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Automatic registration of unordered point clouds collected by the terrestrial laser scanner (TLS) is the pre-
requisite for many applications including 3D model reconstruction, cultural heritage management, forest
structure assessment, landslide monitoring, and solar energy analysis. However, most of the existing point cloud
registration methods still suffer from some limitations. On one hand, most of them are considerable time-con-
suming and high computational complexity due to the exhaustive pairwise search for recovering the underlying
overlaps, which makes them infeasible for the registration of large-scale point clouds. On the other hand, most of
them only leverage pairwise overlaps and rarely use the overlaps between multiple point clouds, resulting in
difficulty dealing with point clouds with limited overlaps. To overcome these limitations, this paper presents a
Hierarchical Merging based Multiview Registration (HMMR) algorithm to align unordered point clouds from
various scenes. First, the multi-level descriptors (i.e., local descriptor: Binary Shape Context (BSC) and global
descriptor: Vector of Locally Aggregated Descriptor (VLAD)) are calculated. Second, the point clouds over-
lapping (adjacent) graph is efficiently constructed by leveraging the similarity between their corresponding
VLAD vectors. Finally, the proposed method hierarchically registers multiple point clouds by iteratively per-
forming optimal registration point clouds calculation, BSC descriptor based pairwise registration and point cloud
groups overlapping (adjacent) graph update, until all the point clouds are aligned into a common coordinate
reference. Comprehensive experiments demonstrate that the proposed algorithm obtains good performance in
terms of successful registration rate, rotation error, translation error, and runtime, and outperformed the state-
of-the-art approaches.

1. Introduction 2017), (2) the huge amount of data (millions or billions of points,

hundreds of scans), which calls for computationally efficient techniques

Point clouds acquired by terrestrial laser scanners (TLS) are widely
utilized for various applications such as 3D model reconstruction (Jung
et al.,, 2014; Oesau et al., 2014; Xu et al., 2017a), cultural heritage
management (Montuori et al., 2014; Yang and Zang, 2014), forest
structure assessment (Liang et al., 2012; Kelbe et al., 2016a, 2016b),
landslide monitoring (Prokop and Panholzer, 2009; Vosselman and
Maas, 2010), and solar energy analysis (Huang et al., 2017). Since TLS
has a limited field of view, multiple scans from different viewpoints are
usually necessary to fully cover the geometry of a large-scale scene. A
prerequisite for further processing is to register all individual scans in a
common coordinate system, to obtain one large point cloud of the
complete scene (Theiler et al., 2015). There are four key challenges for
unordered point clouds registration: (1) uneven point densities of the
point clouds caused by the mechanism of the TLS system (Zai et al.,
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(Theiler et al., 2014), and (3) repetitive, symmetric, and incomplete
structures (Theiler et al., 2015). (4) Limited overlaps and unknown
relative position between multiview point clouds (Huber and Hebert,
2003). To address these challenges, extensive studies have been done to
improve the accuracy, efficiency, and robustness of point cloud regis-
tration, which can be roughly categorized into pairwise and multiview
registration according to the number of input point clouds (Huber and
Hebert, 2003). Both of pairwise and multiview registration involve two
steps: coarse and fine registration (Guo et al., 2013). The aim of coarse
registration is to estimate an initial transformation between adjacent
point clouds. The initial transformation is then further refined using a
fine registration algorithm (e.g., iterative closest point (ICP) algorithm
and its variants (Besl and McKay, 1992; Yang et al, 2013)). The scope of
this paper will focus on pairwise and multiview coarse registration.
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1.1. Pairwise coarse registration

A common pairwise coarse registration method should solve two
major issues: the extraction of geometric features (e.g., points, lines,
and planes) and the identification of corresponding feature pairs (Habib
et al., 2010). Many studies using line or plane features to register point
clouds have been widely reported. Stamos and Leordeanu (2003) pro-
posed an autonomous registration method based on line features, which
extracted the intersection lines of neighboring planes and calculated the
transformation between adjacent scans using two or more corre-
sponding line pairs. Dold and Brenner (2006) presented a registration
method based on plane patches, which calculates rotation and trans-
lation parameters successively using at least three corresponding planar
patches. Rabbani et al. (2007) first detected the geometric primitives
(i.e., planes, spheres, cylinders and tori) from each individual scan, then
registered the scans of industrial sites by the corresponding geometric
primitives. Theiler and Schindler (2012) first generated the virtual tie
points by intersecting triples of detected planes, then virtual tie points
are matched using their descriptors (e.g., the intersection angles be-
tween planes the extent of planar segments, and the smoothness of
planes). Yang et al. (2016) first detected feature lines derived from
pole-like objects and vertical planes then matched them using both
geometrical constraints and their semantic information. Xu et al.
(2017b) proposed an automatic marker-free solution for coarsely
aligning two scans of point clouds, utilizing the geometric constraint
formed by planar surfaces of building facades and ground surface. Al-
though the feature line/plane-based methods work very well for urban
scenes with numerous man-made objects, they suffer the difficulty in
natural scenes (e.g., mountain, river, and forest) with less line/plane
features.

In general, the point-based methods are more popular in pairwise
coarse registration due to their feasibility to various scenes (B6hm and
Becker, 2007; Barnea and Filin, 2008; Weinmann et al., 2011; Theiler
et al., 2014; Weber et al., 2015). Most of the point-based registration
methods typically contain four consecutive processes. First, the key-
point detectors (e.g., local surface patches (Chen and Bhanu, 2007),
intrinsic shape signature (Zhong, 2009)), 2.5D SIFT (Lo and Siebert,
2009), 3D SURF (Knopp et al., 2010) and Harris 3D (Sipiran and Bustos,
2011)) are utilized to extract keypoints from raw point clouds. Second,
the feature descriptors (e.g., spin image (Johnson and Hebert, 1999),
3D Shape Contexts (Frome et al., 2004), fast point feature histograms
(FPFH) (Rusu et al., 2009), signature of histograms of orientations
(Tombari et al., 2010), rotational projection statistics (RoPS) (Guo
et al., 2013), and Tri-Spin-Image (Guo et al., 2015)) are calculated to
encode spatial shape information around each keypoint. Third, the
correspondences are determined through various feature matching
strategies (e.g., reciprocal correspondence (Pajdla and Gool, 1995),
correlation coefficient (Johnson and Hebert, 1999), and chi-square test
(Zhong, 2009)). Finally, some robust transformation estimation algo-
rithms (e.g., RANSAC (Fischler and Bolles, 1981), polygon-based cor-
respondence rejector (Weber et al., 2015), geometric consistency con-
straints (Tombari et al., 2010; Yang et al., 2016)) are leveraged to
eliminate incorrect correspondences and calculate the rigid transfor-
mation between adjacent point clouds based on the remaining corre-
spondences.

There are some point-based methods in the literature which do not
follow the aforementioned feature descriptors calculation and feature
matching paradigm. For example, the 4-Points Congruent Sets (4PCS)
(Aiger et al., 2008) and its variants (e.g., Keypoint-based 4PCS (K-4PCS)
(Theiler et al., 2014), Geodesic distances-based 4PCS (GD-4PCS) (Ge,
2016), and semantic-keypoint-based 4PCS (SK-4PCS) (Ge, 2017)) de-
termine the corresponding four-point base sets by exploiting the rule of
intersection ratios instead of feature descriptor calculation and
matching. These algorithms are more robust to a set of disturbances,
including noise, varying point density, clutter, and occlusion.

Although the abovementioned pairwise registration methods can
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generally provide satisfactory point cloud registration results, they still
have some common limitations. First, the existing 3D feature de-
scriptors still suffer from low descriptiveness, and weak robustness
(Dong et al., 2017). Second, most of the pairwise registration algo-
rithms are time-consuming especially for large-scale point clouds with a
huge amount of data.

