
Dual Policy Iteration

Wen Sun 1 Geoffrey J. Gordon 2 Byron Boots 3 J. Andrew Bagnell 1

Abstract

Recently, a novel class of Approximate Policy It-
eration (API) algorithms have demonstrated im-
pressive practical performance (e.g., ExIt from
Anthony et al. (2017)). This new family of algo-
rithms maintains, and alternately optimizes, two
policies: a fast, reactive policy (e.g., a deep neu-
ral network) deployed at test time, and a slow,
non-reactive policy (e.g., Tree Search), that can
plan multiple steps ahead, but is only available
during training. The reactive policy is updated
under supervision from the non-reactive policy,
while the non-reactive policy is improved with
guidance from the reactive policy. In this work
we study this Dual Policy Iteration (DPI) strat-
egy in an alternating optimization framework
and provide a convergence analysis that extends
existing API theory. We also develop a spe-
cial instance of this framework which reduces
the update of non-reactive policies to model-
based optimal control using learned local mod-
els, and provides a theoretically sound way of
unifying model-free and model-based RL ap-
proaches for applications with unknown dynam-
ics. We demonstrate the efficacy of our approach
on various continuous control Markov Decision
Processes (MDPs).

1. Introduction
Approximate Policy Iteration (API) (Bagnell et al., 2004;
Kakade & Langford, 2002; Lazaric et al., 2010; Scherrer,
2014; Bertsekas & Tsitsiklis, 1995), including conservative
API (Kakade & Langford, 2002), API driven by learned
critics (Rummery & Niranjan, 1994), or gradient-based
API with stochastic policies (Baxter & Bartlett, 2001; Bag-
nell & Schneider, 2003; Kakade, 2002; Schulman et al.,
2015a), have played a central role in Reinforcement Learn-

1Robotics Institute, Carnegie Mellon University, USA
2Machine Learning Department, Carnegie Mellon University,
USA 3College of Computing, Georgia Institute of Technology,
USA. Correspondence to: Wen Sun <wensun@cs.cmu.edu>.

ing (RL) for decades. While the vanilla API has essentially
no performance guarantees, methods that leverage more
controlled updates (Bagnell et al., 2004; Kakade & Lang-
ford, 2002) can provide both local optimality guarantees
and global guarantees that depend on how samples are gen-
erated (e.g., a uniform reset distribution). Successful API
approaches can be thought of as making “small” changes:
by conservatively mixing with previous policies (Kakade &
Langford, 2002), modifying only single time steps (Bagnell
et al., 2004), or making small changes to policy parameters
(Kakade, 2002; Bagnell & Schneider, 2003). Recently, a
new class of API algorithms, which we call Dual Policy
Iteration (DPI), has begun to emerge. These algorithms
follow a richer pattern for improving the policy, with two
policies under consideration at any time during training: a
reactive policy, usually learned by some form of function
approximation, used for generating samples and deployed
at test time, and an intermediate policy that can only be
constructed or accessed during training. For example, in
Imitation Learning (IL), the second policy corresponds to
an expert policy. Ross & Bagnell (2014); Sun et al. (2017)
propose to update the reactive policy by performing pol-
icy iteration against the expert policy (i.e., use the state-
action values of the expert policy) and show that it learns
much faster than regular API. The intuition is that the ex-
pert policy, a policy that is better than the reactive policy,
directly informs the reactive policy’s improvement direc-
tion thereby avoiding costly local random exploration. Al-
though we do not assume access to an expert policy in RL,
we can construct a similar intermediate “expert” policy at
any time during training. For example, ExIt (Anthony et al.,
2017) maintains and updates a UCT-based policy (Upper
Confidence Bound applied to Tree (Kocsis & Szepesvári,
2006)) as an intermediate expert. ExIt then updates the re-
active policy by imitating the tree-based policy, which we
anticipate would be better than the reactive policy as it in-
volves a multi-step lookahead search. AlphaGo Zero (Sil-
ver et al., 2017) employs a similar strategy to achieve super-
human performance at the ancient game of Go. Zucker &
Maas (2009) leverage (brute-force) forward tree search to
improve learning Tetris. While tree search (e.g., MCTS) is
an excellent way to construct an intermediate “expert” pol-
icy with fully known dynamics, for applications with un-
known dynamics, one can instead learn dynamics and then
perform forward search using techniques such as Value It-

Dual Policy Iteration

eration and Differential Dynamic Programming (DDP) to
construct the “expert” policy that improves upon the cur-
rent reactive one. (Levine & Abbeel, 2014).

In this work, we provide a general framework for synthe-
sizing and analyzing such Dual Policy Iteration strategies
by considering a particular alternating optimization strat-
egy. Specific strategies for each optimization direction of-
fer a new family of approximate policy iteration methods.
We construct a simple instance of our framework, where
one policy is computed from Model-Based Optimal Con-
trol (MBOC) and the reactive policy with arbitrary func-
tion approximations is updated incrementally. The result-
ing actor-critic-like algorithm iteratively learns a local tran-
sition model and applies MBOC to compute a locally opti-
mal policy around the reactive policy, together with a cor-
responding state-action value function (the critic), and then
executes a policy update on the reactive policy (the actor).

To evaluate our approach, we demonstrate our algorithm on
synthetic discrete MDPs, and also multiple classic contin-
uous control tasks, including helicopter aerobatics (Abbeel
et al., 2005) and multiple locomotion tasks from the Mu-
JoCo physics simulator (Todorov et al., 2012), and show
that our algorithm is extremely sample-efficient compared
to classic API algorithms such as CPI, as well as more re-
cent actor-critic baselines (Schulman et al., 2015b). We
also extend the framework to a robust policy optimization
setting (Bagnell & Schneider, 2001; Atkeson, 2012) where
one has access to multiple training environments, and the
goal is to learn a single policy that can be deployed imme-
diately on a test environment without further training.

Furthermore, we show a general convergence analysis that
extends existing API theory to DPI. In particular, we show
monotonic improvement, where the improvement mainly
consists of the independent improvement resulting from
each optimization direction. When neither of the optimiza-
tion procedures can improve, then we show that we have
reached a local optimum. Our analysis is general enough to
provide theoretical intuition for previous successful prac-
tical Dual Policy API algorithms such as Expert Iteration
(ExIt) (Anthony et al., 2017). Additionally, we provide a
more concrete analysis in the setting where model-based
OC is used. Our theorem considers how the model er-
ror would affect policy improvement, and indicates that
we only need locally accurate dynamics, i.e., a model that
accurately predicts next states under the current policy’s
state-action distribution. Note that locally accurate dynam-
ics are much easier to learn than global dynamics, as learn-
ing a global model suffers from a much greater degree of
model bias (i.e., a single function approximator is not able
to capture the true model over the entire space), and re-
quires a dataset that covers the entire state space. In this
sense, our analysis is similar in spirit to previous work that

uses inaccurate models for policy optimization (An et al.,
1988; Abbeel et al., 2006; Kolter & Ng, 2009).

2. Preliminaries
Formally, a discounted infinite-horizon Markov Decision
Process (MDP) is defined as (S,A, P, c, ρ0, γ). Here, S is
a set of states, A is a set of actions, and P is the transition
dynamics: P (s′|s, a) is the probability of transitioning to
state s′ from state s by taking action a. We use Ps,a in short
for P (·|s, a). We denote c(s, a) as the cost of taking action
a while in state s. Finally, ρ0 is the initial distribution of
states, and γ ∈ (0, 1) is the discount factor. Throughout
this paper, we assume that we know the form of the cost
function c(s, a), but the transition dynamics P is unknown.
We emphasize that at least, from a theoretical perspective,
finding the optimal policy of the MDP with known cost
function is as difficult as finding the optimal solution with
unknown cost function, in terms of sample and computa-
tional complexity (Jaksch et al., 2010; Azar et al., 2017).

We define a stochastic policy π such that for any state
s ∈ S, π(·|s) ∈ ∆(A), where ∆(A) is the A-dimensional
unit simplex. Conditioned on state s, π(a|s) ∈ [0, 1] is
the probability of taking action a at state s. The distri-
bution of states at time step t, induced by running the
policy π until and including t, is defined ∀st: dtπ(st) =∑
{si,ai}i≤t−1

ρ0(s0)
∏t−1
i=0 π(ai|si)P (si+1|si, ai), where

by definition d0
π(s) = ρ0(s) for any π. Note that the sum-

mation above can be replaced by an integral if the state
or action space is continuous. The state visitation distri-
bution can be computed dπ(s) = (1 − γ)

∑∞
t=0 γ

tdπt (s).
Denote (dππ) as the joint state-action distribution such
that dππ(s, a) = dπ(s)π(a|s), then the expected to-
tal discounted sum of costs of a policy π is: J(π) =∑∞
t=0 E(s,a)∼dtππ[γtc(s, a)]. We define the value function

V π(s) and state-action value function Qπ(s, a) as

V π(s) = E

[
T∑
t=0

γtc(st, at)|s0 = s, a ∼ π

]
,

Qπ(s, a) = c(s, a) + γEs′∼Ps,a [V π(s′)] ,

where the expectation in the first equation is taken with re-
spect to the randomness from the policy π and the MDP,
and Ps,a is short for P (·|s, a). With V π andQπ , the advan-
tage functionAπ(s, a) is defined asAπ(s, a) = Qπ(s, a)−
V π(s). As we working in the cost setting, in the rest of the
paper we refer to Aπ as the disadvantage function.

