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Automatic 3D plane segmentation is necessary for many applications including point cloud registration,
building information model (BIM) reconstruction, simultaneous localization and mapping (SLAM), and
point cloud compression. However, most of the existing 3D plane segmentation methods still suffer from
low precision and recall, and inaccurate and incomplete boundaries, especially for low-quality point
clouds collected by RGB-D sensors. To overcome these challenges, this paper formulates the plane seg-
mentation problem as a global energy optimization because it is robust to high levels of noise and clutter.
First, the proposed method divides the raw point cloud into multiscale supervoxels, and considers planar
supervoxels and individual points corresponding to nonplanar supervoxels as basic units. Then, an effi-
cient hybrid region growing algorithm is utilized to generate initial plane set by incrementally merging
adjacent basic units with similar features. Next, the initial plane set is further enriched and refined in a
mutually reinforcing manner under the framework of global energy optimization. Finally, the perfor-
mances of the proposed method are evaluated with respect to six metrics (i.e., plane precision, plane
recall, under-segmentation rate, over-segmentation rate, boundary precision, and boundary recall) on
two benchmark datasets. Comprehensive experiments demonstrate that the proposed method obtained
good performances both in high-quality TLS point clouds (i.e., SEMANTIC3D.NET dataset) and low-quality
RGB-D point clouds (i.e., S3DIS dataset) with six metrics of (94.2%, 95.1%, 2.9%, 3.8%, 93.6%, 94.1%) and
(90.4%, 91.4%, 8.2%, 7.6%, 90.8%, 91.7%) respectively.
© 2018 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier
B.V. All rights reserved.
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1. Introduction

Automatic 3D plane segmentation is necessary in many applica-
tions, including point cloud registration (Dold and Brenner, 2006;
Theiler and Schindler, 2012; Xiao et al., 2013a; Yang et al., 2016;
Lin et al., 2017), building information model (BIM) reconstruction
(Vosselman et al.,, 2004; Sampath and Shan, 2010; Jung et al.,
2014; Oesau et al., 2014; Yan et al., 2014; Yang and Wang, 2016;
Xu et al., 2017), simultaneous localization and mapping (SLAM)
(Xiao et al., 2013b; Pham et al., 2016; Lenac et al., 2017), and point
cloud data compression (Vaskevicius et al., 2010; Kaushik and Xiao,
2012). Three-dimensional point clouds generated by various 3D
sensing technologies (e.g. 3D laser scanners, multi-view stereo
techniques and RGB-D cameras) are frequently contaminated with
outliers, noise, occlusion, and clutter, raising great challenges for
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robust and efficient plane segmentation. In the last decades, exten-
sive studies have been done to improve the efficiency and robust-
ness of 3D plane segmentation, which can be roughly categorized
into four categories, i.e., region growing based methods (T6vari
and Pfeifer, 2005; Deschaud and Goulette, 2010; Nurunnabi et al.,
2012; Xiao et al., 2013b; Yang and Dong, 2013; Vo et al., 2015),
model fitting based methods (Vosselman et al., 2004; Boulaassal
et al.,, 2007; Schnabel et al., 2007; Tarsha-Kurdi et al., 2007;
Oehler et al., 2011; Chen et al.,, 2014; Xu et al., 2017), feature
clustering-based methods (Filin, 2002; Filin and Pfeifer, 2006;
Biosca and Lerma, 2008; Zhou et al., 2016; Kim et al., 2016), and glo-
bal energy optimization based methods (Kim and Shan, 2011; Yan
etal,, 2014; Oesau et al., 2014; Wang et al., 2016; Pham et al., 2016).

1.1. Region growing based methods

Region growing based methods extract 3D planes by progres-
sively merging adjacent points or voxels with similar features
(e.g. normal vector). Tévari and Pfeifer (2005) proposed a
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point-based region growing (PBRG) method that picked randomly a
seed point and then merged its neighboring points if they fulfilled
the predefined criteria, i.e. similar normal vector and small distance
to the adjusting plane. Deschaud and Goulette (2010) presented a
voxel-based region growing (VBRG) algorithm to improve the effi-
ciency of PBRG by replacing points with voxels during region grow-
ing. Nurunnabi et al. (2012) improved the robustness of the PBRG
by estimating more accurate normal vectors using fast minimum
covariance determinant based robust principal component analysis
approach. Xiao et al. (2013b) proposed a novel hybrid region grow-
ing algorithm (HRG) to detect planes in both structured and
unstructured environments by using point and voxel as growth
units. More precisely, the algorithm utilized single point and voxel
as growth units for nonplanar and planar regions respectively,
which were fast to compute, and yet exhibiting good accuracy. Vo
et al. (2015) introduced an adaptive Octree-based region growing
algorithm for the fast surface patch segmentation by incrementally
grouping adjacent voxels with similar saliency feature, which was
faster and able to achieve better precision, recall, and fitness scores
compared with the conventional region growing method.

Region growing based methods are widely used for plane seg-
mentation as they are easily implemented (Vo et al., 2015). How-
ever, they are not robust to noise, varying point density, and
occlusion, and the segmentation quality strongly depends on the
predefined growing criteria and the strategies for seeds selecting
(Teboul et al., 2010).

1.2. Model fitting based methods

The most widely employed model fitting-based methods for
plane segmentation are random sample consensus (RANSAC)
(Fischler and Bolles, 1981) and Hough transform (HT) (Ballard,
1981). Both have been proven to successfully detect shapes in 2D
as well as 3D (Schnabel et al., 2007). The RANSAC paradigm gener-
ates a number of model proposals by randomly sampling data points
and then selects the model with the largest set of inliers with respect
to some fixed threshold (Isack and Boykov, 2012). Many publications
proposed various generalizations of RANSAC for plane segmenta-
tion. For example, Boulaassal et al. (2007) utilized RANSAC algo-
rithm to extract planar parts of facades scanned by a terrestrial
laser scanner. Chen et al. (2014) proposed an enhanced RANSAC
algorithm for building roof segmentation, which significantly
improved the efficiency of plane segmentation by using a novel
localized sampling strategy. Schnabel et al. (2007) extended the
RANSAC algorithm to detect multiple geometric primitives (i.e.,
planes, spheres, cylinders, cones and tori) in unorganized point
clouds. Xu et al. (2015) introduced a new weighted RANSAC algo-
rithm that combined the point-plane distance and the normal vector
consistency for roof point cloud segmentation. In order to improve
the efficiency of multiple geometric primitive extraction, Xu et al.
(2017) first divided the point cloud into some individual segments
using Locally Convex Connected Patches (LCCP) (Christoph et al.,
2014),and thenrecognized and extracted geometric primitives from
each segment using the method of Schnabel et al. (2007).

The HT algorithm maps every point into a discretized parameter
space and then extracts planes by selecting those parameter space
with a significant amount of votes. Vosselman et al. (2004) pro-
posed an efficient variant of the HT for plane segmentation, which
improved the efficiency and reliability of conventional HT by
determining the plane parameters in two separate steps, i.e., deter-
mination of the plane normal vector and establishment of the dis-
tance from the plane to the origin. Tarsha-Kurdi et al. (2007)
compared the performance of HT and RANSAC algorithms for 3D
plane segmentation in terms of processing time and sensitivity to
point cloud characteristics. The analytic comparison shows that
RANSAC algorithm is more efficient and robust than HT algorithm.

Oehler et al. (2011) presented an efficient multi-resolution
approach to segment a 3D point cloud into planar components
by combining HT and RANSAC algorithms. More precisely, the
algorithm first detected the coplanar clusters with the HT technol-
ogy then extracted connected components on these clusters and
determined the best plane through RANSAC.