1.2. Multiview coarse registration

For multiview coarse registration, both the overlaps and the relative
poses are unknown, which makes the problem considerably harder than
pairwise coarse registration (Huber and Hebert, 2003). The multiview
coarse registration algorithms involve three interrelated tasks: (1) re-
covering the overlap information or the view order of input point
clouds; (2) estimating the rigid transformations between each pair of
overlapping point clouds (pairwise registration); (3) determining the
absolute poses of each input point cloud, which is the ultimate goal of
multiview coarse registration.

In the last decades, extensive studies on multiview coarse registra-
tion have been done using the minimum spanning tree based strategy
(Huber and Hebert, 2003; Weber et al., 2015; Yang et al., 2016). Huber
and Hebert (2003) first applied the spin image based pairwise coarse
registration to all pairs of point clouds to construct a fully connected
and weighted graph, where the overlap distance was calculated as the
weight of each edge. They then generated the minimum spanning tree
(MST) (Kruskal, 1956) of the graph to register multiview point clouds to
a uniform coordinate reference. Following the similar workflow, Weber
et al. (2015) and Yang et al. (2016) respectively used FPFH (Rusu et al.,
2009), and semantic feature point based algorithms for exhaustive
pairwise coarse registration to construct a fully connected graph, and
generated a minimum spanning tree of the graph that maximizes the
number of point correspondences. These algorithms avoid the issue of
pose conflict by finding the minimal spanning tree that connects all
nodes to the reference node, but do not exploit the redundant in-
formation provided by multiple edges to reduce registration error.

The global energy optimization based strategy (Theiler et al., 2015),
and embedded confidence metrics based strategy (Kelbe et al., 2016b)
are proposed to remove erroneous local matches and reduce propaga-
tion errors by exploiting the redundant information (e.g., loop con-
straints). Theiler et al. (2015) first utilized the K-4PCS based pairwise
registration method (Theiler et al., 2014) to all pairs of input point
clouds to get multiple putative transformations between each pair. They
then constructed a graphical model and its energy function to include
the loop consistency constraints, and disambiguated the pairwise
transformations by minimizing the energy function using Lazy-Flipper
algorithm (Andres et al., 2012). Kelbe et al. (2016b) leverage the
pairwise embedded confidence metric (Kelbe et al., 2016a) to align
exhaustive pairwise input point clouds. They then initialized a graph
using the set of relative pairwise transformations and calculated the
Dijkstra spanning trees of each node. Finally, to address potential in-
consistent matches, the competing Dijkstra spanning trees were aligned
into a common coordinate system, from which effective pose estimates
and error estimates were calculated. One major limitation of these al-
gorithms is their high computational complexity due to the expensive
exhaustive search. For a set of N point clouds, the computational
complexity of the minimum spanning tree based algorithms (Huber and
Hebert, 2003; Weber et al., 2015; Yang et al., 2016), global energy
optimization based algorithm (Theiler et al., 2015), and embedded
confidence metrics based algorithm (Kelbe et al., 2016b) is O(N?) as
they need to exhaustively register every pair of point clouds (i.e., C3).
These algorithms are therefore very time-consuming and infeasible for
the registration of a large number of point clouds.

To reduce the computational complexity and improve the efficiency
of multiview registration algorithms, extensive studies on shape
growing based strategies have been done (Mian et al., 2006; Guo et al.,
2014). Mian et al. (2006) constructed a connected graph by first
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choosing the point clouds with the maximum surface area as the root
node and iteratively merged other point clouds with enough corre-
sponding 3D tensors and passed a global verification to the graph.
Following the similar workflow, Guo et al. (2014) started by initializing
the search space with all the input point clouds, and then selected a
point cloud from the search space as the seed shape. The shape itera-
tively grew by performing pairwise registration between itself and the
remaining point clouds in the search space. This algorithm was more
efficient compared to the minimum spanning tree based algorithms,
and global energy optimization based algorithm. One major limitation
of this algorithm is that point clouds covering a small part of an object
or with limited overlaps cannot be registered (Guo et al., 2014).

Another trend of multiview registration depends on external sensors
auxiliary (e.g., GPS, IMU, and smartphone) to record the position and
orientation of each scan (Asai et al., 2005; Pu et al., 2014; Chen et al.,
2017). For example, Chen et al. (2017) combined TLS with a low-cost
smartphone for the multiview coarse registration. More precisely, the
scanner positions are roughly measured by the smartphone GPS and the
distances between neighboring scanner positions are used as the
translation constraint in the multiview registration step. External sen-
sors are helpful for registration of terrestrial point clouds, although the
high cost, tedious data collection processes, and signal occlusion of
external sensors limit the application of these methods.

Matching between images and point clouds share several common
research problems, therefore the related work from the structure from
motion (SfM) is also briefly introduced. SfM algorithms take a set of
images as input and produce the camera parameters and a set of 3D
points visible in the images (Furukawa and Herndndez, 2015). The
development of high-quality feature detectors (Alahi et al., 2012; Bay
et al., 2008a, 2008b; Rosten and Drummond, 2006; Leutenegger et al.,
2011), which enable build longer and higher quality tracks from
images, is a crucial development to make the SfM work with un-
structured datasets. Another development to tackle large-scale SfM of
unstructured photo collections is to accelerate the matching stage by
the efficient indexing (Nister and Stewenius, 2006), the simplified
connectivity graph of the tracks (Snavely et al., 2008) and paralleliza-
tion (Agarwal et al., 2011; Frahm et al., 2010).

1.3. Contributions

Although the reported methods can generally provide satisfactory re-
gistration results, they still have limitations. One major limitation of these
algorithms is their considerable time cost and high computational com-
plexity due to the time-intensive feature matching process of pairwise re-
gistration and exhaustive pairwise search of multiview registration, which
result in infeasible for the registration of a large number of point clouds.
Another one is that most of the existing algorithms only leverage pairwise
overlaps and rarely use the overlaps between multiple point clouds, there-
fore these methods may have difficulty dealing with point clouds with
limited pairwise overlaps. To overcome these limitations, this paper pre-
sents a Hierarchical Merging based Multiview Registration (HMMR) algo-
rithm to align unordered point clouds from various scenes and validates its
performance on six challenging datasets. The main contributions of the
proposed method are as follows.

® We propose an efficient algorithm to construct point clouds overlapping
(adjacent) graph by calculating the similarity between their corre-
sponding Vector of Locally Aggregated Descriptor (VLAD) vectors in-
stead of exhaustive pairwise registration, which significantly reduces the
computational complexity of multiview registration.

e We introduce a robust and efficient pairwise point cloud registration
algorithm based on Binary Shape Context (BSC) descriptor (Dong
et al., 2017). On the one hand, the BSC descriptor is robust to noise,
varying point density, occlusion and clutter, which can be used for
registration of point clouds from various scenes. On the other hand,
the similarity between BSC descriptors can be measured by the
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Hamming distance, which makes the feature matching process ex-
tremely fast.

e We present a hierarchical merging based registration algorithm,
which handles a marker-free and multiview registration without any
prior knowledge about the view orders or position of the point
clouds. There are two important features of the proposed algorithm.
On the one hand, the optimal point clouds merging order is auto-
matically determined according to the similarity between point
clouds, resulting in the improvement of registration accuracy. On
the other hand, overlaps between multiple point clouds (as opposed
to just pairwise overlaps) is leveraged during point clouds merging
process, which enhances the capability of handling point clouds
with limited overlaps.

