Dual Policy Iteration

Wen Sun' Geoffrey J. Gordon’> Byron Boots® J. Andrew Bagnell '

Abstract

Recently, a novel class of Approximate Policy It-
eration (API) algorithms have demonstrated im-
pressive practical performance (e.g., ExIt from
Anthony et al. (2017)). This new family of algo-
rithms maintains, and alternately optimizes, two
policies: a fast, reactive policy (e.g., a deep neu-
ral network) deployed at test time, and a slow,
non-reactive policy (e.g., Tree Search), that can
plan multiple steps ahead, but is only available
during training. The reactive policy is updated
under supervision from the non-reactive policy,
while the non-reactive policy is improved with
guidance from the reactive policy. In this work
we study this Dual Policy Iteration (DPI) strat-
egy in an alternating optimization framework
and provide a convergence analysis that extends
existing API theory. We also develop a spe-
cial instance of this framework which reduces
the update of non-reactive policies to model-
based optimal control using learned local mod-
els, and provides a theoretically sound way of
unifying model-free and model-based RL ap-
proaches for applications with unknown dynam-
ics. We demonstrate the efficacy of our approach
on various continuous control Markov Decision
Processes (MDPs).

1. Introduction

Approximate Policy Iteration (API) (Bagnell et al., 2004;
Kakade & Langford, 2002; Lazaric et al., 2010; Scherrer,
2014; Bertsekas & Tsitsiklis, 1995), including conservative
API (Kakade & Langford, 2002), API driven by learned
critics (Rummery & Niranjan, 1994), or gradient-based
API with stochastic policies (Baxter & Bartlett, 2001; Bag-
nell & Schneider, 2003; Kakade, 2002; Schulman et al.,
2015a), have played a central role in Reinforcement Learn-
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ing (RL) for decades. While the vanilla API has essentially
no performance guarantees, methods that leverage more
controlled updates (Bagnell et al., 2004; Kakade & Lang-
ford, 2002) can provide both local optimality guarantees
and global guarantees that depend on how samples are gen-
erated (e.g., a uniform reset distribution). Successful API
approaches can be thought of as making “small” changes:
by conservatively mixing with previous policies (Kakade &
Langford, 2002), modifying only single time steps (Bagnell
et al., 2004), or making small changes to policy parameters
(Kakade, 2002; Bagnell & Schneider, 2003). Recently, a
new class of API algorithms, which we call Dual Policy
Iteration (DPI), has begun to emerge. These algorithms
follow a richer pattern for improving the policy, with two
policies under consideration at any time during training: a
reactive policy, usually learned by some form of function
approximation, used for generating samples and deployed
at test time, and an intermediate policy that can only be
constructed or accessed during training. For example, in
Imitation Learning (IL), the second policy corresponds to
an expert policy. Ross & Bagnell (2014); Sun et al. (2017)
propose to update the reactive policy by performing pol-
icy iteration against the expert policy (i.e., use the state-
action values of the expert policy) and show that it learns
much faster than regular API. The intuition is that the ex-
pert policy, a policy that is better than the reactive policy,
directly informs the reactive policy’s improvement direc-
tion thereby avoiding costly local random exploration. Al-
though we do not assume access to an expert policy in RL,
we can construct a similar intermediate “expert” policy at
any time during training. For example, ExIt (Anthony et al.,
2017) maintains and updates a UCT-based policy (Upper
Confidence Bound applied to Tree (Kocsis & Szepesvari,
2006)) as an intermediate expert. ExIt then updates the re-
active policy by imitating the tree-based policy, which we
anticipate would be better than the reactive policy as it in-
volves a multi-step lookahead search. AlphaGo Zero (Sil-
ver et al., 2017) employs a similar strategy to achieve super-
human performance at the ancient game of Go. Zucker &
Maas (2009) leverage (brute-force) forward tree search to
improve learning Tetris. While tree search (e.g., MCTYS) is
an excellent way to construct an intermediate “expert” pol-
icy with fully known dynamics, for applications with un-
known dynamics, one can instead learn dynamics and then
perform forward search using techniques such as Value It-
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eration and Differential Dynamic Programming (DDP) to
construct the “expert” policy that improves upon the cur-
rent reactive one. (Levine & Abbeel, 2014).

In this work, we provide a general framework for synthe-
sizing and analyzing such Dual Policy Iteration strategies
by considering a particular alternating optimization strat-
egy. Specific strategies for each optimization direction of-
fer a new family of approximate policy iteration methods.
We construct a simple instance of our framework, where
one policy is computed from Model-Based Optimal Con-
trol (MBOC) and the reactive policy with arbitrary func-
tion approximations is updated incrementally. The result-
ing actor-critic-like algorithm iteratively learns a local tran-
sition model and applies MBOC to compute a locally opti-
mal policy around the reactive policy, together with a cor-
responding state-action value function (the critic), and then
executes a policy update on the reactive policy (the actor).

To evaluate our approach, we demonstrate our algorithm on
synthetic discrete MDPs, and also multiple classic contin-
uous control tasks, including helicopter aerobatics (Abbeel
et al., 2005) and multiple locomotion tasks from the Mu-
JoCo physics simulator (Todorov et al., 2012), and show
that our algorithm is extremely sample-efficient compared
to classic API algorithms such as CPI, as well as more re-
cent actor-critic baselines (Schulman et al., 2015b). We
also extend the framework to a robust policy optimization
setting (Bagnell & Schneider, 2001; Atkeson, 2012) where
one has access to multiple training environments, and the
goal is to learn a single policy that can be deployed imme-
diately on a test environment without further training.

Furthermore, we show a general convergence analysis that
extends existing API theory to DPI. In particular, we show
monotonic improvement, where the improvement mainly
consists of the independent improvement resulting from
each optimization direction. When neither of the optimiza-
tion procedures can improve, then we show that we have
reached a local optimum. Our analysis is general enough to
provide theoretical intuition for previous successful prac-
tical Dual Policy API algorithms such as Expert Iteration
(ExIt) (Anthony et al., 2017). Additionally, we provide a
more concrete analysis in the setting where model-based
OC is used. Our theorem considers how the model er-
ror would affect policy improvement, and indicates that
we only need locally accurate dynamics, i.e., a model that
accurately predicts next states under the current policy’s
state-action distribution. Note that locally accurate dynam-
ics are much easier to learn than global dynamics, as learn-
ing a global model suffers from a much greater degree of
model bias (i.e., a single function approximator is not able
to capture the true model over the entire space), and re-
quires a dataset that covers the entire state space. In this
sense, our analysis is similar in spirit to previous work that

uses inaccurate models for policy optimization (An et al.,
1988; Abbeel et al., 2006; Kolter & Ng, 2009).

