18) 
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over-fitting. Larger kernel widths caused the model to fail to capture the detail in the system. 

This effect was particularly noticeable in patients with reduced behavior variability. The change in 

performance when changing kernel width, however, was not extremely volatile, and performance 

was statistically similar for a range of widths. 

Other Covariance Functions 

In addition to the linear kernel and Gaussian kernel, other covariance functions can be used in 

Gaussian Process Regression. Periodic functions could be used to model time-based glucose changes 

like the dawn-phenomena. These effects were roughly handled by using the time-of-day as an input 

variable with the Gaussian kernel. 

4.3.2 Interpatient Mode l Variability 

A single patient with diabetes may not have enough data to adequately model how new behaviors 

will affect his glucose, so this research project also investigates using data from multiple patients 

to improve the model for a single diabetic. Three types of models were compared to see whether 

predictions improve when using training data from additional patients. The first is the joint model 

that generates predictions using the data from all the patients equally. The second is the individual 

model that only uses data from a single patient, ignoring data from all other patients. The third 

is a weighted mixture model that weights data more heavily from similar patients when making 

predictions. 

Joint 

The joint model includes data from all patients and assumes that there is no variability between 

patients. This model is not expected to be the best, but it acts as the baseline for comparison with 

the individual and mixture models. The benefits of the joint model are that it covers the largest 

range of input space in the training data, so that it is more likely that a new patient behavior is 

represented by the training data. 

In the joint model the covariance function is calculated using all available data. 
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g* = K(X*,Xp)[K(Xp,Xp) + vl] V (4.19) 

The main fault in this approach is that it is not able to represent the individuality of patients. 

Individual 

The individual model only uses the training data from the individual patient. Unlike the joint 

model it ignores all information from other patients, so it may suffer from having limited training 

data. Testing the individual model will establish the other endpoint of the spectrum from the joint 

to individual. The Gaussian Process regression model for patient j will only use XJ as training 

data. 

g* = K{X\X*) [K(X*,X*) + fil]-1 gj (4.20) 

The glucose regulatory process for every patient with diabetes is different, so this method will 

treat every patient as an individual. However, because of the limited training data, the model will 

be forced to extrapolate more as new behaviors will not be represented in the training set. 

Weighted Mixtures 

The weighted mixture model lies somewhere between the individual and joint model. It was de-

signed to maintain the strengths of each method while reducing the weaknesses. The weighted 

mixture model uses the training data from all patients to make predictions, but weights the data 

according to the similarity between the patients. The similarity is calculated based on the correla-

tion between the training data of two patients. The assumption is that if two patients have similar 

outcomes associated with known similar behaviors, then they will also have similar outcomes when 

other new behaviors occur. For example, if a patient has never consumed 100 grams of carbohy-

drates without insulin, but a similar patient has, then the data from the similar patient is useful 

for predicting what will happen to the first patient. 

The mixture model will cover the full range of input data for all patients while modeling each 



CHAPTER 4. POSTPRANDIAL PREDICTION 55 

patient as an individual. Theoretically, this can be added to the derivation of Gaussian Process 

regression by modifying the initial probability optimization. For an individual the model selects the 

output that is most likely produced by the input. Given a test point xi from patient j the training 

data from all patients ( X p , g p ) is used to find the glucose value that maximizes the predictive 

distribution below. 

p(gi\xi,Xp,gp) = Jp{gi\xi,wj)p(w\Xj,gj) + Jp{gi\xl = wp)P(wp\Xp^, gp^) (4.21) 

The inclusion of data from other patients adds the patient similarity term to the equation, 

p(w3 — wp). The similarity term, s]p, estimates the probability that the data from two patients 

was generated from the same model. 

SjiP = p(wj = wp) (4.22) 

The value for Sjj is one. The similarity term can be included in the covariance function 

calculation. 

K(xj,xp)s = K(xj,xp)Sj,p (4.23) 

This modified covariance function can be included in the least squares formulation for Gaussian 

Process regression given in equation 4.12 using the 

m = ^ I\gP - K(XP,XPUf + \ \\K{;XM2 (4.24) 

Minimizing this error function results in the solution below. 

g* = K(X*,XP)S [K(Xp,Xp)s+f,l]-1g (4.25) 

The similarity function SjiP was implemented by calculating the correlation between the output 
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of two patient models. Thus the similarity measure for a patient s^j is equal to one, and his 

similarity to other patients will range from zero to one. It can be interpreted as the probability 

that the two patient models are the same. 

To calculate SjtP the individual models for the two patients are used to predict the output for 

both patients sets of training data. If g] is the prediction for the input set [X'JXp] based on the the 

individual model of patient j, and similarly, gp is the predictions for patient p, then the similarity 

can be calculated using equation 4.26. 

s _ V T Z L M - 9 J M - ! ? ) ( d _ 
bj,P — {4.ZO) 

Other similarity metrics were considered, but this one was chosen because it is easily interpreted. 

This model was designed to maintain the benefits of an individual model when interpolating near 

training data, while using data from other patients to improve performance when extrapolating to 

new behaviors. 

Simple Example 

To demonstrate the weighted mixture model a simplified problem was first considered. In the 

Figure 4.2, twenty random linear models were created and a dataset was randomly sampled from 

each. The portion of the range that was sampled was randomly selected so that some datasets 

would overlap. Then normally distributed noise was added to the data. The similarity between the 

models was calculated and Gaussian Process regression with a Gaussian kernel using a weighted 

mixture of data from the different sources was used to model the data. 

The subset being modeled is plotted with large blue diamonds. The probability that other 

datasets are from the selected subset is represented by the size of the red diamonds. Small black 

diamonds mean that the two sets are not similar. The red curve is the GP regression learned from 

only the blue data points. The black curve includes the influence of the red data points. The two 

methods are very similar when interpolating within the range of blue input data, but the weighted 

mixture method tends to extend the quality of prediction when extrapolating at the edges of the 
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Comparison of GP Regression Techniques 
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Figure 4.2: Example of the interpolation and extrapolation behavior of the weighted mixture model. 

input range. Note that the improved extrapolation only occurs when data from different sources 

both overlaps and extends beyond the range of the current individual. 

4.3 .3 R e d u c e d Rank Regression w i th a Generic Basis 

The weighted mixture model balances between the joint model and individual model in order 

to test the theory that using data from multiple patients will improve performance compared to 

using data from a single patient. To further test this theory the Reduced Rank Regression with a 

Generic Basis (RRR) model was developed. This model uses least squares error minimization to 

simultaneously identify a reduced rank basis for all patients and a patient specific set of coefficients 

to adjust the basis for the individual. 

Noise is a significant problem with glucose modeling, so the model may be improved by using 

a reduced rank approximation to the noisy data. The variables and parameters for the derivation 

are defined below. 

• N - Number of training points 

• V - Number of variables 
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• k - Size of reduced rank 

• P - Number of patients. 

• gm - 1 x N: Output from model m 

• Xm - V x N: Input data from model m 

• B - V x k: Uniform transformation matrix from V => k. 

• am - 1 x k: specific coefficients for model m. 

• o - 1 x k: vector of l's. 

• fj. - penalizes when a ^ ^ 1 

• 7 - penalizes when a ^ ^ 1 

The general equation for evaluating test data using the generic basis and patient specific coef-

ficients is below. 

Training data is used to find the best values for am and B by minimizing this error function. 

The matrix B is a transformation matrix to the reduced rank space, and the vector am converts the 

generic basis into a patient specific answer. The reasoning behind this approach is that similarities 

should exist between diabetics that could be captured by the reduced rank basis. A regularization 

term is added to the error function to place some constraints on a and B. The value of B is 

constrained to be close to zero. 

9m ~ amB (4.27) 

EB(a,B) 7 Tr ||B 2 (4.28) 

The combined error function with the regularization term becomes equation 4.29. 

M 

E(a,B) = \\9m-amBTXm\\2 + 7 ||5|| 2 (4.29) 
m—1 
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This error metric can be minimized using Alternating Least Squares (ALS) by iterating between 

first solving for B then solving for a. The first step is to take the partial derivative with respect 

to B. 

dE 
dB dB ^ E a m 5 r X m f + 7 T r | | B | | 2 j 

\m=l / 
M M 

= 2 £ (XmXlBaT
mam) - 2 £ (X m g T

m a m ) + 2 7 B 
m=1 m=1 

The partial is set to zero and a solution can be found for B. 

(4.30) 

(4.31) 

(4.32) 

M 

0 = 

M 

0"m I 
m=1 

vec E {Xm9mam) 

2 E { X m X m^ a m a m) ~ • • • 
m=1 

M 

2 Y , {Xm9mam) + 2 1 B 
m=1 

M 

E M 5 ^ ) +~iB 
m= 1 

M 

E ((a-a™) ® + 7/ 
,m=l 

vec(J3) 

After solving for vec(5) it can be reshaped. 

vec(-B) = 
M 

E fr) ® + 71 
.771=1 

-1 M 

V. 771 = 1 

(4.33) 

(4.34) 

(4.35) 

(4.36) 

vec E ( X ™gla m ) (4.37) 

Once a solution is found for B then ALS is used to find the solution for am for each patient. 

Again, the partial of equation 4.29 is calculated, this time with respect to am. 
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r)F r) { M \ 
S S = 5 S E l l 9 « . - ^ T ^ H 2 + 7Tr | |B | | 2 (4.38) 

\m=l / 
d ( M \ 

= I Y1 bm - amBTXm\\2 J + 0 (4.39) 

3 ( M \ 
= o^. E fem " 2glamBTXm + Xr

mBaT
mamBTXm) (4.40) 

1 \ m = l / 

= -2giDjB + 2 a i B T D i D j B (4.41) 

Then the partial is set equal to zero and a solution can be found for each coefficient vector, am. 

0 = -2giDf B + 2aiB1 DiDj B (4.42) 

2 aiBTDtDjB = 2PiDj B (4.43) 

ai(BTDlDjB) = PlDjB (4.44) 

= (;PiDfB)(BTDiDfB)~1 (4.45) 

The process of solving for B and am is then repeated until the prediction error on the training 

set begins to converge. This method consistently minimizes the prediction error for the training set. 

However, it suffers from over-fitting due to the number of parameters being estimated compared 

to the amount of training data. Figure 4.3 plots the error as a function of the ALS iteration for 

the training data and test data for models with a reduced rank ranging from one to four. 

4.4 Sample Gaussian Process results 

The results for the Gaussian Process regression models using the individual data and joint data 

are plotted on Clarke error grids in Figure 4.4. This plot shows the levels of noise faced in the 

predictions and the difference in performance between the individual model and joint model. 

The model learned from joint data is not as focused about the diagonal as the predictions using 
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Log Prediction Error: Training Data 

Iterations 

Log Prediction Error: Test Data 

Iterations 

Figure 4.3: The error on the training set goes down as ALS iterates. The model with a reduced 
rank of three performs the best on the test data. 

individual data. A key result is that diabetics need to be treated as individuals and any attempt 

at a universal model not tuned to the individual will fail. 

4.5 Variable Selection 

IDA as a system collects many data that may be useful for predicting blood glucose values, but 

many may be of little value. The first experiment is designed to identify the importance of collected 

measurements for predicting postprandial glucose. Because of the limited quantity of data the 

experiment was performed 10 times using random training and test sets. For each experiment the 

data was split equally into a training set and a test set, and a covariance function for the Gaussian 

Process regression model was selected. A greedy algorithm was then used to iteratively add the 

variable to the model that maximized the chosen evaluation metric, either R2 or the percentage of 

points in region A of the Clarke Error Grid. A single model was trained on the joint dataset as 

opposed to training individual models. 
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S 200 

(a) Individual Data 
Predicting Postprandial BG using GP with Individual Data CV, v=29 
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(b) Joint Data 
Predicting Postprandial BG using GP with Joint Data CV, v=29 
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B = 44.25 
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Figure 4.4: Comparison between the models trained on individual data and the joint model using 
the Clarke Error Grid. 

In all there were four possible combinations of covariance function and evaluation metric. For 

each random training set a variable order was generated. The 10 variable orders obtained from the 

randomly sampled sets for a given covariance function and evaluation metric were combined using 

a voting method where the first of the N variable received N votes, the second N-l, with the last 

receiving one vote. The variables were then reordered according to their combined votes. 