The rest of this paper is organized as follows. Following this in-
troduction, Section 2 gives a detailed description of the proposed point
cloud registration method. Then the proposed method is validated in
experimental studies in Section 3. Finally, the conclusions and future
research directions are presented in Section 4.

2. Methodology

In this section, we propose a Hierarchical Merging based Multiview
Registration (HMMR) algorithm with a successive scheme that includes
multi-level feature calculation (Section 2.2), point clouds overlapping
(adjacent) graph construction (Section 2.3), and hierarchical registra-
tion of point clouds (Section 2.4).

2.1. Hierarchical registration framework

The task of the proposed method is to align a set of unordered point
clouds into a uniform coordinate reference. It's worth noting that we
neither make assumptions about the position and view order of the
sensors, nor the overlap between collected point clouds, meaning that
consecutive views do not imply spatial adjacency. Fig. 1 shows an
overview of the proposed hierarchical registration framework. The
input of the framework is a set of unordered point clouds
P{P, ---P, ---Py} with varying coordinate references, where P, re-
presents the ith point cloud, and N is the total number of input point
clouds. First, the local descriptor (i.e., BSC) of each keypoint and the
global descriptor (i.e., VLAD) of each point cloud are calculated
(Section 2.2). Second, the point clouds overlapping (adjacent) graph is
efficiently constructed by leveraging the similarity between their cor-
responding VLAD vectors (Section 2.3). Third, the proposed method
hierarchically registers the point clouds by iteratively performing three
successive processes (i.e., optimal registration point clouds calculation,
BSC descriptor based pairwise registration, and point cloud groups
overlapping (adjacent) graph update) until all the point clouds are
aligned into a common coordinate reference (Section 2.4). The final
output of the proposed method is the set of point clouds
P*{P}, ---B, ---Py;} with a uniform coordinate reference, where P/ re-
presents the transformed point cloud of P,

2.2. Multi-level feature calculation

In this section, the local BSC descriptor and the global VLAD (Vector
of Locally Aggregated Descriptor) descriptor are calculated, which will
be used for the following processes of pairwise registration and over-
lapping point cloud pairs estimation respectively.

2.2.1. Binary shape context calculation

In this section, our previously developed local BSC descriptor (Dong
et al., 2017) is calculated to encode spatial shape information around
each keypoint. To make the description of the complete system self-
contained, we start with a brief description of the BSC descriptor, as
shown in Fig. 2.
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Input point clouds

Multi-level features
calculation

Point clouds
overlapping (adjacent)
graph construction

A set of unordered point clouds P with varying coordinate

references

e Calculate the BSC descriptor for each keypoint

e Calculate the VLAD descriptor for each point cloud

e Calculate the similarity between VLAD vectors

e Conduct regression analysis on the similarity and overlap

e Construct overlapping (adjacent) graph

Hierarchical registration
of point clouds

Output point clouds

e Point cloud group overlapping graph (GPG) initialization

A set of point clouds P* with a uniform coordinate reference

Optimal registration point clouds calculation
BSC descriptor based pairwise registration
Update the GPG

Fig. 1. Overview of the proposed point cloud registration framework.
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Fig. 2. An illustration of the generation of a BSC descriptor: (a) the input point cloud and detected keypoints (i.e., the red points), (b) the neighboring points of
keypoint p; and the constructed LRF, (c) the transformed neighboring points with respect to the LRF, (d) the projected neighboring points with respect to three
projection planes respectively, (e) the projection point density feature and projection point distance feature corresponding to each projection plane, (f) the corre-
sponding bit strings generated by feature difference test, and (g) the generated BSC descriptor by combining the LRF and the six bit strings. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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First, the keypoints of each point cloud are detected by the keypoint
detector proposed by Mian et al. (2010), as shown in Fig. 2a. More
specifically, the algorithm detects keypoints at different pre-selected
scales and selects the scale that maximizes the ratio between the first
two principle axes as the inherent scale. Both the location and inherent
scale r*<4® (j e, supporting radius) of a keypoint are determined in the
detection phase, which will be used to construct the BSC descriptor in
the subsequent phase.

Second, the Local Reference Framework (LRF) at each keypoint is
constructed and its neighboring points are then transformed with re-
spect to the constructed LRF, as shown in Fig. 2b and c. The details of
the LRF construction algorithm are as follows: (1) Construct the cov-
ariance matrix M using p; and its neighboring points within a sup-
porting radius r®@'®) which is automatically determined in the key-
point-detection step. (2) Compute the eigenvalues {4}, 4, 13} of M in
decreasing order of magnitude and the corresponding eigenvectors
{e), e,, es} by performing an eigenvalue decomposition of M. (3) Define
the LRF by adopting p; as the origin and ej, e, e; @ e, as the x-, y- and
z-axes, respectively, where ® represents the cross product of vectors.

Third, the transformed neighboring points are projected onto three
coordinate planes (i.e., the xy-, xz- and yz-planes) and subsequently
divided into bins, as shown in Fig. 2d; then the projection density and
distance features of each bin are calculated and normalized into [O,
255], as shown in Fig. 2e.

Fourth, the projection density and distance features are further
transformed to be binary strings by the difference test, as shown in
Fig. 2f. More specifically, the difference tests of each kind feature (i.e.,
projection density and projection distance) on each projection plane
(i.e., the xy-, xz- and yz-planes) choose g feature pairs based on the
predefined rules and calculate their difference respectively. The value
of one difference test is set as 1 if there is a significant difference be-
tween the selected feature pair, otherwise it is set as 0, as Eq. (1).

L if lfy—fy! > or
0 else,

T(fb P fb’) = {

/ /l (1)
where || represents the absolute value, f,, f,; is one of the selected
feature pairs, r(fb[, fb[') denotes the difference test of fbl and fb[’ orisa
predefined threshold.

Finally, the BSC descriptor of each keypoint p; is generated by
combining the LRF with the six corresponding bit strings into a feature
vector b;, as Eq. (2).
b (p;, ax;, ay;, az;, f;) 2
where pj» ax;, ay;, az; are the origin, the x-axis, y-axis, and z-axis of the
local coordinate reference, f; is the six corresponding bit strings. The
readers can refer to Dong et al. (2017) for more details on the BSC
descriptors extraction.

2.2.2. Vector of locally aggregated descriptor calculation

After BSC descriptors calculation, the proposed method groups all
the BSC descriptors into K clusters using k-means clustering algorithm
(Jégou et al., 2010), and regards the K cluster centers as the visual
words. Then the local BSC descriptors derived from each individual
point cloud and the K visual words are received as the input of Algo-
rithm 1 to calculate the VLAD vector of the point cloud. The pseudo-
code of the VLAD vector calculation is detailed in Algorithm 1.
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Algorithm 1: VLAD calculation for point cloud P,

Notation:

Bi{bj, ---b}, -+-bj}: the set of BSC descriptors derived from
point cloud P, where T; is the number of descriptors;

U{u,, iy, --ug}: the set of visual words, where K is number of
visual words;

d: the dimension of BSC descriptors;

V;: the VLAD vector of point cloud P(the dimension of VLAD is
K*d).
Input: B;{b], ---b}, ---bf} and U {uy, f,, ---ug}
Output: V;
% initialization

fork=1,2, ---,K

Vi (k) « 04, 04 represents a d-dimensional zero vector;
3 End for
% difference accumulation

4 for j=1,2, ---,T;

N =

5 k=arg min |Ibj—,ll, [|bj—,|l is the L1-norm between b}
n=12---K
and u,
Vi (k) < Vi(k) + bj—u
End for

% concatenation and normalization

8 V=M, Vk)-VE)]
9 Vi « ﬁ, [IVi |l» represents the L2-norm of V;.

The algorithm first accumulates the differences bj—u, of each BSC de-
scriptor b; assigned to its nearest visual word u, (i.e., step 4-7 of
Algorithm 1). Then the Kd-dimensional VLAD vector is acquired by
concatenating the K difference accumulation V; (k) and subsequently L2-
normalized (i.e., step 8-9 of Algorithm 1), where V; (k) is a d-dimen-
sional vector accumulating the difference between visual word , and
its corresponding BSC descriptors. The readers can refer to Jégou et al.
(2010, 2012) for more details on the VLAD calculation for image search
and classification.