Although the reported RANSAC and HT approaches work very
well for 3D plane segmentation on point cloud with low levels of
noise and clutter, these algorithms still have some disadvantages.
First, HT and RANSAC are sensitive to the selection of parameter
value (i.e., the size of the cell in discretized parameter space, and
the threshold for inlier). Second, the segmentation quality is sensi-
tive to the point cloud characteristics (i.e., density, positional accu-
racy, and noise) (Vo et al, 2015). Moreover running RANSAC
sequentially to detect multiple planes is widely known to be
sub-optimal since the inaccuracies in detecting the first planes will
heavily affect the subsequent planes (Pham et al., 2016).

1.3. Feature clustering-based methods

Feature clustering-based methods organize the point clouds
into primitives based on certain pre-calculated local surface prop-
erties (e.g., normal vector, saliency feature). Filin (2002) employed
mode-seeking algorithm based on seven-dimensional feature
space (i.e., position (3), plane function (3) and height difference
(1)) to cluster airborne laser scanning data into 3D planes. In a
follow-up work, Filin and Pfeifer (2006) improved the quality of
the computed features by utilizing a novel slope adaptive neigh-
borhood system. Biosca and Lerma (2008) used Possibilistic
C-Means (PCM) algorithm based on the similar feature space with
Filin (2002) to the segmentation of planar surfaces, which could
automatically determine the number of planes and improve the
robustness to noise and outliers. Zhou et al. (2016) proposed a
new method to extract planar features from the range image of a
point cloud scanned by terrestrial laser scanning system. Similar
with Filin and Pfeifer (2006), a plane was parameterized by its nor-
mal vector and the distance between the origin and the plane, then
the planar parameters was segmented using the Iso cluster unsu-
pervised classification method. Kim et al. (2016) proposed a robust
and efficient segmentation methodology for segmentation of pla-
nar surfaces from airborne and terrestrial laser scanning data.
Specifically, they increased the homogeneity of the laser point
attributes by defining a neighborhood based on the shape of the
surface and reduced the dimensions of the attribute space using
the magnitude of the normal vector. In spite of the popularity
and efficiency of feature clustering-based methods, they suffer
the difficulty in neighborhood definition and are sensitive to noise
and outliers (Yan et al.,, 2014).

1.4. Global energy optimization based methods

More recently, the global energy optimization based methods
have been widely used to geometric primitive extraction both in
the 2D image and 3D point cloud, which formulate the geometric
primitive extraction as an energy optimization problem. The wide-
spread applications of energy optimization based methods in the
field of 2D image process can be found in (Yu et al., 2011; Isack
and Boykov, 2012; Pham et al., 2014; Tennakoon et al., 2016). In
the case of 3D point cloud process, (Kim and Shan, 2011) adopted
the multiphase level set approach to segment planar roof primi-
tives under an energy minimization formulation. In follow-up
work, Yan et al. (2014) presented a global plane fitting approach
for roof segmentation from lidar point clouds. They first segmented
the roof into initial planes based on conventional region growing
approach, and then refined the initial planes by minimizing a glo-
bal energy function consisting of data cost term, smooth cost term
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and label cost term. Similar to Yan et al. (2014), Oesau et al. (2014)
proposed a graph-cut based formulation for abstracting primitives
in indoor scenes. Wang et al. (2016) detected multiplane from 3D
point clouds by labeling points instead of greedy searching planes.
Specifically, they first generated initial planes using RANSAC algo-
rithm, and then constructed the energy function and minimized
the energy function (Delong et al., 2012). Pham et al. (2016) formu-
lated the plane extraction task as a global energy function, which
jointly considered plane fidelities and geometric consistencies
between planes (i.e., mutually orthogonal or parallel relations).
Plane segmentation can be better formulated as an optimization
problem with a global energy function describing the quality of the
overall solution. Therefore, these methods can produce spatially
coherent planes and improve the plane segmentation quality (Yan
et al., 2014). What’s more, these methods are more robust to high
levels of noise and clutter compared with other methods (Isack
and Boykov, 2012). However, the energy optimization based meth-
ods are computationally expensive for plane segmentation (Pham
etal,, 2016) and heavily dependent on the adequacy of initial inputs.

1.5. Contributions

Although the reported methods can generally provide satisfac-
tory plane segmentation results, they still have limitations. First,
many existing greedy methods (e.g., region growing based meth-
ods, model fitting based methods, and feature clustering-based
methods) work only on examples with low levels of noise and clut-
ter (Isack and Boykov, 2012). Second, the global energy optimiza-
tion based methods are computationally expensive in large-scale
point cloud (Pham et al., 2016), and heavily dependent on the ade-
quacy of initial inputs. Third, many existing algorithms have diffi-
culty in detecting small-scale planes in point cloud with high levels
of noise and clutter. To overcome these limitations, this paper pre-
sents a Robust and Efficient 3D Plane Segmentation method (REPS)
and validates its performance on two benchmark datasets. The
proposed method first divides the raw point cloud into multiscale
supervoxels or individual points to reduce the search space for ini-
tial plane segmentation. Then, the initial plane set is generated by
an efficient hybrid region growing algorithm. Finally, the initial
plane set is further enriched and refined under the framework of
global energy optimization. The main contributions of the pro-
posed method are as follows.

(1) The proposed method improves the robustness to noise, out-
liers, and clutter by formulating plane segmentation issue as
an energy optimization problem with a global energy func-
tion balancing geometric errors, spatial coherence, and the
number of planes.

(2) The proposed method improves the efficiency of global
energy optimization based plane segmentation. First, the pro-
posed method represents the raw point cloud with the hybrid
representation of multiscale supervoxels and individual
points, significantly decreasing the number of basic units for
plane segmentation. Second, the proposed method leverages
a novel guided sampling technique to improve the probabili-
ties of selecting undetected planes, thus dramatically acceler-
ating the convergence speed of global energy optimization.

(3) Another important feature of our approach is that initial
plane set enrichment and refinement are conducted in a
mutually reinforcing manner. This synergy enhances the
capability of the algorithm to extract undetected planes,
especially planes with few points, or small scales, thus
improving the completeness of plane segmentation.

The rest of this paper is organized as follows. Following this
introduction, Section 2 gives a detailed description of the proposed
3D plane segmentation method. Then the proposed method is val-
idated in experimental studies in Section Section 3. Finally, the
conclusions and future research directions are presented in
Section Section 4.

2. The robust and efficient 3D plane segmentation

In this section, we propose a novel 3D plane segmentation
method with a successive scheme that includes multiscale super-
voxel generation (Section 2.1), hybrid region growing (Section Sec
tion 2.2) and global energy optimization (Section Section 2.3). An
illustration of the proposed 3D plane segmentation method is
given in Fig. 1. The proposed method first divides the raw point
cloud into multiscale supervoxels, and considers planar supervox-
els and individual points corresponding to nonplanar supervoxels
as basic units, as shown in Fig. 1b. Then an efficient hybrid region
growing algorithm is utilized to generate initial plane set by incre-
mentally merging adjacent basic units with similar features, as
shown in Fig. 1c. Finally, the initial plane set is further enriched
and refined in a mutually reinforcing manner under the framework
of a global energy optimization method, as shown in Fig. 1d.

2.1. Multiscale supervoxel generation

Plane segmentation from the raw point cloud data is very time-
consuming. The proposed method represents the raw point cloud
using the hybrid of multiscale supervoxels and individual points
to reduce the number of points for plane segmentation. The benefit
of using hybrid representation is its high efficiency. The pseudo-
code of the multiscale supervoxel generation algorithm is detailed
in Algorithm 1.

Algorithm 1 (Multiscale supervoxel generation).