For two distributions P1 and P2, DTV (P1, P2) denotes the
total variation distance, which is related to the L1 norm as
DTV (P1, P2) = ‖P1 − P2‖1/2 (if we have a finite proba-
bility space) and DKL(P1, P2) denotes the KL divergence.
Throughout the paper, we use the Performance Difference
lemma (PDL) extensively:

Dual Policy Iteration

Lemma 2.1 (Lemma 6.1(Kakade & Langford, 2002)). For
any two policies π and π′, we have:

J(π)− J(π′) =
1

1− γ
E(s,a)∼dππ

[
Aπ
′
(s, a)

]
. (1)

3. Dual-Policy Approximate Policy Iteration
In this section, we propose an alternating optimization
framework for Dual-Policy API, inspired by the PDL
(Lemma 2.1). We first introduce the general alternating op-
timization framework and then discuss a simple instance
that combines model-free and model-based updates.

Let us consider the following min-max optimization frame-
work:

min
π∈Π

max
η∈Π

Es∼dπ
[
Ea∼π(·|s) [Aη(s, a)]

]
. (2)

Note that the unique Nash equilibrium for the above equa-
tion is (π, η) = (π∗, π∗). To show this, we can simply
apply the PDL:

arg min
π∈Π

arg max
η∈Π

Es∼dπ
[
Ea∼π(·|s) [Aη(s, a)]

]
= arg min

π∈Π
J(π)− arg min

η∈Π
J(η). (3)

The above framework immediately proposes a general
strategy for policy iteration: alternatively fix one policy and
update the second policy. Mapping to previous practical
Dual-Policy API algorithms (Anthony et al., 2017; Silver
et al., 2017), π could stand for the fast reactive policy and
η could correspond to the tree search policy. Below we first
consider how we can update π given a fixed η. For notation
purposes, we use πn and ηn to represent the two policies in
the nth iteration.

3.1. Updating π

We update πn to πn+1 by performing the following con-
strained optimization procedure:

arg min
π

Es∼dπn
[
Ea∼π(·|s) [Aηn(s, a)]

]
, (4)

s.t.,Es∼dπn [DTV (π(·|s), πn(·|s))] ≤ β (5)

Note that our formulation in Eq. 4 is different from ex-
isting API algorithms (e.g., CPI) which use the disadvan-
tage function Aπn(s, a) of the current policy πn while in
our case, we use ηn’s disadvantage function. As Eq. 4 is
performing API with respect to a fixed policy ηn, we can
solve Eq. 4 by converting it to supervised learning prob-
lem such as cost-sensitive classification (Kakade & Lang-
ford, 2002), subject to an L1 constraint. It is worth point-
ing out that the trust region definition in Eq. 5 is empiri-
cally measurable using samples from dπn (i.e., executing

πn on real systems to generate s), while the analysis in
previous work (i.e., TRPO from Schulman et al. (2015a))
used a much stronger definition of trust region in the format
of maxs∈S DTV (π(·|s), πn(·|s)), which is not empirically
measurable unless one can enumerate all states.1

It is interesting to note that a conservative policy update
procedure can be viewed as approximately solving the
above constrained optimization problem. Following CPI,
we first solve Eq. 4 without considering the constraint
(Eq. 5) to obtain a policy π∗n. We then conservatively up-
date πn to πn+1 as:

πn+1 = (1− β)πn + βπ∗n. (6)

Note that πn+1 satisfies the constraint as
DTV (πn+1(·|s), πn(·|s)) ≤ β,∀s. Intuitively, a con-
servative update can be understood as first solving the
objective function to obtain π∗n without considering the
constraint, and then move πn towards π∗n until the bound-
ary of the region defined by the constraint is reached. For
a parameterized policy, in Sec. 4.1, we will introduce a
corresponding natural gradient update procedure.

3.2. Updating η

In this section, we present how to update η given a fixed π.
Given πn, the objective function for η in Eq. 2 becomes:

max
η

Es∼dπn
[
Ea∼πn(·|s) [Aη(s, a)]

]
. (7)

While computing the functional gradient with respect to η
measured at ηn is complicated, it can be estimated using,
for example, finite differences. We propose a different ap-
proach that leverages the PDL. It is not difficult to see that
updating π′ is equivalent to finding the optimal policy π∗:
arg maxη (J(πn)− J(η)) ≡ arg minη J(η), regardless of
what πn is. As directly minimizing the objective J(η) is as
hard as the original problem, we update η locally by con-
straining it to a trust region around πn:

arg min
η
J(η), (8)

s.t.,Es∼dπnDTV [(η(·|s), πn(·|s))] ≤ α. (9)

3.2.1. UPDATING VIA MODEL-BASED RL

The constrained optimization problem in Eq. 8&9 is non-
trivial, as we do not know the transition dynamics Ps,a.
If we did know the dynamics, then we could leverage any
Model-Based Optimal Control (MBOC) algorithm to solve
this problem. Therefore, we propose to learn Ps,a from the
samples generated by executing πn at the last optimization
direction for π. Moreover, thanks to the trust region, we

1In fact, Schulman et al. (2015a) suggests relaxing maxs∈S to
Es∼dπn

for practical implementations of TRPO.

Dual Policy Iteration

can simply learn a local dynamics model, under the state-
action distribution dπnπn.

We denote the optimal solution to the above constrained
optimization (Eq. 8 & Eq. 9) under the real model Ps,a as
η∗n. Note that, due to the definition of the optimality, η∗n
must perform better than πn: J(πn) − J(η∗n) ≥ ∆n(α),
where ∆n(α) ≥ 0 is the performance gain from η∗n over
πn. Here the size of ∆n(α) depends on the size of the
trust-region. When the trust region expands, i.e., α in-
creases, then ∆n(α) approaches the performance differ-
ence between the optimal policy π∗ and πn.

To perform MBOC, we learn a locally accurate model—a
model P̂ that is close to P under the state-action distribu-
tion induced by πn: we seek a model P̂ , such that the quan-
tity E(s,a)∼dπnπnDTV (P̂s,a, Ps,a) is small. Optimizing an
L1 objective may be not easy as it is not smooth, but note
that, by Pinsker’s inequality, we have DKL(Ps,a, P̂s,a) ≥
DTV (P̂s,a, Ps,a)2, which indicates that we can optimize a
surrogate loss defined with KL-divergence:

arg min
P̂∈P

Es∼dπn ,a∼πn(s)DKL(Ps,a, P̂s,a)

= arg min
P̂∈P

Es∼dπn ,a∼πn(s),s′∼Ps,a [− log P̂s,a(s′)], (10)

where we denote P as the model class. Hence we reduce
the local model fitting problem into a classic maximum
likelihood estimation (MLE) problem, where the training
data {s, a, s′} can be easily collected by executing πn on
the real system (i.e., Ps,a)!

For later analysis purposes, we denote P̂ as the maximum
likelihood estimator in Eq. 10 and assume P̂ is δ-optimal:

E(s,a)∼dπnπnDTV (P̂s,a, Ps,a) ≤ δ, (11)

where δ ∈ R+ is controlled by the complexity of model
class P and by the amount of training data we sample using
πn, which can be analyzed by standard learning theory.

After achieving a locally accurate model P̂ , we can solve
Eq. 8 using any existing stochastic MBOC solvers. Assume
a MBOC solver returns an optimal policy ηn under the es-
timated model P̂ and the trust-region constraint:

ηn = arg min
π
J(π),

s.t., st+1 ∼ P̂st,at , Es∼dπnDTV (π, πn) ≤ α. (12)

At this point, a natural question is: If ηn is solved by an OC
solver under P̂ , by how much can ηn outperform πn when
executed on real system P ? Recall that the performance
gap between the real optimal solution η∗n (the optimal under
P) and πn is denoted as ∆n(α). The following theorem
quantifies the performance gap between ηn and πn:

Theorem 3.1. Assume P̂s,a satisfies Eq. 11, and ηn is the
output of a MBOC solver for the optimization problem de-
fined in Eq. 12, then we have:

J(ηn) ≤ J(πn)−∆n(α) +O

(
γδ

1− γ
+

γα

(1− γ)2

)
.