Table 4.3 contains the resulting variable orders obtained from this voting method for the four 

models. While there are many differences between the lists, there are some clear patterns. The 

pre-meal blood glucose is consistently near the top of the list along with the estimated meal 

carbohydrates. Another interesting observation is that most of the lists include some measure of 

blood glucose, insulin, nutrition, and exercise near the top. This suggests the importance of the 

impact that all four of these inputs have on the glucose regulatory system. 

The following experiments in this chapter use the variable order in Table 4.3 that maximizes 

the percentage of points in region A of the Clarke Error Grid. This metric was selected because 

the clinical performance of a model is more important than its statistical performance. 

Because of the noise in the system, the variable orders depended upon the specific training 
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Clarke IV 
Order Linear Gaussian Linear Gaussian 

1 Calc Carb Previous BG Previous BG Previous BG 
2 Previous BG Regular Insulin Time of Day Regular Insulin 
3 Next Exer 1-2 Time of Day Calc Carb Earlier Mixed Insulin 
4 Calc Cal Calc Cal Prev Exer 1-0 N 
5 Calc Fat Prev Exer 2-1 Recent Mixed Insulin Sulf 
6 Time of Day Rapid Insulin M M 
7 Recent Carb Calc Carb Rapid Insulin Bigu 
8 Time P P BG Earlier Mixed Insulin Next Exer 1-2 Th 
9 Calc Prot Time P P BG Regular Insulin Recent Prot 
10 Next Exer 0-1 Sulf N Alph 
11 Recent Mixed Insulin Recent Carb Bigu Recent Mixed Insulin 
12 Prev Exer 2-1 N Th Calc Carb 
13 Sulf Calc Fat Earlier Mixed Insulin Recent Fat 
14 Prev Exer 1-0 Calc Prot Alph Calc Cal 
15 Recent Fat Recent Fat Recent Carb Prev Exer 2-1 
16 Recent Prot M Sulf Time of Day 
17 Earlier Mixed Insulin Recent Prot Next Exer 0-1 Rapid Insulin 
18 Rapid Insulin Recent Cal Time P P BG Next Exer 1-2 
19 Recent Cal Bigu Calc Cal Calc Fat 
20 Regular Insulin Recent Mixed Insulin Calc Prot Next Exer 0-1 
21 M Prev Exer 1-0 Prev Exer 2-1 Recent Cal 
22 N Th Recent Prot Time P P BG 
23 Bigu Next Exer 1-2 Calc Fat Recent Carb 
24 Th Alph Recent Fat Calc Prot 
25 Alph Next Exer 0-1 Recent Cal Prev Exer 1-0 

Table 4.3: Variable orders determined using the linear and Gaussian kernels and the two error 
metrics. 
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points selected. Figure 4.5 compares six of the input data to either the change in blood glucose, 

or the actual postprandial glucose concentration for a single patient. It displays some of the 

correlations between data and also displays the noise in the system. The glucose regulatory system 

is complex, so the goal of modeling the system is to identify the trends that lie beneath the noise. 

This figure clearly displays the challenge of predicting future glucose values. 

For this patient the estimated meal carbohydrates tends to be associated with an increase in 

postprandial blood glucose, and postprandial exercise seems to cause a decrease in blood glucose. 

The pre-meal glucose reading has a negative correlation with the change in blood glucose. Finally, 

the time-of-day demonstrates more volatility around the dinner meal. 

4.6 Model Performance 

In this chapter a number of modeling methods have been proposed for predicting postprandial 

glucose values. These models were evaluated with the two metrics, R2 and percentage in region A, 

at each level in the variable inclusion order. Because of the limited quantity of data each experiment 

was performed 10 times using randomly selected training and test sets. The mean value of the 

performance metrics are presented. 

The models evaluated are Gaussian Process regression with the Gaussian kernel using the 

individual, joint, and weighted mixture models; Gaussian Process regression with the linear kernel 

using the individual, joint, and weighted mixture models; and the RRGP model. Each model was 

evaluated at each step of the variable inclusion order as selected in the previous section. Both the 

variable order determined from the Gaussian kernel and linear kernel were used. 

The model performance results for all of these experiments are displayed in Figure 4.6. The top 

two graphs display the results of the percentage of points in region A, and the lower two graphs use 

the R2 metric to compare the models. The left graphs use the variable inclusion order determined 

using the Gaussian kernel, and the right graphs use the variable inclusion order determined with 

the linear kernel. 

The variable inclusion order determined with the Gaussian kernel significantly outperforms the 
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Figure 4.5: Comparison between measurements and the change in postprandial glucose. 
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(a) Region A: Gsn Var Order (b) Region A: Lin Var Order 

(c) R2: Gsn Var Order (d) R2: Lin Var Order 

Individual Gsn -
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Joint Gsn 
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Individual Lin -
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Figure 4.6: The percent of points in region A of the Clarke error grid as a function of the number 
of variables used in the model. Gaussian Process Regression is the best performing method. The 
variable order was obtained using a greedy algorithm and Gaussian kernel. 
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variable inclusion order determined using the linear kernel. The best model is the Gaussian Process 

regression model with a Gaussian kernel. It captures the non-linearities in the system; and because 

of the choice of kernel width, it does not suffer too much from over-fitting. 

One interesting point to note from these results is that the performance, as measured using the 

Clarke Error Grid, initially decreases after additional variables are added to pre-meal blood glucose. 

One explanation for the drop is that the other variables related to medications, meals, and exercise 

are interrelated. Knowing the dose of insulin provides little help predicting postprandial blood 

glucose without knowing the carbohydrate content in the meal. After variables representing these 

three inputs are added the prediction performance starts to improve. The R2 metric continues to 

improve even after the percentage of points in region A levels off. 

To compare the Gaussian kernel and linear kernel the difference in performance for the two 

models is plotted in figure 4.7. The Gaussian kernel performs significantly better than the linear 

kernel due to its ability to capture the non-linearities in the glucose regulatory system. 

The Reduced Rank model peaks when the reduced rank is set to three. Including additional 

dimensions decreases the models performance. In this problem the model does not perform as well 

as the Gaussian Process regression models, but that could be due to the number of parameters 

that must be estimated for the RRGP model. This dataset may not contain enough examples to 

estimate all the parameters. 

Compared to many prediction problems, these results do not seem very promising. The models 

only explain a limited amount of the variance in the output and in the best case only about 57% 

of the predictions are within ±20% of the reference value in region A. However, it is important to 

remember that diabetics are going to be making these predictions, so a system can be considered 

successful if it outperforms humans at the task. Attempting to predict blood glucose and optimize 

therapy is not an optional task. Thus a system that performs better than the current state-of-the-

art is significant. Compared to the ability of humans to estimate postprandial blood glucose, 41.5%, 

and other published results, 51%, this data collection system and modeling procedure compares 

very favorably. 
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Figure 4.7: The difference in performance between the Gaussian kernel and linear kernel using (a) 
the percent of points in Region A and (b) the R2 coefficient as a function of the number of variables 
in the model. The Gaussian kernel performs significantly better according to both metrics. 

4.7 Interpatient Model Variability Results 

One of the goals of this research project is to determine whether a patient's model is improved 

by using training data from other patients. To test this, three model types were trained that 

used the individual's data, the joint dataset, and a weighted mixture of data. The joint model 

performs significantly worse than the individual and weighted mixture models as is clearly evident 

in Figures 4.6 and 4.4. The RRGP model that creates a reduced-rank basis for all patients and an 

individualized set of coefficients for each patient also performs worse than the Gaussian Process 

regression models. Therefore, the competing models are the individual model and weighted mixture 

model. 

The difference between the mean performance over the 10 randomized training and test sets of 

the individual model and mixed model are plotted in Figure 4.8. The same randomized training and 

test sets were used for both models, so the differences between them are only due to the modeling 

method, not the data selected. The individual and weighted mixture models are compared for both 

the Gaussian kernel and linear kernel. 

For both kernels the model trained only using the individual's data improves the percentage of 

points in region A compared to the weighted mixture model by less than one percent. Compared 
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(a) Clarke Error Grid (b) R2 coefficient 
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Figure 4.8: The difference in performance between the Individually trained and Mixed patient 
models using (a) the percent of points in Region A and (b) the R2 coefficient as a function of the 
number of variables in the model. There is no significant difference between the two methods. 

to the standard deviation for the performance over the 10 randomized training and test sets, 

this improvement is not significant. Similarly, the performance improvement when using only the 

individuals data measured by the R2 metric is not significant. 

One reason for the similarity between these two models is that the weighted mixture model was 

designed to improve the ability of the model to extrapolate to new behaviors not represented in 

the individuals training set. The lack of improvement could be explained by the repetitive nature 

of patient behaviors. Figure 4.9 displays the difference between the individual and mixture models 

as a function of the maximum similarity between the test point and the points in the individual's 

training set. There is a shift toward the mixture model as the test point becomes less like the 

training set, but most of the test points do not fall in this category. This is one reason why the 

individual model performs slightly better. 

4.8 Model Performance for a New Patient 

After determining the best model, an experiment was done to estimate the number of training 

examples needed before making predictions. For this experiment data was only used from patients 

with at least 30 recorded meals. The meals were divided into equal training and test sets. First a 
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Figure 4.9: Comparison of mixture and individual models as a function of the similarity of the test 
point to the patient's training set. 

model was trained and evaluated using only one of the training points, and then this process was 

repeated with an additional training point added from two to twenty training points. This entire 

process was repeated for 10 randomly selected training and test sets for each patient. 

Figure 4.10 displays the Clarke error grid results for this experiment as the number of training 

points is increased. The prediction performance begins to level off after about nine meals, or three 

days, of data. This is likely due to the repetitive nature of patient behaviors. For example, many 

people have very similar meals for breakfast every day, so three training points could be sufficient 

to begin making predictions. 

4.9 Predicting modeling performance 

The prediction performance for Gaussian Process regression varies significantly between patients 

with percentages in region A ranging from 27% to 85%. Table 4.4 lists the Clarke error grid results 

for all patients. The final experiment in this chapter was to determine if model performance is 
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Points in Region A Compared to the Number of Training Points 

Figure 4.10: Improvement of the percent of points in Region A as a function of the number of 
training points used. Only patients with sufficient training data were used in this experiment. 
Performance starts to level after about 10 training points. 
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correlated to any of the descriptive statistics listed in Table 3.1. 

Patient # A B C D E 
1 65 28 3 4 0 
2 75 25 0 0 0 
3 60 39 0 1 0 
4 77 23 0 0 0 
5 32 51 5 12 0 
6' 43 43 2 12 0 
7 51 49 0 0 0 
8 85 15 0 0 0 
9 51 35 4 10 0 
10 27 42 0 31 0 
11 85 15 0 0 0 
12 38 42 0 20 0 
13 70 25 0 5 0 
14 58 37 2 3 0 

Table 4.4: Clarke Error grid results for each patient using the individual Gaussian Process model 
with a Gaussian kernel. 

Each pair of descriptive statistics were compared to the performance quality to determine 

which two dimensions best discriminated between performance quality. After processing all pairs 

of descriptive statistics the two which best predict performance are the standard deviation of the 

patients carbohydrate intake and standard deviation of the patients energy expenditure. These 

values are plotted in Figure 4.11 with the color and size of the plot representing the quality of 

performance. 

Performance improves for patients with greater variability in both carbohydrate intake and 

energy expenditure. These patients have more signal to help overcome the noise in the system. The 

predictions perform worse for patients with less variation in their behaviors because the models 

learn to fit the noise. This is one of the negative aspects of learning models from patient data 

without prior expert information. If variation does not exist for a behavior then no relationship 

can be learned between that behavior and blood glucose. 
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Comparison of Exercise, Carbohydrates and Prediction Quality 

40 50 
Standard Deviation of Carbs (grams) 

Figure 4.11: Comparing the patients' exercise standard deviation and carbohydrate standard de-
viation with the quality of prediction. The red squares represent patients where the model placed 
less than 50 percent of the data points in region A. 
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4.10 Conclusions 

74 

The decisions a patient makes around meals have a significant impact on blood glucose, so predict-

ing postprandial blood glucose is an important challenge for diabetics. Gaussian Process regression 

with a Gaussian kernel provides the best prediction performance because it can capture the non-

linear relationships between the input parameters and blood glucose. This method performs better 

than humans and other published results. No benefit was seen when including data from other 

patients in the training set in the weighted mixture model. Finally this modeling method requires 

about three days of data before predictions can be used. Chapter 6 demonstrates some methods 

for generating therapy advice using these models. 