2.3. Point clouds overlapping (adjacent) graph construction

For multiview registration, both the overlaps and the relative po-
sition among point clouds are unknown, which make the problem
considerably harder. To recover the underlying overlaps and the ad-
jacent relation, most of the existing algorithms first perform the ex-
haustive pairwise coarse registration then determine the reliable point
cloud pairs by a predefined metric, which is extraordinarily time-con-
suming and high-complexity. Before multiview registration, we effi-
ciently recover the underlying adjacent relation or overlaps between
point clouds by calculating the similarity between their corresponding
VLAD vectors, thus significantly reducing the computational com-
plexity compared with exhaustive pairwise registration.

2.3.1. VLAD similarity calculation

Intuitively, point clouds with larger overlap are expected to have
more similar VLAD vectors. The most similar and dissimilar compo-
nents of the VLAD vectors are associated with the BSC descriptors lo-
cated in the overlapping areas, and nonoverlapping areas respectively.
Starting from this consideration, the similarity sim(V;, V;) between two
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Fig. 3. The correlation between similarity and overlap: (a) point cloud pairs formed by 2nd point cloud and the remaining point clouds, (b) point cloud pairs formed
by 4th point cloud and the remaining point clouds, (c) point cloud pairs formed by 16th point cloud and the remaining point clouds, and (d) point cloud pairs formed
by 25th point cloud and the remaining point clouds.
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Fig. 4. A comparison of the proposed algorithm with exhaustive pairwise search: (a) the generated graph by exhaustive pairwise search, and (b) the generated
overlapping (adjacent) graph by the proposed algorithm.
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VLAD vectors V;, and V; is defined as a weighted distance:

‘ 1 .
sim(Vi, Vj) = ) W"||1/,.(k)—i/j(k)ll

k=1,2---K

3
A p— . i - A . 1
where ||V, (k)-V; (k)| is the L1-norm of V;(k) and V;(k), TCEACI
represents the similarity of V;(k) and Vj(k), wy is the weight of
m The pairs {(V;(1), V;(1)), ---(Vi (k), V; (k)), ---(Vi(K), V;(K))}
are sorted in descending order with respect to their similarity

___1____ The weight w = 1-X amplifies the influence of the more
IIVitk) = Vi) |l K

similar pairs and reduces the impact of the more dissimilar pairs.

2.3.2. Regression analysis of similarity and overlap

The correlation between VLAD similarity and point cloud overlap is
validated on the park dataset (refer to Section 3.1.1) using the linear
regression analysis technology (Montgomery and Peck, 2007). Given
two point clouds P, P; and their corresponding VLAD vectors V; and Vj,
the similarity sim(V,, V}) is calculated as Eq. (3), and the overlap be-
tween P, and P, is calculated as Eq. (4).

2xpoint number in overlapping areas
overlap(P, P) = P bping

the total point number in both point clouds @

The 2nd, 4th, 16th and 25th point clouds of Park dataset are ran-
domly selected to validate the correlation between VLAD similarity and
point cloud overlap. The readers can refer to Section 3.1.1 for more
details about the Park dataset. Fig. 3 shows the strong positive corre-
lation between VLAD similarity (normalized to [0, 1]) and point cloud
overlap, with the vary R-squared (R?) between 0.92 and 0.95.

2.3.3. Overlapping (adjacent) graph construction

We formulate the overlapping (adjacent) relations between point
clouds as a graph, where each point cloud is a node and edges encode
similarity (overlap) between pairs of point clouds. For each given point
cloud P, we choose its top g similar point clouds as its overlapping
(adjacent) point clouds and connect them to P, with edges. Fig. 4 il-
lustrates a simple case of the constructed overlapping (adjacent) graph,
where the black numbers on the edges indicate the similarity of point
clouds. Note that g is set as 3 in Fig. 4, the optimal value of q will be
discussed in the Section 3.1.3. Fig. 4a and b respectively show the
generated graphs of exhaustive pairwise search and the proposed
method for the 12 input point clouds. It is worth noting that, most of the
existing algorithms perform the exhaustive pairwise coarse registration
to recover the underlying overlaps or the adjacent relation, which is
extraordinarily time-consuming and high-complexity. The proposed
method efficiently recovers the underlying adjacent relation or overlaps
between point clouds by leveraging the similarity between their cor-
responding VLAD vectors. The constructed overlapping (adjacent)
graph will be used for the following hierarchical registration process.

2.4. Hierarchical registration of point clouds

Given a set of input point clouds P{P, ---P, ---Py} and the con-
structed point cloud overlapping (adjacent) graph GP, the proposed
algorithm hierarchically registers them into a uniform coordinate re-
ference according to Algorithm 2, illustrated in Fig. 5.
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Algorithm 2: Hierarchical registration of point clouds

Notation:
P{Py, ---B, ---Py}: the set of input point clouds;
B{By, :-‘B;, ---By}: the BSC descriptor set of input point clouds;
PG{PG,, ---PG;, ---PGy}: the set of initialized point cloud
groups;
GP: the point clouds overlapping (adjacent) graph;
GPG: the point cloud groups overlapping (adjacent) graph;

Input: P{P, ---P, ---Py} and GP

Output: P*{P}, ---P}, ---Py} the set of registered point clouds

% Point cloud groups initialization

fori=1,2, ---,N
PG; < P;

End for
GPG « GP;

% Optimal registration point clouds calculation

5 Select the two most similar point cloud groups PG, and PG,
from GPG;

6 Further select the overlapping point clouds between PG; and
PG, based on GP as the pairwise registration point clouds RP,
and RB;

% BSC descriptor based pairwise registration

7 Estimate the feature correspondence set FC{cy, ¢;, **Cpgc}
between RP, and RE;

8 Eliminate the incorrect correspondences from FC to get
GC {Cl’ Coy ’CMGC};

9 Calculate the coarse transformation Tft based on GC by Eq.

(7);

Calculate the fine transformation Ty, by the pairwise ICP on
point clouds RP, and RE;
Transform the point clouds in PG, using T, to get PG;;

% Point cloud groups overlapping (adjacent) graph GPG

update

Merge point cloud group PG, and PG/ into PG, in the graph
GPG;

Merge BSC descriptor set B; and B;" into B;;

Calculate the VLAD vector V;,; of PG, based on B, by

Algorithm 1;

Update the similarity between PG;, and its conterminal point
cloud groups in GPG;

% Iteration

Repeat steps 5-15, until all the input point clouds are
registered into a uniform coordinate reference;

% Multiview ICP

Refine all the registered point clouds by using the multiview

ICP algorithm (Williams and Bennamoun, 2001) on them to

eliminate the error propagation;

HwWN -

10

11

12

13
14

15

16

17

2.4.1. Point cloud groups initialization

The proposed method first initializes the set of point cloud groups
PG{PG,, ---PG, ---PGy} by assigning each point cloud P, as a point cloud
group PG;, which is defined as a group of point clouds with a uniform
coordinate reference; then assign the point cloud overlapping (ad-
jacent) graph GP to point cloud groups overlapping (adjacent) graph
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Fig. 5. An illustration of hierarchical registration: (a) the input point cloud overlapping (adjacent) graph, (b) the initialized point cloud groups overlapping (ad-
jacent) graph, (c) and (d) the first iteration, (e) and (f) the second iteration, (g) and (h) the third iteration, (i) and (j) the fourth iteration, (k) and (m) the fifth
iteration, (n) and (p) the last iteration.
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Fig. 5. (continued)

Table 1
The detailed description of the six datasets.

