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Abstract

While much work in human-robot interaction has focused on leader-
follower teamwork models, the recent advancement of robotic systems
that have access to vast amounts of information suggests the need for
robots that take into account the quality of the human decision making
and actively guide people towards better ways of doing their task. This
thesis proposes an equal-partners model, where human and robot engage
in a dance of inference and action, and focuses on one particular instance
of this dance: the robot adapts its own actions via estimating the probabil-
ity of the human adapting to the robot. We start with a bounded-memory
model of human adaptation parameterized by the human adaptability -
the probability of the human switching towards a strategy newly demon-
strated by the robot. We then examine more subtle forms of adaptation,
where the human teammate adapts to the robot, without replicating the
robot’s policy. We model the interaction as a repeated game, and present
an optimal policy computation algorithm that has complexity linear to

the number of robot actions. Integrating these models into robot action
selection allows for human-robot mutual-adaptation. Human subject ex-
periments in a variety of collaboration and shared-autonomy settings show
that mutual adaptation significantly improves human-robot team perfor-
mance, compared to one-way robot adaptation to the human.
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1
Introduction

In collaboration, the success of the team often depends on the ability
of team members to coordinate their actions, by reasoning over the
beliefs and actions of their teammates. We want to enable robot team-
mates with this very capability in human-robot teams, e.g., service
robots interacting with users at home, manufacturing robots sharing
the same physical scape with human mechanics and autonomous
cars interacting with drivers and pedestrians.

When it comes to robots operating in isolation, there has been
tremendous progress in enabling them to act autonomously by rea-
soning over the physical state of the world. A manipulator picking
up a glass needs to know the position and orientation of the glass on
the table, the location of other objects that it should avoid, and the
way these objects will move if pushed to the side. More importantly,
it needs to reason over the uncertainty in its model of the world and
adapt its own actions to account for this uncertainty, for instance by
looking at the table with its camera, or by moving slowly until it
senses the glass in its gripper.

However, humans are not just obstacles that the robot should
avoid. They are intelligent agents with their own internal state, i.e.,
their own goals and expectations about the world and the robot.
Their state can change, as they adapt themselves to the robot and
its actions (Fig. 1.1). Much like in manipulation, a robot interacting
with people needs to use this information when choosing its own
actions. This requires not only an understanding of human behavior
when interacting with robotic systems, but also of the computational
challenges and opportunities that arise by enabling this reasoning
into deployed systems in the real world.

To address these challenges, we have used insights from behav-
ioral economics to propose scalable models of human behavior and
machine learning algorithms to automatically learn these models
from data. Integrating these models into probabilistic planning and
game-theoretic algorithms has allowed generation of robot actions in
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_o

. ‘ Figure 1.1: The robot maxi-
7'(R Action WH, i \@ mizes the performance of the
P /_\‘ human-robot team by executing

) y the optimal policy 7T*". The
W‘, robot takes information-seeking

actions that allow estimation

of the human policy 71, but
also communicative actions that

a computationally tractable manner.

: H
This thesis has been inspired by recent technical advances in guide 7T towards better ways

. . of doing the task. These actions
human-robot interaction [Thomaz et al., 2016], and to a large ex- & S
emerge out of optimizing for

tent it has been made possible by breakthroughs in computational R*
™.

representations of uncertainty [Ong et al., 2010], and in algorithms
that have leveraged these representations [Kurniawati et al., 2008]. It
has also been inspired by the remarkable results of game-theoretic
algorithms in deployed applications [Pita et al., 2009].

We start by formulating our overarching goal of computing the
robot actions that maximize team performance as an optimization
problem in a two-player game with incomplete information (chap-
ter 3). In hindsight, our approaches in this thesis reflect the different
assumptions and approximations that we made within the scope of
this general formulation.

Previous work has assumed a leader-follower teamwork model,
where the goal of the robot is to follow the human preference (chap-
ter 4). We show that this model is an instance of our general frame-
work by representing the human preference as a reward function,
shared by both agents and unknown to the robot.

This thesis then focuses on the case when the robot can indirectly
affect human actions as an equal partner, by treating the interaction
as an underactuated dynamical system (chapter 5). We present a
bounded-memory model [Nikolaidis et al., 2016, 2017¢,a] and a best-
response model of human behavior [Nikolaidis et al., 2017b], and show
that this results in human-adaptation to the robot.

Closing the loop between the two results in mutual adaptation
(chapter 6): The robot builds online a model of the human adaptation
by taking information seeking actions, and adapts its own actions in
return [Nikolaidis et al., 2016, 2017¢c,a]. We formalize human-robot
mutual adaptation for the collaboration domain, where both human
and robot affect the physical state of the world, and for the shared-
autonomy domain, where the human simply provides inputs to the
robot through a joystick interface. In chapter 7, we generalize the for-
malism, so that it includes verbal communication from the robot to
the human [Nikolaidis et al., 2018].

Each chapter articulates the different assumptions and explains
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Figure 1.2: We have applied our

how these lead to the robot behaviors that we observed in real-time research to human-robot collab-
interactions with actual human subjects, in a variety of manufactur- oration across different robot
ing, home environments and assistive care settings (Fig. 1.2). morphologies and settings: in

manufacturing, assistive care,
social navigation and at home.






2
Related Work

This thesis builds upon prior work on algorithms for robot adapta-
tion to the human (section 2.1) and human adaptation to the robot
(section 2.2), and proposes a human-robot mutual adaptation for-
malism. We additionally draw upon insights from previous work on
verbal communication for the human-human and human-robot teams
(section 2.3), and generalize our formalism, so that it incorporates
verbal communication from the robot to the human, as well.