Wheneve r I feel like exercise I lie down unt i l t he 
feeling passes. 

Robert M Hutchins 

Chapter 5 

Continuous Dynamic Modeling 

There are two competing methods for the dynamic modeling of glucose: physiological models and 

autoregressive models (ARX). This chapter compares the two methods and presents a new method 

for including energy expenditure in both models. The ARX model performs better for prediction 

times less than 45 minutes and the physiological model with exercise performs better for predictions 

times beyond 45 minutes. The physiological model with exercise also performs better at estimating 

the real-time value of blood glucose between finger-stick measurements. 

5.1 Introduction 

The continuous dynamic modeling of glucose is needed to provide optimal therapy at times other 

than meals. The previous chapter focused specifically on the choices at mealtimes, but patients 

make many other therapy decisions that are not associated with meals. Also, continuous dynamic 

models could be beneficial toward developing an artificial pancreas, predicting hypoglycemia, and 

explaining glucose excursions. 

Much work has been done toward developing dynamic glucose models. Many groups have 

developed sets of differential equations that can be solved numerically to closely approximate a 

true continuous function. However, for therapy choices this fine resolution is not necessary. In this 

chapter continuous is used to refer to a discrete system model with a time step of five minutes 

75 
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or less. This scale is equivalent to the sample rate of the Minimed CGMS system, and it is fine 

enough so that insulin injections made at five minute intervals can adequately approximate a true 

continuous delivery. Therefore therapy derived at this time scale would be almost identical to that 

derived from the differential equations. 

There are two main categories of continuous models used to simulate the glucose regulatory 

system. The most common are physiological models that seek to capture the internal dynamics 

within the systems of the body. This type of model tracks carbohydrate intake as it is converted to 

blood glucose which then interacts with the kidneys, liver, muscles, and other body systems. The 

main advantage of these models is that the components are based on data from known interactions. 

The challenge is that most of the model parameters are hidden and therefore difficult to estimate 

for a specific patient. Furthermore, physiological models have no way of representing unknown 

physiological processes that affect glucose. 

The second category is autoregressive models with exogenous inputs, ARX models, that use a 

window of the time series data as input to a regression model. This category of models can learn 

correlations that exist in a patient's data, but might not exist in a physiological model. However, 

because the structure of these models is not based on reality they can produce predictions that are 

wildly wrong potentially having a negative impact on a patient's health. 

Optimizing insulin doses for a patient is a challenging problem because of the delay between 

insulin injection, absorption, and activity. The time to peak action for rapid acting insulins most 

frequently used for meal boluses and in insulin pumps is around 45 minutes. Injections decisions 

are made based on what the system state will be in the future. The most common use of dynamic 

models is for addressing this problem. 

One of the missing components of most physiological models is exercise. There is no universally 

accepted method for incorporating energy expenditure into glucose dynamic models. This chapter 

presents one possible method; though more data is needed to adequately validate this model. This 

model will be compared to a model that does not include exercise and to an autoregressive model. 

The models will be used to predict blood glucose concentrations at multiple times in the future. 
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5.1.1 P r o b l e m Statement 

This chapter addresses the challenge of developing an approximately continuous glucose dynamic 

model that can capture the affects that all the measurable inputs have on blood glucose. In general 

the model will predict the value of glucose, g, at the next time step based on the current system 
» 

state, X, and inputs to the system, U. 

Xt+i = f(XuUt)+£t (5.1) 

gt+1 = h{Xt+1)+nt (5.2) 

The representation of / and h depend on the modeling method. Four candidate methods -

traditional physiological modeling, physiological modeling with exercise, AR, and ARX - will be 

compared. The implementation details of each method are presented in detail in the following 

sections. 

The models will be used to predict glucose dynamics at a number of future time intervals ranging 

from five minutes to 45 minutes. Predictions at 45 minutes could be used for insulin dosing as 

this is the approximate absorption delay from injection to peak insulin action. The predictions 

will be compared to continuous glucose measurements recorded by a Minimed CGMS. The CGMS 

measures glucose concentration in interstitial fluid, and is therefore a noisier estimate of blood 

glucose than a reading from a spot monitor. 

Two error metrics will be used to evaluate the prediction performance: the R2 coefficient and the 

Clarke error grid. These are the same metrics used when evaluating the prediction of postprandial 

glucose values. A discussion on these two metrics and their applicability to the glucose prediction 

problem can be found in Chapter 4. 

5.1.2 D a t a Col lect ion and Preparat ion 

The data collection protocol is identical to the protocol used for postprandial glucose prediction 

with the addition of continuous glucose measurements, CGM. The protocol is described in detail 
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Input Measurements 
Var Name Description Units 
Ijcg Continuous Glucose Reading mg/dl 
US Blood Glucose Reading mg/dl 
Uc Ingested Carbohydrate mg 
UF Ingested Fat mg 
Up Ingested Protein mg 
UE Current Exercise Rate cal/min 
uj Injected Rapid Insulin units 
uj. Injected Regular Insulin units 
UL Injected Mixed Insulin units 
Ul Injected Long Acting Insulin units 

Table 5.1: System input data for continuous modeling 

in Chapter 3. The CGM, while noisier, provide a reference point for evaluating the performance of 

the modeling methods. Unfortunately, CGM were only collected on a small subset of the cohort 

and only represent patients with type 1 diabetes using insulin pump therapy. Because of the small 

data set, evidence is not available to reach strong conclusions. As a result, the conclusions in this 

chapter are best expressed as observations that require additional verification. 

5.1.3 Variable Def init ions 

The variables used to define the data collected as input into the three models will use the nomen-

clature shown in Table 5.1. The list does not include any medications other than insulin because 

CGM data was not collected from any patients on these medications. 

The complete set of input data will be referred to as U and input at a specific time as Ut• The 

input will be zero for many of these variables at a specific time due to their infrequency. 

5.2 A R X model 

The Auto-Regressive with eXogenous input model uses autoregressive terms and other input mea-

surements to model the dynamics in the system. This is a standard model for time series analysis, 

so it will be used as a point of comparison for the physiological models. The ARX model is simpler 
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Input Vector: A R X Model 
Var Name Description Units 

A t . . . t Mean Continuous Glucose Reading mg/dl 
ul A t . . . t Mean Blood Glucose Reading mg/dl 

- A t...t u
c Sum of Ingested Carbohydrate mg 

- A t...t U
F Sum of Ingested Fat mg 

£t-- A t...t u
p Sum of Ingested Protein mg 

ul A t . . . t Mean Current Exercise Rate cal/min 
E t - - A t...t uj Sum of Injected Rapid Insulin units 
£ t. -A t...t U< Sum of Injected Regular Insulin units 
£t-- A t...t uL Sum of Injected Mixed Insulin units 

- A t...t ul Sum of Injected Long Acting Insulin units 

Table 5.2: Input data for the ARX model 

to implement, so if it performs better than physiological models, then it is preferable. Equation 

5.3 is the ARX model where the autoregressive terms are the previous continuous glucose mea-

surements, g, and the exogenous input data, X, are the measurements of meals, medication, and 

exercise. 

oo oo 
9t+1 = ai9t-i + PiXt-i (5-3) 

i = 0 i = 0 

To prepare the raw data for use in an ARX model it is sampled at a uniform rate and placed in 

a matrix, X. Each column in this matrix, Xt, contains a vector of measurements and input data 

sampled at that time. Data are sampled by placing the measurement into the nearest time bin 

that is greater than or equal to the measurements time stamp. This prevents the model from using 

future data to aid in making a prediction. In cases where the measurement frequency exceeds the 

time step, the measurements are combined in an appropriate way into the bin. For exercise and 

continuous glucose, the measurements are averaged when sampling. For nutrition components and 

medications, the data are summed. 

The resulting input vector for the ARX model is described in Table 5.2. After sampling the 

data, it is divided equally into a training set and a test set. Patients collect data for two weeks, 

so the first week is used to train the model and the second week is used to test it. After splitting 

into sets, the training input data is centered and normalized. The test set is then centered and 



CHAPTER 5. CONTINUOUS DYNAMIC MODELING 80 

normalized using the mean and standard deviation of the training set. 

To solve for the coefficients a time window is defined, [t — r.t], over which measurements will 

be used in the prediction. The input vectors are then reshaped to solve for the coefficients using 

least squares. 

9t+1 = E ai9t-i + PiXl t-i (5.4) 
i=0 i=0 

Convert equation 5.4 into matrix form. 

9i (go- •9O-T) ao 

= + 

9T+1 (gr • •9T-T) aT 

• • • Xo-T) 

( X t • • • X t - t ) 

Po 

Pt 

(5.5) 

Then augment the input matrices and stack the coefficient matrices to get the final matrix 

equation. 

g\ 

9T+1 

(ffo---ffo-r) (X 0 ...X0_T) 

(9T • • • 9T~T) ( X t • • • XT-T) 

ao 

a T 

Po 

Pt 

(5.6) 

Finally, solve for the coefficients using least squares by way of the pseudoinverse. Results from 

the ARX model will be labeled with "ARX." For comparison purposes an auto-regressive model 

that excludes the exogenous input was also created. The AR model only uses the continuous 

glucose measurements as input. 
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5.3 Physiological model 

Physiological models are useful because they are based on known interactions. Previous models of 

the glucose regulatory system share many common features. Almost all models incorporate carbo-

hydrate intake, renal clearance, hepatic glucose uptake and production, and both insulin-dependent 

and insulin independent glucose utilization, but most do not incorporate energy expenditure. Fur-

thermore, no previous model has used a continuous measurement of energy expenditure. 

Previous equations used to model these processes are almost identical [23, 10, 100]. The func-

tions for the individual components of the body for these models are based on the same data. The 

components are combined to form the system model. 

The overall dynamics of the physiological model can be compartmentalized at the highest level 

into insulin dynamics, glucose dynamics, and meal absorption dynamics. Insulin dynamics includes 

the absorption, secretion, and clearance of plasma insulin. Meal absorption dynamics models the 

digestion of carbohydrates and other nutritional components in the gut, and their absorption as 

glucose into the blood. Finally glucose dynamics includes the interactions of blood glucose with 

all the systems in a patients body. 

5.3.1 Insulin D y n a m i c s 

There are two sources of insulin for diabetics: secretion from the pancreas and injection by either 

a syringe or an infusion device. For patients with type 1 diabetes the amount of insulin secreted 

is close to zero. When patients initially get the disease they typically have some remaining beta 

9t+i = 9t + • • • current blood glucose 

Ag9ut + . . . carbohydrate absorption 

A gdep + . . . insulin dependent uptake 

Agm d + . . . insulin independent uptake 

Age9P + . . . hepatic glucose production 

Agclr renal clearance 

(5.7) 
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Food: Carbohydrates 

Pancreas 
•Monitors Blood Glucose 
•Releases Insulin when 
high 

Liver 
•Acts as a buffer. 
•Absorbing or 
releasing glucose as 
needed. 

Figure 5.1: Graphic of the components of the physiological model 

cells in their pancreas that secrete a residual amount of insulin, but as the disease progresses these 

remaining cells die. Though the model will only be validated with data from patients with type 1 

diabetes, an insulin secretion model is included for completeness. 

At a high level the dynamics of insulin in blood can be expressed with the equations in Table 

5.3. The three components that need'to be modeled are insulin absorption from injections AIABS, 

insulin secretion AI s e c , and insulin clearance AI c l r . 

A Insulin = Absorbed Insulin + Secreted Insulin - Cleared Insulin 
AJ t = A l f s + A/ t

sec ~ A I f r 

Table 5.3: Model for insulin utilization. 