Notation:

PC: point cloud;

T'max, "'min, 7> Ta: the maximum, minimum, current and
decreasing rate of supervoxel scale;

S:: the set of supervoxels at scale r;

A, A the set of planar and nonplanar supervoxels at
scale r;

A: the set of planar supervoxels at all scales;

A’: the remaining points not belonging to any planar
supervoxel;

& the empty set.

Input: PC
Output: A, A’
1  Calculate the geometric features of each point in point
cloud PC (Section 2.1.1)
2 initialization: r «— rpx, A — &
while PC# Q5 && 1 > 1y, do
Oversegment point cloud PC into supervoxels S;
(Section 2.1.2)
Classify supervoxels S into A, and A, (Section 2.1.2)
PC — A,
A—AUA,
F«T*xTp
end while
0 A —PC

AW

— O 0N O U
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Fig. 1. The illustration of the proposed 3D plane segmentation algorithm: (a) the original point cloud, (b) the output of multiscale supervoxel generation, (c) the output of

hybrid region growing, and (d) the output of global energy optimization.

2.1.1. Pointwise geometric features calculation

Before supervoxel generation, the proposed method calculates
the geometric features (i.e., parameters of tangent plane, and cur-
vature) of each individual point (Lalonde et al., 2006). The geomet-
ric features of each point p(x,,y,,2,) are calculated as follows. The
covariance matrix Ms, 3 is constructed using point p and its k adja-
cent points according to Eq. (1).

M3x3 =

| =

k
> @ -p)g-p) 1)
i=1

where ¢q; is the adjacent point of p. The -eigenvalues
M > M > 38 and  the  corresponding  eigenvectors
el e el are calculated by performing an eigenvalue decompo-
sition on Ms,3. The geometric features of p are calculated as Eq. (2).

M
n,(ap, by, ¢y) = <3 :

dp = —(apXp + bpy, + Cp2p) (2)
fy ==
P I
where n, and d, are the parameters of the tangent plane of point p,
and f, is the curvature. Specifically, n, is the normal vector and d,, is
the distance from the origin to the tangent plane. Each point p and
its geometric features are described by one 8-tuple, which will be
used for the following processes.

FP: (vayp7zp7apabp7cp7dp7fp) (3)

2.1.2. Supervoxels generation and classification

After the pointwise geometric features calculation, the Voxel
Cloud Connectivity Segmentation (VCCS) method (Papon et al.,
2013) is employed to oversegment the points into supervoxels at
each scale (i.e., supervoxel resolution). In this work, we are only
interested in geometric features, so we use the spatial distance,
and normal vector deviation for supervoxel generation at each
scale. The proposed method first oversegments the point cloud into
supervoxels at scale r, and classifies them as planar and nonplanar
supervoxels. Then the nonplanar supervoxels are further divided
into supervoxels at next smaller scale r = r5. The algorithm repeats
the above steps until all supervoxels are classified as planar super-
voxels or the current scale r is less than the predefined minimum
scale rmin. More specifically, each supervoxel s is classified as a pla-
nar or nonplanar supervoxel as following.

First, the covariance matrix Cs,3 is constructed using points
belonging to supervoxel s according to Eq. (4).

G = %Z@j -p)m-py)'
=

n
p.=1>p,
=

where p; is the point belonging to supervoxel S, p; is the center
point of supervoxel S. Let 2”7 > 27 > 77 and €, e}, e\ be eigen-
value and eigenvector of Cs,s.

Then the saliency features g;, g, and g; (Yang et al,, 2015) of

supervoxel s are calculated as Eq. (5).

(4)

O_. /0

V4 VH
& = 0

1

/70 _ /0

& =" X0 : ()
)

— 3
g3 - /1(1(')
Finally, s is classified into two categories (i.e., planar supervoxel
or nonplanar supervoxel) according to its saliency features, as Eq.

(6).

{ planar,
hs =
nonplanar,

if (g,>81) A (g >83)
otherwise

(6)

And the geometric features of each supervoxel s is calculated as
Eq. (7).

”s(as»bs,cs) = e(3C)

ds = —(asXs + by, + ¢5z5) (7

50
f =T
SIS

where n; and d; are the parameters of the tangent plane, and f; is
the curvature. The supervoxel S and its features are described by
one 8-tuple, which will be used for the following processes.

Fs = {(X57ysazs)7(057b57cs)7d57fs} (8)

After multiscale supervoxel generation, the planar supervoxels
and the individual points corresponding to the nonplanar super-
voxels are considered as the basic units for the following hybrid
region growing and global energy optimization procedures. Specif-
ically, a basic unit w(x,,¥,,,2,) and its features derived from the
corresponding supervoxel or individual point are described by
one 8-tuple:

Fw = {(X(my(mz(u)7(awabw7ca))7dwsz} (9)
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where (x,,Y,,,2») is the coordinate, n(a.,b.,c,) and d,, are the
parameters of the tangent plane of w, and f, is the curvature.

Fig. 2 illustrates an example of multiscale supervoxel genera-
tion and classification. Fig.2a shows the original point cloud
(1,077,794 points) colored by its texture. The proposed method
first oversegments the point cloud into supervoxels at the largest
scale. Fig. 2b shows the corresponding result of supervoxel gener-
ation at the largest scale, where each supervoxel is dotted in one
color. Then the algorithm classifies them as planar and nonplanar
supervoxels. Fig. 2c denotes the corresponding supervoxel classifi-
cation result, where red and blue regions represent planar and
nonplanar supervoxels respectively. Next the nonplanar supervox-
els in Fig. 2c (i.e., the blue regions) are further divided into super-
voxels at a smaller scale and classified them as planar and
nonplanar supervoxels, as shown in Fig. 2d, and e respectively.
The algorithm repeats the above steps until all supervoxels are
classified as planar supervoxels or the scale is less than the prede-
fined minimum scale. Fig. 2f and g represent the final multiscale
supervoxels and the classification results. Fig. 2h shows the num-
ber of basic unites (36,047 units) used for the following processes,
where each planar supervoxel is represented by its center point. It
is worth noting that, the number of basic units is notably smaller
than the number of raw points, thereby significantly reducing the
search space (i.e., the number of points) and accelerating the fol-
lowing hybrid region growing and global energy optimization
processes.

2.2. Hybrid region growing

In this section, we propose an efficient hybrid region growing
method to generate the initial plane set, then further enrich and
refine the initial plane set in Section Section 2.3. The planar super-
voxels and the individual points corresponding to the nonplanar
supervoxels are considered as the basic units for hybrid region
growing. The algorithm incrementally merges adjacent basic units
with similar features into a set of plane surfaces. The benefit of
using hybrid region growing method is its high efficiency. The
number of basic units is notably smaller than the number of points,
thereby significantly accelerating the region growing process. The
pseudo-code of the hybrid region growing algorithm is described
in Algorithm 2.

Algorithm 2 (Hybrid region growing).

Notation:

: the set of all the basic units, R, R': the set of basic
units belonging to planar and nonplanar surfaces
respectively;

¥\ (R U R'): remove basic units belonging to % and %’
from ¥;

Q: inliers belonging to the current planar surface, |Q|:
the number of inliers;

¢: initial seed, @: current seed, ¢: candidate basic unit;

N(@): the set of adjacent basic units of @;

Q: the queue of seeds;

0(@,¢): the angle between the normal vectors of ¢ and
&

5(@,¢): the difference between d,, and d;;

Ty, Ts: the threshold of 6(¢, ¢), and 5(¢, ) respectively;

K: the threshold of minimum number for a valid plane;

& the empty set.