The proof of the above theorem can be found in Ap-
pendix A.2. Theorem 3.1 indicates that when the model is
locally accurate, i.e., δ is small (e.g., P is rich enough and
we have enough data from dπn), α is small, and there ex-
ists a local optimal solution that is significantly better than
the current policy πn (i.e., ∆n(α) ∈ R+ is large), then the
OC solver with the estimated model P̂ finds nearly local-
optimal solution ηn that significantly outperforms πn.

3.3. Monotonic Improvement

In this section, we provide a general convergence analysis
for the Dual-Policy API framework we introduce above.

Let us define An(πn+1) as the disadvantage of πn+1 over
ηn under the state distribution dπn :

An(πn+1) = Es∼dπn
[
Ea∼πn+1(·|s) [Aηn(s, a)]

]
,

Note that An(πn+1) is at least as non-positive (if π and
η are from the same function class, or π’s policy class is
rich enough to include η), as if we set πn+1 to ηn. In that
case we simply have An(πn+1) = 0, which means we can
hope that the trust-region optimization procedure (Eq. 4)
finds a policy πn+1 that achieves An(πn+1) < 0. The
question we want to answer is: by how much is the perfor-
mance of πn+1 improved over πn by solving the two trust-
region optimization procedures detailed in Eq. 8 and Eq. 4.
Following Theorem 4.1 from Kakade & Langford (2002),
we define ε = maxs |Ea∼πn+1(·|s)[A

ηn(s, a)]|, which intu-
itively measures the maximum possible one-step improve-
ment one can achieve from ηn. The following theorem
states the performance improvement from πn to πn+1:
Theorem 3.2. Solve Eq. 8 to compute ηn and Eq. 4 to com-
pute πn+1. Then, the improvement of πn+1 over πn is:

J(πn+1)− J(πn)

≤ βε

(1− γ)2
− |An(πn+1)|

1− γ
−∆n(α). (13)

The proof of Theorem 3.2 is provided in Appendix A.3.
When β is small, we are guaranteed to find a pol-
icy πn+1 where the total cost decreases by ∆n(α) +
|An(πn+1)|/(1 − γ) compared to πn. Note that clas-
sic API performance improvement (Kakade & Langford,
2002; Schulman et al., 2015a) only contains a term that has
the similar meaning and magnitude of the second term in
the RHS of Eq. 13. Hence Dual Policy API boosts the per-
formance improvement by introducing an extra term ∆(α).

Dual Policy Iteration

Theorem 3.2 simply assumes that ηn is the optimal solution
of Eq. 8 under real model Ps,a. When using MBOC with
P̂ to compute ηn that approximates the true optimal solu-
tion, using Theorem 3.1 together with Theorem 3.2, we can
easily show that that πn+1 improves πn by:

J(πn+1)− J(πn) ≤ −∆n(α)− |An(πn+1)|
1− γ

+O

(
βε

(1− γ)2
+

γδ

1− γ
+

γα

(1− γ)2

)
.

When πn is far away from the optimal solution π∗, i.e.,
at the beginning of the learning process, one can expect
|∆n(α)| and |An(πn+1)| to have large magnitude. When
|∆n(α)| is small, say |∆n(α)| ≤ ξ for some small posi-
tive real number ξ, then it means that πn is already an ε-
locally optimal solution, where we define a policy πn to
be ε-locally optimal if and only if there exists a positive
real number α such that: J(πn) ≤ J(π′) + ε,∀π′ ∈ {π :
Es∼dπnDTV (πn, π) ≤ α}. When |An(πn+1)| ≤ ξ also
holds, then we can guarantee that ηn and πn are good poli-
cies. Under the realizable assumption (i.e., Π is rich):

min
π∈Π

Es∼dπn
[
Ea∼π(·|s)[A

ηn(s, a)]
]

=Es∼dπn
[
min
a∼A

[Aηn(s, a)]
]
, (14)

using the techniques from (Kakade & Langford, 2002), we
can relate the performance of ηn to the optimal policy π∗.
We call a policy class Π closed under its convex hull if
for any sequence of policies {πi}i, πi ∈ Π, the convex
combination

∑
i wiπi, for any w such that wi ≥ 0 and∑

i wi = 1, also belongs to Π.
Theorem 3.3. Assume Eq. 14 holds and Π is closed under
its convex hull, and max{|An(πn+1)|,∆(α)} ≤ ξ ∈ R+,
then for ηn, we have:

J(ηn)− J(π∗)

≤
(

max
s

(
dπ∗(s)

ρ0(s)

))(
ξ

β(1− γ)2
+

ξ

β(1− γ)

)
.

The proof is provided in Appendix A.4. The term
(maxs (dπ∗(s)/ρ0(s))) measures the distribution mis-
match between the initial state distribution ρ0 and the opti-
mal policy π∗, and appears in previous API algorithms such
as CPI (Kakade & Langford, 2002) and PSDP (Bagnell
et al., 2004). Although this shows that to guarantee good
performance, one needs a ρ0 similar to the best policy’s
state visitation distribution or a uniform distribution, to the
best of our knowledge this is the best performance guar-
antee in the API literature thus far. Combining the above
discussion on ∆n(α) and An with Theorem 3.2, we show
when either |∆n(α)| or |An(πn+1)| have large magnitudes,
πn+1 can improve over πn significantly; when |∆n(α)| and
|An(πn+1)|) are small, then πn and ηn are already good
policies.

3.4. Connection to Previous Work
The idea of computing a policy update guided by a bet-
ter policy has been explored in practice under the set-
ting where the dynamics is fully known and deterministic,
where MCTS is leveraged to construct a policy that can
perform better than the current reactive policy (Anthony
et al., 2017; Silver et al., 2017). For example, mapping
to ExIt, our ηn plays the role of the tree-based policy, and
our πn plays the role of the apprentice policy. We force
η to stay close to π with a trust region (for the purpose
of the tractability of dynamics learning and MBOC), while
ExIt ensures it by forming η as the weighted mixing of the
search tree and the apprentice policy. One major difference
in updating π is that ExIt uses DAgger (Ross et al., 2011)
to update π by attempting to minimize the counts of mis-
matches with respect to η, while we perform cost-sensitive
classification with loss formed by the disadvantage vector
Aη(s, ·) ∈ R|A|, which enables us to link the imitation per-
formance directly to the ultimate performance J(π), and
allows π to achieve a one-step deviation improvement over
ηn (Ross & Bagnell, 2014; Sun et al., 2017). We provide
a detailed analysis of using DAgger versus a cost-sensitive
update with cost formed by Aη in Appendix A.5.

Our framework is also related to Imitation Learning (IL).
IL usually assumes an optimal policy π∗ is available to ac-
cess only during training and the goal is to leverage π∗ to
quickly train a policy π that can perform well during test
time when π∗ is not available. When π∗ is available during
training, we can simply set ηn = π∗ (i.e., π∗ is the solu-
tion of MBOC in Eq. 8&9 with α = ∞) and thus reveals
previous IL algorithm AggreVaTeD (Sun et al., 2017).

On the other hand, when solving MBOC in Eq. 8&9 with
α = 0, then we have ηn = πn and the update procedure
for πn in Eq. 4&5 reveals API (e.g., CPI or Natural Policy
Gradient).

4. A Practical Algorithm
We have presented a unified alternating optimization
framework and analysis for Dual-Policy API. Here we de-
velop a practical algorithm for the continuous state-action
setting. We will focus on finite horizon problems with H
denoted as the maximum possible horizon. We denote the
state space S ⊆ Rds and action space A ⊆ Rda . We
work on parameterized policies: we parameterize policy
π as π(·|s; θ) for any s ∈ S (e.g., a neural network with
parameter θ), and parameterize η by a sequence of time-
varying linear-Gaussian policies η = {ηt}0≤t≤H , where
ηt(a|s) = N (Kts + kt, Pt) with Kt ∈ Rda×ds , kt ∈ Rda
and Pt ∈ Rda×da as the parameters of ηt. We will use
Θ = {Kt, kt, Pt}0≤t≤H to represent the collection of the
parameters of all the linear-Gaussian policies across the en-
tire horizon. One approximation we make here is to replace

Dual Policy Iteration

the policy divergence measure DTV (π, πn) with the KL-
divergence DKL(πn, π), which allows us to leverage Nat-
ural Gradient (Kakade, 2002; Bagnell & Schneider, 2003)
for updating θn.2 To summarize, πn and ηn are short for
πθn and ηΘn = {N (Kts+ kt, Pt)}t, respectively.