The second source of insulin is from subcutaneous injections. The rate at which this insulin 

becomes active depends on the patient, the type of insulin, and the injection site. The most common 

types of insulins currently used are rapid insulin analogues and slow-acting insulin glargine. Other 

insulins exist including regular insulin, NPH, and premixed insulin. The model can accept input 

from four types of insulin. 
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Input Measurements 
Var Name Description Units 
Uj Injected Rapid Insulin units 
Uj. Injected Regular Insulin units 
Uh Injected Mixed Insulin units 
Ug Injected Long Acting Insulin units 

Table 5.4: Input data for insulin injections. 

Insulin Absorption 

The most frequent location for insulin injections is into subcutaneous fatty tissue. After the 

injection there is a delay as the insulin is gradually absorbed into the bloodstream. The rate of 

absorption can be approximated as a constant percentage of the injected insulin remaining in the 

subcutaneous compartment. The value of this constant is a function of the patient and the type 

of insulin. Therefore it is important to distinguish between the types of insulin injected. The 

exception is insulin glargine which is absorbed at a constant rate proportional to the original dose 

over a 24 hour period. Mixed insulin is made by combining a faster acting insulin analogue with a 

slow acting insulin in a specific ratio. One of the most common forms is a 70/30 Mix which contains 

70% long acting insulin and 30% fast acting insulin. Injections of a mixed insulin are treated as 

simultaneous injections of rapid insulin and long acting insulin in the appropriate proportions. 

Alf's — a.IfrmIfuh rapid, regular, mixed 

A l f s = al^hoursUl insulin glargine (5.8) 
jsub = jsub _ AIabs + j j l 

The amount of insulin absorbed into the blood is the sum over all types of insulin injected. The 

absorption rate parameters used for the types of insulins are below. These values can vary with 

different patients and with different injection sites. However, for this project they are assumed to 

be constant, and the variation is attributed to noise. 

An example graph of the absorption curves for each type of insulin given equivalent 10 unit 

injections is displayed in Figure 5.2. The differences in the rate of appearance in the blood can 
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Parameters 
Var Name Value 

a 

0.015 
0.008 
0.002 
0.001 

Table 5.5: Parameter values for insulin absorption 

clearly be seen. 

(a) Insulin Absorption 

(c) Insulin Clearance 

(b) Insulin Secretion 

(d) Active Insulin Post Injection 

50000 100000 150000 200000 250000 300000 350000 400000 

Figure 5.2: The dynamics of insulin from injection and secretion to clearance, (a) contains the 
absorption rate for different types of insulins after injections, (b) contains the secreted insulin as 
a function of blood glucose, (c) relates insulin clearance to blood glucose, (d) displays the active 
plasma insulin profile for different types of insulin after injection. 
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Parameters 
Var Name Value 

~a{ 1000 -

a \ 1 .2 

a i 0.17 

Table 5.6: Parameter values for insulin secretion 

Insulin Secretion 

Increased insulin secretion by the pancreas is triggered when blood glucose deviates from normal, 

and insulin is also secreted at a basal level during normoglycemia, go. Equation 5.9 models the 

increased secretion of insulin with elevated glucose as well as the basal secretion. The amount 

secreted is bounded by the maximal rate of secretion, AI^ax-

Air = mm[a{(aI
2(gt-g0)+aI

3g0),AIZx} Type2 
(5.9) 

AIFEC = 0 Typel 

The parameter values can vary between patients. For this project they are assumed to be 

constant and the variation is attributed to noise. For type 1 patients, insulin secretion is set to 

zero. If a patient had reduced pancreas functionality it could be modeled by decreasing a \ . The 

parameter values are listed in Table 5.6. 

Figure 5.2 plots the insulin secretion rate as a function of blood glucose value. In healthy 

individuals the amount of insulin secreted decreases as blood glucose drops toward hypoglycemia. 

When patients on insulin injections approach hypoglycemia their insulin levels remain constant 

resulting in an increased risk. 

Insulin Clearance 

Once insulin has been absorbed into the blood it is then removed at a rate proportional to its 

concentration. 

A I ? r (5.10) 
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Parameters 
Var Name Value 

0.033 

Table 5.7: Parameter values for insulin clearance 

Again, for this process the parameters are considered constant and the variation is attributed 

to noise. 

Figure 5.2 is a plot of the concentration of insulin in the blood for the four types of insulin 

after a 10 unit injection, similar to the absorption plot, when also using insulin clearance. The 

difference in time to peak action for each type of insulin can be seen. 

Insulin Sensitivity 

The insulin sensitivity of a patient is a metric that characterizes how efficiently a patient can 

utilize insulin to in insulin-dependent glucose uptake. For the following models it is represented as 

a percentage where a value of 1 represents a patient with normal insulin sensitivity. Patients with 

reduced insulin sensitivity will have a value less than one. The insulin sensitivity of a patient will 

affect the amount of insulin necessary to reduce high glucose values to the normal range. 

Active Insulin 

Active insulin refers to insulin that has interacted with muscle and fat cells to initiate the uptake 

of blood glucose. This value is different from the concentration of plasma insulin in the blood. The 

amount of active insulin can also be written as a function of patients' insulin sensitivity as a way 

to model patients with type 2 diabetes. 

The value for insulin sensitivity is estimated to minimize the error between the model and blood 

glucose measurements. 

jactive = S1 It/Vl 

jplasma j /Vj (5.11) 
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5.3.2 Meal Absorpt ion 

The process of consuming meals and their absorption as glucose from the gut to the blood is a very 

complex process to model. The amount of glucose absorbed and the rate of absorption depend 

on the nutritional content of the meal. The main three sources of energy in a meal are protein, 

fat, and carbohydrates. While protein and fat can eventually be converted to glucose, the amount 

and type of carbohydrate consumed has the most significant immediate affect on blood glucose. 

Most models of meal absorption only consider the quantity of carbohydrates in the meal, and 

most consider all carbohydrates identically. Carbohydrates, however, can be classified using the 

glycemic index. Simple carbohydrates have a high glycemic index and are absorbed quickly, and 

more complex carbohydrates have a lower glycemic index and a longer absorption curve [69]. 

Meal consumption causes the largest disturbance to glucose homeostasis and is the largest source 

of uncertainty in the system. The combination of high impact and high uncertainty makes modeling 

this component difficult. Patients consume a wide variety of meals, and accurately measuring the 

carbohydrate content in those meals is difficult. Chapter 2 discusses the data collection methods 

used by IDA to attempt to reduce the uncertainty in carbohydrate estimation. 

After carbohydrates are consumed they are moved through the digestive system and gradually 

absorbed into the blood. This process can be modeled using two compartments. Alternative, more 

complex models can be found in [78, 77]. However the proposed model strikes a balance between 

parameter identification and model representation. 

ACguti = _accguti + Uo Consumption 

ACg
t
u n = a fC 9

t
u t l - c%C9

t
un Digestion (5.12) 

gfut = a^a^Cf" 4 2 Absorption 

The default parameters used for this submodel are listed in Table 5.8. 

Figure 5.3 displays the modeled absorption rate of carbohydrate to blood glucose in a typical 

patient after a meal of 50 grams of carbohydrates. This is one of the components of the blood 

glucose dynamic model. 

Carbohydrate absorption is complex and is the input with the largest uncertainty in its mea-
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Carbohydrate Parameters 
Var Name Value 

" o f 095 
0.09167 

aSf 250 

Table 5.8: Parameter values for carbohydrate absorption 

Carbohydrate Absorption 

Time (hours) 

Figure 5.3: Carbohydrate absorption into the blood after a meal of 50 grams of carbohydrates 
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Glucose Model Compartments 
Variable Abrv. Description 
Ag\9V EGP Endogenous Glucose Production (Liver) 
Agfut GUT Glucose Rate of Appearance (Carb Absorption) 
Agind IND Insulin Independent Utilization (CNS) 
Agfep DEP Insulin Dependent Utilization (Muscle,Fat) 
A g f r CLR Renal Clearance (Kidneys) 

Table 5.9: Interactions with blood glucose 

surement. The two main sources of uncertainty in the model are the estimated quantity of the 

consumed carbohydrate and the absorption rate of the carbohydrate. In the mathematical model 

these are represented by the values of C/(c and a2 respectively. The type of carbohydrates in a meal 

will affect the absorption rate. 

5.3.3 B l o o d Glucose Dynamics 

Blood glucose dynamics models the changes in glucose concentration in the blood due to interactions 

with other body systems. Glucose is used for energy, so its dynamics are affected by almost 

every cell in the body. When modeling this system the primary compartments modeled are the 

introduction of glucose to the system from the gut, glucose utilization by insulin-dependent and 

independent compartments, removal of glucose by the kidneys, and buffering of glucose by the 

liver. 

Table 5.9 lists the main compartments in the glucose physiological model. The three letter 

abbreviation listed will be used to identify parameters and variables associated with the compart-

ments. 

The actual combination of these compartments to determine the change in blood glucose is 

simple. The total change is blood glucose is equal to the sum of the sources and sinks. 

Agt = Ag™ + Agfu t - A - Ag?ep - A g f (5.13) 

The models for insulin dynamics and carbohydrate absorption have already been presented. It 

is important to define these first as the models for the liver and insulin dependent utilization both 
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Parameters 
Var Name Value 

0.0002 
90 

Table 5.10: Parameter values for insulin dependent utilization 

are a function of the current plasma insulin level. In the following section models for the remaining 

compartments will be presented. 

5.3.4 Insulin Dependent Ut i l izat ion 

Insulin acts as a key allowing muscle cells and fat cells to absorb glucose. When insulin is present the 

glucose transporter GLUT-4 moves to the cell wall to facilitate the transport of glucose across the 

membrane. The rate of transport is a function of the amount of insulin, blood glucose concentration, 

and exercise. However most models do not include exercise in the dynamics of this compartment. 

Because IDA collects a continuous estimate for energy expenditure, exercise can be included in 

this model. First, the traditional model is presented below in equation 5.14 followed by a modified 

version that includes exercise. 

Values for the parameters in equation 5.14 are listed in Table 5.10. This equation models the 

increase in glucose uptake associated with increases in insulin and blood glucose. 

Figure 5.4 displays a plot of the uptake of glucose as a function of glucose concentration for 

different levels of insulin. 

5.3.5 Insulin Dependent Ut i l izat ion w i th Exercise 

Exercise needs to be included so that at rest the insulin dependent model is identical to equation 

5.14, but when exercise increases, the rate of glucose uptake needs to increase as well. The effect 

of exercise can also last after the patient has stopped exercising while cells replenish their glucose 

Agfep — a^epIt(gt + without exercise (5.14) 
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No Exercise Exercise Dependent 

Figure 5.4: (a) Blood glucose uptake as a function of glucose concentration for different levels of 
plasma insulin, and (b) insulin dependent uptake for different levels of exercise. 

stores. Both of these dynamics need to be added to this model. Exercise, or energy expenditure, 

is measured as the number of calories burned per minute. 

The extended effect of exercise can be included by first calculating an exercise effect variable, 

Et- The exercise effect is a linear combination of exercise over the past time window. This extends 

and smooths the effects on insulin. 

Et = T,i=oaiXUtE-i exercise effect (5.15) 

The exercise effect variable is added to the compartment model as a ratio with the basal level 

of energy expenditure. When a patient is at basal levels of energy expenditure this function is the 

same as equation 5.14. 

A g f e p + e = aiep+e^oIt(gt + 4ep+e) with exercise (5.16) 

The parameter values for equation 5.16 are identical to those in Table 5.10. These are identical 

to the parameters in the model without exercise, so when the patient is in a state of basal energy 

expenditure the two models converge. 

Graphs of the uptake rate of glucose due to insulin dependent utilization compared to blood 

glucose for different levels of exercise with a fixed concentration of insulin are plotted in Figure 5.4. 
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Parameters 
Var Name Value 
a\nd L2 

Table 5.11: Parameter values for insulin independent utilization 

Insulin Independent Uptake Renal Clearance 

Figure 5.5: Blood glucose uptake as a function of glucose concentration for insulin independent 
uptake, and renal clearance of blood glucose. 

5.3.6 Insulin Independent Ut i l izat ion 

Unlike muscle cells, the central nervous system and red blood cells do not require insulin to activate 

glucose transport across their cell wall. Therefore their utilization of glucose is independent of 

insulin. This is very fortunate for patients as it keeps a loss of insulin from being immediately life 

threatening. The uptake of glucose to this compartment is only a function of the blood glucose 

concentration. 