Input: ¥
Output: R, R

1 initialization: R — &, N — &,

2 while ¥\ (RUR)#= do

3 Q—

4 select ¢ with minimum curvature f, in ¥\ (RU %)
5 Q—@,Q—0o

6 while Q=5 do

7 @ — onp_front():

8 for each unit ¢ in N(@) do

9 if 0(¢,0) < 19 &&3(@,{) < 75 then
10 Q—QUQ—QU

11 end if

12 end for

12 end while
14 if |Q| > k then

15 R—RUQ
16 end if

17 else

18 R —RUQ

19 end else
20 end while

The hybrid region growing method returns the inliers of
extracted planar surfaces. The parameters n,(a, b;, ¢, d;) (i.e., plane
function) of each plane P, are calculated using its corresponding
inliers ©; by the least square estimation as Eq. (10).

i, = argminy,  _ dist(w, y,)*
e, (10)

— OXo+by o +CiZo+dr
2. p24c2
\/ a; +bg +c;

Fig. 3 shows an example of the segmented initial plane set and
the ground truth, where undetected planes are represented with
black, and detected planes are represented with other different col-
ors. There are mainly four kinds of errors in the initial plane set:
inaccurate and incomplete boundaries, undetected planes, under-
segmentation planes (i.e., planes with similar parameters are seg-
mented into one plane) and over-segmentation planes (i.e., one
plane surface is segmented into multiple planes). These issues will
be addressed through the following global energy optimization
procedure.

dist(w, 1,)

2.3. Global energy optimization

In this section, we formulate the plane segmentation issue as a
global energy optimization problem due to its robustness to high
levels of noise and clutter. Most of the existing energy optimization
based approaches first generate abundant initial planes, then
determine an optimal subset of the initial planes and their corre-
sponding inliers by minimizing a predefined energy function
(Wang et al., 2016; Pham et al., 2016). However, to ensure the ade-
quacy of the initial plane set, the algorithm needs to generate a
huge number of initial planes (i.e., the number of generated initial
planes is considerably larger than the ground truth), which is time-
consuming and also significantly increases the computational
effort for the energy optimization (Pham et al., 2016). The pro-
posed method first generates relatively few numbers of initial
planes by Algorithm 2, then further enriches and refines the initial
plane set alternatingly and in a mutually reinforcing manner, thus
improving the efficiency of the energy optimization method and
enhancing the capability of extracting undetected planes with
few points, or small scales. Meanwhile, in order to avoid local
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(b)

(d)

()

(h)

Fig. 2. Multiscale Supervoxel generation: (a) the original point cloud, (b) the generated supervoxels at the largest scale, (c) the supervoxels classification result at the largest
scale, (d) the generated supervoxels at the second largest scale, (e) the supervoxels classification result at the second largest scale, (f) the generated multiscale supervoxels, (g)
the multiscale supervoxels classification result, and (h) the basic units for the following processes.
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(b)

Fig. 3. An example of the segmented initial plane set: (a) the hybrid region growing result, and (b) the ground truth.

minima and ensure the algorithm converge to the global optimum,
the simulated annealing approach is leveraged to minimize the
overall energy function. The pseudo-code of the global energy opti-
mization algorithm is detailed in Algorithm 3.

Algorithm 3 (Global energy optimization based plane refinement).

Notation:

W¥: the set of all the basic units;

® = {Py,P,P,,---P;---Py,}: the initial plane set;

®® = {Py,P;,P,,---P;---Py,}: the enriched plane set;

Ny, My: the number of planes in ® and ®®
respectively.

T, Ta, Trin: initial temperature, decreasing coefficient,
minimum temperature;

PN: the number of the increased new planes in each
iteration;

@©: the set of the increased new planes in each iteration;

CN: the number of consecutive rejecting plane set ®®;

Tcn: the threshold of CN;

Eoig, Enew: the energy before and after new planes
generation;

l,: the label of basic unit w, which means w is an inlier
of plane P, ;

L = {ly|w € W¥,}: all the labels of basic units.

Input: ® and ¥
Output: ®®
1 initialization:
T — ]07 AT — 0997 Tinin < OS,CN —0,Tcn <5

2 while (CN < ton)&&(T = Tpin) do

3 o® — @

4 Formulate energy function Eq. (11) using ®® (Section
Section 2.3.1);

5 Calculate the energy E,4 of Eq. (11);

6 Generate PN new planes © through a guided sampling
technique (Section Section 2.3.2).

7 o® — @uUo®

Formulate energy function Eq. (11) using ®®.

9 Obtain the labels L by minimizing Eq. (11) via the o-
expansion algorithm (Section Section 2.3.3).

10 Remove the planes without inliers from ®®.

oo

11 Recalculate parameters of planes in ®® using their
corresponding inliers (Section Section 2.3.3)

12 Recalculate the energy Eyew of Eq. (11).

13 if Enew < Eoiq then

14 Accept the new plane set ®®: ® — ®® CN — 0,

15 end if

16 else

17 Accept the new plane set ®® with a small
probability e“7™: & — @®.

18 CN «—CN+1

19 end else

20 Update the temperature of simulated annealing
T—T= TA.

21 end while

2.3.1. Energy function formulation

Inspired by (Isack and Boykov, 2012), we formulate plane seg-
mentation as an optimal labeling problem with a global energy
function balancing geometric errors (i.e., data cost), spatial coher-
ence (smooth cost), and the number of planes (label cost), as Eq.
(11).

smooth cost

é(l(u»lw)

data cost

E(L; (I)(R)) = Zwe‘l‘ndiSt(w’ P,) + Z

label cost

——
+ K- |0®) (11)

o meNei

The data cost term >, ndist(w, P,,) measures the sum of geo-
metric errors between each basic unit @ to its corresponding plane
P,,. More specifically, the geometric error is calculated as the nor-
malized perpendicular distance from @ to its corresponding plane
P, as Eq. (12).

. dist(o Py, )*
ndist(w,P,)) = —In (ﬁ . exp(—sz’))
A X +by Yo +C1, 2o+, lw?éO (12)
dist(w,P,,) = @i, +br, +cl,
2Ad l,=0
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where [, = 0 is an extra label for basic units not belonging to any
plane and Ad is a distance threshold in plane fitting. The distance
between any basic unit @ and P, (i.e., outlier plane) is a constant
value 2Ad, which means that the basic units with distances to their
corresponding planes larger than 2Ad are more likely to be outliers.
The shorter the distance ndist(w,P,,) is, the less the penalty for
assigning the basic unit @ to the plane P;, becomes.

The smooth cost term 3, . neid(lw, lz) penalizes the label
inconsistency between neighboring basic units (Yan et al., 2014).
In this paper, the neighborhood system is based on a 3D Triangu-
lated Irregular Networks (TINs) constructed by all units in V.
And every pair of vertices in each triangle are neighboring points.
The smoothness penalty between neighbor basic units @ and @
is described by the Potts model (Boykov et al., 2001), as Eq. (13),
which means that if a pair of neighboring basic units @ and @
belong to the same plane, the smooth cost between them is 0;
otherwise, the smooth cost is 1.

0if l, =1y

1if 1, #ly (13)

(lp, lw) = {
The label cost term x - |®®| penalizes the number of planes,
where k is the minimum number of points required for a valid
plane and |®®| is the number of planes in plane set ®®. The label
cost term can reduce the number of redundant planes, thus allevi-
ating the over-segmentation issue. More alternative strategies to
define data cost, smooth cost and label cost can be found in Yan
et al. (2014), Delong et al. (2012) and Isack and Boykov (2012).

2.3.2. Guided sampling

The proposed algorithm generates a series of new planes in
each iteration to further enrich the initial plane set, which
improves the adequacy of the initial plane set and enhances the
capability of the algorithm to extract undetected planes with few
points, or small scales (i.e., step 6 of Algorithm 3). We can ran-
domly select several basic units from ¥, and add their tangent
planes into the initial plane set. While the random selection is sim-
ple, it is not the most efficient way. The generated plane by random
sampling has a high probability of already existing in the initial
plane set, or being an invalid plane (e.g., the selected unit locates
in the nonplanar surface). In this paper, we propose a guided sam-
pling strategy to improve the probability of hitting an undetected
plane. On one hand, large residual dist(w,P;,) denotes that w is
not well fitted by existing initial planes. On the other hand, small
curvature f, means that the unit & has a high probability of locat-
ing at a planar surface. Therefore, a basic unit @ with small curva-
ture and large residual is more likely to be sampled. The sampling
probability pro(w) of each basic unit  is calculated as Eq. (14).