2. Preliminaries

Formally, a discounted infinite-horizon Markov Decision
Process (MDP) is defined as (S, A, P, ¢, po,7). Here, S is
a set of states, A is a set of actions, and P is the transition
dynamics: P(s’|s,a) is the probability of transitioning to
state s’ from state s by taking action a. We use Ps , in short
for P(-|s,a). We denote c(s, a) as the cost of taking action
a while in state s. Finally, pg is the initial distribution of
states, and v € (0,1) is the discount factor. Throughout
this paper, we assume that we know the form of the cost
function ¢(s, a), but the transition dynamics P is unknown.
We emphasize that at least, from a theoretical perspective,
finding the optimal policy of the MDP with known cost
function is as difficult as finding the optimal solution with
unknown cost function, in terms of sample and computa-
tional complexity (Jaksch et al., 2010; Azar et al., 2017).

We define a stochastic policy 7 such that for any state
s €8, m(:|s) € A(A), where A(A) is the A-dimensional
unit simplex. Conditioned on state s, w(als) € [0,1] is
the probability of taking action a at state s. The distri-
bution of states at time step ¢, induced by running the
policy 7 until and including ¢, is defined Vs;: df(s;) =
D {sisaitice_ P0(50) [1:Zo m(ails:) P(si1]si, a:), where
by definition d%(s) = po(s) for any 7. Note that the sum-
mation above can be replaced by an integral if the state
or action space is continuous. The state visitation distri-
bution can be computed d(s) = (1 — 7)Y ;2,7 d7(s).
Denote (d,m) as the joint state-action distribution such
that d.7(s,a) = dr(s)m(als), then the expected to-
tal discounted sum of costs of a policy 7 is: J(7w) =
>t 0 E(s,a)~ar x[17¢(s, a)]. We define the value function
V™ (s) and state-action value function Q™ (s, a) as

T

Vi(s)=E Z’ytc(shat)\so =s,a~T|,
t=0

Q" (s,a) = c(s,a) + yBonp, , [V7(5)],

where the expectation in the first equation is taken with re-
spect to the randomness from the policy 7 and the MDP,
and P , is short for P(:|s, a). With V™ and Q7, the advan-
tage function A™ (s, a) is defined as A™(s,a) = Q7 (s,a)—
V7 (s). As we working in the cost setting, in the rest of the
paper we refer to A™ as the disadvantage function.

For two distributions P; and Py, Dy (P, P») denotes the
total variation distance, which is related to the L; norm as
Dpy (Py, Py) = ||P1 — Ps||1/2 (if we have a finite proba-
bility space) and Dk 1, (P, P») denotes the KL divergence.
Throughout the paper, we use the Performance Difference
lemma (PDL) extensively:
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Lemma 2.1 (Lemma 6.1(Kakade & Langford, 2002)). For
any two policies m and ', we have:

’

Jm) = I = T s [A7 (5 0)] )

3. Dual-Policy Approximate Policy Iteration

In this section, we propose an alternating optimization
framework for Dual-Policy API, inspired by the PDL
(Lemma 2.1). We first introduce the general alternating op-
timization framework and then discuss a simple instance
that combines model-free and model-based updates.

Let us consider the following min-max optimization frame-
work:
i Esmd, |Eqmoni1s) [A7(s, . 2
min maxEsa, [Eqn(s) [A7(s, a)] ®)
Note that the unique Nash equilibrium for the above equa-
tion is (w,n) = (7*,7*). To show this, we can simply
apply the PDL:

i ]ESN IEa~7r-s A" )
arg min arg max Eorq, [Earn(ls) [A"(s,a)]]

= in J(r) — in.J(n). 3
arg min J(r) arg min (n) 3)

The above framework immediately proposes a general
strategy for policy iteration: alternatively fix one policy and
update the second policy. Mapping to previous practical
Dual-Policy API algorithms (Anthony et al., 2017; Silver
et al., 2017), 7 could stand for the fast reactive policy and
7 could correspond to the tree search policy. Below we first
consider how we can update 7 given a fixed 1. For notation
purposes, we use 7, and 7, to represent the two policies in
the n™ iteration.

3.1. Updating 7

We update 7, to 7,11 by performing the following con-
strained optimization procedure:

argmin Ega,, [Eann(ls) [A™ (5,0)]] )
s.t.,]ESNdM [DTv(W(‘|5)77Tn("3))] <g (&)

Note that our formulation in Eq. 4 is different from ex-
isting API algorithms (e.g., CPI) which use the disadvan-
tage function A™ (s,a) of the current policy 7, while in
our case, we use 7,,’s disadvantage function. As Eq. 4 is
performing API with respect to a fixed policy 7,, we can
solve Eq. 4 by converting it to supervised learning prob-
lem such as cost-sensitive classification (Kakade & Lang-
ford, 2002), subject to an L1 constraint. It is worth point-
ing out that the trust region definition in Eq. 5 is empiri-
cally measurable using samples from d, (i.e., executing

T, on real systems to generate s), while the analysis in
previous work (i.e., TRPO from Schulman et al. (2015a))
used a much stronger definition of trust region in the format
of maxses Dy (m(-|s), m,(+]$)), which is not empirically
measurable unless one can enumerate all states.'

It is interesting to note that a conservative policy update
procedure can be viewed as approximately solving the
above constrained optimization problem. Following CPI,
we first solve Eq. 4 without considering the constraint
(Eq. 5) to obtain a policy ;. We then conservatively up-
date ,, to w41 as:

Tpn+1 = (1 - ﬁ)ﬂ-n + 577;; (6)

Note that m,4; satisfies the constraint as
Dry(mni1(:8), m(-|s)) < B,Vs. Intuitively, a con-
servative update can be understood as first solving the
objective function to obtain 7, without considering the
constraint, and then move ,, towards 7, until the bound-
ary of the region defined by the constraint is reached. For
a parameterized policy, in Sec. 4.1, we will introduce a
corresponding natural gradient update procedure.

3.2. Updating

In this section, we present how to update 7 given a fixed .
Given 7, the objective function for n in Eq. 2 becomes:

max B, [Banr, 1o [A7(s,0)]] - (7)

While computing the functional gradient with respect to n
measured at 7,, is complicated, it can be estimated using,
for example, finite differences. We propose a different ap-
proach that leverages the PDL. It is not difficult to see that
updating 7’ is equivalent to finding the optimal policy 7*:
arg max, (J(m,) — J(n)) = arg min,, J(n), regardless of
what 7, is. As directly minimizing the objective J(7) is as
hard as the original problem, we update n locally by con-
straining it to a trust region around 7,

arg min J (1), @®)
n

5-t~7Eswd,rnDTV[(T]('|s)77Tn<'|5))} <o )

3.2.1. UPDATING VIA MODEL-BASED RL

The constrained optimization problem in Eq. 8&9 is non-
trivial, as we do not know the transition dynamics F ,.
If we did know the dynamics, then we could leverage any
Model-Based Optimal Control (MBOC) algorithm to solve
this problem. Therefore, we propose to learn Ps , from the
samples generated by executing 7, at the last optimization
direction for . Moreover, thanks to the trust region, we

'In fact, Schulman et al. (2015a) suggests relaxing maxscs to
Es~a,, for practical implementations of TRPO.
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can simply learn a local dynamics model, under the state-
action distribution d_T,,.