A gTd = a\nd^g- t (5.17) 

The value for the parameter in equation 5.17 is listed in Table 5.11. 

Figure 5.5 displays a plot of the uptake of glucose by the central nervous system and red blood 

cells as a function of the current blood glucose concentration. 
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Parameters 
Var Name Value 

" o f " 0.043 
nrenal i i c 9 threshold 110 

Table 5.12: Parameter values for renal clearance 

5.3.7 Renal Glucose Clearance 

When blood glucose concentrations exceed the renal clearance threshold, glhreshold' the kidneys 

begin to remove excess glucose from the blood. Unfortunately the clearance rate is not sufficient 

enough to reduce glucose to normal levels, and the process stresses the kidneys. This process is 

modeled with equation 5.18. 

A g f 
air(9t 9threshold) ^ 9t > 9threLold ^ ^ 

0 else 

The value for the renal clearance threshold and other parameters in equation 5.18 are listed in 

Table 5.11. 

Figure 5.5 displays a plot of the removal of glucose by the kidneys as a function of the current 

blood glucose concentration. If a patient were to have reduced renal function, it could be modeled 

by reducing parameter a f r . In this study the model was only used for patients with normal renal 

function. 

5.3.8 Endogenous Glucose Product ion 

Endogenous glucose production refers to the release of glucose by the liver. In a normal individual 

this occurs when blood glucose levels drop. The liver functions as a buffer to correct for deviations 

glucose homeostasis. This process depends on the current blood glucose concentration and level of 

plasma insulin. 

Ag\9P = ae9Pgt + ae
2

9P * e ^ - ae
4

9P (5.19) 
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Parameters 
Var Name Value 

-0.0333 
45 
15 
0 

Table 5.13: Parameter values for endogenous glucose production 

The parameters in equation 5.19 were adjusted to fit the equation to published data [72], The 

parameters are listed in Table 5.13 and a plot of the model compared to the published data is given 

in Figure 5.6. 

These models are combined to form the blood glucose physiological model. There are other 

hormones and factors that can affect glucose, but these are the main compartments. Additional 

factors are treated as noise in the system. 

5.3.9 Other Useful Functions 

Other useful functions for calculating blood volume and converting between units are listed in 

Appendix A. It also includes the molecular weight of insulins and energy conversions for protein, 

fat, and carbohydrate. 

5.4 EKF Implementation Details 

The physiological model was implemented as an Extended Kalman Filter to account for the non-

linearities in the model. The details of the EKF are in Appendix B. The Extended Kalman Filter 

was also used to track the propagation of uncertainty in the system from the uncertainty in mea-

surements to that of blood glucose. There is a significant amount of noise in this system that makes 

accurate modeling almost impossible, but if the uncertainty is modeled correctly then therapy op-

timization algorithms can still use the model. When the uncertainty is too high, algorithms should 

act accordingly when suggesting therapy adjustments. 

The assumptions made by a Kalman filter include linearity and Gaussian noise. The glucose 
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Endogenous Glucose Production 

Blood Glucose (mg/dl) 

Figure 5.6: Endogenous glucose production as a function of glucose concentration for different 
levels of plasma insulin. 
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dynamic model contains nonlinear components and the sources of noise are poorly understood. 

Extended Kalman filters have demonstrated good performance in other systems with nonlinear 

components, so the EKF was chosen for the physiological model. 

The physiological model is made of many subcompartments such as the kidney function or 

insulin dependent glucose uptake. To capture this in the EKF each subcompartment was imple-

mented as a separate model. Separating the EKF update into components allowed different models 

for a compartment to be interchanged quickly to evaluate each. It also allowed each component to 

function independently to allow investigation into the response of the component to specific input. 

This design lets each compartment be tested separately, and it made evaluating different models 

for compartments simpler. One of the primary goals of creating the physiological model was to 

create a new model that incorporated energy expenditure. 

To evaluate the model with exercise, an exercise dependent insulin dependent uptake compart-

ment was created. Experiments were done to compare the effect of replacing the traditional insulin 

dependent compartment with this new model. The modular design of the EKF facilitated making 

this comparison by simplifying the process of changing subcompartment models. 

5.4.1 E K F U p d a t e Equations 

The EKF equations assume the model can be expressed in the form given in equation 5.21. 

In this system / is the nonlinear physiological blood glucose model that updates the system 

state vector Xt at each time-step. The function h describes the measurement of blood glucose as 

a function of the state vector. The noise parameters q and r represent the uncertainty in the state 

update and measurement, respectively. The unmodeled factors that affect glucose are treated as a 

part of q. 

Xt = f(Xt-i,Ut-i)+qt-i (5.20) 

gt = h(Xt)+rt (5.21) 
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The update equations begin with the prediction step. This step updates the state of the system 

and its covariance without incorporating new information from measurements. 

Xf = f(Xt-i, Ut-i) (5.22) 

Pf = Ft-iPt-iF^+Qt-! (5.23) 

The matrix Ft_\ is the derivative of the function f ( X ) with respect to the state vector evaluated 

at the current system state and update state. 

F t . 1 = ^ ( X t _ 1 , U t . 1 ) (5.24) 

After the prediction step is the correction step where new information or measurements are 

combined with the prediction. 

Kt = Pt-Hj(Htp-Hj + Rlyl (5.25) 

Xt = Xt-+Kt(gt-HtXt-) (5.26) 

Pt = Pt; - Kt(HtPt-Hj + R,)Kj (5.27) 

In the measurement update step the matrix Ht is the Jacobian of the function h with respect 

the the state vector X evaluated at the current system state. 

H t = ^ ( X t ) (5.28) 

Examples 

As an example, Figure 5.7 plots the output of the physiological model calculated for a patient 

with type 2 diabetes. The model is updated at each blood glucose measurement. This patient has 

mild diabetes, so his insulin sensitivity is almost normal. The insulin sensitivity is the primary 
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Diabetes Simulator 

T ime 

Figure 5.7: Results from the physiological model on a patient with well controlled type 2 diabetes. 

parameter to estimate to fit the model to a patient. This parameter adjusts how effectively the 

patient can use insulin to remove glucose from the blood. 

Insulin Sensitivity can range from 0 to 1. A normal person without diabetes would have an 

insulin sensitivity of 1, and similarly a patient with type 1 diabetes will usually have an insulin 

sensitivity near 1. The primary difference between these two cases is that the insulin secretion 

compartment of the physiological model is turned off for the patient with type 1 diabetes. 

Estimating Insulin Sensitivity 

The possible values for insulin sensitivity are bounded so it can be estimated by trial-and-error. 

The error between the predicted blood glucose and measured blood glucose is evaluated over the 

range of possible values for insulin sensitivity. The value that minimizes the error is used as the 

best estimate for the parameter. Figure 5.8 shows the error as a function of insulin sensitivity for 

a patient. The optimal estimate is the value that minimizes the error. 
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Optimizing Insulin Sensitivity for 150701: min = 0.5 

Insulin Sensitivity 

Figure 5.8: Estimating the optimal value for insulin sensitivity for a patient. 

5.5 Results 

The continuous models were evaluated on patients that had measured continuous glucose when 

collecting data. Unfortunately, this study only collected about 14 days of data that included 

continuous glucose measurements, thus the results presented are preliminary and will need to be 

further evaluated. Despite this, the initial results demonstrate the promise in the approach and 

the need to invest the time to collect more data for evaluation. 

In all, four models were evaluated at different prediction times ranging from 15 minutes to 120 

minutes at an increment of 15 minutes. The four models are listed below. 

• AR: The autoregressive model using recent past CGM data. 

• ARX: The autoregressive model with exogenous variables including insulin, carbohydrates, 

and exercise. 

• P M : The traditional physiological model without exercise. 
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• PM+Exercise: The new physiological model that includes exercise. 

The four models were evaluated using the Clarke Error grid. This set of models addressed the 

difference between statistical models (AR, ARX) and physiological models (PM, PM+Exercise). 

It also allowed comparisons between the AR and AREX models to determine whether collecting 

the additional variables is necessary. Finally, the two physiological models were compared to see if 

including exercise improves the performance. 

In the evaluation, specific prediction times were be highlighted for their clinical significance. 

These prediction times were 15, 45, and 120 minutes. To produce these results with the EKF the 

model was updated using the most recent continuous glucose measurement and then allowed to 

make predictions without updates for the next 120 minute window. The model was allowed to use 

the values for future meals, insulin, and exercise, but not future glucose measurements. 

5.5.1 15 Minutes 

The prediction time of 15 minutes was highlighted to evaluate how each model makes predictions 

in the near future. This is useful for predicting hypoglycemia or detecting meals. An alarm for 

hypoglycemia could be given 15 minutes in advance to provide the patient with enough time to 

intervene and prevent low blood glucose. 

Figure 5.9 displays the Clarke error grids for the four models at a prediction time of 15 minutes. 

The ARX model performed the best at this time scale followed by the AR model and the two 

physiological models. For predictions in the near future the autoregressive models perform better 

because of the limited impact of the non-linearities at this time scale. 

5.5.2 45 Minutes 

Rapid acting insulin reaches its peak action after about 45 minutes, so this prediction time was 

highlighted because of its potential impact on closed-loop systems. A closed-loop system would be 

making insulin adjustments that will impact the patient after 45 minutes. 

At this prediction time the ARX model performed slightly better when using the percentage 

of points in region A of the Clarke error grid. Figure 5.10 displays the results for the four models 



CHAPTER 5. CONTINUOUS DYNAMIC MODELING 101 

(a) ARX Model (b) AR Model 
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Figure 5.9: Clarke error plots for each model when predicting ahead 15 minutes. 

at this prediction time. Both physiological models performed slightly better when comparing the 

number of points in region E. This is the region where the indicated therapy is the opposite of the 

optimal therapy, and it is the most dangerous region. 
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Figure 5.10: Clarke error plots for each model when predicting ahead 45 minutes. 

5 .5 .3 120 M i n u t e s 

The prediction time of 120 minutes was useful for evaluating the longer term impact of a therapy 

adjustment. It also provided a comparison point to the Gaussian Process regression model pre-

sented in the previous chapter. The comparison is not perfect because the continuous model must 

make predictions for all possible behaviors and the postprandial prediction models are specifically 
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(a) ARX Model (b) AR Model 
Predicting Glucose at Horizon - 120 min, with Lag = 240 using ARX Predicting Glucose at Horizon = 120 min, with Lag = 240 using AR 
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Figure 5.11: Clarke error plots for each model when predicting ahead 120 minutes, 

targeted toward meals. 

After two hours the physiological models performed better than both autoregressive models, 

and the ARX model was significantly better than the AR model. The physiological models have 

built in constraints that help limit them to physiologically possible predictions while the AR and 

ARX models do not contain these constraints. Also, the three models that include information 
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Comparison of Points in Region A as a Function of Forecast Time (All Models) 
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Figure 5.12: Comparison of the percentage of points in Region A for all models as a function 
of forecast time. The AR and ARX models perform better for near term predictions while the 
physiological model is better for longer forecast times. 

about insulin and carbohydrates perform significantly better at longer prediction times than the 

simple AR model that only uses continuous glucose measurements. 

5.6 Percents in Region 

To compare the four models Figure 5.12 plots the percentage of points in region A as a function of 

the prediction time. For predictions times between 15 and 45 minutes the ARX model performs the 

best followed by the AR model. At these prediction times the impact of insulin and carbohydrates 

has not had enough time to influence the blood glucose so the ARX, and AR models that are 

trained on the continuous measurements perform better. 

When making predictions at times further in the future from 45 to 120 minutes the physiological 

models perform better because they include the delayed influences of insulin and carbohydrates. 

For this same reason the ARX model performs better than the AR model after about 60 minutes. 
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Figure 5.13: Percent change in the points in Region A when adding exercise to the physiological 
model as a function of forecast time. 

The best model can then be selected depending on the purpose of the continuous glucose model. 

For predicting hypoglycemia an AR model would be sufficient, but for estimating the long-term 

impact of applying an insulin bolus the physiological model should be selected. 

As can be seen from Figure 5.12 there is not much difference between the physiological models 

with and without exercise. When a patient does not exercise the physiological model that includes 

physical activity converges to the traditional model, so the difference between the models only 

occurs during exercise. 