. dist(w,l’,w )
pI'Ol'((X)) - maxis‘y(dist(z,P,é))
proc(a)) _ maxsc'l'(f;)*fw (14)

- max&w(fg)—mil'l(f;)
145 4

pro(a)) — pror(w);proc(a))
where pror(w) and proc(w) are the sampling probability based on
residual and curvature respectively; maXgcy(f;) and mingy(f,) is
the maximum and minimum curvature; maxgy(dist(, Py,)) is the
maximum residual. Therefore, the proposed algorithm samples PN
basic units according to Eq. (14) in each iteration and adds their cor-
responding tangent planes into the initial plane set.

Fig. 4 shows an illustration of the sampling probability of each
unit. Fig. 4a is the extracted initial planes by Algorithm 2, where
undetected planes are represented with black, and detected planes
are represented with other different colors. As shown in Fig. 4b, the
undetected regions (e.g., window sills) and under-segmentation

regions (e.g., windows) have large residual, whereas the well-
fitted regions (e.g., facade) have smaller residual. Fig. 4c shows that
the planar surfaces have small curvature, whereas the intersection
areas of multiple planes and nonplanar areas have large curvature.
Fig. 4d denotes the sampling probability of each basic unit, where
the unit with large residual and small curvature has a high sam-
pling probability.

2.3.3. Energy optimization

After the new planes have been generated, a more adequate ini-
tial plane set ®® is acquired (i.e., step 7 of Algorithm 3). In order to
simultaneously refine the new plane set ®® and verify the validity
of the added planes, we first formulate the energy function using
®® (i.e. step 8 of Algorithm 3), and refine the planes in ®® by
inliers assignment (i.e., step 9 of Algorithm 3) and parameters rees-
timation (i.e., step 11 of Algorithm 3). Then we verify the validity of
the new plane set ®® by comparing the energy before and after
new planes generation (steps 13-19 of Algorithm 3).

More specifically, the inliers of each plane can be achieved by
determining an L = {l,,|w € ¥, } (i.e., the labels of all units) which
minimizes the energy function Eq. (11). However, minimizing the
energy function is NP-hard (Delong et al., 2010). Therefore, the
extended 0-expansion algorithm (Delong et al., 2012) is adopted
to achieve the optimal L = {I,,|® € ¥,} by minimizing the energy
function Eq. (11) (i.e., inliers assignment). Then we remove the
planes without inliers from ®®, and reestimate the parameters
of remaining planes using their corresponding inliers according
to Eq. (10) (i.e., parameters reestimation).

After a round of inliers assignment and parameters reestima-
tion, we recalculate the energy E,.. of Eq. (11) (step 12 of Algo-
rithm 3). Then we verify the validity of the new plane set ®®
by comparing the energy before and after new planes generation.
Specifically, if the energy after refinement E,,, is less than the
energy before the new planes generation E,q, then the algorithm
accepts the new plane set ®®; otherwise, the algorithm accepts

Eolg—Enew

the new plane set ®® with a small probability e* . Accepting
an inferior hypothesis probabilistically can avoid local minima
and ensure the algorithm can converge to the global optimum
(Pham et al., 2014). After each iteration, we decrease the temper-
ature as T «— T * T, (step 20 of Algorithm 3). Repeat the steps 3-
20 of Algorithm 3, until the new energy stops decreasing (i.e.,
CN > ty) or the temperature is close to Tn;,. Note that, the
energy optimization algorithm does not consider the spatial con-
nectivity of the extracted planes, so each output plane may con-
tain a set of coplanar but unconnected segments. Therefore, the
connected component analysis technique (Oehler et al., 2011) is
adopted to separate such coplanar planes after global energy
optimization.

Fig. 5 illustrates an example of global energy optimization. Fig.
5a and b denote the extracted initial plane set by Algorithm 2, and
the sampling probability of each basic unit respectively. Fig. 5c
shows the sampled basic units (the tangent planes of the sampled
basic units are added into the initial plane set) in the first iteration,
where most of the sampled basic units derive from undetected or
under-segmented regions. Fig. 5d is the corresponding plane seg-
mentation result of the first iteration, where several new planes
located on windows, window sills and roof are detected after a
round of new planes generation and energy optimization. Fig. 5e
and f represent the final plane segmentation result and the ground
truth respectively. As shown in Fig. 5e, most of the inaccurate
boundaries, undetected planes, under-segmentation, and over-
segmentation issues are addressed through the global energy opti-
mization procedure. Fig. 5g and h shows the final residual of each
basic unit before and after global energy optimization. It is worth
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Fig. 4. An illustration of the sampling probability: (a) plane extraction result, (b) the residual of each basic unit to its corresponding plane, (c) the curvature of each basic unit,

and (d) the sampling probability of each basic unit.

noting that, most of the basic units are well fitted through global
energy optimization with the maximum residual of 0.05 m.

3. Experiments and analysis
3.1. Experimental setup

The implementation details of the experiments, including the
description of benchmark datasets, the evaluation criteria, and
parameter settings of the proposed methods are described in this
section. The experiments were implemented on a computer with
16 GB RAM and an Intel Core i7-6700HQ @ 2.60 GHz CPU.

3.1.1. Datasets description

The performance of the proposed method was evaluated using
two benchmark datasets (i.e., SEMANTIC3D.NET, and Stanford
large-scale 3D Indoor Spaces Dataset (S3DIS)) with different point
densities, point position precisions, and levels of noise and outliers.
SEMANTIC3D.NET dataset (Hackel et al., 2017) consists of 30 pub-
lished terrestrial laser scans with 4 billion 3D points and contains
urban and rural scenes, like farms, town halls, sports fields, a castle

and market squares. Colorization was performed in a post-
processing step by deploying a high-resolution cubemap, which
was generated from camera images (Hackel et al., 2017). S3DIS
dataset (Armeni et al., 2016) was collected using the Matterport
Camera, which combines 3 structured-light sensors to capture 18
RGB and depth images during a 3600 rotation at each scan location.
It consists of 6 large-scale indoor areas with 695,878,620 points
and contains various indoor scenes, like conference rooms, offices,
copy rooms, hallways, pantries, and lounges. In general, the S3DIS
dataset is more challenging than SEMANTIC3D.NET dataset since
point cloud collected by structured-light sensors contains a higher
level of noise and lower point position precision, all of which pose
great challenges for robust 3D plane segmentation. Fig. 6 shows an
overview of the sample scenes of the two benchmark datasets.

3.1.2. Evaluation criteria

We evaluate the performance of the proposed method in terms
of six metrics (i.e, plane precision, plane recall, under-
segmentation rate, over-segmentation rate, boundary precision,
and boundary recall), which are commonly used for the evaluation
of plane segmentation (Estrada and Jepson, 2009; Awrangjeb et al.,
2010; Yan et al., 2014).
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Fig. 5. An illustration of the global energy optimization: (a) the initial plane set, (b) the sampling probability of each basic unit, (c) the sampled basic units in the first
iteration, (d) the plane segmentation result of the first iteration, (e) the final output of plane segmentation by global energy optimization, (f) the ground truth, (g) the residual
of each basic unit before global energy optimization, and (h) the residual of each basic unit after global energy optimization.
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Fig. 6. Overview of sample scenes of the benchmark datasets: (a) Stgallen cathedral station 3 colored by intensity of each point, (b) Stgallen cathedral station 6 colored by
RGB values of each point, (c) Area 1 colored by RGB values of each point, and (d) Area 6 colored by RGB values of each point. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)

Plane precision (PP) and plane recall (PR) are defined as the
number of correctly segmented planes with respect to the total
number of planes in the segmentation results and ground truth
respectively (Yan et al., 2014), as Egs. (15) and (16).