Dataset Scanner #Scans #Pts Dimensions (m) Average point density (points/m?)
Park VZ-400 32 0.28 billion 1450 * 650 442

Campus1 VZ-400 132 2.75 billion 1800 * 800 206

Mountain ScanStation C5 22 0.13 billion 900 * 120 154

Tunnel VZ-400 26 0.99 billion 400 * 60 3366

Bridge FocusS 150 29 0.73 billion 400 * 400 273

River VZ-400 13 0.23 billion 1500 * 400 190

1 The campus dataset was download from http://kos.informatik.uni-osnabrueck.de/3Dscans/.

GPG. Fig. 5a and b shows the constructed point cloud overlapping
(adjacent) graph GP and the initialized point cloud groups overlapping
(adjacent) graph GPG, where the black numbers on the edges indicate
the similarity of the nodes.

2.4.2. Optimal registration point clouds calculation

The proposed method first selects the source point cloud group PG;
and target point cloud group PG, with most VLAD similarity from point
cloud groups overlapping graph GPG, then further selects the over-
lapping point clouds between PG, and PG, (i.e., the point clouds con-
nected by edges in the point cloud overlapping graph GP, Fig. 5a) as the
pairwise registration point clouds RP, and RE.

Fig. 5c—p illustrates the hierarchical registration in the first 5 and
the last iterations. Note that, the point cloud groups will become larger
and larger during the iterations, hence direct registration of point cloud
groups PG; and PG, will become dramatically time-consuming. To im-
prove the efficiency of registration, especially for point cloud groups
containing a large number of point clouds, we register the point cloud
groups by only utilizing their overlapping point clouds instead of all the
point clouds in the groups. For example, in the last iteration, the pro-
posed method first selects the source and target point cloud groups
PGP\, P;, P}, P;, P, P} and PG,{P;, P, P;, P}y, P\, P} from point
cloud groups overlapping graph GPG, then further selects the point
clouds {P,, P;, P;, P;} from PG and the point clouds {P;, P§, P}, P5}
from PG, as the pairwise registration point clouds RP, and RE (point
clouds (P, Ppp), (P, Pi), (B, Ps), (B, P;) are connected by edges in
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Fig. 5a), shown as the gray and brown points respectively in Fig. 5n.
Only the point clouds RP, and RE, will be used for the following pairwise
registration, which significantly improves the efficiency of pairwise
registration.

2.4.3. BSC descriptor based pairwise registration

The proposed algorithm aligns R, to RB with a successive scheme
that includes correspondence estimation, incorrect correspondences
rejection, coarse transformation calculation, and fine transformation
calculation.

e correspondence estimation

Let B{b{, b3, ---bi.} and B, {b{, b3, ---by,} respectively be the sets of
BSC descriptors from RP, and RE. For a descriptor by in By, if there exists
a descriptor b; in B, fulfilling Eq. (5), b{ and b}, are considered as a
correspondence.

h =arg min (Ham(bg, b}))
n=1,2,--N;

k=arg min (Ham(b;, b))
n=1,2,---Ng

()

where Ham(bj, b)) is the hamming distance between b} and b.. That
means not only b/ is the most similar descriptor of b{, but also b} is the
most similar descriptor of bj. After all descriptors in By are matched
against these descriptors in B, according to Eq. (5), we obtain a set of
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Fig. 6. The sampled point clouds from six datasets, with shading representing differences in height: (a) the 2nd point cloud of the park dataset, (b) the 98th point
cloud of the campus dataset, (c) the 18th point cloud of the mountain dataset, (d) the 25th point cloud of the tunnel dataset and its cross section (one side of the
tunnel was removed for a better visual effect), (e) the 1st point cloud of the bridge dataset and (f) the 3rd point cloud of the river dataset.

Table 2
Parameters of the proposed HMMR method.
Procedure Parameter ~ Descriptor Value
Multi-level descriptor  d The dimension of BSC 384
calculation descriptors
K The number of visual words 200
Overlapping point q The number of the 5
cloud pairs potentially overlapping
estimation point clouds for each point
cloud
Hierarchical € The threshold for geometric ~ The average
registration consistency verification point distance
A The distance constraint for =~ The average

point cloud merge

point distance

In this paper, we calculate the distance from each point to its nearest point and
regard the average of all the distances as the average point distance.

The correlation coefficient

0.7

0.65

200, 0.956

4

0

100 150 200 250 300 350 400 450 500 550 600 650
The number of visnal words K

Fig. 7. The impact of K on the correlation coefficient between VLAD similarity
and point clouds overlap.
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Fig. 8. The impact of parameter q on the registration error and runtime re-

spectively.

correspondences FC{cy, -*-Cp, **-Cpc} between RE and RE, where
Cm by b(‘m)} represent the mth correspondence, Mrc is the number of
all the correspondences. Note that, the Hamming distance (i.e., XOR
operation) is calculated extremely fast on modern CPUs, which makes
the correspondence estimation process more efficient.
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e incorrect correspondences rejection

Once the correspondence set FC{c;, ¢y, *-Cypc} Detween RP, and
RE is generated, we can estimate an optimal transformation according
to FC. However, several incorrect correspondences may exist in
FC{cy, -~y **CmMpc}, Which will subsequently result in wrong trans-
formation estimations. Therefore, the geometric consistency verifica-
tion (Chen and Bhanu, 2007) is used to further eliminate the incorrect
correspondences in FC{cy, ---Cp, ---Cppc}. If two correspondence
CmAbimy s b(’m)} and fulfill Eq. (6), they are considered as consistent cor-
respondences. For a correspondence cy,{b(,), b{y)}, the proposed
method traverses all the other correspondences in FC{cy, ***Cim, ***Cppc}
and clusters those correspondences fulfilling Eq. (6) as a group. Repeat
the same procedure for each correspondence in FC{cy, --Cp, *-Cpppc} tO
acquire Mpc groups. The larger the group is, the more likely it contains
the true correspondences. Therefore the group with the largest corre-
spondences is selected as the final correspondences, denoted by
GC{Cl, < Cpns “.CMGC}'
abs ( ||P(Sm) _P(Sn) ”_”p(tm) _p(tn) H<e 6)
where p,, p(’m), Pl p(’n) are the keypoint of b, by, béy, bl Te-
spectively, ||p(5m) —p(sn) || is the Euclidean distance between p(sm) and p(sn ) €
is a predefined threshold, abs represents the absolute value.

e transformation calculation

The correspondences GC{cy, ---Cp,, **-Cnmgc} are used to calculate the
pairwise coarse transformation TS, between RP, and RE by minimizing
Eq. (7). Then, the fine transformation Tft between them is further ac-
quired by leveraging the pairwise level ICP algorithm (Besl and McKay,
1992) on the points belonging to RP, and RPE. Finally, the point cloud
group PG; and its BSC descriptors B, are transformed to PG, and B;
respectively based on the fine transformation T};. Note that, the trans-
formation of BSC descriptor only transforms its local coordinate re-
ference with respect to T, the corresponding bit strings remains un-
changed.