Figure 5.13 displays the percent improvement between the physiological models when exercise 

is added as a function of prediction time. At 15 minutes there is no improvement primarily due to 

the delayed impact of exercise. Beyond that the physiological model improves the percentage of 

points in region A by about 0.2%. This value seems insignificant, but if a person exercises three 

times a week for 30 minutes that equals only 0.9% of the week. Since the models only differ when 

the patient exercises, the small improvement is actually significant. 

Improvement of Model with Exercise 
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(a) Phy. Model Exercise 
Physiological Model Predicting in Real Time (Exercise) 
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Figure 5.14: Estimating the current continuous glucose concentration using the physiological model 
with exercise (a) and without exercise (b). 

5.7 Real Time Exercise vs No Exercise 

Another potential use of the physiological model is to estimate the current blood glucose as a 

replacement to a continuous glucose monitor. When the EKF is used in this manner it is only 

updated at BG measurements and the continuous glucose measurements are only used to evaluate 

the models predictions. In this scenario a patient could use the physiological model to estimate 

blood glucose in real-time. 

This differs from the previous experiment because the prediction time is not fixed. The pre-

diction time for a point is equal to the time since the last blood glucose measurement, so these 

results include prediction times ranging from 5 minutes to 8 hours. The two physiological models 

were used for this experiment to compare evaluate if adding exercise to the model improves its 

capability to estimate blood glucose in real-time. 

Figure 5.14 displays the Clarke Error grids for this experiment. The results from the two models 

are visually very similar with the model with exercise performing slightly better. 

The difference between the percentages of points in each Clarke region are displayed as a 

histogram in Figure 5.15. As can be seen from this figure there is a shift in points from region C 
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Improvement of Model with Exercise (RT) 
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Figure 5.15: Percent change in each region of the Clarke error grid with the addition of exercise. 
There is a shift of points from region C to regions A and B showing an improvement with the 
inclusion of exercise. 
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to regions A and B when exercise is included. As in the previous experiment, the percent change 

in region A is small, but the shift from regions C to B is significant. For points in region B, the 

therapy selected would be in the correct general category. 

5.8 Conclusions 

In this chapter a new physiological model was presented that includes exercise in the insulin 

dependent glucose utilization compartment. This model was compared to AR and ARX models to 

evaluate the best method for predicting continuous glucose values. The methods could be evaluated 

using more data to conclusively prove their value, but even with limited data the physiological 

model showed promise as a method of improving the performance of modeling for patients that 

exercise. 

For predictions in the near-future up to 45 minutes, the AR and ARX models could be used. 

They avoided the complexity of the physiological model and performed well at this time scale. For 

prediction times beyond 45 minutes, the physiological model with exercise was the best way to 

estimate the influence that insulin, meals, and exercise have on a patient's blood glucose. 

The physiological model with exercise was also the best method for estimating a patient's 

blood glucose in real-time without the aid of a continuous monitor. However, this type of real-time 

modeling was not accurate enough to make therapy decisions without the aid of supporting blood 

glucose measurements. There was too much variation in the system to trust any model's accuracy 

over long periods of time. 



An ounce of prevention is worth a pound of 
cure. [Ancient proverb] 

Henry de Bracton, De Legibus, 1240 

Chapter 6 

Generating Therapy Advice 

Modeling postprandial blood glucose or continuous glucose dynamics provides no practical value 

unless it can be used to provide therapy advice for a patient. The data and models in IDA can 

be used to generate real-time therapy advice and retrospective advice. It can help adjust insulin 

doses, provide alerts, and help give individualized education for patients. 

6.1 Introduction 

Modeling glucose dynamics is useful if it can be used to improve a patient's health. The two 

categories of modeling addressed in this research, postprandial and continuous, were specifically 

chosen for their ability to produce practical therapy advice. There are two categories of advice that 

can be generated using these models: real-time and retrospective. Real-time advice is advice that 

the patient will use now, and retrospective advice refers to the analysis of a previous dataset to 

generate useful information. This chapter will demonstrate the practical application of this research 

toward improving health outcomes. Measuring the actual impact on the health of patients is beyond 

the scope of this thesis. 

There are many possible types of advice that could be given to a patient, including warnings 

of hypoglycemia, suggesting insulin injection doses, and generating educational advice. The key to 

automatically generating advice is having quality data representing the patient's normal behaviors 

109 
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along with blood glucose measurements. A list of glucose measurements without the context of 

behaviors only provides generic information about the patient's health, so a health care provider 

or automated system can only provide generic advice. 

IDA has the potential to improve the quality of advice from human and automated sources 

because of its emphasis on capturing lifestyle data. Though not quantitatively measured, the dieti-

tians on the research team found the information available in IDA very helpful for providing patient 

targeted nutrition education. Automated advice algorithms can also use the detailed lifestyle data 

to provide more specific advice along with justification for the suggestions. 

The advice generated by IDA can also be used to help patients with both type 1 and type 2 

diabetes. The lifestyle data collected can be used to give behavior related advice to patients. Many 

diabetes management systems only focus on insulin dosing so they are not useful for patients whose 

primary therapy is lifestyle. 

One challenge facing all decision support software is that physicians and patients are hesitant 

to believe a black box. so providing justification for the suggestions is an important part of advice. 

Both the Gaussian Process Regression method and Physiological model can provide the reasoning 

behind a decision. 

6.2 Real Time Advice 

The most helpful real time advice for a diabetic would be suggesting an insulin dose or in the 

case of an artificial pancreas, selecting an optimal dose. Another type of useful real-time advice is 

warnings of possible hypoglycemia. 

6.2.1 Insulin Injection Dos ing 

Insulin doses for a meal are usually calculated as a function of the current blood glucose and the 

quantity of carbohydrates in the meal. The two parameters that are used to calculate the dose are 

the insulin-to-carb ratio, a c , and the insulin sensitivity, a g . The insulin-to-carb ratio adjusts the 

insulin dose to account for the amount of carbohydrates in the meal, and the insulin sensitivity 
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adjusts the dose to correct for elevated blood glucose. They are used in the following equation to 

calculate the dose. 

h = ag(gt - go) + acct (6.1) 

This equation is designed to maximize the probability of glucose reaching normal glucose after 

a meal. In general this equation works well but may need to be adjusted for specific meals. The 

data collected by IDA can be used to calculate an insulin dose for a meal by finding the dose that 

maximizes the probability of leading to normal glycemia. The learned model can be used to find 

the ideal dose. This can easily be done by an exhaustive search because of the limited range of 

possible insulin doses. 

msLXip(gt+2 - good|/j = i) (6.2) 

Where the probability is calculated using the Gaussian Process model with a Gaussian kernel 

using equation 4.8. 

p{gt+2 = goodlIt = i)lda = k(x*,x*) - k(x*,X)(K(X, X) + fiiy^iX, X*) (6.3) 

This result can be combined with the traditionally calculated insulin as a way to shift insulin 

doses. 

P(gt+2 = good| It = i)= p(gt+2 = good|/t = i)tradP(gt+2 = good|/t = i)ida (6.4) 

6.2.2 Example 

To demonstrate this process an individual Gaussian Process regression model was created for one 

of the patients with type 1 diabetes. The insulin dose calculation parameters for this patient were 

known prior to the start of the study. For each meal the equation 6.1 was used to calculate the dose 

of insulin that would most likely result in normal postprandial blood glucose. A normal probability 
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Dose Calculation 

Insulin Bolus Dose (Units) 

Figure 6.1: Determining the optimal insulin dose based on a combination of the model-based 
suggestion with traditionally calculated dose. In this specific case the calculated dose resulted in 
hypoglycemia so a reduced dose would have been better. 

distribution was placed around the calculated dose to represent the prior probability of being the 

correct dose for the meal. Then the model was used to determine the dose of insulin most likely 

to achieve normal postprandial glucose levels. The two probability distributions for a meal are 

plotted in Figure 6.1 along with the combined probability distribution. 

For this meal the recommended insulin dose is lower than the dose calculated using only the 

equation. In this case the meal resulted in hypoglycemia, so the recommendation would have 

improved the outcome. 

6.2 .3 Providing Just i f icat ion 

The suggestions generated by an automated system should be accompanied by the reasoning for 

the decisions. Physicians and patients can be hesitant to trust the mysterious suggestions from a 

black box, so some form of justification can help them accept the system. IDA can provide such 
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BG Carbs Ins. Prediction 
Query 115 56 5 113 
Similar past meals and their outcomes 

meall 124 47 5 128 
meal2 97 47 5 79 
meal3 118 76 6 123 

Table 6.1: Similar meals from the training set can provide justification for therapy advice. 

justification because the data it collects is strongly linked to the patient's lifestyle. 

To justify a suggested insulin dose IDA can identify situations in the past where the patient 

encountered a similar choice. The outcomes of those situations can function as justification for the 

current advice. 

Identifying similar past scenarios is simple when using Gaussian process regression with a 

Gaussian kernel. The kernel matrix functions as a similarity measure between data. The similarity 

can be calculated using all available measurements or specific variables. For example, to provide 

justification for the previous example the system can present the closest three past examples. 

Figure presents the three most similar past examples for the patient. 

The system could also provide examples using specific variables. Table 6.1 presents the patients 

three most similar behaviors using specific variables. The ability to display meal images makes the 

justification more understandable to the patient. The patient probably remembers the meals and 

can clearly see the impact of the choices made then and how the current suggestion compares. 

6.2.4 Predict ing Hypog lycemia 

Another important form of real-time advice is warning of possible hypoglycemia when using a 

continuous glucose monitor. The continuous glucose model is ideal for this problem, and the ARX 

model works well because prediction times for hypoglycemia are typically less than an hour. Figure 

6.2 contains the ROC curves for hypoglycemia prediction times of 15, 30, 45, and 60 minutes. A 

true positive occurs when hypoglycemia is correctly predicted for the given prediction time. For 

this example a hypoglycemic event was defined as occurring when the CGM data was less than 70 

mg/dl. 
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Figure 6.2: ROC Curves for hypoglycemia prediction at four different prediction times. 

The ROC curve is generated by varying the threshold at which the model prediction is con-

sidered an alert. The value for an alarm threshold can be personalized depending on the level of 

control a patient is trying to achieve and how aware the patient is of hypoglycemia. If hypoglycemia 

is likely then the system could send a warning to the patient. 

These results are promising, and the ARX model allows better long-term predictions of hypo-

glycemia than an AR model. The hypoglycemia alarms systems on current CGM systems suffer 

from false positives because they do not include exogenous input variables. 

6.2.5 Artificial Pancreas 

The future of diabetes management for people with type 1 diabetes is in closed-loop control systems 

that mimic the normal glucose regulatory system. The artificial pancreas is an ideal goal, but there 

are many challenges facing its development. The measurement noise of current CGM systems, delay 
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in insulin absorption, and physiological variability make closing the loop very difficult. 

The most common method being explored for implementing an artificial pancreas is model-

predictive control (MPC). In MPC the controller selects the insulin dose that, according to the 

model, will optimize future blood glucose values. The key to this control strategy is having a 

model that can predict the outcome for a set of behaviors. The physiological and ARX models 

that include exercise, presented in Chapter 5, could be used in such a system. 

In a recent meeting of leading glucose modeling diabetes researchers from around the world, the 

key challenge identified that limits the implementation of an artificial pancreas is the variability 

in the system [99]. The EKF implementation of the physiological model addresses this problem 

by incorporation exercise, which is one of the sources of variability frequently overlooked, and esti-

mating the uncertainty of the system state. As in may areas of robotics, systems that must operate 

within an uncertain environment can perform significantly better if they know their uncertainty. 

This implementation can lead to a system that better understands its uncertainty, and therefore 

can make better decisions. 

Another key topic discussed in this meeting was the need to have systems that can remotely 

monitor the patient and closed-loop controller. Currently, clinical tests of artificial pancreas systems 

have occurred in a hospital or controlled laboratory environment, but eventually these systems need 

to be tested in real-life. IDA's unique combination of telemedicine and modeling can help address 

this problem. 

6.3 Retrospective Advice 

In addition to real-time advice the system can be used to retrospectively generate advice. Such 

advice can be provided when a patient visits their care provider. It can also help the care provider 

give more specific advice efficiently. Doctors have limited time to interact with patients, so a system 

that can make that time more efficient can be very useful. 