4.1. Updating πθ
In policy space, the objective function shown in Eq. 4 is
linear with respect to the policy to optimize π. However,
the objective can easily become nonconvex with respect to
parameters θ of the policy π. Performing a second order
Taylor expansion of the KL constraint around θn, we get
the following constrained optimization problem:

min
θ

Es∼dπθn [Ea∼π(·|s;θ)[A
ηΘn (s, a)]],

s.t., (θ − θn)TFθn(θ − θn) ≤ β, (15)

where Fθn is the Fisher information matrix or the Hessian
of the KL constraint Es∼dπθnDKL(πθn , πθ), measured at
θn. Denote the objective Es∼dπθn [Ea∼π(·|s;θ)[A

ηΘn (s, a)]]

as Ln(θ), and denote ∇θn as ∇θLn(θ)|θ=θn , then we can
approximately optimize θ by performing a step of natural
gradient descent (NGD) as

θn+1 = θn − µF−1
θn
∇θn , (16)

where µ is set to
√
β/(∇TθnF

−1
θn
∇θn) to ensure that the KL

constraint is satisfied. The objective Ln(θ) could be non-
linear with respect θ, depending on the function approx-
imator used for πn,. Hence one step of gradient descent
may not reduce Ln(θ) enough. In practice, we can per-
form k steps (k > 1) of NGD shown in Eq. 16, with the

learning rate shrinking to
√

(β/k)/(∇Tθ F
−1
θn
∇θ) to ensure

that after k steps, the solution still satisfies the constraint
in Eq. 15. In our implementation, we use Conjugate Gradi-
ent with the Hessian-vector product trick (Schulman et al.,
2015a) to directly compute F−1∇.

Note that the unbiased empirical estimation of ∇θn and
Fθn is well-studied in the literature and can be com-
puted using samples generated from executing πθn . As-
sume we roll out πθn to generate K trajectories τ i =
{si0, ai0, ...siT , aiT },∀i ∈ [K]. The empirical gradient
and Fisher matrix can be formed using these samples
as ∇θn =

∑
s,a [∇θn (ln(π(a|s; θn)))AηΘn (s, a)] and

Fθn =
∑
s,a

[
(∇ ln(π(a|s; θn)))(∇θn ln(π(a|s; θn))T

]
.

4.2. Updating ηΘ

Now we introduce how to find ηn given πn using model-
based optimal control. In our implementation, we use
Linear Quadratic Gaussian (LQG) optimal control (Kwak-
ernaak & Sivan, 1972) as the black-box optimal control

2Small DKL leads to small DTV by Pinsker’s inequality.

Algorithm 1 AggreVaTeD-OC

1: Input: The given MDP
Parameters α ∈ R+, β ∈ R+, k ≥ 1, k ∈ N

2: Initialize πθ0
3: for n = 0 to ... do
4: Execute πθn to generate a set of trajectories
5: Fit dynamics P̂ using {st, at, st+1} (Eq. 17)
6: Solve the minmax Lagrangian in Eq. 18 subject to

learned dynamics P̂ and obtain ηΘn

7: Form disadvantage AηΘn

8: Compute θn+1 by k-steps of NGD (Eq. 16)
9: end for

solver. We learn a sequence of time-dependent linear Gaus-
sian transition models to represent P̂ :

st+1 ∼ N (Atst +Btat + ct,Σt),∀t ∈ [1, T], (17)

where At ∈ Rds×ds , Bt ∈ Rds×da , ct ∈ Rds ,Σt ∈
Rds×ds can be learned using classic linear regression tech-
niques on a dataset {st, at, st+1} collected from executing
πn on the real system. Although the original stochastic dy-
namics P (s, a) may be complicated over the entire space, a
sequence of linear functions may be able to locally approx-
imate it well (remember that our theorem only requires a
locally accurate model P̂ under distribution dπnπn).

Next, to find a locally optimal policy under the linear-
Gaussian transitions (i.e., Eq. 12), we add the KL constraint
to the objective with Lagrange multiplier µ and form an
equivalent minmax problem:

min
η

max
µ≥0

E

[
T∑
t=1

γt−1c(st, at)

]

+ µ
(T∑
t=1

γt−1Es∼dtπ [DKL(η, πn)]− α
)
, (18)

where µ is the Lagrange multiplier, which can be solved by
alternatively updating π and µ (Levine & Abbeel, 2014).
For a fixed µ, using the derivation from (Levine & Abbeel,
2014), ignoring terms that do not depend on π, the above
formulation can be written as:

arg min
η

E

[
T∑
t=1

γt−1(c(st, at)/µ− log πn(at|st))

]

−
T∑
t=1

γt−1Es∼dtπ [H(η(·|s))], (19)

where H(π(·|s)) =
∑
a π(a|s) ln(π(a|s)) is the negative

entropy. Hence the above formulation can be understood
as using a new cost function:

c′(st, at) = c(st, at)/µ− log(πn(at|st)), (20)

Dual Policy Iteration

and an entropy regularization on π that encourages the di-
versity of the actions induced by π. It is well known in the
optimal control literature that when c′ is quadratic and dy-
namics are linear, the optimal sequence of linear Gaussian
policies for the objective in Eq. 20 can be found exactly by
a Dynamic Programming (DP) based approach, the Linear
Quadratic Regulator (LQR) (Kwakernaak & Sivan, 1972).
Given a dataset {(st, at), c′(st, at)} collected from execut-
ing πn, we can learn a quadratic approximation of c′(s, a)
(Levine & Abbeel, 2014). With a quadratic approximation
of c′ and linear dynamics, we solve Eq. 20 for η exactly
by LQR. Once we get η, we go back to Eq. 18 and update
the Lagrange multiplier µ, for example, by projected gra-
dient ascent (Zinkevich, 2003). Upon convergence, LQR
gives us a sequence of controls in the format ηΘn =
{N (Ktst + kt, Pt); t ∈ [T]}, together with a sequence of
quadratic cost-to-go functions {Qt(s, a)}t, where Qt is in
the format of [s, a]TFt[s, a]/2 + qTt [s, a] + vt.3 We use the
cost-to-go to form the disadvantage function Aπ

′
Θn (s, a),

which is in quadratic form as well.

If we treat η as an intermediate expert, the update step is
similar to AggreVaTeD—a differential IL approach (Sun
et al., 2017). Every iteration, we run πθn on P to gather
samples of states and actions. We estimate locally linear
dynamics P̂ and then leverage an OC solver (e.g, LQR) to
solve the Lagrangian in Eq. 18 to compute ηΘn and AηΘn

subject to the learned dynamics P̂ . We then perform NGD.
We summarize the procedure, AggreVaTeD-OC, in Alg. 1.

5. Application to Robust Policy Optimization
One application for our approach is robust policy optimiza-
tion (Zhou et al., 1996). We consider one particular robust
policy optimization setting where we have multiple train-
ing environments that are all potentially different from, but
similar to, the testing environments. The goal is to train
a single policy using the training environments and deploy
the policy on a test environment without any further train-
ing. Previous work suggests a policy that optimizes all the
training models simultaneously is stable and robust during
testing (Bagnell & Schneider, 2001; Atkeson, 2012), as the
training environments together serve as a “regularization”
to avoid overfitting to one particular training environment.

More formally, let us assume that we have M training en-
vironments. At iteration n, we roll out πθn on environment
i to generate a set of trajectories. For each environment
i, following the MBOC approach introduced in Sec. 4.2,
we learn a sequence of local linear Gaussian dynamics
and compute a sequence of local linear Gaussian policies
ηΘin

and their associated disadvantages AηΘin ,∀i ∈ [M].

3Note [s, a] stands for the vector concatenating s and a, Ft ∈
R(ds+da)×(ds+da), qt ∈ Rds+da , vt ∈ R.

With AηΘin ,∀i ∈ [M], following the NGD update intro-
duced in Sec. 4.1, we consider all training environments
equally and formalize the objective Ln(θ) as Ln(θ) =∑M
i=1 Es∼dπθn [Ea∼π(·|s;θ)[A

ηΘin]]. We update θn to θn+1

by computing the gradient ∇θLn(θ)|θ=θn and perform k-
step NGD. We output a single policy πθn at the end that can
potentially be used for different test environments.