M=

B, — TS #pg |
/ o o %)

1

where Tfl is the pairwise coarse transformation between RP, and RE, pé)
and P<t1> are the Ith corresponding points in RF, and RE respectively, L is

(b)

Fig. 9. Registration results of park dataset: (a) park dataset as aligned from all 32 point clouds, with shading representing differences in height (top view); (b) the
details of the registration result in front view, where different colors stand for points from different point clouds.
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(b)

Fig. 10. Registration results of campus dataset: (a) campus dataset as aligned from all 132 point clouds, with shading representing differences in height (top view);
(b) the details of the registration result in top view, where different colors stand for points from different point clouds.

Fig. 11. Registration results of mountain dataset: (a) mountain dataset as
aligned from all 22 point clouds, with shading representing differences in
height (front view); (b) the details of the registration result in front view, where
different colors stand for points from different point clouds; and (c) the details
of the registration result colored by the residual distance between corre-
sponding points, where the gray points represent the non-overlap areas.
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the number of corresponding points in the largest group, and § is cal-
culated as the sum of the Euclidean distances between the corre-
sponding points.

2.4.4. Point cloud groups overlapping (adjacent) graph update

After pairwise registration, we merge PG, and PG’ into a new point
cloud group PG;,; and calculate its BSC descriptors B;; as follows: (1) all
points of PG, and all BSC descriptors of B are added to PG, and B;,
respectively. (2) The points of PG;" and the BSC descriptors of B, whose
shortest distances to the points of PG, are larger than a predefined
threshold A, are added to PG, and B, respectively. The distance
constraint is used to make sure that no redundant points and BSC de-
scriptors are added to PG, and By,. Note that, we generate BSC de-
scriptors Bs; of PG, from the already available BSC descriptors of By
and B/, rather than recalculating brand-new descriptors. Therefore, this
process improves the computational efficiency of BSC descriptors ex-
traction as it does not need additional feature calculation during the
process of hierarchical registration.

Once PG;; and B;; are acquired, the BSC descriptors B, and the K
visual words (calculated at Section 2.2.2) are received as the input of
Algorithm 1 to calculate the VLAD descriptor V;; of PG;,. Then the si-
milarity between PG, and its conterminal point cloud groups are re-
calculated according to Eq. (2). For example, in the first iteration, the
source point cloud group PG, and the transformed target point cloud
group PG, are merged into a new point cloud group PG, 5 and update
the similarities between PG, ; and its conterminal point cloud groups
(i.e., PGy, PGy, PGs, PGyp), as shown in Fig. 5d. Repeat the process of
Sections 2.4.2-2.4.4, until all the input point clouds are registered into
a uniform coordinate reference. Finally, all the registered point clouds
are further refined by using the multiview ICP algorithm (Williams and
Bennamoun, 2001) on them to eliminate the error propagation.

Compared to the existing methods, the advantages of the hier-
archical merging based algorithm are as follows. First, the optimal point
clouds merging order is automatically determined according to the si-
milarity between point clouds, resulting in the improvement of regis-
tration robustness and accuracy. Second, overlaps between multiple
point clouds (as opposed to just pairwise overlaps) is leveraged during
the point clouds registration process, which enhances the capability of
handling point clouds with limited overlaps. For example, the multiple
overlaps between point clouds (P}, P,), (P, Py), (P, B;) and (F;, P}) are
leveraged to register the two point cloud groups in the last iteration, as
shown in Fig. 5n.
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(b)

(©)

Fig. 12. Registration results of tunnel dataset: (a) tunnel dataset as aligned from all 26 point clouds, with shading representing differences in height (side view); (b)
and (c) some details of the registration result in side view and front view of a tunnel, where different colors stand for points from different point clouds.

3. Experiments and analysis
3.1. Experimental setup

The implementation details of the experiments, including the de-
scription of datasets, the evaluation criteria, and parameter settings of
the proposed method are described in this section.

3.1.1. Datasets description

The performance of the proposed HMMR algorithm is evaluated
using six datasets derived from different scenes (i.e., park, campus,
mountain, tunnel, bridge, and river). More specifically, the park,
campus, tunnel, and river datasets were captured using the RIEGL VZ-
400 laser scanner system with a field of view of 360° and 100° in the
horizontal and vertical directions, a maximum range of 600 m, and a
maximum measurement rate of 30 k pts/s. Mountain dataset was col-
lected by Leica ScanStation C5 with all-in-one portability, a full 360°
and 270° field-of-view, long range (300 m), and high scan speed (50 k
pts/s). Bridge dataset was captured using a FARO FocusS 150 laser
scanner with a field of view of 360° and 300° in the horizontal and
vertical directions, a maximum range of 150 m, and a maximum mea-
surement rate of 24k pts/s. Table 1 provides a detailed description of
the six datasets, and Fig. 6 shows the sampled point clouds from them.
What makes these datasets challenging are (1) the datasets are collected
by laser scanner systems with different field-of-view, measurement

73

range, and accuracy; (2) each of the datasets contains billions of points;
and (3) the datasets include a wide variety of scenes (e.g., park,
mountain, river, tunnel) with significant disparity in land cover types
and geometric structures of surface.

3.1.2. Evaluation criteria

We evaluate the performance of the proposed HMMR method in
terms of rotation error, translation error, and successful registration
rate which are commonly used for the evaluation of point cloud re-
gistration (Guo et al., 2014; Pomerleau et al., 2013; Theiler et al., 2014,
2015; Yang et al., 2016; Petricek and Svoboda, 2017). Given a reference
point cloud B, the transformation T,; from any point cloud P, to B. can
be calculated by accumulating the corresponding pairwise transfor-
mations in HMMR. The residual transformation AT, ; from any point
cloud P, to reference point cloud E is defined as Eq. (8):
AT =T (TS = [ARM Atr’i]

’ T or 1 8)
where T, ; are the estimated transformation from P, to B, the Tf,- is the
corresponding ground-truth transformation.

Then the rotation error e/; and translation error e/; from P to B. are
calculated based on their corresponding rotational component AR, ; and
translational component A, ;, as Eq. (9):
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Fig. 13. Registration results of bridge dataset: (a) bridge dataset as aligned
from all 29 point clouds, with shading representing differences in height (side
view), and (b) a detail of the registration result with different colors standing
for points from different point clouds (side view) and (c) the details of the
registration result colored by the residual distance between corresponding
points, where the gray points represent the non-overlap areas.

tr(ARy,i) — 1
e, = arccos(%)

eri = llAg 9)
where tr(AR, ;) denotes the trace of AR, ;. The rotation error e;; corre-
sponds to the angle of rotation in the axis-angle representation.

Given the rotation error e/; and translation error e/;, a successful
registration (SR) is defined as Eq. (10):

R = {1 (€ <o) A (efy < )

0 else (10)
where o, and ¢; are the predefined threshold of rotation and translation
error, which can be set according to the requirements of the applica-
tions. In this paper, the o, and o; are set as 100.0 millidegrees and
100.0 mm respectively. The successful registration rate (SRR) is then
calculated as Eq. (11):

SRR=£

N-1 an

where N; and N are the number of successful registration and the
number of point clouds respectively.
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3.1.3. Parameter settings

Table 2 shows the parameter settings of the proposed HMMR
method, set by trial and error. All these parameter settings, unless
otherwise specified, are used for all the experiments in this paper. The
sensitivity of each parameter is tested on the campus dataset. The
readers can refer to Section 3.1.1 for more details about the campus
dataset.

There are five key parameters in the proposed registration algo-
rithm, i.e., d, K, q, € and A. The parameter d is the dimension of the BSC
descriptor, which controls the descriptiveness and the efficiency of the
BSC descriptor. Increasing the dimension of BSC descriptor can improve
its descriptiveness to acquire more correct correspondences, but will
decrease the computational efficiency and matching speed and increase
the memory consumption. Therefore, we use d = 384 as the dimension
of BSC descriptor to strike a balance between descriptiveness and effi-
ciency. The readers can refer to Dong et al. (2017) for more details
about the parameter settings of the BSC descriptors.