In this chapter IDA is used retrospectively to estimate the blood glucose value between sparse 

measurements, create behavior advice, and perform parameter estimation for an insulin dose cal-
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culation algorithm. 
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Figure 6.3: Kalman Smoother estimating the most likely value of blood glucose between sparse 
measurements. 

6.3 .1 E s t i m a t i n g C G M B e t w e e n Sparse M e a s u r e m e n t s 

Devices are available to continuously measure glucose but they are infrequently used; so patients 

typically provide the doctor with sparse blood glucose measurements. The physiological model can 

be used to determine the most likely blood glucose value between these sparse measurements. 

In chapter 5 the extended Kalman filter was used to estimate the system state in real-time, but it 

can also be used retrospectively to calculate the most probable glucose value between measurements. 

This is done using forward-backward smoothing. 

The forward-backward smoothing equations are from equation 6.5 to equation 6.9. After per-

forming the normal forward Kalman Filter algorithm these equations are applied backward, from 

k = T... 0. 

Kalman Smoothing Between Fingerstick Measurements 
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Figure 6.4: A comparison between the physiological model without exercise and with exercise when 
the EKF is used as a smoother. 

•ffc+l = AkPkAk + Qk (6.5) 

Cfc = PkAliP^}-1 (6.6) 

= Xk + Ck\x%+i — Akxk] (6.7) 

xk — xk + Cfc[®fc+i — xk+1] (6.8) 

ps = Pk + Ck[Ps
k+l-' Pk+l\Ck (6.9) 

An example of data produced by the Kalman smoother is in Figure 6.3. The smoothed estimate 

is plotted over the CGM data for comparison. 

Figure 6.4 displays the clarke error grid comparing the results generated by the traditional 

physiological model to the estimates generated by the model with exercise. 

When compared to the real-time estimates for blood glucose, the estimates from the EKF 

smoother are much better. Table 6.2 compares the estimates from the smoother with the real-time 

estimates. 
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Improvement of Model with Exercise (Smoothing) 
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Figure 6.5: The change in the percentage of points in each region of the Clarke Error Grid between 
the physiological model with exercise and without exercise when used retrospectively to estimate 
the blood glucose value between sparse measurements. 

Region Smoother Real-time 
A 52.45 42.29 
B 38.84 47.76 
C 3.13 3.20 
D 5.37 6.12 
E 0.20 0.14 

Table 6.2: Retrospective blood glucose estimation using the EKF smoother is significantly better 
at estimating the value of blood glucose between finger-stick measurements when compared using 
the Clarke error grid. 
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6.3.2 Behaviors Analys is for Educat ion 

The data could also be used to give behavior advice for a patient. As an example a patient was 

selected and a linear Gaussian Process model was trained on the first week and a half of patient 

data. For the last 9 meals every input was held constant except for the quantity of carbohydrates 

and pre-meal exercise. Then the model was used to determine the space along these two dimensions 

that would result in a postprandial blood glucose greater than 160 mg/dl. Figure 6.6 displays four 

of the test meals and their results. The blue side of the plot is the area that should result in blood 

glucose less than 160 mg/dl and the red should result in values greater than 160 mg/dl. The circle 

color indicates the location of the actual action chosen by the patient and is color-coded based on 

the actual outcome (Red circle = bg > 160, Blue circle = bg < 160). The separation line varies 

based on the value of the other inputs such as pre-meal blood glucose. The shape of the separating 

surface confirms that higher carbohydrate intake and less exercise can both lead to high blood 

glucose. 

Out of the nine test meals, the model predicts the actual outcome correctly eight times. Figure 

6.6 contains three of the correct classifications and the incorrect classification as well. This suggests 

that even a simple model can be used to generate useful suggestions to the patient. One direction 

to which this could lead is training a binary classifier to predict hyperglycemia instead of trying to 

predict the actual value of postprandial blood glucose. 

6.3 .3 Parameter Est imat ion 

The data from IDA can be used to give real time suggestions for insulin doses and it can also be 

used to calculate optimal values for the insulin-to-carb ratio and insulin sensitivity retrospectively 

to update the traditional method of calculating insulin doses given in equation 6.1. 

h = ag(gt - go) + acct (6.10) 

Using the patient data that resulted in good postprandial blood glucose results, linear regression 

can be used to find the optimal values for the parameters. Table 6.3 contains the result after 
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Figure 6.6: A simple linear model was used to identify the boundary in carbohydrate intake and 
pre-meal exercise space between behaviors that result in postprandial glucose being greater than 
or less than 160 nig/dl. The red shaded side is for BG > 160 mg/dl. 
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applying this process to one of the patients with type 1 diabetes. The patient started with an 

initial insulin-to-carb ratio of 10 carbs/unit, but after the study, it was determined that an insulin-

to-carb ratio of 11.2 carbs/unit would result in better postprandial results. 

Parameter Estimation Sensitivity Insulin-to-Carb 
Initial Prescribed Parameters 50 10 
Parameter Adjustment 68 11.2 

Table 6.3: Insulin dose calculation parameter estimation 

6.4 Conclusions 

IDA is a very versatile system because of the quality of the data it collects and the models that 

can be created. It can be used to implement real-time therapy advice such as meal specific insulin 

dose adjustments, hypoglycemia alerts, and has many potential uses in a closed-loop system. The 

suggestions can be supported by referencing the past events used to make the suggestion. 

The system can also be used retrospectively to provide therapy adjustment advice and educa-

tional support. The data collected by IDA uniquely captures the behaviors of patients, so it can 

be used to generate advice target toward patients that manage their diabetes using only lifestyle 

and diet. Finally the system can retrospectively calculated parameter adjustments used for insulin 

dose calculation. 

There are many other potential ways for generating therapy advice with IDA. The selection of 

methods highlighted in this chapter were chosen for the way they highlighted the previous models 

discussed in Chapters 4 and 5, and they were also chosen because they demonstrated methods for 

utilizing the unique data collected with IDA. The meal images and exercise allow IDA to be used 

to explore therapy monitoring and optimizing solutions that previous systems cannot address. 



It's a dangerous business, Frodo, going out your 
door. You step onto the road, and if you don't 
keep your feet, there's no knowing where you 
might be swept off to. 

J. R. R. Tolkien 

Chapter 7 

Other Interesting Results 

In the course of this project other areas were briefly investigated. Findings from these areas are 

preliminary, but merit consideration. For example, more could be done with the meal images to 

automatically process the images to recognize food and estimate the nutritional content of a meal. 

7.1 Introduction 

This research project generated other ancillary findings. Diabetes is a complex disease with many 

challenges to address. The results presented in this chapter are preliminary and are not directly 

related to the focus of the project; however, they may lead to further research projects. The three 

results presented in this chapter are a method for estimating food portions from meal images, 

recognizing similar meal images, and remotely monitoring a patient during the Muslim fasting 

month of Ramadan. 

7.2 Automatic Meal Image Processing 

One of the unique aspects of IDA is the use of meal images. These provide more detailed information 

about the nutritional content of a meal than a single estimate of carbohydrates. The food in the 

images were hand labeled by a dietitian. One reason for collecting meal images was to investigate 

automated meal recognition. This research was outside of the scope of this project, but initial 
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results were generated regarding meal portion estimation and meal recognition. 

123 

7.2.1 Port ion Est imat ion 

A small project was done to determine the feasibility of estimating the portion of a food based on 

the area of the food in an image. The method assumed there is a way to estimate the conversion 

from area of pixels to area of food. In this project patients placed a credit card sized color reference 

card beside their food to calculate this conversion, but many modern mobile phone cameras now 

contain auto focus lenses that can provide the focal length. The project was designed to compare 

the food portion estimates by two dietitians and the portion estimates based on the image area to 

the actual measured portion of the meal. 

For the project, twenty images of measured portions of rice were taken using a mobile phone. 

Rice was chosen because of its high carbohydrate content and common consumption. Two different 

plates were used. One large plate that allowed the rice to spread out and another smaller plate 

that limited the spread of the rice. Two dietitians trained in carbohydrate counting were shown 

the images and asked to estimate the portion size of the rice. Their estimates were compared to 

estimates generated based on the pixel area of the food. 

The portion size was calculated based on the following equation. 

S = f3Apixeis (7.1) 

The first 10 images were used to learn the coefficients for the large and small plates. Similarly the 

first 10 images were used to learn a correction factor for the dietitians' estimates. A representative 

example of one of the meal images is in Figure 7.1 along with plots comparing the estimates of 

portion size. 

Table 7.1 contains the results comparing the carbohydrate estimates from the dietitians and 

image pixel area to the actual amount for the meals. These results are plotted in Figure 7.2. There 

is significantly less noise in the portion estimates calculated from the image pixel area. 

The image analysis method for calculating portion size works better on the larger plate that 
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Figure 7.1: Sample meal image for portion estimation experiment. 

Carb Estimation Method MAD 
Dietitian 1 8.0441 
Dietitian 2 12.980 

Image Analysis 5.2274 

Table 7.1: Comparison of estimation methods using the mean absolute difference. 
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Comparison of Carbohydrate Estimation Methods 

Measured Carbohydrates (grams) 

Figure 7.2: Regression plot for portion estimation for dietitian 1, dietitian 2, and the image pixel 
area. 
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Figure 7.3: Meal image comparison. The top row is the actual meal and the next 10 rows are the 
images with the closest color histogram. 

did not constrain the size of the food, but in both cases it performed better than the dietitians. 

These results, while preliminary, demonstrate the feasibility of using meal images to estimate the 

portion size of food. 

7.2.2 Meal Image Match ing 

In addition to estimating meal portion size the meal images could also be used to automatically 

recognize food. The food recognition problem sounds very difficult, but in reality it is made simpler 

by the repetition of patient behaviors. People like to eat certain foods, so the problem is not one 

of recognizing a specific food out of all the possible meals available in the world. The task is to 

identify similar meals in the patients past because the therapy advice would also be similar. 

As an initial project along these lines, a patients meals were analyzed to find the most similar 

images based on the KL divergence between the color histograms of the images. This is a very 
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Figure 7.4: Monitoring a patient with type 2 diabetes during Ramadan 

basic method, but its results are promising. More advanced image matching algorithms could be 

investigated. 

Touch screens would also allow for a simple and efficient method of seeding a segmentation 

algorithm to locate areas of food. In this example the matching used every pixel in the image. The 

results should improve if only pixels representing food are used. 

7.3 Monitoring a Patient During Ramadan 

As a final diversion from the main focus of this thesis, IDA was used to monitor a patient as he 

began the fasting during the Islamic month of Ramadan. Many diabetics participate in Ramadan, 

and the changes in lifestyle pattern cause many to experience increased numbers of hyper and 

hypoglycemic events. After fasting during the day, diabetics often experience hypoglycemia, and 

following the large meal after sunset they often have extreme hyperglycemia due to the carbohydrate 

rich traditional foods consumed. IDA was used to help the patient monitor his transition from 

normal to fasting behavior. 

Figure 7.4 displays the meals consumed one week prior to Ramadan and the first week during 

Ramadan (starting at meal number 23) and the estimated carbohydrates for each meal. The chart 

shows how the quantity of carbohydrates increases for this patient after Ramadan begins. At this 

point, the telemedicine features of IDA could be used to help the patient with meal choices so 

that he could continue participating without experiencing additional health risks. The increased 

communication capabilities could allow the patient to make adjustments more quickly. 
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7.4 Conclusions 
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The clinical study conducted for this project was focused on predicting glucose, but IDA as a 

system can be used to explore other research areas. In particular, the meal image capabilities 

open opportunities to apply computer vision technologies toward meal image segmentation, food 

recognition, and portion calculation. These applications would not only benefit diabetics, but any 

person interested in tracking nutrition. 

The telemedicine capabilities of IDA can also be explored. During this research project the 

patients and physicians did not interact with IDA unless absolutely necessary, but the combination 

of automated analysis and telemedicine can facilitate efficient beneficial communication. 



I may not have gone where I intended to go, but 
I think I have ended up where I intended to be. 