6. Experiments
We tested our approach on several MDPs: (1) a set of ran-
dom discrete MDPs (Garnet problems (Scherrer, 2014)) (2)
Cartpole balancing (Sutton & Barto, 1998), (3) Helicopter
Aerobatics (Hover and Funnel) (Abbeel et al., 2005), (4)
Swimmer, Hopper and Half-Cheetah from MuJoCo physics
simulator (Todorov et al., 2012). The goals of these exper-
iments are: (a) to experimentally verify that using Aη to
perform API is more sample-efficient than using Aπ . Al-
though previous work, such as ExIt, has compared against
REINFORCE (Williams, 1992) and experimentally pro-
vided an affirmative answer to this question, we would
like to show the same phenomenon with η computed from
MBOC using learned local models; (b) to show that our
approach can be applied to robust policy search and can
outperform existing approaches (Atkeson, 2012). 4

6.1. Comparison to CPI on Discrete MDP
Following (Scherrer, 2014), we randomly create ten dis-
crete MDPs with 1000 states and 5 actions. Different
from the techniques we introduced in Sec. 4.1 for contin-
uous settings, here we use conservative update shown in
Eq. 6, where each π∗n is a linear classifier and is trained us-
ing regression-based cost-sensitive classification (Kakade
& Langford, 2002). The feature for each state φ(s) is
the binary encoding of the state (φ(s) ∈ Rlog2(|S|)). We
maintain the estimated transition P̂ in a tabular representa-
tion. The policy η is also in a tabular representation and is
computed using exact Value Iteration under P̂ and c′(s, a)
(hence we name our approach here as AggreVaTeD-VI).
Note VI under P̂ is slow when |S| and |A| are large, but
we emphasize that this step does not require any extra sam-
ples, and efficient approximate VI (e.g.,(Gorodetsky et al.,
2015)) techniques can be freely plugged in here. The setup
and the conservative update implementation is detailed in
Appendix B.1. Fig. 1a reports the statistical performance
of our approach and CPI over the 10 randomly created dis-
crete MDPs. Note that our approach converges faster than
CPI. The only difference between our implementation and
CPI here is that we usedAη instead ofAπ for the policy up-
date. The results indicates that performing policy iteration
against a better policy speeds up the learning process.

4Link to our implementaion will be provide here.

Dual Policy Iteration

0 10 20 30 40 50
Batch Iteration

20.8

21.0

21.2

21.4

21.6

Re
tu

rn

discrete_MDP_1000

AggreVaTeD_VI
CPI

(a) Discrete MDP

0 20 40 60 80 100
Batch Iteration

10

20

30

40

50

60

Re
tu

rn

CartPole

AggreVaTeD_iLQR
TRPO-GAE

(b) Cart-Pole

0 20 40 60 80 100
Batch Iteration

25

30

35

40

45

Re
tu

rn

helicopter_hover

AggreVaTeD_iLQR
TRPO-GAE

(c) Helicopter Hover

0 50 100 150 200 250 300
Batch Iteration

24

26

28

30

32

Re
tu

rn

helicopter_funnel

AggreVaTeD_iLQR
TRPO-GAE

(d) Helicopter Funnel

0 20 40 60 80 100
Batch Iteration

23

24

25

26

27

28

29

30

Re
tu

rn

Swimmer_mujoco

AggreVaTeD_iLQR
TRPO-GAE

(e) Swimmer

0 10 20 30 40 50 60
Batch Iteration

24

25

26

27

28

29

30

31

Re
tu

rn

hopper

AggreVaTeD_iLQR
TRPO-GAE

(f) Hopper

0 20 40 60 80 100
Batch Iteration

22

24

26

28

30

Re
tu

rn

halfcheetah

AggreVaTeD_iLQR
TRPO-GAE

(g) Half-Cheetah

Figure 1. Performance (mean and standard error of cumulative cost in log-scale on y-axis) versus number of episodes (n on x-axis).

6.2. Comparison to Actor-Critic in Continuous Settings

We compare against TRPO-GAE on a set of continuous
control tasks. The setup is detailed in Appendix B.3.
TRPO-GAE is a actor-critic-like approach where both ac-
tor and critic are updated using trust region optimization.
We use a two-layer neural network to represent policy π
which is updated by natural gradient descent. We use LQG
as the underlying MBOC solver and we name our approach
as AggreVaTeD-iLQG.

Fig. 1 (b-g) shows the comparison between our method and
TRPO-GAE over a set of continuous control tasks (confi-
dence interval is computed from 20 random trials). As we
can see, our method is significantly more sample-efficient
compared to TRPO-GAE. The major difference between
our approach and TRPO-GAE is that we use Aη while
TRPO-GAE uses Aπ for the policy update. Note that both
Aη and Aπ are computed using the rollouts from π. The
difference is that our approach uses rollouts to learn lo-
cal dynamics and analytically estimates Aη using MBOC,
while TRPO-GAE directly estimates Aπ using rollouts.
Overall, our approach converges faster than TRPO-GAE,
which again indicates the benefit of using Aη for API.

6.3. Experiments on Robust Policy Optimization
We consider two simulation tasks, cartpole balancing and
helicopter funnel. For each task, we create ten environ-
ments by varying the physical parameters (e.g., mass of he-
licopter, mass and length of pole). We treat 7 of the envi-
ronments for training and the remaining three for testing.
We compare our algorithm against TRPO, which could be
regarded as a model-free, natural gradient version of the

0 20 40 60 80 100
Batch Iteration

0

10

20

30

40

50

60

70

Re
tu

rn

cartpole

AggreVaTeD_iLQR
TRPO
non-robust

(a) Cart-Pole

0 50 100 150 200 250 300
Batch Iteration

24

26

28

30

32

34

36

38

Re
tu

rn

helicopter_funnel

AggreVaTeD_iLQR
TRPO
non-robust

(b) Helicopter Funnel

Figure 2. Performance (mean in log-scale on y-axis) versus num-
ber of episodes (n on x-axis) in robust control.

first-order algorithm proposed in (Atkeson, 2012). We also
ran our algorithm on a single randomly picked training en-
vironment but still tested the output on test environments,
which is denoted as non-robust in Fig. 2. Fig. 2 summa-
rizes the comparison between our approach and baselines.
Similar to the trend we saw in the previous section, our
approach is more sample-efficient in the robust policy op-
timization setup as well. It is interesting to see the “non-
robust” approach failures to further converge, which shows
the overfitting phenomenon: the learned policy overfits to
one particular training environment, which hurts the testing
performance.

7. Discussion and Future Work
We present and analyze a Dual Policy API strategy in an
alternating optimization framework. We provide a simple
instance of the framework which uses MBOC for updating
the non-reactive policy and updates the reactive policy us-
ing natural gradient methods. Both our theoretical analysis

Dual Policy Iteration

and emprical results suggest that our approach can outper-
form existing API algorithms.

Our work also opens some new problems. In theory, the
performance improvement during one call of optimal con-
trol with the local accurate model depends on a term that
scales quadratically with respect to the horizon 1/(1 − γ).
We believe the dependency on horizon can be brought
down by leveraging system identification methods focus-
ing on multi-step prediction (Venkatraman et al., 2015; Sun
et al., 2016). On the practical side, our specific implemen-
tation has some limitations due to the choice of LQG as
the underlying OC algorithm. LQG-based methods usually
require the dynamics and cost functions to be somewhat
smooth so that they can be locally approximated by poly-
nomials. We also found that LQG planning horizons must
be relatively short, as the approximation error from poly-
nomials will likely compound over the horizon. We plan
to explore the possibility of learning a non-linear dynamics
and using more advanced non-linear optimal control tech-
niques such as Model Predictive Control (MPC) for more
sophisticated control tasks.

References
Abbeel, Pieter, Ganapathi, Varun, and Ng, Andrew Y. Learning

vehicular dynamics, with application to modeling helicopters.
In NIPS, pp. 1–8, 2005.

Abbeel, Pieter, Quigley, Morgan, and Ng, Andrew Y. Using inac-
curate models in reinforcement learning. In Proceedings of the
23rd international conference on Machine learning, pp. 1–8.
ACM, 2006.

An, Chae H, Atkeson, Christopher G, and Hollerbach, John M.
Model-based control of a robot manipulator. MIT press, 1988.

Anthony, Thomas, Tian, Zheng, and Barber, David. Thinking fast
and slow with deep learning and tree search. arXiv preprint
arXiv:1705.08439, 2017.

Atkeson, Christopher G. Efficient robust policy optimization. In
American Control Conference (ACC), 2012, pp. 5220–5227.
IEEE, 2012.

Azar, Mohammad Gheshlaghi, Osband, Ian, and Munos, Rémi.
Minimax regret bounds for reinforcement learning. ICML,
2017.

Bagnell, J Andrew and Schneider, Jeff. Covariant policy search.
IJCAI, 2003.

Bagnell, J Andrew and Schneider, Jeff G. Autonomous helicopter
control using reinforcement learning policy search methods.
In Robotics and Automation, 2001. Proceedings 2001 ICRA.
IEEE International Conference on, volume 2, pp. 1615–1620.
IEEE, 2001.

Bagnell, J Andrew, Kakade, Sham M, Schneider, Jeff G, and Ng,
Andrew Y. Policy search by dynamic programming. In Ad-
vances in neural information processing systems, pp. 831–838,
2004.

Baxter, Jonathan and Bartlett, Peter L. Infinite-horizon policy-
gradient estimation. Journal of Artificial Intelligence Research,
15:319–350, 2001.