The parameter K is the number of visual words, which controls the
descriptiveness and the compactness of the VLAD descriptor. We ana-
lyze the impact of the number K on the correlation coefficient between
VLAD similarity and point clouds overlap, calculated as Eq. (12). Ex-
perimental results of the campus dataset find that the correlation
coefficient dramatically increases as K increasing from 50 to 200, then
remains relatively stable when K largens from 200 to 400, finally de-
creases slightly with the K ranging from 400 to 600, as shown in Fig. 7.
Therefore, we use K = 200 as the number of visual words.

_ Cov (0, S)

" Var(0)Var(S) 12)
where Var(0) and Var(S) are the variance of point clouds overlap and
VLAD similarity respectively, Cov(O, S) and cc are the covariance and
correlation coefficient between VLAD similarity and point clouds
overlap.

The parameter q is the number of the overlapping point clouds for
each point cloud, which controls the efficiency and accuracy of the
registration. More specifically, a small ¢ may result in less accurate
registration with less time, whereas a larger one may produce more
accurate registration taking more time. Experimental results of the
campus dataset find that the algorithm can strike a balance between
registration error and runtime when q is set as 5, as shown in Fig. 8.
Note that the registration error in Fig. 8a is calculated as the average
distance between corresponding markers after registration.

The parameter ¢ is the threshold for geometric consistency ver-
ification, which is used to further eliminate incorrect correspondences.
A small ¢ results in lots of omissive correspondences, whereas a large
one produces some incorrect correspondences. The parameter A is the
threshold for point cloud group merge, which makes sure that no re-
dundant points are added to the merged point cloud group.
Experimental results find that the proposed registration algorithm can
obtain a good performance when ¢ and A are calculated as the average
point distance from each point to its nearest point.

3.2. Experiment results

Figs. 9-14 show the outcomes and details of the proposed HMMR
method on the six testing datasets respectively. Figs. 9-14a represent
the global registration results on the six datasets, with shading re-
presenting differences in height. Other figures show some details about
the registration results for selected regions. These qualitative experi-
mental results show that the proposed HMMR method can acquire a
good performance on all the six challenging datasets, demonstrating the
feasibility of the proposed method for various scenes.
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Fig. 14. Registration results of river dataset: (a) river dataset as aligned from all 13 point clouds, with shading representing differences in height (top view); (b) the
registration result of a bridge on the river and a enlargement about the rail of the bridge, and (c) the registration result of a pavilion on the river and a top view about
the roof of the pavilion, where different colors stand for points from different point clouds.
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Table 3
Quantitative evaluation of the registration accuracy.
Rotation error e/; (mdeg) Translation error e/ ; (mm) SRR (%)
Min Max Ave RMSE Min Max Ave RMSE
Park 16.5 68.6 40.2 9.2 13.8 72.6 31.1 8.0 100.0
Campus 11.3 142.4 57.3 24.3 10.4 210.6 64.6 21.2 96.2
Mountain 13.2 63.1 36.7 8.7 25.1 72.9 33.8 11.4 100.0
Tunnel 6.7 57.3 37.2 9.8 10.4 266.5 60.2 19.8 92.0
Bridge 13.2 44.8 30.5 9.5 20.4 65.2 30.1 9.2 100.0
River 17.6 31.7 30.2 7.5 9.5 41.9 22.6 7.8 100.0
Table 4 Table 6
Time performance of the proposed HMMR method. Performance comparison.
Data #Scans #Point # Exhaustive Runtime (min) Data SRR (%) Rotation error Translation error Runtime
cloud pairs point cloud pairs ¢/ ; (mdeg) e!; (mm) (min)
S1 S2 S3 Total
Ave RMSE  Ave RMSE
Park 32 69 2 = 496 75 206 2.4 395
Campus 132 220 C1232 = 8646 33.2 260.6 10.8 304.6 Park Weber 100.0 49.1 12.4 43.3 7.2 361.6
Mountain 22 51 €3 =231 6.6 272 13 351 etal.
-
Tunnel 26 53 c2 = 325 87 345 24 456 (2015)

. 26 MSTMR 100.0 486 9.8 42.9 8.1 177.8
Bridge 29 57 C3 = 406 96 379 27 502 Guoetal. 100.0 445 137 372 9.4 186.2
River 13 25 Cch=18 35 125 03 16.3 (2014)

SGMR 100.0 44.7 13.6 36.8 9.8 94.6
S1, S2, S3 indicate the processes of multi-level feature calculation, pairwise HMMR 100.0 402 9.2 311 80 39.5
point cloud groups registration, and point cloud groups update respectively. Campus  Weber 68.7 721 236 74.8 19.3 9214.6
et al.
Table 5 ;ig;f/I)R 74.8 70.6  20.8 75.6 15.8 3869.5
The details of the benchmark methods. Guoetal 756 653 196 67.7 162 30815
Method Local Multiview registration Implementation (2014)
descriptor strategy SGMR 81.7 642 189 689 186 1839.6
HMMR 96.2 57.3 24.3 64.6 21.2 304.6
WCb(Czrocl‘;)‘]' FPFH Minimum spanning tree  C+ + Mountain Weber 857 602 164 528 193 3226
h et al.
MSTMR BSC Minimum spanning tree C++ (2015)
Guo et al. (2014)  RoPS Shape growing C++ MSTMR 90.5 57.8 116 47.7 18.6 134.9
SGMR BSC Shape growing C++ Guoetal. 90.5 51,9 132 452 195 1352
HMMR BSC Hierarchical merging C++ (2014)
SGMR 95.2 45.4 10.9 39.3 15.7 71.6
HMMR 100.0 36.7 87 33.8 11.4 35.1
3.3. Evaluation and analysw Tunnel Weber 60.0 67.4 20.8 75.4 29.1 413.6
et al.
3.3.1. Registration accuracy evaluation (2015)

To evaluate the rotation and translation errors of the proposed MSTMR  60.0 66.9  22.2 749 254 199.8
HMMR method for TLS point clouds registration, the registration results ?2L(l)01 z; al. 76.0 567 187 689  26.8 196.3
are compared w1th those manually marl.<ed gl‘Ollljld truths. To generate SGMR 80.0 505  18.2 677 226 109.6
ground truth, point clouds are first aligned using manually marked HMMR  92.0 385 103 61.3  20.9 45.6

point correspondences (Park dataset, Mountain dataset, and River da-
taset) or markers (Campus dataset, Tunnel dataset and Bridge dataset),
then the manual registration is further refined by the multiview ICP
algorithm (Williams and Bennamoun, 2001). The ground truth of
Campus dataset is provided by Jacobs University." Table 3 reports the
rotation error and translation error (i.e., minimum, maximum, average,
and the Root Mean Square Error (RMSE)) and the successful registra-
tion rate of the fine registration on the six testing datasets. Note that,
only the successful registrations are utilized to calculate the average
and RMSE of rotation and translation errors. These experimental results
demonstrate that the proposed HMMR method performs well in re-
gistering the TLS point clouds from varying scenes, with average rota-
tion error less than 0.1° and translation error less than 0.1 m, which can
satisfy the requirements of object extraction and 3D reconstruction.
More specifically, a number of observations can be noted based on these
evaluation results. (1) The campus dataset obtained the worst

1 http://kos.informatik.uni-osnabrueck.de/3Dscans/.
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performance with maximum rotation error 142.4 millidegrees and
translation error 210.6 mm, which are greater than the predefined
threshold of o, (i.e., 100.0 millidegrees) and o; (i.e., 100.0 mm). These
larger registration errors are caused by repeatedly accumulating the
small errors during the successive pairwise registration (Section 2.4). In
the future work, we will further reduce these accumulated registration
errors by an extension Lu-Milios algorithm (Borrmann et al., 2008),
which optimizes the positions of all point clouds at once. (2) The tunnel
dataset acquired the maximum translation error 266.5mm (greater
than the predefined threshold of 5;), because the ICP algorithm is easily
trapped into a local minimum due to the similarity along the tunnels.
We will further figure out this problem by adding some constraints (i.e.,
the distance between corresponding keypoints) to the ICP algorithm.