Douglas Adams 

Chapter 8 

Conclusions and Future 

8.1 Key Results 

The challenges caused by diabetes range from the global level down to the molecular level. There 

are enough unanswered diabetes research questions to fill a lifetime. When IDA was initiated the 

following goals were proposed. 

• Demonstrated a functioning system that can 

Collect data. 

Share data. 

Analyze data. 
• Demonstrate an improvement over previous methods of prediction. 

• Demonstrated policy search to suggest behavior modifications. 

These goals have been addressed in the previous chapters, and though IDA does not claim to be 

the final solution for diabetes it is a step in the right direction. The following sections will address 

each of the goals and how IDA specifically achieves each. 

Collect Data 

The system for collecting data was discussed in Chapter 2 and Chapter 3, and it was demonstrated 

by 16 patients using the system to collect data for two weeks each. All patients, regardless of 
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experience with mobile phones, were able to use the system to collect data. The applications were 

designed to be simple to use and efficient for the patient, and the patients were able to collect 

representative lifestyle data because the system is portable. 

Share Data 

After data is remotely collected it can be shared with the health care team. The telemedicine 

system is described in Chapter 3. It is capable of sharing data, text messages, and audio messages 

from the patient to the health care team, and sending replies back to the patient. 

Analyze Data 

The data collected has been used to create models to predict postprandial blood glucose and 

to continuously model glucose dynamics as presented in Chapters 4 and 5 respectively. Many 

other methods for analyzing the data and using the models were presented in Chapters 6 and 

7. These include generating insulin dose adjustments, calculating parameter estimates, predicting 

hypoglycemia, and suggesting behaviors. 

Demonstrate an improvement over previous methods of prediction 

Two modeling method have been presented. The first uses Gaussian Process regression with a 

Gaussian kernel to predict postprandial blood glucose. The model presented here achieves an 

average percentage of 57 percent in region A of the Clarke Error Grid. Competing results for 

predicting postprandial blood glucose range from 28.5% and 41.5% for humans making the same 

prediction, and 34% and 51% for other computational prediction approaches. The improved data 

collected by IDA and the model used combine to demonstrate an improvement over previous 

methods. 

The second model presented is a new method for including exercise into a physiological model for 

continuously modeling glucose dynamics. The model with exercise improves the performance of the 

physiological model without exercise in all three experiments. It improved when making predictions 

when used with a CGM device, and was also better than the ARX model when predicting beyond 
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45 minutes. The new model is also better at estimating the real-time blood glucose concentration 

between finger stick measurements. Finally, it was better when used to retrospectively estimate 

the blood glucose profile between finger sticks using Kalman smoothing. Comparing models is very 

difficult due to the closed nature of this research community. However, the method for including 

exercise could be used in most models, and it should achieve similar improvements. 

In addition to the physiological model, a new ARX model was presented that used exercise data. 

This model significantly outperforms the AR model when making predictions beyond 30 minutes. 

In each case the modeling methods presented are improved by incorporating energy expenditure. 

Thus IDA has demonstrated improved methods for modeling this challenging problem. 

This thesis has demonstrated the creation of a diabetes management assistant that can remotely 

collect data, increase communication between patient and care provider, and automatically analyze 

all available information. It has also demonstrated that individual models, taking into account 

nutrition, medication, and exercise, with appropriate mathematical modeling, can learn accurate 

representations of specific patients suitable for providing therapy advice. 

Demonstrate policy search to suggest behavior modifications 

Methods for estimating insulin dose adjustments and other behavior adjustment suggestions were 

presented in chapter 6. For insulin dose adjustment the algorithm searched over all possible doses 

to find the meal specific dosing policy that would most likely results in normal blood glucose 

levels. The result is combined with the result from a standard insulin dose calculation to shift 

the dose toward a better result. The data was also used to create behavior recommendations in 

carbohydrate-exercise space. Other methods were presented for helping patients and the health 

care team by suggesting behavior or therapy adjustments. 

8.2 Future Directions for Robotics in Chronic Care 

In the next decade robot health care technology has the potential to inspire a paradigm shift 

in chronic disease management. As the population ages more people are faced with managing a 
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chronic disease. Frequently the treatment of these diseases is complicated and difficult. Managing 

chronic diseases like diabetes, high blood pressure, and sleep apnea requires a combination of 

education, motivation, lifestyle monitoring, and behavior adjustment. The ideal management plan 

for diabetes, one of the most common chronic diseases, is described by the American Diabetes 

Association as an "individualized therapeutic alliance among the patient and family, the physician, 

and other members of the health care team." Typical management patterns fall short of this goal. 

Robotics can improve management by monitoring the factors that influence the disease, providing 

the patient with a personalized education, and assisting the care team with analysis. 

One of the most common chronic diseases, diabetes is the sixth leading cause of death in the 

United States. There are many products today that can collect data and share data. The next step 

in research is to create agents that understand the patients, their disease, and how their lifestyle 

impacts their health. In my experience the broad research goal for health care robots working with 

chronic disease is to create a robot or agent that becomes a contributing member, if not the hub 

of treatment, in the ideal therapeutic alliance, 

8.2.1 Robot ics in Chronic Care 

Managing a chronic disease poses problems at many levels. At the lowest level the patient and care 

team must work together to monitor and control a specific biological problem, and at the societal 

level the epidemic nature of chronic diseases requires a care team to manage large numbers of 

patients while treating them as individuals. Robot research should address challenges across this 

spectrum, from assisting a patient with a small task to large scale intelligent patient management 

systems. 

To address the societal challenge of managing large numbers of patients with chronic diseases, 

health care robotics can be used to provide house calls for patients. Research should address using 

the connectivity and intelligence of health care robots to improve the efficiency of physicians by 

directing the doctors expert knowledge and time where it is most needed. 

Education and lifestyle intervention are key components to treating chronic conditions. Patients 

must learn about their disease and how lifestyle choices affect their health. This includes behaviors 
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involving diet, exercise, and medication. A goal of health care robots should be to work with the 

patient to monitor these behaviors and identify relevant personalized advice to educate the patient. 

Research should seek to identify the best methods for integrating into the patient's life in order to 

be able to monitor the necessary data without feeling intrusive. There are many other angles to the 

human computer interaction subgoal. Chronic health care robotic research should address issues 

of patient acceptance, adaptive education, patient and physician trust, and patient motivation. 

One approach to integrating robots into chronic care involves the presence of a physical robot 

or device interacting with patient and care team, and another option is for health care robots to 

disappear and function in the background. This involves research into context aware computing, 

smart homes, intelligent networked sensing devices, and wearable computing. 

Health care robotics can also play a role in answering fundamental questions about complex 

biological interactions that affect chronic diseases. Human biology is a complicated system with 

many unknown interactions between inputs. Many of these interactions are not well known, and 

they vary between patients. Robots can help illuminate theses interactions by closely monitoring 

patients in real life settings. Artificial intelligence research can pursue methods for augmenting 

current medical knowledge of biological systems with machine learning to discover and explore 

unidentified interactions. It is a key goal to incorporate personalized decision support systems into 

health care robotics. 

Research related to chronic care health care robotics has the potential to impact hundreds 

of millions of people. The key goal is to create an agent that is the hub of treatment through 

research into patient-robot interaction, patient-doctor interaction, intelligent networked biological 

monitoring, and machine learning in a decision support context. Someday soon, I believe that 

the tedium of daily diabetes management will be replaced by the worry free interaction between 

patient, doctor, and robot. 
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Appendix A 

A . l Conversions Between Units 

Useful Conversions 

1 mg carb 1 mg glucose 

1 mol glucose 180.16 grams 

1 mol human insulin 5808 grams 

1 mol insulin lispro 5813.63 grams 

1 mol insulin aspart 5831.6 grams 

1 mol insulin glargine 6063 grams 

1 mol insulin detemir 5913 grams 

1 gram insulin 22 units 

18.016 mg/dl glucose 1 mmol/1 

1 ^U/dl insulin 7.8262 pmol/1 
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Appendix B 

B . l EKF Equations for Glucose Kinetics 

The EKF state vector used for the physiological model of glucose dynamics is described in Table 

B.l. The variables included were selected so that it could function as a generic framework for 

plugging in competing models for the various compartments. For example, some models separate 

insulin mass into two compartments, so the state vector includes parameters to handle these models. 

Separate EKF models were developed for each subcompartment based on the equations pre-

sented in the previous section. These models may depend on parameters in the state vector and 

update vector. 

The vector of system inputs is listed in Table B.2. These are the raw timestamped data collected 

by the patients. 

The nonlinear state update functions f (X, U) for each item in the state vector are summarized 

in Table B.3. 

The jacobian of the vector of state update equations with respect to the state vector is in 

equation B.4. 

This Jacobian does not include the dynamics within each subcompartment because they are 

evaluated individually. 
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State Vector: X 
# Var Name ! Description Units 
1 At Change in Time between estimates minutes 
2 t Time minutes 
3 9 Blood Glucose Concentration mg/dl 
4 gm Blood Glucose Mass mg 
5 9V Blood Volume dl 
6 r Insulin Compartment Volume ml 
7 bm Body Mass kg 
8 gm2 Compartment Glucose Mass mg 
9 I Active Insulin Concentration fi u/ml 

10 IP Plasma Insulin Concentration /itu/ml 
11 jm Insulin Mass / i U 

12 jm2 Insulin Compartment Mass H u 
13 s1 Insulin Sensitivity unitless 

Subcompartment Rate Variables 
14 Agegp Endogenous Glucose Production mg 
15 Ag9Ut Glucose Rate of Appearance mg 
16 A gind Insulin Independent Utilization mg 
17 Agdep Insulin Dependent Utilization mg 
18 A gren Renal Clearance mg 
19 jabs Absorbed Injected Insulin / i U 

20 Ajsec Secreted Insulin JJiVL 
21 A j clr Cleared Insulin / Z U 

Table B.l: Table caption 

Input Vector: U 
Var Name Description Units 
U4 Time minutes 
U°9 Continuous Glucose Measurement mg/dl 
U9 Blood Glucose Reading mg/dl 
uc Ingested Carbohydrate mg 
UF Ingested Fat mg 
up Ingested Protein mg 
UE Current Exercise Rate cal/min 
uf Injected Rapid Insulin units 
u; Injected Regular Insulin units 
uL Injected Mixed Insulin units 
Ul Injected Long Acting Insulin units 

Table B.2: Input vector 
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Update Equations 
1 Ait+i = A tt 
2 tt+i = tt + A t t 

3 9t+1 = [5r+A<?r+A^r4 - A5rd - A ^ - A ^ r w 
4 9?+1 = g? + Aget9P + Ag?ut ~ A ^ ~ A<?fp ~ A9r

t
em 

5 9t+1 = 0.22 * bmt * 10 
6 TV it+1 = 0.142 * bmt * 1000 
7 bmt+1 = bmt 

8 — (only used with dual glucose compartment models) 
9 = S1 * Ip 

10 IPt+i = [ij™ + A l f s + AIfec - AI? r] /Ivt 

11 jm t+1 = IY1 + A l f s + AI?ec - A l f r 

12 ir+i — (only used with dual insulin compartment models) 
13 s1 = S1 

Independent Subcompartments 
14 Age9P 

= f(9t,h) 
15 A g9Ut 

= f(uc) 
16 A gind = f(9t,UE) 
17 A gdep = f(guIuUE) 
18 A gren 

= f(9t) 
19 jabs = f(UU,r,m,s)) 
20 A Isec 

= f(9t) 
21 A Iclr 

= W ) 

Table B.3: Update equations for each state variable 

At I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t l 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 1 0 0 0 0 0 0 0 0 0 1 ^ 1 
9* 

- 1 
w 

- 1 0 0 0 
gm 0 0 1 0 0 0 0 0 0 0 0 0 1 1 - 1 - 1 - 1 0 0 0 
gv 0 0 0 0 0 2.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 JV 0 0 0 0 0 0.142 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
bm 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
gm2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
I 0 0 0 0 0 0 0 0 1 JW 0 0 0 0 0 0 0 0 1 

w 
1 JB- -1 

IP 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
jm 

= 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 - 1 jm2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
s1 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
Agegp 

0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
A gBut 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A gind 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A gdep 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
A gren 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 /\ jabs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A Isec 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A rlr 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Table B.4: Jacobian for the state update vector. 
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