We denote the optimal solution to the above constrained
optimization (Eq. 8 & Eq. 9) under the real model P; , as
7. Note that, due to the definition of the optimality, 7,
must perform better than 7,: J(m,) — J(n) > Ap(a),
where A, (a) > 0 is the performance gain from 7, over
7. Here the size of A, (a) depends on the size of the
trust-region. When the trust region expands, i.e., a in-
creases, then A, («) approaches the performance differ-
ence between the optimal policy 7* and 7,,.

To perform MBOC, we learn a locally accurate model—a
model P that is close to P under the state-action distribu-
tion induced by m,: we seek a model P, such that the quan-
tity E(s,q)~d,, , 7, DTV (I:’S@, P, ,) is small. Optimizing an
L1 objective may be not easy as it is not smooth, but note
that, by Pinsker’s inequality, we have Dy (Ps 4, Psya) >
D1y (Ps.a, Ps 4)?, which indicates that we can optimize a
surrogate loss defined with KL-divergence:

argminE, g amr, () DKL (Ps,a, Ps.a)
Pep

= arg miﬂ ]ESNd,,n,awrn(s),s’is a [_ IOg ps,a(SI)L (10)
Pep '

where we denote P as the model class. Hence we reduce
the local model fitting problem into a classic maximum
likelihood estimation (MLE) problem, where the training
data {s,a, s’} can be easily collected by executing 7,, on
the real system (i.e., P ,)!

For later analysis purposes, we denote P as the maximum
likelihood estimator in Eq. 10 and assume P is J-optimal:

E(s,a)~ds, 7o DTV (Psas Ps,a) < 0, (11)

where § € R™ is controlled by the complexity of model
class P and by the amount of training data we sample using
7y, which can be analyzed by standard learning theory.

After achieving a locally accurate model 15, we can solve
Eq. 8 using any existing stochastic MBOC solvers. Assume
a MBOC solver returns an optimal policy 7,, under the es-
timated model P and the trust-region constraint:

Nn, = arg min J(m),
s
S't-a St4+1 ™~ Pst,at> Esrvd,,n DTV(7T77Tn) <a. (12)

At this point, a natural question is: If 7,, is solved by an OC
solver under P, by how much can n,, outperform 7,, when
executed on real system P? Recall that the performance
gap between the real optimal solution 7;; (the optimal under
P) and 7, is denoted as A, («). The following theorem
quantifies the performance gap between 7,, and 7,,:

Theorem 3.1. Assume PA’S,(L satisfies Eq. 11, and n,, is the
output of a MBOC solver for the optimization problem de-
fined in Eq. 12, then we have:

The proof of the above theorem can be found in Ap-
pendix A.2. Theorem 3.1 indicates that when the model is
locally accurate, i.e., § is small (e.g., P is rich enough and
we have enough data from d_ ), « is small, and there ex-
ists a local optimal solution that is significantly better than
the current policy ,, (i.e., A, () € RT is large), then the
OC solver with the estimated model P finds nearly local-
optimal solution 7,, that significantly outperforms 7,,.

3.3. Monotonic Improvement

In this section, we provide a general convergence analysis
for the Dual-Policy API framework we introduce above.

Let us define A,, (7,1 1) as the disadvantage of 7! over
7, under the state distribution d ., :

An(ﬂ'n-i-l) = Eswd,r" [Ea~7r71+1(-|s) [Ann (37 CL)]] )

Note that A, (7,41) is at least as non-positive (if 7 and
n are from the same function class, or 7’s policy class is
rich enough to include 7), as if we set m, 1 to 7,,. In that
case we simply have A,,(m,,+1) = 0, which means we can
hope that the trust-region optimization procedure (Eq. 4)
finds a policy 7,41 that achieves A, (m,+1) < 0. The
question we want to answer is: by how much is the perfor-
mance of 7, improved over ,, by solving the two trust-
region optimization procedures detailed in Eq. 8 and Eq. 4.
Following Theorem 4.1 from Kakade & Langford (2002),
we define ¢ = max; [Eqr, ., (s)[A" (8, a)]|, which intu-
itively measures the maximum possible one-step improve-
ment one can achieve from 7,,. The following theorem
states the performance improvement from m, to m,41:

Theorem 3.2. Solve Eq. 8 to compute n,, and Eq. 4 to com-
pute Tp+1. Then, the improvement of T, 41 over my, is:

J(Tnt1) = J(mn)
ﬁé‘ _ ‘An (7Tn+1)|
T(1=1)? 1—vy

~Au(a).  (13)

The proof of Theorem 3.2 is provided in Appendix A.3.
When (5 is small, we are guaranteed to find a pol-
icy mp41 where the total cost decreases by A,(a) +
|An(7n41)]/(1 — 7) compared to 7,. Note that clas-
sic API performance improvement (Kakade & Langford,
2002; Schulman et al., 2015a) only contains a term that has
the similar meaning and magnitude of the second term in
the RHS of Eq. 13. Hence Dual Policy API boosts the per-
formance improvement by introducing an extra term A(a).



Dual Policy Iteration

Theorem 3.2 simply assumes that 7,, is the optimal solution
of Eq. 8 under real model P, ,. When using MBOC with
Pto compute 7,, that approximates the true optimal solu-
tion, using Theorem 3.1 together with Theorem 3.2, we can
easily show that that 7,41 improves 7, by:

. [An (41|
L=y
Be ¥d Y

(25t )
When 7, is far away from the optimal solution 7*, i.e.,
at the beginning of the learning process, one can expect
|A,(«)] and |A,,(7,+1)]| to have large magnitude. When
|A,(a)] is small, say |A, ()| < £ for some small posi-
tive real number &, then it means that 7, is already an e-
locally optimal solution, where we define a policy m,, to
be e-locally optimal if and only if there exists a positive
real number « such that: J(w,) < J(7') + ¢€,¥Va' € {7 :
Esnd,, Drv(mn, ) < af. When [A,(m,41)| < & also
holds, then we can guarantee that 7,, and m,, are good poli-
cies. Under the realizable assumption (i.e., II is rich):

J(7Tn+1) - J(ﬂ'n) < *An(a)

min By, [Bor(ls)[A™ (5, a)]]
— 1 MNn
B [gllﬂ A (s,a)]}, (14)

using the techniques from (Kakade & Langford, 2002), we
can relate the performance of 7,, to the optimal policy 7*.
We call a policy class II closed under its convex hull if
for any sequence of policies {m;};,m; € II, the convex
combination Zz w;T;, for any w such that w; > 0 and
>; w; = 1, also belongs to II.

Theorem 3.3. Assume Eq. 14 holds and 11 is closed under
its convex hull, and max{|A, (m,+1)], Ala)} < & € RT,
then for n,, we have:

J(nn) = J(x°)
: (m?" (dp<(>))> (5(1 EW " /3(15— v)) '

The proof is provided in Appendix A.4. The term
(max; (dr+(8)/po(s))) measures the distribution mis-
match between the initial state distribution py and the opti-
mal policy 7*, and appears in previous API algorithms such
as CPI (Kakade & Langford, 2002) and PSDP (Bagnell
et al., 2004). Although this shows that to guarantee good
performance, one needs a py similar to the best policy’s
state visitation distribution or a uniform distribution, to the
best of our knowledge this is the best performance guar-
antee in the API literature thus far. Combining the above
discussion on A, («) and A,, with Theorem 3.2, we show
when either |A,, ()| or |A,, (7,+1)| have large magnitudes,
Tn41 Can improve over m, significantly; when |A,,(«)| and
|Ay,(7n41)]) are small, then 7, and 7, are already good
policies.