PP (15)
_NC
PR= o (16)

where N¢, Ns, and Ng represent the number of correctly segmented
planes, the total number of planes in the segmentation results and
the total number of planes in ground truth respectively. To be a cor-
rectly segmented plane, a minimum overlap of 80% with the corre-
sponding plane in the ground truth is required.

Under-segmentation rate (USR) is defined as the percentage of
detected planes that overlap multiple corresponding planes in
the ground truth, and over-segmentation rate (OSR) is defined as
the planes in the ground truth that overlap multiple detected
planes (Awrangjeb et al., 2010; Yan et al., 2014), as Eqgs. (17) and
(18).

— NU
USR = (17)
OSR = (18)

where Ny is the number of detected planes that overlap more than
one planes of the ground truth, and Ny represent the number of
planes in the ground truth that overlap multiple detected planes.
Boundary precision (BP) and boundary recall (BR) are defined as
the number of correctly detected boundary points with respect to
all the detected boundary points and boundary points in ground

truth respectively (Estrada and Jepson, 2009; Yan et al., 2014), as
Egs. (19) and (20).

|Bs N Bg|
BP = 19
B {19)
|Bg n BG‘
BR = 20
B 20)
where Bs and B are the set of boundary points in the segmentation
result and ground truth, | | denotes the number of points in a
dataset.

3.1.3. Parameter settings

Table 1 shows the parameter settings of the proposed 3D plane
segmentation method, set by trial and error. All these parameter
settings, unless otherwise specified, are used for all the experi-
ments in this paper.

There are five parameters in multiscale supervoxel generation
procedure, i.e., Wy, Wy, Imax, Tmin and 7a. Wy and w,, are the weights
associated with spatial distance and normal similarity, which con-
trol the trade-off between supervoxel compactness and boundary
adherence (Papon et al., 2013; Christoph et al., 2014). The param-
eters wy = 1 and w, = 4 are set according to the recommended
parameter settings by Christoph et al. (2014). I'max, 'min and r, are
the maximum, minimum, and decreasing rate of supervoxel reso-
lution, which determine the number of basic units for hybrid
region growing and energy optimization. In practice we specified
Tmin,» Tmax and 1, as 5 times average point distance u, 10 times

T'min and (;g:xl)ll_" respectively, where p is calculated as the average

distance from each point to its nearest point.
The hybrid region growing algorithm has three important
parameters: the threshold of the angle between two normal
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Table 1
Parameters of 3D plane segmentation.
Procedure Parameter Descriptor Value
Multiscale Wy The weight of spatial distance 1
supervoxel Wy The weight of normal deviation 4
generation T'min The minimum resolution of 5u
supervoxel
Tmax The maximum resolution of 107 min
supervoxel
Ta The decreasing rate of supervoxel roin \ T
resolution (rmx)
Hybrid region Ty The threshold of the angle 10°
growing between two normal vectors
Ts The threshold of the distance 0.2m
between two planes
K The minimum point number fora 20
valid plane
Global energy T The initial temperature of 10°C
optimization simulated annealing
Trmin The minimum temperature of 0.5°C
decreasing coefficient
Ta Decreasing coefficient of 0.99
simulated annealing
TN The maximum number of 5
consecutive rejecting new plane
set
PN The number of increased new 10
planes in each iteration
Ad A distance threshold of outliers 0.1m

vectors (i.e., Ty), the threshold of the distance between two planes
(i.e., 75), and the minimum point number for a valid plane (i.e., k).
7y and 1, control the quality of 3D plane segmentation results. In
particular, when 7, and 7, are large, less similar units will be
merged and most of the detected planes are under-segmented.
When 71, and 7 are small, only quite similar units will be merged
and most of the detected planes are over-segmented. In this paper,
we prefer to generate relatively few number of initial planes using
hybrid region growing algorithm, and then further enrich and
refine the initial plane set in energy optimization procedure.
Therefore, we set 7, and 75 as relatively large values with 7, =
10° and 75 = 0.2 m to get an under-segmentation initial plane set.

The Global energy optimization procedure contains seven
parameters. T, Tmn, and T, are the initial temperature, minimum
temperature and temperature decreasing coefficient of simulated
annealing, which ensures convergence to the global optimum
regardless of the initial configuration (Lafarge et al., 2010). In this
experiment, we set T = 10 °C, Ty = 0.5°C and T, = 0.99 accord-
ing to the recommended parameter settings of (Yang et al,
2013). Ty is the maximum number of the consecutive rejecting
new plane set. Consecutive rejecting new planes means that all
planes have been detected and the energy function has converged
to the global optimum. It is found in trials that Ty = 5 can guaran-
tee the convergence of energy function. PN is the number of
increased new planes in each iteration, which controls the effi-
ciency of the energy optimization. A crucial component of Algo-
rithm 3 is the generating of new planes (i.e., step 6 of Algorithm
3). The quicker all good planes are generated, the faster Algorithm
3 reaches the global optimal. In particular, when PN is a small
value, each iteration costs fewer time but a large number of itera-
tions is needed to detect all good planes. On the contrary, when PN
is a large value, Algorithm 3 can detect all good planes with a few
number of iterations but each iteration costs more time. So we
need to strike a balance between the number of iterations and run-
time of each iteration to acquire a minimum total runtime. Exper-
imental results find that the total runtime of energy optimization
reduced as PN increases from 1 to 10. And further increasing PN
from 10 to 100 increased the total runtime of energy optimization.

Therefore, we use PN = 10 as the number of increased new planes
in each iteration. Ad and k are important parameters in global
energy optimization procedure, which determine the quality of
plane segmentation results. More specifically, Ad is a distance
threshold of outliers, which means that the units with distances
to their corresponding planes larger than 2Ad are more likely to
be outliers. A large Ad may result in under-segmentation, whereas
a small one may produce over-segmentation. x is the minimum
point number for a valid plane. A large x results in lots of omissive
planes, whereas a small one produces some spurious planes. The
performance of the proposed method under different settings of
parameters Ad and k is tested using the Recall versus 1-Precision
Curve (RP Curve) (Ke and Sukthankar, 2004). Fig. 7a illustrates
the RP Curves for Ad ranging from 0.01 m to 0.2 m and Fig. 7b illus-
trates the RP Curves for x ranging from 5 to 40. Ideally, the RP
Curve would fall in the top-left corner of the plot, which means
that the method obtains both high recall and precision. As shown
in Fig. 7, the best plane segmentation results were achieved with
the value of parameters Ad = 0.1 m and x = 20.