Bertsekas, Dimitri P and Tsitsiklis, John N. Neuro-dynamic pro-
gramming: an overview. In Decision and Control, 1995., Pro-
ceedings of the 34th IEEE Conference on, volume 1, pp. 560–
564. IEEE, 1995.

Finn, C., Zhang, M., Fu, J., Tan, X., McCarthy, Z., Scharff, E., and
Levine, S. Guided policy search code implementation, 2016.
URL http://rll.berkeley.edu/gps. Software avail-
able from rll.berkeley.edu/gps.

Gorodetsky, Alex, Karaman, Sertac, and Marzouk, Youssef.
Efficient high-dimensional stochastic optimal motion con-
trol using tensor-train decomposition. In Proceedings of
Robotics: Science and Systems, Rome, Italy, July 2015. doi:
10.15607/RSS.2015.XI.015.

Jaksch, Thomas, Ortner, Ronald, and Auer, Peter. Near-optimal
regret bounds for reinforcement learning. JMLR, 2010.

Kakade, Sham. A natural policy gradient. NIPS, 2002.

Kakade, Sham and Langford, John. Approximately optimal ap-
proximate reinforcement learning. In ICML, 2002.

Kocsis, Levente and Szepesvári, Csaba. Bandit based monte-carlo
planning. In European conference on machine learning, pp.
282–293. Springer, 2006.

Kolter, J Zico and Ng, Andrew Y. Policy search via the signed
derivative. In Robotics: science and systems, pp. 34, 2009.

Kwakernaak, Huibert and Sivan, Raphael. Linear optimal control
systems, volume 1. Wiley-Interscience New York, 1972.

Lazaric, Alessandro, Ghavamzadeh, Mohammad, and Munos,
Rémi. Analysis of a classification-based policy iteration al-
gorithm. In ICML-27th International Conference on Machine
Learning, pp. 607–614. Omnipress, 2010.

Levine, Sergey and Abbeel, Pieter. Learning neural network
policies with guided policy search under unknown dynamics.
In Advances in Neural Information Processing Systems, pp.
1071–1079, 2014.

Ross, Stephane and Bagnell, Drew. Agnostic system identifi-
cation for model-based reinforcement learning. In Proceed-
ings of the 29th International Conference on Machine Learn-
ing (ICML-12), pp. 1703–1710, 2012.

Ross, Stephane and Bagnell, J Andrew. Reinforcement and imita-
tion learning via interactive no-regret learning. arXiv preprint
arXiv:1406.5979, 2014.

Ross, Stéphane, Gordon, Geoffrey J, and Bagnell, J.Andrew. A
reduction of imitation learning and structured prediction to no-
regret online learning. In AISTATS, 2011.

Rummery, Gavin A and Niranjan, Mahesan. On-line Q-learning
using connectionist systems, volume 37. University of Cam-
bridge, Department of Engineering, 1994.

Scherrer, Bruno. Approximate policy iteration schemes: a com-
parison. In International Conference on Machine Learning, pp.
1314–1322, 2014.

Dual Policy Iteration

Schulman, John, Levine, Sergey, Abbeel, Pieter, Jordan,
Michael I, and Moritz, Philipp. Trust region policy optimiza-
tion. In ICML, pp. 1889–1897, 2015a.

Schulman, John, Moritz, Philipp, Levine, Sergey, Jordan,
Michael, and Abbeel, Pieter. High-dimensional continuous
control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015b.

Silver, David, Schrittwieser, Julian, Simonyan, Karen,
Antonoglou, Ioannis, Huang, Aja, Guez, Arthur, Hubert,
Thomas, Baker, Lucas, Lai, Matthew, Bolton, Adrian, et al.
Mastering the game of go without human knowledge. Nature,
550(7676):354, 2017.

Sun, Wen, Venkatraman, Arun, Boots, Byron, and Bagnell, J An-
drew. Learning to filter with predictive state inference ma-
chines. In ICML, 2016.

Sun, Wen, Venkatraman, Arun, Gordon, Geoffrey J, Boots, By-
ron, and Bagnell, J Andrew. Deeply aggrevated: Differentiable
imitation learning for sequential prediction. ICML, 2017.

Sutton, Richard S and Barto, Andrew G. Introduction to rein-
forcement learning, volume 135. MIT Press Cambridge, 1998.

Todorov, Emanuel, Erez, Tom, and Tassa, Yuval. Mujoco: A
physics engine for model-based control. In Intelligent Robots
and Systems (IROS), 2012 IEEE/RSJ International Conference
on, pp. 5026–5033. IEEE, 2012.

Venkatraman, Arun, Hebert, Martial, and Bagnell, J Andrew. Im-
proving multi-step prediction of learned time series models.
AAAI, 2015.

Williams, Ronald J. Simple statistical gradient-following al-
gorithms for connectionist reinforcement learning. Machine
learning, 1992.

Zhou, Kemin, Doyle, John Comstock, Glover, Keith, et al. Ro-
bust and optimal control, volume 40. Prentice hall New Jersey,
1996.

Zinkevich, Martin. Online Convex Programming and Generalized
Infinitesimal Gradient Ascent. In ICML, 2003.

Zucker, Matt and Maas, Andrew. Learning tetris. 2009.

Dual Policy Iteration

A. Missing Proofs
A.1. Useful Lemmas

As we work in finite probability space, we will use the following fact regarding total variation distance and L1 distance for
any two probability measures P and Q:

‖P −Q‖1 = 2DTV (P,Q). (21)

Recall that dπ = (1 − γ)
∑∞
t=0 γ

tdtπ . The following lemma shows that if two policies are close with each other in terms
of the trust region constraint we defined in the paper, then the state visitations of the two policies are not that far away.

Lemma A.1. Given any two policy π1 and π2 such that Es∼dπ1
[DTV (π1(·|s), π2(·|s))] ≤ α, then we have:

‖dπ1
− dπ2

‖1 ≤
2α

1− γ
. (22)

Proof. Fix a state s and time step t, let us first consider dtπ1
(s)− dtπ2

(s).

dtπ1
(s)− dtπ2

(s)

=
∑

s0,s1,..,st−1

∑
a0,a1,..,at−1

(
ρ(s0)π1(a0|s0)Ps0,a0

(s2)...π1(at−1|st−1)Pst−1,at−1
(s)

− ρ(s0)π2(a0|s0)Ps0,a0
(s1)...π2(at−1|st−1)Pst−1,at−1

(s)
)

=
∑
s0

ρ(s0)
∑
a0

π1(a0|s0)
∑
s1

Ps0,a0(s1)...
∑
at−1

π1(at−1|st−1)Pst−1,at−1(s)

−
∑
s0

ρ(s0)
∑
a0

π2(a0|s0)
∑
s1

Ps0,a0(s1)...
∑
at−1

π2(at−1|st−1)Pst−1,at−1(s)

=
∑
s0

ρ(s0)
∑
a0

π1(a0|s0)P (st = s|s0, a0;π1)−
∑
s0

ρ(s0)
∑
a0

π2(a0|s0)P (st = s|s0, a0;π2), (23)

where P (st = s|s0, a0;π) stands for the probability of reaching state s at time step t, starting at s0 and a0 and then
following π. Continue, we have:

|dtπ1
(s)− dtπ2

(s)|

= |
∑
s0

ρ(s0)
∑
a0

π1(a0|s0)P (st = s|s0, a0;π1)−
∑
s0

ρ(s0)
∑
a0

π2(a0|s0)P (st = s|s0, a0;π2)|

≤ |
∑
s0

ρ(s0)
∑
a0

π1(a0|s0)P (st = s|s0, a0;π1)−
∑
s0

ρ(s0)
∑
a0

π1(a0|s0)P (st = s|s0, a0;π2)|

+ |
∑
s0

ρ(s0)
∑
a0

π1(a0|s0)P (st = s|s0, a0;π2)−
∑
s0

ρ(s0)
∑
a0

π2(a0|s0)P (st = s|s0, a0;π2)|

≤ |
∑
s1

d1
π1

(s1) (P (st = s|s1;π1)− P (st = s|s1;π2)) |+ Es0∼ρ
∑
a0

|π1(a0|s0)− π2(a0|s0)|P (st = s|s0, a0;π2)

(24)

Add
∑
s on both sides of the above equality, we get the following inequality:∑

s

|dtπ1
(s)− dtπ2

(s)|

≤ Es1∼d1
π1

∑
s

|P (st = s|s1;π1)− P (st = s|s1;π2)|+ Es0∼ρ‖π1(·|s0)− π2(·|s0)‖1 (25)

Dual Policy Iteration

We can apply similar operations on P (st = s|s1;π1)− P (st = s|s1;π2) as follows:

Es1∼d1
π1

∑
s

|P (st = s|s1;π1)− P (st = s|s1;π2)|

= Es∼d1
π1

∑
s

|
∑
a1

[π1(a1|s1)P (st = s|s1, a1;π1)− π2(a1|s1)P (st = s|s1, a2;π2)] |

≤ Es2∼d2
π1

∑
s

|P (st = s|s2;π1)− P (st = s|s2;π2)|+ Es1∼d1
π1

[‖π1(·|s1)− π2(·|s1)‖1]

Again, if we continue expand P (st = s|s2;π1)− P (st = s|s2;π2) till time step t, we get:

∑
s

|dtπ1
(s)− dtπ2

(s)| ≤
t−1∑
i=0

Esi∼diπ1
[‖π1(·|si)− π2(·|si)‖1] (26)

Hence, for ‖dπ1 − dπ2‖1, we have:

‖dπ1 − dπ2‖1 ≤ (1− γ)

∞∑
t=0

γt‖dtπ1
− dtπ2

‖1

≤
∞∑
t=0

γtEs∼dtπ1
[‖π1(·|s)− π2(·|s)‖1] ≤

∞∑
t=0

2γtEs∼dtπ1
[DTV (π1(·|s), π2(·|s))] ≤ 2α

1− γ
. (27)

Lemma A.2. For any two distribution P and Q over X , and any bounded function f : X → R such that |f(x)| ≤ c,∀x ∈
X , we have:

|Ex∼P [f(x)]− Ex∼Q[f(x)]| ≤ c‖P −Q‖1. (28)

Proof.

|Ex∼P [f(x)]− Ex∼Q[f(x)]| = |
∑
x∈X

P (x)f(x)−Q(x)f(x)|

≤
∑
x

|P (x)f(x)−Q(x)f(x)| ≤
∑
x

|f(x)||P (x)−Q(x)|

≤ c
∑
x

|P (x)−Q(x)| = c‖P −Q‖1. (29)

A.2. Proof of Theorem 3.1

Recall that we denote dππ as the joint state-action distribution under policy π. To prove Theorem 3.1, we will use Lemma
1.2 presented in the Appendix from Ross & Bagnell (2012) to prove the following claim:

Lemma A.3. Suppose we learned a approximate model P̂ and obtain the optimal policy ηn with respect to the objective
function J(π) under P̂ and the trust-region constraint maxsDTV (π, πn) ≤ α, then compare to π∗n, we have:

J(ηn)− J(π∗n) ≤ γ

2(1− γ)

(
E(s,a)∼dηnηn

[
‖P̂s,a − Ps,a‖1

]
+ E(s,a)∼dπ∗nπ

∗
n

[
‖P̂s,a − Ps,a‖1

])
. (30)

Proof. Denote V̂ π as the value function of policy π under the approximate model P̂ . From Lemma 1.2 and Corollary 1.2
in Ross & Bagnell (2012), we know that for any two policies π1 and π2, we have:

J(π1)− J(π2) = Es∼ρ0
[V̂ π1(s)− V̂ π2(s)]

+
γ

2(1− γ)

(
E(s,a)∼dπ1

π1

[
‖P̂s,a − Ps,a‖1

]
+ E(s,a)∼dπ2

π2

[
‖P̂s,a − Ps,a‖1

])
. (31)

Dual Policy Iteration

Now replace π1 with ηn and π2 with π∗n. Note that both ηn and π∗n are in the trust region constraint maxsDTV (π, πn) ≤ α
by definition. As ηn is the optimal control under the approximate model P̂ (i.e., the optimal solution to Eq. 12), we must
have Es∼ρ0 [V̂ π1(s)− V̂ π2(s)] ≤ 0. Substitute it back to Eq. 31, we immediately prove the above lemma.

The above lemma shows that the performance gap between ηn and π∗n is measured under the state-action distributions
measured from ηn and π∗n while our model P̂ is only accurate under the state-action distribution from πn. Luckily due to
the trust-region constraint Es∼dπnDTV (π, πn) and the fact that ηn and π′n are both in the trust-region, we can show that
dηnηn, dπ∗nπ

∗
n are not that far from dπnπn using Lemma A.1:

‖dηnηn − dπnπn‖1 ≤ ‖dηnηn − dπnηn‖1 + ‖dπnηn − dπnπn‖1

≤ ‖dηn − dπn‖1 + Es∼dπn [‖ηn(·|s)− πn(·|s)‖1] ≤ 2α

1− γ
+ 2α ≤ 4α

1− γ
. (32)

similarly, for π∗n we have:

‖dπ∗nπ
∗
n − dπnπn‖1 ≤

4α

1− γ
. (33)

Go back to Eq. 30, let us replace Edηnηn and Edπ∗nπ∗n by Edπnπn and using Lemma A.2, we will have:

|E(s,a)∼dηnηn [‖P̂s,a − Ps,a‖1]− E(s,a)∼dπnπn [‖P̂s,a − Ps,a‖1]| ≤ 2‖dηnηn − dπnπn‖1 ≤
8α

1− γ

⇒ E(s,a)∼dηnηn [‖P̂s,a − Ps,a‖1] ≤ E(s,a)∼dπnπn [‖P̂s,a − Ps,a‖1] +
8α

(1− γ)
, (34)

and similarly,

E(s,a)∼dπ∗nπ
∗
n
[‖P̂s,a − Ps,a‖1] ≤ E(s,a)∼dπnπn [‖P̂s,a − Ps,a‖1] +

8α

(1− γ)
. (35)

Combine Eqs. 34 and 35, we have:

J(π′n)− J(π∗n) ≤ γ

2(1− γ)

(
2E(s,a)∼dπnπn [‖P̂s,a − Ps,a‖1] + 16α/(1− γ)

)
=

γδ

1− γ
+

8γα

(1− γ)2
= O

(
γδ

1− γ

)
+O

(
γα

(1− γ)2

)
. (36)

Using the definition of ∆(α), adding J(πn) and subtracting J(πn) on the LHS of the above inequality, we prove the
theorem.

A.3. Proof of Theorem 3.2

The definition of πn+1 implies that Es∼dπn [DTV (πn+1(·|s), πn(·|s))] ≤ β. Using Lemma A.1, we will have that the total
variation distance between dtπn+1

and dtπn is:

‖dπn+1
− dπn‖1 ≤

2β

1− γ
. (37)

Now we can compute the performance improvement of πn+1 over ηn as follows:

(1− γ)(J(πn+1)− J(ηn)) = Es∼dπn+1

[
Ea∼πn+1

[Aηn(s, a)]
]

= Es∼dπn+1

[
Ea∼πn+1

[Aηn(s, a)]
]
− Es∼dπn

[
Ea∼πn+1

[Aηn(s, a)]
]

+ Es∼dπn
[
Ea∼πn+1

[Aηn(s, a)]
]

≤
∣∣∣Es∼dπn+1

[
Ea∼πn+1 [Aηn(s, a)]

]
− Es∼dπn

[
Ea∼πn+1 [Aηn(s, a)]

]∣∣∣+ Es∼dπn
[
Ea∼πn+1 [Aηn(s, a)]

]
≤ 2εβ

1− γ
+ Es∼dπn

[
Ea∼πn+1 [Aηn(s, a)]

]
=

2εβ

1− γ
+ An(πn+1)

=
2εβ

1− γ
− |An(πn+1)| (38)

Dual Policy Iteration

Finally, to bound J(πn+1)− J(πn), we can simply do:

J(πn+1)− J(πn) = J(πn+1)− J(ηn) + J(ηn)− J(πn)

≤ βε

(1− γ)2
− |An(πn+1)|

1− γ
−∆(α). (39)

A.4. Proof of Theorem 3.3

Recall the average advantage of πn+1 over πn is defined as Aπn(πn+1) = Es∼dπn [Ea∼πn+1(·|s)[A
ηn(s, a)]]. Also recall

that the conservative update where we first compute π∗n = arg minπ∈Π Es∼dπn [Ea∼πAηn(s, a)], and then compute the
new policy π′n+1 = (1 − β)πn + βπ∗n. Note that under the assumption that the policy class Π is closed under its convex
hull, we have that π′n+1 ∈ Π. As we showed that π′n+1 satisfies the trust-region constraint defined in Eq. 5, we must have:

Aπn(πn+1) = Es∼dπn [Ea∼πn+1(·|s)[A
ηn(s, a)]] ≤ Es∼dπn [Es∼π′n+1

[Aηn(s, a)]], (40)

due to the fact that πn+1 is the optimal solution of the optimization problem shown in Eq. 4 subject to the trust region
constraint. Hence if Aπ(πn+1) ≥ −ξ, we must have Es∼dπn [Es∼π′n+1

[Aηn(s, a)]] ≥ −ξ, which means that:

Es∼dπn
[
(1− β)Es∼dπnA

ηn(s, a) + βEs∼dπ∗nA
ηn(s, a)