3.4. Connection to Previous Work

The idea of computing a policy update guided by a bet-
ter policy has been explored in practice under the set-
ting where the dynamics is fully known and deterministic,
where MCTS is leveraged to construct a policy that can
perform better than the current reactive policy (Anthony
et al., 2017; Silver et al., 2017). For example, mapping
to ExIt, our 7,, plays the role of the tree-based policy, and
our 7, plays the role of the apprentice policy. We force
7 to stay close to 7 with a trust region (for the purpose
of the tractability of dynamics learning and MBOC), while
ExIt ensures it by forming 7 as the weighted mixing of the
search tree and the apprentice policy. One major difference
in updating 7 is that ExIt uses DAgger (Ross et al., 2011)
to update 7 by attempting to minimize the counts of mis-
matches with respect to 1, while we perform cost-sensitive
classification with loss formed by the disadvantage vector
A"(s,-) € R which enables us to link the imitation per-
formance directly to the ultimate performance J(7), and
allows 7 to achieve a one-step deviation improvement over
1nn (Ross & Bagnell, 2014; Sun et al., 2017). We provide
a detailed analysis of using DAgger versus a cost-sensitive
update with cost formed by A" in Appendix A.5.

Our framework is also related to Imitation Learning (IL).
IL usually assumes an optimal policy 7* is available to ac-
cess only during training and the goal is to leverage 7* to
quickly train a policy 7 that can perform well during test
time when 7 is not available. When 7* is available during
training, we can simply set ,, = 7* (i.e.,, 7" is the solu-
tion of MBOC in Eq. 8&9 with @ = o0) and thus reveals
previous IL algorithm AggreVaTeD (Sun et al., 2017).

On the other hand, when solving MBOC in Eq. 8&9 with
o = 0, then we have n,, = m, and the update procedure
for 7, in Eq. 4&S5 reveals API (e.g., CPI or Natural Policy
Gradient).

4. A Practical Algorithm

We have presented a unified alternating optimization
framework and analysis for Dual-Policy API. Here we de-
velop a practical algorithm for the continuous state-action
setting. We will focus on finite horizon problems with H
denoted as the maximum possible horizon. We denote the
state space S C R4 and action space A C Ra, We
work on parameterized policies: we parameterize policy
m as 7(-|s;0) for any s € S (e.g., a neural network with
parameter 6), and parameterize 77 by a sequence of time-
varying linear-Gaussian policies 7 = {1 }o<¢<m, Where
ne(als) = N (Kys + k¢, Py) with K; € Rdaxds 'k, € Rda
and P, € R%*da a5 the parameters of 7;. We will use
© = {Ky, ki, P, }o<i<n to represent the collection of the
parameters of all the linear-Gaussian policies across the en-
tire horizon. One approximation we make here is to replace
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the policy divergence measure Dy (7,7, ) with the KL-
divergence Dy, (m,, ), which allows us to leverage Nat-
ural Gradient (Kakade, 2002; Bagnell & Schneider, 2003)
for updating 6,,.> To summarize, 7,, and 7,, are short for
m, and e, = {N(Kys + k¢, P;) }+, respectively.

4.1. Updating 7y

In policy space, the objective function shown in Eq. 4 is
linear with respect to the policy to optimize . However,
the objective can easily become nonconvex with respect to
parameters 6 of the policy w. Performing a second order
Taylor expansion of the KL constraint around 6,,, we get
the following constrained optimization problem:

T [E(LNWHS;Q) [Aﬂe” (S, a)]],
St.,(e—(gn)Tan(G—Hn) < B, (15)

mgin Esvq

where Fy, is the Fisher information matrix or the Hessian
of the KL constraint ]Eswdw Dgkr(mg, ,mp), measured at
6.,. Denote the objective ESN?;;“Q" [Eamn(js:0)[A"" (s,a)]]
as L, (0), and denote Vg, as VoL, (0)|g=g,, then we can
approximately optimize 6 by performing a step of natural
gradient descent (NGD) as

9n+1 = Hn - /J/FQ:LIVO (16)

n?

\/ﬁ/(Vgn FG?V(;H) to ensure that the KL

constraint is satisfied. The objective L, (6) could be non-
linear with respect 6, depending on the function approx-
imator used for m,,. Hence one step of gradient descent
may not reduce L, (6) enough. In practice, we can per-
form k steps (k > 1) of NGD shown in Eq. 16, with the
(B/k)/ (VI F, V) to ensure
that after k steps, the solution still satisfies the constraint
in Eq. 15. In our implementation, we use Conjugate Gradi-

ent with the Hessian-vector product trick (Schulman et al.,
2015a) to directly compute F~1V.

where p is set to

learning rate shrinking to \/

Note that the unbiased empirical estimation of Vj, and
Fy, is well-studied in the literature and can be com-
puted using samples generated from executing mg, . As-
sume we roll out 7y, to generate K (rajectories 7° =
{si,a,...s5,ak},Vi € [K]. The empirical gradient
and Fisher matrix can be formed using these samples

as Vo, = >, ,[Ve, (In(m(als;0,))) A" (s,a)] and
Fy, = Zsﬂ [(V In(m(als; 0,)))(Vo, 1n(7r(a|5;0n))T].
4.2. Updating 7o

Now we introduce how to find 7,, given m,, using model-
based optimal control. In our implementation, we use
Linear Quadratic Gaussian (LQG) optimal control (Kwak-
ernaak & Sivan, 1972) as the black-box optimal control

2Small D, leads to small D7y by Pinsker’s inequality.

Algorithm 1 AggreVaTeD-OC

1: Input: The given MDP

Parameters o € RT, 3 e RT, k> 1,k €N
2: Initialize g,
3: forn=0to...do
4:  Execute 7y, to generate a set of trajectories
5:  Fit dynamics P using {s, a¢, s¢41} (Eq. 17)
6:  Solve the minmax Lagrangian in Eq. 18 subject to

learned dynamics P and obtain ne,,

7:  Form disadvantage A"6n
8:  Compute 0,11 by k-steps of NGD (Eq. 16)
9: end for

solver. We learn a sequence of time-dependent linear Gaus-
sian transition models to represent P:

St41 ™~ N(Atst + Btat + Ct, Et),Vt c [].,T], (17)

where 4, € R%*X% B, ¢ R%*da ¢, ¢ R¥%. %, €
R? *ds can be learned using classic linear regression tech-
niques on a dataset {s;, at, s¢+1 } collected from executing
7, on the real system. Although the original stochastic dy-
namics P(s, a) may be complicated over the entire space, a
sequence of linear functions may be able to locally approx-
imate it well (remember that our theorem only requires a
locally accurate model P under distribution Ay, Tr).