3.2. Experiment results

Figs. 8-12 show the outcomes of multiscale supervoxel genera-
tion, hybrid region growing, global energy optimization, and the
main differences between the plane segmentation result and the
ground truth for five selected point clouds (i.e., building 1, build-
ing 2, building 3, conference room, and office) from the SEMAN-
TIC3D.NET and S3DIS datasets. Figs. 8-12a represent the three
selected point clouds, colored by the RGB values of each point.
Figs. 8-12b show the generated multiscale supervoxel results for
selected point clouds, where each supervoxel is dotted in one color.
It is worth noting that, the number of basic units is notably smaller
than the number of raw points, thereby significantly reducing the
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Fig. 7. RP Curves: (a) the RP Curves for varying Ad, and (b) the RP Curves for
varying K.
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Fig. 8. Plane segmentation result of building 1: (a) the original point cloud, (b) multiscale supervoxel generation result, (c) initial plane segmentation result, (d) plane
segmentation result of energy optimization, (e) the ground truth and (f) the main differences between the plane segmentation result and the ground truth.

search space (i.e., the number of points) and accelerating the fol-
lowing hybrid region growing and global energy optimization pro-
cesses. Figs. 8-12¢ denote the initial planes segmentation results
using the hybrid region growing algorithm, where each plane is
drawn in one color. Note that mainly four kinds of errors (i.e., inac-
curate boundaries, undetected planes, under-segmentation, and
over-segmentation planes) exist in the initial plane set. These
issues will be addressed through the following energy optimization
procedures. Figs. 8—-12d represent the planes segmentation results
after global energy optimization, where each plane is drawn in one
color. And Figs. 8-12e are the ground truth of each point cloud,
which are manually labeled using the CloudCompare point cloud
processing software. Figs. 8-12f show the main differences
between the plane segmentation results and the ground truth,
where the yellow, red, blue, green, and cyan regions represent
the correctly segmented planes (CP), undetected plans (UP),

spurious planes (SP), under-segmented planes (USP), and over-
segmented planes (OSP) respectively. More specifically, the pro-
posed approach fails to detect planes with quite small scale or less
than x points (e.g., the red regions in Figs. 8-12f) due to the insuf-
ficient initial plane set or the use of label cost term. Most of the
spurious planes (e.g., the blue regions in Figs. 8-12f) are caused
by segmenting a nonplanar surface (e.g., cylindrical drainpipe
and cambered facade) into a plane or multiple planes. The under-
segmented planes (e.g., the green regions in Figs. 8—12f) are caused
by merging two or more adjacent planes with exactly similar
parameters into one plane due to the insufficient initial plane set
or a large distance threshold Ad. The over-segmented planes
(e.g., the cyan regions in Figs. 8-12f) are caused by dividing one
plane into multiple planes due to a small distance threshold Ad
or heavy occlusion (e.g., the window regions). In general, the
S3DIS dataset is more challenging than SEMANTIC3D.NET dataset
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Fig. 9. Plane segmentation result of building 2: (a) the original point cloud, (b) multiscale supervoxel generation result, (c) initial plane segmentation result, (d) plane
segmentation result of energy optimization, (e) the ground truth and (f) the main differences between the plane segmentation result and the ground truth.

since the point clouds collected by structured-light sensors contain
a higher level of noise and lower point position precision, all of
which pose great challenges for robust 3D plane segmentation.
The experimental results show that the proposed method
can acquire a good performance of 3D plane segmentation both
in high-quality TLS point clouds and low-quality RGB-D point
clouds.

3.3. Evaluation and analysis

3.3.1. Quantitative evaluation

To evaluate the performance of the proposed method for 3D
plane segmentation, the plane segmentation result was compared
with those manually marked ground truths in terms of six metrics
(i.e., plane precision and plane recall, under-segmentation rate,
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Fig. 10. Plane segmentation result of building 3: (a) the original point cloud, (b) multiscale supervoxel generation result, (c) initial plane segmentation result, (d) plane
segmentation result of energy optimization, (e) the ground truth and (f) the main differences between the plane segmentation result and the ground truth.

over-segmentation rate, boundary precision, and boundary recall). units, six metrics and the runtime on the selected point clouds.
To ensure that the evaluation is reliability, we performed 50 runs It is worth note that, the number of basic units is notably smaller
on each dataset and took the median of these values over 50 runs than the number of points (i.e., two orders of magnitude smaller),

as the final values. Table 2 reports the number of points and basic thereby significantly improving the efficiency of the plane



Z. Dong et al./ISPRS Journal of Photogrammetry and Remote Sensing 137 (2018) 112-133 127

(e)

(d)

()

CP

Y SU——— 0SP

Fig. 11. Plane segmentation result of a conference room: (a) the original point cloud, (b) multiscale supervoxel generation result, (c) initial plane segmentation result, (d)
plane segmentation result of energy optimization, (e) the ground truth and (f) the main differences between the plane segmentation result and the ground truth.

segmentation method. The metrics and the runtime listed in
Table 2 show that the proposed method can acquire a good perfor-
mance of 3D plane segmentation both in high-quality TLS point
clouds (e.g., SEMANTIC3D: 94.2% (precision), 95.1% (recall), 2.9%
(USR), 3.8% (OSR), 93.6% (BP), 94.1% (BR)) and low-quality RGB-D
point clouds (e.g., S3DIS: 90.4% (precision), 91.4% (recall), 8.2%
(USR), 7.6% (OSR), 90.8% (BP), 91.7% (BR)) with high efficiency.

3.3.2. Performance analysis

To further investigate the effects of each procedure (i.e., multi-
scale supervoxel generation, hybrid region growing, global energy
optimization and new planes generation) on plane segmentation,

we also calculate the metrics, iterations and the runtime of REPS-
1, REPS-2, REPS-3, and REPS-4, which are the variants of the pro-
posed method. More specifically, REPS-1 does not divide point
cloud into supervoxels and directly utilizes original points as basic
units for region growing and global energy optimization. REPS-2
only contains multiscale supervoxel generation and hybrid region
growing two procedures, so does not refine and enrich the initial
plane set. REPS-3 refines the initial plane set without new planes
generation process. REPS-4 uses random sampling for new planes
generation instead of guided sampling. The corresponding metrics,
iterations, and runtime on the selected point clouds are listed in
Table 3. It is found that the proposed REPS outperformed its
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Fig. 12. Plane segmentation result of an office: (a) the original point cloud, (b) multiscale supervoxel generation result, (c) initial plane segmentation result, (d) plane
segmentation result of energy optimization, (e) the ground truth and (f) the main differences between the plane segmentation result and the ground truth.

variants on the selected point clouds. First, REPS spent two orders
of magnitude fewer runtime and achieved almost the same metrics
compared with REPS-1, showing that the hybrid representation of
supervoxels and individual points can significantly improve the
efficiency of plane segmentation. Second, REPS increased the met-
rics of plane segmentation from (84.6% (precision), 80.3% (recall),

16.4% (USR), 6.4% (OSR), 86.4% (BP), 80.6% (BR)) and (79.2%
(precision), 74.1% (recall), 19.6% (USR), 10.7% (OSR), 79.5% (BP),
75.3% (BR)) to (94.5% (precision), 95.7% (recall), 2.6% (USR), 3.7%
(OSR), 94.4% (BP), 92.7% (BR)) and (90.4% (precision), 92.1% (recall),
7.6% (USR), 7.8% (OSR), 90.7% (BP), 91.2% (BR)) on the selected two
point clouds compared with REPS-2, which demonstrates that
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Table 2
Quantitative evaluation of 3D plane segmentation result.
Data # Point (million)  # Unit (million) Precision (%) Recall (%) USR (%) OSR (%) BP(%) BR(%) Runtime (s)
Al A2 A3 Total
Building 1 13.552 0.141 94.3 95.6 2.7 3.8 94.2 92.6 295 56 2007 2358
Building 2 6.942 0.082 93.8 94.5 4.2 3.7 93.1 90.8 186 4.1 166.3  189.0
Building 3 8.652 0.093 95.2 94.9 3.1 4.6 93.6 94.3 213 49 177.7 2039
SEMANTIC3D 642.8 7.963 94.2 95.1 2.9 3.8 93.6 94.1 Total: 461.5 min
Conference room 1.067 0.013 90.6 91.3 8.6 7.3 91.1 92.4 3.6 23 349 40.8
Office 0.825 0.011 90.3 91.8 7.9 8.1 90.6 91.2 3.2 1.9 318 36.9
S3DIS 695.9 8.699 90.4 914 8.2 7.6 90.8 91.7 Total: 502.3 min
A1, A2, A3: the abbreviations of Algorithm 1, Algorithm 2, and Algorithm 3 respectively.
Table 3
Performance analysis of the proposed method.
Data Precision (%) Recall (%) USR (%) OSR (%) BP (%) BR (%) Iterations Runtime (s)
Building 1 REPS-1 94.5 95.7 2.6 3.7 94.4 92.7 22 40654.5
REPS-2 84.6 80.3 16.4 6.4 86.4 80.6 \ 35.1
REPS-3 93.3 84.6 9.5 4.6 91.1 83.6 16 180.4
REPS-4 93.2 94.5 29 4.2 93.8 92.1 2346 224211
REPS 943 95.6 2.7 3.8 94.2 92.6 21 235.8
Office REPS-1 90.4 92.1 7.6 7.8 90.7 91.2 15 4612.3
REPS-2 79.2 741 19.6 10.7 79.5 75.3 \ 7.1
REPS-3 86.2 75.6 17.2 9.4 86.9 74.9 12 29.7
REPS-4 89.5 90.2 8.2 8.6 88.4 89.3 1028 2179.4
REPS 90.3 91.8 7.9 8.1 90.6 91.2 15 36.9