3.3.2. Time performance analysis
A thorough efficiency evaluation of the proposed HMMR method is


http://kos.informatik.uni-osnabrueck.de/3Dscans/
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also conducted in terms of the runtime in each step. The experiments
are implemented on a computer with 16 GB RAM and an Intel Core i7-
6700HQ @ 2.60 GHz CPU. Table 4 lists the number of point clouds, the
number of the estimated and exhaustive point cloud pairs, and the
runtime of each step. It is worth note that, the number of estimated
point cloud pairs is notably smaller than the number of exhaustive point
cloud pairs, thereby significantly improving the efficiency. It takes only
about 5h to automatically register the 132 point clouds collected
during several weeks (i.e., the campus dataset with 2.75 billion points).
The runtime shows that the proposed HMMR method acquires high
efficiency in registering large-scale point clouds from various scenes,
which will be detailedly analyzed in the next section.

3.3.3. Performance comparison and analysis

To further analyze the performance of the proposed HMMR method,
its variants (i.e., Minimum Spanning Tree-based Multiview Registration
(MSTMR), Shape Growing-based Multiview Registration (SGMR)) and
the state-of-the-art registration methods (i.e., Guo et al., 2014, Weber
et al., 2015) are selected as the benchmark methods for performance
comparison. More specifically, MSTMR and SGMR respectively utilize
the minimum spanning tree based strategy (Weber et al., 2015) and
shape growing based strategy (Guo et al., 2014) for multiview regis-
tration instead of the proposed hierarchical merging strategy, all the
other processes are consistent with the paradigm of HMMR. Table 5
lists the details (i.e., the local descriptors used for pairwise registration,
the strategies used for multiview registration, and the programming
language) of these benchmark methods for performance comparison.
The parameters of all the benchmark methods are set according to the
parameter settings recommended in the original articles Guo et al.
(2014) and Weber et al. (2015). For the sake of consistent comparison,
all the experiments are implemented in C+ + and on a computer with
16 GB RAM and an Intel Core i7-6700HQ @ 2.60 GHz CPU. Table 6 lists
their successful registration rate, registration errors and the runtime. It
is found that the proposed method outperformed its variants and the
state-of-the-art registration methods on the testing datasets. More spe-
cifically, a number of observations can be noted based on these com-
parison results.

(1) The hierarchical merging based multiview registration strategy
achieved the best efficiency and was followed by shape growing
based and minimum spanning tree based multiview registration
strategies. The minimum spanning tree based methods (i.e., Weber
et al., 2015, MSTMR) first performed exhaustive pairwise regis-
tration to construct a fully connected graph, then generated a
minimum spanning tree of the graph to align all point clouds to the
reference point cloud. For example, given the 132 point clouds in
campus dataset, these methods need to repeat the pairwise regis-
tration process for C3, = 8646 times, which is very time-consuming
and infeasible. The shape growing based methods (i.e., Guo et al.,
2014, SGMR) first chose a seed point cloud and iteratively merged
other point clouds with enough overlaps into the seed point cloud.
Note that, the seed point cloud will become larger and larger during
the iterations, hence registration of other point clouds with seed
point cloud will become dramatically time-consuming. The high
efficiency of our HMMR algorithm is attributable to the following
three factors. First, the underlying point cloud pairs with larger
overlaps are efficiently estimated by calculating the similarity be-
tween their corresponding VLAD vectors instead of exhaustive
pairwise registration, which significantly reduces the computa-
tional complexity of registration. Second, the similarity between
BSC descriptors can be measured by the Hamming distance (i.e.,
XOR operation), resulting in the BSC based pairwise registration
faster than RoPS and FPFH based methods. Third, only the point
clouds with larger overlaps (i.e., the calculated overlapping point
cloud pairs in Section 2.3) instead of all the point clouds, are uti-
lized during pairwise point cloud groups registration, which further
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improves the efficiency of registration.

The hierarchical merging based multiview registration algorithm
outperformed the other algorithms in terms of successful registra-
tion rate and registration error. The minimum spanning tree based
methods (i.e., Weber et al., 2015, MSTMR) only leverage pairwise
overlaps, therefore these methods have difficulty dealing with point
clouds with limited pairwise overlaps. The shape growing based
methods (i.e., Guo et al., 2014, SGMR) register target point cloud to
seed point cloud by utilizing the one-to-many overlaps (seed point
cloud contains multiple registered point clouds), which improves
the performance in some extent. However, the shape growing based
methods register target point cloud to seed point cloud according to
the order of input point clouds instead of an optimal order, which
may lead to larger registration error even incorrect registration. The
good performance of our HMMR algorithm in terms of successful
registration rate and registration error is attributable to the fol-
lowing three factors. First, the optimal point clouds merging/re-
gistering order is automatically determined according to the simi-
larity between point clouds, resulting in the improvement of
registration accuracy. Second, overlaps between multiple point
clouds (as opposed to just pairwise overlaps) is leveraged during
point clouds merging process, which enhances the capability of
handling point clouds with limited overlaps. Third, MSTMR sur-
passed Weber et al. (2015) and SGMR outperformed Guo et al.
(2014) in terms of successful registration rate and registration error,
which indicates that the proposed BSC descriptor is more reliable
than FPFH and RoPS for TLS point clouds registration.

(2

—

4. Conclusions

At present, point cloud registration is at the core of many many
applications, such as 3D model reconstruction, cultural heritage man-
agement, forest structure assessment, landslide monitoring, and solar
energy analysis. This paper presented a hierarchical merging based
multiview registration algorithm to align unordered point clouds from
various scenes, and validated its performance on six challenging data-
sets. Comprehensive experiments demonstrated that the proposed
hierarchical registration algorithm obtained good performances both in
registration accuracy and runtime, and outperformed the state-of-the-
art approaches. Although the proposed method can provide satisfactory
registration results on the six challenging datasets, it still has difficulty
in the registration of ambiguous scenes (e.g. interior corridor and
forest). The interior corridor scene contains plenty of repetitive and
symmetric structures, which may lead to some incorrect transforma-
tions with large overlaps. The forest scene includes a great deal of si-
milar and unstable points (e.g., the points of the crown), which chal-
lenge the establishment of reliable points or feature correspondences. In
future work, we will further modify the method to the interior corridor
and forest scenes registration. The energy optimization strategy
(Theiler et al., 2015), which first generates a set of putative transfor-
mations of pairwise registration then picks the best candidate trans-
formations based on the global loop constraints, will be used to deal
with the registration of interior corridor scenes with plenty of repetitive
and symmetric structures. The possible solution for the forest scenes
registration is to first remove the crowns then register the remaining
point clouds. Other future works are as follows. First, the visibility
consistency strategy proposed by Huber and Hebert (2003) can be
utilized to verify the validity of each pairwise registration. Second, the
extension Lu-Milios algorithm (Borrmann et al., 2008), which optimizes
the positions of all point clouds at once, will be leveraged to reduce the
accumulated registration errors. Third, the feasibility of the proposed
algorithm for ALS point clouds and TLS point clouds registration will be
investigated in our future work.
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