Next, to find a locally optimal policy under the linear-
Gaussian transitions (i.e., Eq. 12), we add the KL constraint
to the objective with Lagrange multiplier x and form an
equivalent minmax problem:

Z’Y 1C (8¢, a4) 1

+1( S+ By D7) - a),  (18)

t=1

mln max E
©n>0

where p is the Lagrange multiplier, which can be solved by
alternatively updating 7 and p (Levine & Abbeel, 2014).
For a fixed p, using the derivation from (Levine & Abbeel,
2014), ignoring terms that do not depend on 7, the above
formulation can be written as:

T

>

t=1

T
— Z /yt_lESNd; [H
t=1

where H(7(-|s)) = >, m(a|s)In(m(als)) is the negative
entropy. Hence the above formulation can be understood
as using a new cost function:

arg minlk
n

“Melse, ar)/p —log Wn(atst))l

(n(-15))]; (19)

c(st,ar) = c(st, ar) /e — log(mn (ar|st)), (20)
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and an entropy regularization on 7 that encourages the di-
versity of the actions induced by 7. It is well known in the
optimal control literature that when ¢’ is quadratic and dy-
namics are linear, the optimal sequence of linear Gaussian
policies for the objective in Eq. 20 can be found exactly by
a Dynamic Programming (DP) based approach, the Linear
Quadratic Regulator (LQR) (Kwakernaak & Sivan, 1972).
Given a dataset { (s, at), ¢/(s¢, a)} collected from execut-
ing 7, we can learn a quadratic approximation of ¢(s, a)
(Levine & Abbeel, 2014). With a quadratic approximation
of ¢’ and linear dynamics, we solve Eq. 20 for 7 exactly
by LQR. Once we get 7, we go back to Eq. 18 and update
the Lagrange multiplier u, for example, by projected gra-
dient ascent (Zinkevich, 2003). Upon convergence, LQR
gives us a sequence of controls in the format ng, =
{N(Kys¢ + ke, Pr);t € [T]}, together with a sequence of
quadratic cost-to-go functions {Q(s, a)}+, where Q; is in
the format of [s, a|” Fy[s, a]/2 + qf [s, a] + v;.> We use the
cost-to-go to form the disadvantage function A™en (s, a),
which is in quadratic form as well.

If we treat n as an intermediate expert, the update step is
similar to AggreVaTeD—a differential IL approach (Sun
et al., 2017). Every iteration, we run mg, on P to gather
samples of states and actions. We estimate locally linear
dynamics P and then leverage an OC solver (e.g, LQR) to
solve the Lagrangian in Eq. 18 to compute ng, and A6
subject to the learned dynamics P. We then perform NGD.
We summarize the procedure, AggreVaTeD-OC, in Alg. 1.

5. Application to Robust Policy Optimization

One application for our approach is robust policy optimiza-
tion (Zhou et al., 1996). We consider one particular robust
policy optimization setting where we have multiple train-
ing environments that are all potentially different from, but
similar to, the testing environments. The goal is to train
a single policy using the training environments and deploy
the policy on a test environment without any further train-
ing. Previous work suggests a policy that optimizes all the
training models simultaneously is stable and robust during
testing (Bagnell & Schneider, 2001; Atkeson, 2012), as the
training environments together serve as a “regularization”
to avoid overfitting to one particular training environment.

More formally, let us assume that we have M training en-
vironments. At iteration n, we roll out 7y, on environment
1 to generate a set of trajectories. For each environment
i, following the MBOC approach introduced in Sec. 4.2,
we learn a sequence of local linear Gaussian dynamics
and compute a sequence of local linear Gaussian policies
Ne: and their associated disadvantages A"*% Vi € [M].

*Note [s, a] stands for the vector concatenating s and a, F; €
]R(tiertia)><(ds+cla)7 g € Rds+da7vt cR.

With A"®% Vi € [M], following the NGD update intro-
duced in Sec. 4.1, we consider all training environments
equally and formalize the objective L, (0) as L,(0) =
Z?L Esnd,, [Ean(.js:0)[A"7]]. We update 6,, to 6,41
by computingnthe gradient VL, (0)|p=p, and perform k-
step NGD. We output a single policy 7y at the end that can
potentially be used for different test environments.

6. Experiments

We tested our approach on several MDPs: (1) a set of ran-
dom discrete MDPs (Garnet problems (Scherrer, 2014)) (2)
Cartpole balancing (Sutton & Barto, 1998), (3) Helicopter
Aerobatics (Hover and Funnel) (Abbeel et al., 2005), (4)
Swimmer, Hopper and Half-Cheetah from MuJoCo physics
simulator (Todorov et al., 2012). The goals of these exper-
iments are: (a) to experimentally verify that using A" to
perform API is more sample-efficient than using A™. Al-
though previous work, such as ExIt, has compared against
REINFORCE (Williams, 1992) and experimentally pro-
vided an affirmative answer to this question, we would
like to show the same phenomenon with 1 computed from
MBOC using learned local models; (b) to show that our
approach can be applied to robust policy search and can
outperform existing approaches (Atkeson, 2012). *

6.1. Comparison to CPI on Discrete MDP

Following (Scherrer, 2014), we randomly create ten dis-
crete MDPs with 1000 states and 5 actions. Different
from the techniques we introduced in Sec. 4.1 for contin-
uous settings, here we use conservative update shown in
Eq. 6, where each 7, is a linear classifier and is trained us-
ing regression-based cost-sensitive classification (Kakade
& Langford, 2002). The feature for each state ¢(s) is
the binary encoding of the state (¢(s) € RI&2(1SD). We
maintain the estimated transition P in a tabular representa-
tion. The policy 7 is also in a tabular representation and is
computed using exact Value Iteration under P and ¢/ (s, a)
(hence we name our approach here as AggreVaTeD-VI).
Note VI under P is slow when |S| and |.A| are large, but
we emphasize that this step does not require any extra sam-
ples, and efficient approximate VI (e.g.,(Gorodetsky et al.,
2015)) techniques can be freely plugged in here. The setup
and the conservative update implementation is detailed in
Appendix B.1. Fig. la reports the statistical performance
of our approach and CPI over the 10 randomly created dis-
crete MDPs. Note that our approach converges faster than
CPL. The only difference between our implementation and
CPI here is that we used A" instead of A™ for the policy up-
date. The results indicates that performing policy iteration
against a better policy speeds up the learning process.

“Link to our implementaion will be provide here.
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Figure 1. Performance (mean and standard error of cumulative cost in log-scale on y-axis) versus number of episodes (n on x-axis).

6.2. Comparison to Actor-Critic in Continuous Settings

We compare against TRPO-GAE on a set of continuous
control tasks. The setup is detailed in Appendix B.3.
TRPO-GAE is a actor-critic-like approach where both ac-
tor and critic are updated using trust region optimization.
We use a two-layer neural network to represent policy 7
which is updated by natural gradient descent. We use LQG
as the underlying MBOC solver and we name our approach
as AggreVaTeD-iLQG.