global energy optimization procedure can dramatically improve
the quality of plane segmentation, especially for the low-quality
S3DIS dataset. Third, REPS far surpassed REPS-3 in terms of plane
recall, under-segmentation rate and boundary recall, which indi-
cates that new plane generation process enhances the capability
of the algorithm to extract undetected planes, especially planes
with few points, or small scales. Fourth, REPS took two orders of
magnitude fewer runtime and iterations than REPS-4, which
demonstrates that the proposed method significantly accelerate
the convergence speed of global energy optimization by leveraging
the guided sampling technique.

3.3.3. Performance comparison

To further compare the performance of the proposed method
with other state-of-the-art approaches, we conducted 3D plane
segmentation using different selected methods on the point clouds
of building 1 and office. Efficient RANSAC (Schnabel et al., 2007) is
the most popular and cited 3D Shape detection method and has
proven useful for planes, spheres, cylinders, cones and tori detec-
tion. Octree-based region growing (ORG) (Vo et al, 2015) is a
recently proposed point cloud segmentation method that exhibits
superior performance in terrestrial and aerial LiDAR point clouds.
Global energy optimization approach (GEO) (Yan et al., 2014) also
formulates the plane segmentation issue as a global energy opti-
mization problem, which is the most similar method to our pro-
posed method. Therefore, these state-of-the-art 3D plane
segmentation methods are selected as the benchmark methods
for performance comparison. The key parameters of all the bench-
mark methods are set according to the parameter settings recom-
mended in the original articles.

Figs. 13 and 14 show the outcomes of the four benchmark
methods on the two selected point clouds. Table 4 lists their corre-
sponding metrics and runtime. It is found that the proposed REPS
outperformed other benchmark methods on the selected point
clouds. More specifically, a number of observations can be noted
based on these comparison results. (1) The local optimal algo-
rithms (i.e., RANSAC and ORG) obtained relatively lower precision,
recall, boundary precision, boundary recall, and higher over-

segmentation rate and over-segmentation rate than global energy
optimization methods (i.e., GEO and REPS), especially for low-
quality RGB-D point clouds. The lower performances are attributa-
ble to the following two factors. First, the local optimal algorithms
are less robust to high levels of noise and clutter. Second, the sub-
optimal character of extracting planes one by one tends to result in
mistakes at plane transitions, which in turn causes inaccurate and
incomplete boundaries among segmented planes. Plane fitting can
be better formulated as an optimization problem with a global
energy function describing the quality of the overall solution.
Therefore, these global energy optimization methods can produce
spatially coherent planes and significantly improve the perfor-
mance of plane segmentation. (2) The proposed REPS method
spent two orders of magnitude fewer runtime compared with
GEO, which indicates that the hybrid representation of multiscale
supervoxels and individual points can significantly reduce the
search space and improve the efficiency of plane segmentation.
(3) The proposed REPS achieved better performance than the
GEO method, especially in terms of plane recall, under-
segmentation rate, and boundary recall. This is because the GEO
method is powerless to under-segmentation planes and unde-
tected planes since it cannot produce more number of planes than
the initial segmentation set. And such improvements of the pro-
posed REPS method are mainly due to the new planes generation
procedure, and the mutually reinforcing manner between new
planes generation and planes refinement. This synergy enhances
the capability of the algorithm to extract undetected planes, espe-
cially planes with few points, or small scales, thus improving the
completeness of plane segmentation.

3.3.4. Limitations

We also investigate the circumstances in which our method
fails to detect the planes. Fig. 15 shows the error cases. The pro-
posed method only can segment planar surfaces, so it has a ten-
dency to segment a nonplanar surface into a plane (e.g., the
elliptical regions in Fig. 15a) or multiple planes (e.g., Fig. 15b).
Fig. 15a shows the error case of segmentation of a cylindrical
drainpipe into a plane. And Fig. 15b shows the error case of
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Fig. 13. Plane segmentation result comparison: (a) the output of RANSAC, (b) the main differences between the output of RANSAC and the ground truth, (c) the output of ORG,

(d) the main differences between the output of ORG and the ground truth, (e) the output of GEO, (f) the main differences between the output of GEO and the ground truth, (g)
the output of REPS, (h) the main differences between the output of REPS and the ground truth.
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Fig. 14. Plane segmentation result in comparison: (a) the output of RANSAC, (b) the main differences between the output of RANSAC and the ground truth, (c) the output of
ORG, (d) the main differences between the output of ORG and the ground truth, (e) the output of GEO, (f) the main differences between the output of GEO and the ground
truth, (g) the output of REPS, (h) the main differences between the output of REPS and the ground truth.
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Table 4
Performance comparison of 3D plane segmentation results.

Data Precision (%) Recall (%) USR (%) OSR (%) BP (%) BR (%) Runtime (s)
Building 1 Efficient RANSAC 87.2 87.9 13.9 6.1 82.3 83.1 46.9
ORG 90.6 90.1 9.3 7.2 84.7 82.1 76.4
GEO 93.2 90.5 85 34 91.3 86.7 39792.2
REPS 94.3 95.6 2.7 3.9 94.2 92.6 235.8
Office Efficient RANSAC 76.5 75.6 12.8 16.6 74.2 73.1 14.6
ORG 73.3 74.2 114 21.8 75.1 71.6 22.8
GEO 88.8 84.4 11.2 8.8 87.9 84.8 4304.6
REPS 90.3 91.8 6.9 5.4 90.6 91.2 36.9

1

Fig. 15. Error cases of proposed method: (a) segmentation of a cylindrical drainpipe into a plane, and (b) segmentation of a cambered facade into multiple planes.

segmentation of a cambered facade into multiple planes. To over-
come these limitations, we will further extend the method to
simultaneously detect multiple geometric primitives (e.g., plane,
sphere, cylinder, and cone) from point clouds.

4. Conclusions

This paper presented a novel global energy optimization based
3D plane segmentation method and evaluated its performances on
two popular benchmark datasets. Comprehensive experiments
demonstrated that the proposed method obtained good perfor-
mances both in high-quality TLS point clouds and low-quality
RGB-D point clouds, and outperformed the state-of-the-art
approaches. However, the proposed solution also has limitations.
The proposed method can only segment planar surfaces, so it has
a tendency to segment a small-scale nonplanar surface into a plane
and segment a large-scale nonplanar surface into multiple planes.
In future work, we will further extend the method to simultane-
ously detect multiple geometric primitives (e.g., plane, sphere,
cylinder, and cone), and reconstruct compact and detailed 3D mod-
els using the extracted geometric primitives.
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