]
= (1− β)(1− γ)(J(πn)− J(ηn)) + βEs∼dπn [Ea∼π∗nA

ηn(s, a)] ≥ −ξ,

⇒ Es∼dπn [Ea∼π∗nA
ηn(s, a)] ≥ − ξ

β
− 1− β

β
(1− γ)∆(α) ≥ − ξ

β
− 1− γ

β
∆(α). (41)

Recall the realizable assumption: Es∼dπn [Ea∼π∗nA
ηn(s, a)] = Es∼dπn [minaA

ηn(s, a)], we have:

− ξ

β
− 1− γ

β
∆(α) ≤

∑
s

dπn(s) min
a
Aηn(s, a) =

∑
s

dπn(s)

dπ∗(s)
dπ∗(s) min

a
Aηn(s, a)

≤ min
s

(
dπn(s)

dπ∗(s)

)∑
s

dπ∗(s) min
a
Aηn(s, a)

≤ min
s

(
dπn(s)

dπ∗(s)

)∑
s

dπ∗(s)
∑
a

π∗(a|s)Aηn(s, a)

= min
s

(
dπn(s)

dπ∗(s)

)
(1− γ)(J(π∗)− J(ηn)). (42)

Rearrange, we get:

J(ηn)− J(π∗) ≤
(

max
s

(
dπ∗(s)

dπn(s)

))(
ξ

β(1− γ)
+

∆(α)

β

)
≤
(

max
s

(
dπ∗(s)

ρ(s)

))(
ξ

β(1− γ)2
+

ξ

β(1− γ)

)
(43)

A.5. Analysis on Using DAgger for Updating πn

To analyze the update of π using DAgger, we consider deterministic policy here: we assume πn and η are both deterministic
and the action space A is discrete. We consider the following update procedure for π:

min
π∈Π

Es∼dπn
[
Ea∼π(·|s)1(a 6= arg min

a
Aηn(s, a))

]
,

s.t.,Es∼dπn [‖π(·|s)− πn(·|s)‖1] ≤ β. (44)

Namely we simply convert the cost vector defined by the disadvantage function by a “one-hot” encoded cost vector, where
all entries are 1, except the entry corresponding to arg minaA

ηn(s, a) has cost 0. Ignoring the updates on the “expert”
ηn, running the above update step with respect to π can be regarded as running online gradient descent with a local metric
defined by the trust-region constraint. Recall that ηn may from a different policy class than Π.

Dual Policy Iteration

Assume that we learn a policy πn+1 that achieves εn prediction error:

Es∼dπn
[
Ea∼πn+1(·|s)

[
1(a 6= arg min

a
Aηn(s, a))

]]
≤ εn. (45)

Namely we assume that we learn a policy πn+1 such that the average probability of mismatch to ηn is at most εn.

Using Lemma A.1, we will have that the total variation distance between dπn+1
and dπn is at most:

‖dπn+1
− dπn‖1 ≤

2β

1− γ
. (46)

Applying PDL, we have:

(1− γ)(J(πn+1)− J(ηn)) = Es∼dπn+1
[Ea∼πn+1

[Aηn(s, a)]]

≤ Es∼dπn [Ea∼πn+1 [Aηn(s, a)]] +
2βε

1− γ

= Es∼dπn [
∑

a6=arg mina Aηn (s,a)

π(a|s)Aηn(s, a)] +
2βε

1− γ

≤ (max
s,a

Aηn(s, a))Es∼dπn [Ea∼πn+11(a 6= arg min
a
Aηn(s, a))] +

2βε

1− γ

≤ ε′εn +
2βε

1− γ
, (47)

where we define ε′ = maxs,aA
ηn(s, a), which should be at a similar scale as ε. Hence we can show that performance

difference between πn+1 and πn as:

J(πn+1)− J(πn) ≤ 2βε

(1− γ)2
+

ε′εn
1− γ

−∆(α). (48)

Now we can compare the above upper bound to the upper bound shown in Theorem 3.2. Note that even if we assume the
policy class is rich and the learning process perfect learns a policy (i.e., πn+1 = ηn) that achieves prediction error εn = 0,
we can see that the improvement of πn+1 over πn only consists of the improvement from the local optimal control ∆(α).
While in theorem 3.2, under the same assumption, except for ∆(α), the improvement of πn+1 over πn has an extra term
|An(πn+1)|

1−γ , which basically indicates that we learn a policy πn+1 that is one-step deviation improved over ηn by leveraging
the cost informed by the disadvantage function. If one uses DAgger, than the best we can hope is to learn a policy that
performs as good as the “expert” ηn (i.e., εn = 0).

B. Missing Experiment Details
B.1. Synthetic Discrete MDPs and Conservative Policy Update Implementation

We follow (Scherrer, 2014) to randomly create 10 discrete MDPs, each with 1000 states, 5 actions and 2 branches (namely,
each state action pair leads to at most 2 different states in the next step). We maintain a tabular representation P̂ ∈
R|S|×|A|×|S|, where each entry Pi,j,k records the number of visits of the state-action-next state triple. We represent η as a
2d matrix η ∈ R|S×A|, where ηi,j stands for the probability of executing action j at state i. The reactive policy uses the
binary encoding of the state id as the feature, which we denote as φ(s) ∈ Rds (ds is the dimension of feature space, which
is log2(|S|) in our setup). Hence the reactive policy πn sits in low dimension feature space and doesn’t scale with respect
to the size of the state space S.

For both our approach and CPI, we implement the unconstrained cost-sensitive classification (Eq. 4) by Cost-Sensitive One
Against All (CSOAA) classification technique. Specifically, given a set of states {si}i, and a cost vector {Aηn(si, ·) ∈
R|A|}, we train a linear regressor Ŵ ∈ R|A|×ds to predict the cost vector: Ŵφ(s) ≈ Aηn(s, ·). Then π∗n in Eq. 6 is just a
classifier that predicts action arg mini(Ŵs)[i] corresponding to the smallest predicted cost. We then combine π∗n with the
previous policies as shown in Eq. 6 to make sure πn+1 satisfies the trust region constraint in Eq. 5.

For CPI, we estimate Aπn(s, a) by running value iteration using P̂ with the original cost matrix. We also experimented
estimating Aπn(s, ·) by empirical rollouts with importance weighting, which did not work well in practice due to high

Dual Policy Iteration

variance resulting from the empirical estimate. For our method, we alternately compute ηn using VI with the new cost
shown in Eq. 20 and P̂ , and update the Lagrange multiplier µ, under convergence. Hence the only difference between our
approach and CPI here is simply that we use Aηn while CPI uses Aπn .

Our results indicates that using Aηn converges much faster than using Aπn , though computing ηn is much more time
consuming than computing Aπn . But again we emphasize that computing ηn doesn’t require extra samples. For real large
discrete MDPs, we can easily plug in approximate VI techniques such as (Gorodetsky et al., 2015) to significantly speed
up computing ηn.

B.2. Details for Updating Lagrange Multiplier µ

Though running gradient ascent on µ is theoretically sound and can work in practice as well, but it converges slow and
requires to tune the learning rate as we found experimentally. To speed up convergence, we used the same update procedure
used in the practical implementation of Guided Policy Search (Finn et al., 2016). We set up µmin and µmax. Starting from
µ = µmin, we fix µ and compute η using the new cost c′ as shown in Eq. 20 under the local dynamics P̂ using LQR. We then
compare Es∼µnDKL(η(·|s), πn(·|s)) to α. If η violates the constraint, i.e., Es∼µnDKL(η(·|s), πn(·|s)) > α, then it means
that µ is too small. In this case, we set µmin = µ, and compute new µ as µ = min(

√
µminµmax, 10µmin); On the other hand,

if η satisfies the KL constraint, i.e, µ is too big, we set µmax = µ, and compute new µ as µ = max(
√
µminµmax, 0.1µmax).

We early terminate the process once we find η such that 0.9α ≤ Es∼µnDKL(η(·|s), πn(·|s)) ≤ 1.1α. We then store the
most recent Lagrange multiplier µ which will be used as warm start of µ for the next iteration.

B.3. Details on Continuous Control Experiment Setup

The cost function c(s, a) for discrete MDP is uniformly sampled from [0, 1]. For the continuous control experiments, we
designed the cost function c(s, a), which is set to be known to our algorithms. For cartpole and helicopter hover, denote
the target state as s∗, the cost function is designed to be exactly quadratic: c(s, a) = (s− s∗)TQ(s− s∗) + aTRa, which
penalizes the distance to the goal and large control inputs. For Swimmer, Hopper and Half-Cheetah experiment, we set
up a target moving forward speed v∗. For any state, denote the velocity component as sv , the quadratic cost function is
designed as c(s, a) = q(sv−v∗)2 +aTRa, which encourages the agent to move forward in a constant speed while avoiding
using large control inputs. We will provide link to our implementation here for the final version.