Fig. 1 (b-g) shows the comparison between our method and
TRPO-GAE over a set of continuous control tasks (confi-
dence interval is computed from 20 random trials). As we
can see, our method is significantly more sample-efficient
compared to TRPO-GAE. The major difference between
our approach and TRPO-GAE is that we use A" while
TRPO-GAE uses A™ for the policy update. Note that both
A" and A™ are computed using the rollouts from 7. The
difference is that our approach uses rollouts to learn lo-
cal dynamics and analytically estimates A" using MBOC,
while TRPO-GAE directly estimates A™ using rollouts.
Overall, our approach converges faster than TRPO-GAE,
which again indicates the benefit of using A" for APL

6.3. Experiments on Robust Policy Optimization

We consider two simulation tasks, cartpole balancing and
helicopter funnel. For each task, we create ten environ-
ments by varying the physical parameters (e.g., mass of he-
licopter, mass and length of pole). We treat 7 of the envi-
ronments for training and the remaining three for testing.
We compare our algorithm against TRPO, which could be
regarded as a model-free, natural gradient version of the

cartpole helicopter_funne

AggreVaTeD_iLQR
— TRPO
—— non-robust

20 80 100 50 100 150 200 250 300

40
Batch Iteration Batch Iteration

(a) Cart-Pole (b) Helicopter Funnel

Figure 2. Performance (mean in log-scale on y-axis) versus num-
ber of episodes (n on x-axis) in robust control.

first-order algorithm proposed in (Atkeson, 2012). We also
ran our algorithm on a single randomly picked training en-
vironment but still tested the output on test environments,
which is denoted as non-robust in Fig. 2. Fig. 2 summa-
rizes the comparison between our approach and baselines.
Similar to the trend we saw in the previous section, our
approach is more sample-efficient in the robust policy op-
timization setup as well. It is interesting to see the “non-
robust” approach failures to further converge, which shows
the overfitting phenomenon: the learned policy overfits to
one particular training environment, which hurts the testing
performance.

7. Discussion and Future Work

We present and analyze a Dual Policy API strategy in an
alternating optimization framework. We provide a simple
instance of the framework which uses MBOC for updating
the non-reactive policy and updates the reactive policy us-
ing natural gradient methods. Both our theoretical analysis
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and emprical results suggest that our approach can outper-
form existing API algorithms.

Our work also opens some new problems. In theory, the
performance improvement during one call of optimal con-
trol with the local accurate model depends on a term that
scales quadratically with respect to the horizon 1/(1 — 7).
We believe the dependency on horizon can be brought
down by leveraging system identification methods focus-
ing on multi-step prediction (Venkatraman et al., 2015; Sun
et al., 2016). On the practical side, our specific implemen-
tation has some limitations due to the choice of LQG as
the underlying OC algorithm. LQG-based methods usually
require the dynamics and cost functions to be somewhat
smooth so that they can be locally approximated by poly-
nomials. We also found that LQG planning horizons must
be relatively short, as the approximation error from poly-
nomials will likely compound over the horizon. We plan
to explore the possibility of learning a non-linear dynamics
and using more advanced non-linear optimal control tech-
niques such as Model Predictive Control (MPC) for more
sophisticated control tasks.
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A. Missing Proofs
A.1. Useful Lemmas

As we work in finite probability space, we will use the following fact regarding total variation distance and L1 distance for
any two probability measures P and Q:

P —Qllv =2Drv (P, Q). 2

Recall that dr = (1 — ) >, ~v'dL. The following lemma shows that if two policies are close with each other in terms
of the trust region constraint we defined in the paper, then the state visitations of the two policies are not that far away.

Lemma A.1. Given any two policy Ty and my such that Esa, [Drv(mi(-]s),m2(-s))] < a, then we have:

2c

”dm 7dﬂ2”1 < 1—~

(22)

Proof. Fix a state s and time step t, let us first consider d%, (s) — dZ(s).

dt (s) — dt (s)
= > Y (elso)mi(aolso) Pagan(52)- T (@1 lst-1) oy, (5)

$0,815--,8t—1 @0,01,..,A¢t—1

— P(30)2(@0]30) Pag o (51)--2(@1150-1) Pey_ 1001 (5))
= p(s0) > mi(aols0) D Prgao(s1)- Y mi(ar-1|si-1)Ps,_ a0, (5)

at—1

= > p(50) > ma(aols0) Y Pegao(s1)- > ma(ar-1|st-1)Pa, 100 (5)

at—1

= p(s0) > _mi(aolso)P(se = s|so, ao;m) = > p(so) > ma(aolso)P(s¢ = s|so, ao; m2), (23)

where P(s; = s|sg,ap;7) stands for the probability of reaching state s at time step ¢, starting at sp and ag and then
following 7. Continue, we have:

|7, (5) = dze, (5))]
=| Zp(so) Zm(ao\so)P(st = s|sg,a0;m1) — Zp(so) Zﬂ'g(ao\so)P(st = s|s0, ap; m2)|
S0 aop So aop

< \Zp(so) Zﬂl(ao\SO)P(st = slso, ap;m) — ZP(SO) Zﬂl(ao\SO)P(st = s|so0, ao; m2)|
S0 ag S0 ao
+1D p(s0) > milaolso) Plsi = s|so, ao;ma) = Y p(so) Y ma(ao|so)P(s: = s|so, ao; 72))|
S0 ao S0 ao

<| Zd}rl(sl) (P(s¢ = s|s1;m1) — P(s¢ = sls13m2)) | + Eggnp Z |1 (aolso) — m2(ao|so) | P(st = s|so, ao; m2)
s1

ao

(24)

Add " _ on both sides of the above equality, we get the following inequality:
D ldk (s) = di ()]

SEgnar, Y |P(se = slsiim) = P(se = sls15m2)| + Esgpllm (-[s0) — m2(-|s0) |1 (25)
S
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We can apply similar operations on P(s; = s|s1;m1) — P(s; = s|s1;m2) as follows:
By, Z |P(s¢ = s|s1;m1) — P(st = s|s1;m2)]
S
=Esuar, Z | Z [m1(a1|s1)P(st = s|s1,a1;m) — ma(a1]s1)P(se = s|s1, az; m2)] |

< Egpnaz, ) |P(se = slszim) — P(se = slszsma)| + Egywan [lmi(ls1) — m2(:]s1)l]1]

Again, if we continue expand P(s; = s|sq;m1) — P(st = $|sq; m2) till time step ¢, we get:

t—1

Do ldh () = diy () <Y Egan [llmi(clsi) = ma(-lsi) 1] (26)

=0

Hence, for ||dy, — dr,||1, we have:

ldr, = dms 1 < (1 =) D' llds, = di, 1n
t=0

oo o0 2
; Esar [llmi(-|s) = ma(:] ; Eswa [Drv(mi(-]s), ma(:[s))] < 1 7047. 27)

O

Lemma A.2. For any two distribution P and Q) over X, and any bounded function f : X — R such that | f(x)| < ¢,Vx €
X, we have:

[Eenpf(#)] = Eeng[f(@)]] < | P = Q1 (28)
Proof.
[Eonplf(@)] = Eonglf(@)]] = Y Ple Qz)f(z)]
reX

< Z |P(2)f(x) — z)| < Z [/ (2)[|P(z) — Q)]

< CZ |P(z z)| =¢|P - Q. (29)

A.2. Proof of Theorem 3.1
Recall that we denote d 7 as the joint state-action distribution under policy 7. To prove Theorem 3.1, we will use Lemma
1.2 presented in the Appendix from Ross & Bagnell (2012) to prove the following claim:

Lemma A.3. Suppose we learned a approximate model P and obtain the optimal policy n,, with respect to the objective
Sfunction J(m) under P and the trust-region constraint maxs Dy (7w, m,) < «, then compare to 7, we have:

I () = J(7,) <

L(E [P e E *[P e } 30
- 2(177) (s,a)~dy, n ” S,a s,a”l + (s,a)Nd,,:LTr" ” s,a s,a”l ) 30)

Proof. Denote V™ as the value function of policy 7 under the approximate model P. From Lemma 1.2 and Corollary 1.2
in Ross & Bagnell (2012), we know that for any two policies 71 and 7, we have:

J(m1) = I (m2) = Espy [V (5) = V2 (5)]

+ 2(1 _ 7) (E(s’a)wdﬂ'lﬂ-l ”PS,G - PS,a”l + E(S,a)’\‘dﬂzﬂg [”Ps,a - Ps,a||1:|) . (31)
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Now replace 7; with n,, and 72 with 7). Note that both 7,, and 7}, are in thg trust region constraint maxs Dpy (7, 7,) < «
by definition. As 7, is the optimal control under the approximate model P (i.e., the optimal solution to Eq. 12), we must
have E,.,, [V™ (s) — V™ (s)] < 0. Substitute it back to Eq. 31, we immediately prove the above lemma. O

The above lemma shows that the performance gap between 7,, and 7, is measured under the state-action distributions
measured from 7,, and 7}, while our model Pis only accurate under the state-action distribution from 7,,. Luckily due to
the trust-region constraint Eqq, D7y (7, 7,) and the fact that 7,, and 7, are both in the trust-region, we can show that
dy,, s> drx 7y, are not that far from dy, 7, using Lemma A.1:

Hdnnnn - dmﬂrnHl < ||dnn77n - dTrnnnHl + Hdwnnn - dﬂnﬂnlll

2c 4o
< lldy, = dr, ll1 + Esnay, [0 (]8) = ma(ls)l1] < 17— + 20 < 7—. (32)
- 1—7v
similarly, for 7)) we have:
4
s 75 — a1 < e (33)
" -
Go back to Eq. 30, let us replace Ed% n, and Eq_, s by ]Ed"n =, and using Lemma A.2, we will have:
. . 8a
E(s,a)ndny o [P0 = Posallt] = Es,a)mdr, mo 150 = Poalli]] < 2lldn, 11 = de, malls < 7 5
. o 8«
= E(s,a)wdn”nn H|R€,a - Ps,anl] < E(s,a)wdﬂnm [Hps,a - PS,aHﬂ + (1 — 7)7 (34)
and similarly,
. . S8a
E(s,a)wdﬂiﬂ;[ Ps,a - Ps,aHl] < E(s,a)wd,\-nﬂn[”PS,a - Ps,a”l] + (1 — ’7) . (35)

Combine Egs. 34 and 35, we have:

AN * <+ » o _
Tw) = I5) < gy (B ma1Pra = Prall] + 160/ (1= )

~6 8va ( ~v6 ) ( Yo )
+ —o()+o(—""). 36
1—y  (I-79)? 11—~ (1—79)? 0

Using the definition of A(«), adding J(m,,) and subtracting J(m,) on the LHS of the above inequality, we prove the
theorem.

A.3. Proof of Theorem 3.2

The definition of 7, 1 implies that Eq, [Drv(Tni1(:|s), mn(:|s))] < B. Using Lemma A.1, we will have that the total
variation distance between d  and d. is:

24
ldr, s — dr, |1 < T (37)

Now we can compute the performance improvement of 7,1 over 1, as follows:

(1 - 7)(J(7Tn+1) - J(nn)) = Esr\/dﬂn+1 [EaNﬂn,+l [Aﬂn (57 Q)H

- ESNdW?Wl [EGNW”JA [AVIn (S’ a)]] - ]Eswdvrn [Ea~ﬂ'n+1 [A’?n (Sa a)]] + ]Eswcl7r7l [Ea’\’ﬂn+1 [Aﬂn (57 CL)H
< PESNde+1 [Eanrir[A"(5,0)]] — Esnd,, UEaNﬂn+1L4nn(s7a)H‘-+]ESNde [Eqmr, ., [A7 (s, a)]]
2
<< ii + Esndy, [Banr,,, [A™ (5,0)]]
2
= 2 4 ()
2ep

=1 ~ = [An(Tnt1)] (38)
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Finally, to bound J(7y,+1) — J(7y, ), we can simply do:

J(Tnt1) = J(mn) = J(mns1) = J () + J () = J (70)

< pe _ |Ap (Tr1)
T (1=9)? 1—vy

— Aa). (39)

A.4. Proof of Theorem 3.3

Recall the average advantage of ,,, over 7, is defined as Ay (7,11) = Esua,, [Eamr, i (1s)[A™ (5,a)]]. Also recall
that the conservative update where we first compute 7, = argmingen Esvq,, [Equr A" (s, a)], and then compute the
new policy 7}, ; = (1 — f)m, + f;,. Note that under the assumption that the policy class II is closed under its convex
hull, we have that 7], | ; € II. As we showed that 7, satisfies the trust-region constraint defined in Eq. 5, we must have:

Ar, (Tny1) = Esed,, [Banr, 1 (19 [A™ (5, 0)]] € Esna,, [Esnnr , [A™ (s, 0)]], (40)

due to the fact that 7, is the optimal solution of the optimization problem shown in Eq. 4 subject to the trust region
constraint. Hence if A, (7,41) > —&, we must have Eq, [IESNW;+1 [A" (s, a)]] > —€, which means that:

Eind,, |(1— B)Esa,, A" (5,0) + BEqnq,. A" (s,a)
=1 =8)1 =7 (mn) = J()) + BEsnd,, [Eamns AT (s,a)] > =,

= Eynd, [Eamns A7 (5,0)] > f% - %(1 —)A(@) > f% - %A(a). 41)
Recall the realizable assumption: Egv g, [Eqnr: A" (s,a)] = Egvq,, [ming A (s, a)], we have:
—%—T <Zd s) min A™ (s, a) de j (s) min A™ (s, a)
< min (dﬂ" (8)> Zd «(s) min A" (s, a)
= dﬂ* (8) - T . )
< min (j:" Eg) zs: dr=(5) za: 7*(als) A" (s,a)
dr "
= min (47205) (1)) = T )
Rearrange, we get:
. dr-(5) § Aa)
st =t < (s (25 )) (5 + 557
dr- (

= (mf“x ( Z@?)) (ﬂ(l St e 7)) @

A.5. Analysis on Using DAgger for Updating 7,

To analyze the update of 7 using DAgger, we consider deterministic policy here: we assume ,, and 7 are both deterministic
and the action space A is discrete. We consider the following update procedure for :

Iglei]I‘[lEsNd”” |:]Ea~7r(‘|s)]]-(a 7£ arg main Al (Sa a)):| ’
st Eena, [[|7(]s) = mn(:|s)[l1] < B. (44)

Namely we simply convert the cost vector defined by the disadvantage function by a “one-hot” encoded cost vector, where
all entries are 1, except the entry corresponding to arg min, A" (s, a) has cost 0. Ignoring the updates on the “expert”
Nn, Tunning the above update step with respect to 7 can be regarded as running online gradient descent with a local metric
defined by the trust-region constraint. Recall that 7,, may from a different policy class than II.
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Assume that we learn a policy 7,11 that achieves ¢,, prediction error:
Esnd,, [EQN,T"H(,|S) 1(a # arg main Al (s, a))” < €p. (45)

Namely we assume that we learn a policy 7,1 such that the average probability of mismatch to 7,, is at most €,,.

Using Lemma A.1, we will have that the total variation distance between d

26
1—7'

mns1 and dr is at most:

ldr, = dr,ll1 < (40)

Tn41
Applying PDL, we have:

(1= (1) = () = Eona,,  [EBanr,,  [A™ (5, 0)]]
28e

-y
= Foa, | 3 w(als)A™ (s, a)] + fi

a#arg min, A"n (s,a)

S Eswd,rn []anwn,+1 [A’f]n (57 Q)H +

2
< (max A" (s,a))Esnd,, [Eqmr, ., 1(a # argmin A" (s, a))] + 1 pe
a —

2Pe @7)
1—7
(

< e, +

where we define &/ = maxs q A" (s, a), which should be at a similar scale as . Hence we can show that performance
difference between m,,+1 and 7, as:

28¢ n e'en
(I=7)?2 1-9v

Now we can compare the above upper bound to the upper bound shown in Theorem 3.2. Note that even if we assume the
policy class is rich and the learning process perfect learns a policy (i.e., m,+1 = 7)) that achieves prediction error €,, = 0,
we can see that the improvement of 7,1 over 7, only consists of the improvement from the local optimal control A(«).

While in theorem 3.2, under the same assumption, except for A(«), the improvement of 7,11 over 7, has an extra term
|An (TVnJrl ) ‘
1—

J(Tpg1) — J(mn) < — Aw). (48)

, which basically indicates that we learn a policy 7,41 that is one-step deviation improved over 7,, by leveraging
the cost informed by the disadvantage function. If one uses DAgger, than the best we can hope is to learn a policy that
performs as good as the “expert” 1, (i.e., €, = 0).

B. Missing Experiment Details
B.1. Synthetic Discrete MDPs and Conservative Policy Update Implementation

We follow (Scherrer, 2014) to randomly create 10 discrete MDPs, each with 1000 states, 5 actions and 2 branches (namely,
each state action pair leads to at most 2 different states in the next step). We maintain a tabular representation P e
RISIXIAIXISI  where each entry P; ; 1. records the number of visits of the state-action-next state triple. We represent 7 as a
2d matrix n € RIS*Al where 7,5 stands for the probability of executing action j at state 4. The reactive policy uses the
binary encoding of the state id as the feature, which we denote as ¢(s) € R% (d, is the dimension of feature space, which
is log,(|S|) in our setup). Hence the reactive policy 7, sits in low dimension feature space and doesn’t scale with respect
to the size of the state space S.

For both our approach and CPI, we implement the unconstrained cost-sensitive classification (Eq. 4) by Cost-Sensitive One
Against All (CSOAA) classification technique. Specifically, given a set of states {s;};, and a cost vector { A" (s;,-) €
RIATY, we train a linear regressor W e R4/ to predict the cost vector: W¢(s) ~ A" (s, -). Then «* in Eq. 6 is just a
classifier that predicts action arg mini(VT/s) [i] corresponding to the smallest predicted cost. We then combine 7, with the
previous policies as shown in Eq. 6 to make sure 7, satisfies the trust region constraint in Eq. 5.

For CPI, we estimate A™ (s, a) by running value iteration using P with the original cost matrix. We also experimented
estimating A™ (s, -) by empirical rollouts with importance weighting, which did not work well in practice due to high
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variance resulting from the empirical estimate. For our method, we alternately compute 7,, using VI with the new cost
shown in Eq. 20 and P, and update the Lagrange multiplier x, under convergence. Hence the only difference between our
approach and CPI here is simply that we use A" while CPI uses A™.

Our results indicates that using A" converges much faster than using A™, though computing 7,, is much more time
consuming than computing A™ . But again we emphasize that computing 7,, doesn’t require extra samples. For real large
discrete MDPs, we can easily plug in approximate VI techniques such as (Gorodetsky et al., 2015) to significantly speed
up computing 7, .

B.2. Details for Updating Lagrange Multiplier 1

Though running gradient ascent on y is theoretically sound and can work in practice as well, but it converges slow and
requires to tune the learning rate as we found experimentally. To speed up convergence, we used the same update procedure
used in the practical implementation of Guided Policy Search (Finn et al., 2016). We set up pmin and fiyax. Starting from
1L = fmin, We fix 1 and compute 7 using the new cost ¢’ as shown in Eq. 20 under the local dynamics P using LQR. We then
compare Eq,, Drcr.(n(:]s), mn(:|5)) to a. If 1y violates the constraint, i.e., Eg ., Dxr.(1(:]|5), 7 (-|s)) > c, then it means
that y is too small. In this case, we set pimin = (4, and compute new i as p = min(\/m , 104tmin ); On the other hand,
if n satisfies the KL constraint, i.e, y is too big, we set fimax = 4, and compute new g as p = max(\/;m, 0.1tmax)-
We early terminate the process once we find 7 such that 0.9 < E,,,, Dxr(n(-|s), mn(+|s)) < 1.1a. We then store the
most recent Lagrange multiplier ;+ which will be used as warm start of p for the next iteration.

B.3. Details on Continuous Control Experiment Setup

The cost function ¢(s, a) for discrete MDP is uniformly sampled from [0, 1]. For the continuous control experiments, we
designed the cost function ¢(s, a), which is set to be known to our algorithms. For cartpole and helicopter hover, denote
the target state as s*, the cost function is designed to be exactly quadratic: ¢(s,a) = (s — s*)TQ(s — s*) + a’ Ra, which
penalizes the distance to the goal and large control inputs. For Swimmer, Hopper and Half-Cheetah experiment, we set
up a target moving forward speed v*. For any state, denote the velocity component as s,,, the quadratic cost function is
designed as (s, a) = q(s, —v*)%2+a’ Ra, which encourages the agent to move forward in a constant speed while avoiding
using large control inputs. We will provide link to our implementation here for the final version.