2.1 Robot Adaptation

There has been extensive work on one-way robot adaptation to the
human. Approaches involve a human expert providing demon-
strations to teach the robot a skill or a specific task [Argall et al.,
2009, Atkeson and Schaal, 1997, Abbeel and Ng, 2004, Nicolescu and
Mataric, 2003, Chernova and Veloso, 2008, Akgun et al., 2012]. Robots
have also been able to infer the human preference online through in-
teraction. In particular, partially observable Markov decision process
(POMDP) models have allowed reasoning over the uncertainty on the
human intention [Doshi and Roy, 2007, Lemon and Pietquin, 2012,
Broz et al.,, 2011]. The MOMDP formulation [Ong et al., 2010] has
been shown to achieve significant computational efficiency and has
been used in motion planning applications [Bandyopadhyay et al.,
2013]. Recent work has also inferred human intention through de-
composition of a game task into subtasks for game Al applications.
One such study [Nguyen et al., 2011] focused on inferring the inten-
tions of a human player, allowing a non-player character (NPC) to
assist the human. Alternatively, Macindoe et al. proposed the par-
tially observable Monte-Carlo cooperative planning system, in which
human intention is inferred for a turn-based game [Macindoe et al.,
2012]. Nikolaidis et al. proposed a formalism to learn human types
from joint-action demonstrations, infer online the type of a new user
and compute a robot policy aligned to their preference [Nikolaidis
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et al., 2015b]. Simultaneous intent inference and robot adaptation has
also been achieved through propagation of state and temporal con-
straints [Karpas et al., 2015]. Another approach has been the human-
robot cross-training algorithm, where the human demonstrates their
preference by switching roles with the robot, shaping the robot re-
ward function [Nikolaidis and Shah, 2013]. Although it is possible
that the human changes strategies during the training, the algorithm
does not use a model of human adaptation that can enable the robot
to actively influence the actions of its human partner.

2.2 Human Adaptation

There have also been studies in human adaptation to the robot. Pre-
vious work has focused on operator training for military, space and
search-and-rescue applications, with the goal of reducing the oper-
ator workload and operational risk [Goodrich and Schultz, 2007].
Additionally, researchers have studied the effects of repeated inter-
actions with a humanoid robot on the interaction skills of children
with autism [Robins et al., 2004], on language skills of elementary
school students [Kanda et al., 2004], as well as on users’ spatial be-
havior [Green and Hiittenrauch, 2006]. Human adaptation has also
been observed in an assistive walking task, where the robot uses
human feedback to improve its behavior, which in turn influences
the physical support provided by the human [Ikemoto et al., 2012].
While the changes in the human behavior are an essential part of
the learning process, the system does not explicitly reason over the
human adaptation throughout the interaction. On the other hand,
Dragan and Srinivasa proposed a probabilistic model of the inference
made by a human observer over the robot goals, and introduced a
motion generating algorithm to maximize this inference towards a
predefined goal [Dragan and Srinivasa, 2013a].

Our proposed formalism of human-robot mutual adaptation * is
an attempt to close the loop between the two lines of research. The
robot leverages a human adaptation model parameterized by human
adaptability. It reasons probabilistically over the different ways that
the human may change the strategy and adapts its own actions to
guide the human towards a more effective strategy when possible.

2.3 Verbal Communication

In previous work, verbal communication has been frequently used

as a mediator of the adaptation process to facilitate communication
and resolve conflict. We use insights from studies in verbal communi-
cation in human-human teams and human-robot teams, to integrate

1 Stefanos Nikolaidis, Anton Kuznetsov,
David Hsu, and Siddhartha Srinivasa.
Formalizing human-robot mutual adap-
tation: A bounded memory model.

In Proceedings of the ACM/IEEE Inter-
national Conference on Human-Robot
Interaction (HRI), 2016; Stefanos Niko-
laidis, Yu Xiang Zhu, David Hsu, and
Siddhartha Srinivasa. Human-robot
mutual adaptation in shared auton-
omy. In Proceedings of the ACM/IEEE
International Conference on Human-Robot
Interaction (HRI), 2017¢; and Stefanos
Nikolaidis, David Hsu, and Siddhartha
Srinivasa. Human-robot mutual adapta-
tion in collaborative tasks: Models and
experiments. The International Journal of
Robotics Research (I[RR), 2017a
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verbal communication in the mutual adaptation formalism.

2.3.1  Human-Human Teams

Verbal discourse is a joint activity [Clark, 1994], where participants
need to establish a shared understanding of their mutual knowledge
base. This shared understanding, also called common ground, can be
organized into two types: a communal common group, which rep-
resents universal shared knowledge, and personal common groups
which represent mutual knowledge gathered from personal experi-
ence [Clark, 1994, 1996]. People develop personal common ground
by contributing new information, which enables participants in the
conversation to reach a mutual belief. This belief, known as ground-
ing [Clark and Schaefer, 1989], indicates that they have understood
the information as the speaker intended. Grice [1975] has shown that
grounding is achieved when people avoid expending unnecessary
effort to convey information.

Previous work has shown that establishing grounding through ver-
bal communication can improve performance, even when combined
with other types of feedback. Wang et al. [2013] show that the effi-
ciency of haptic communication was improved only after dyads were
first given a learning period in which they could familiarize them-
selves with the task using verbal communication. Parikh et al. [2014]
find that for a more complicated task, verbal feedback coupled with
haptic feedback has a significant positive effect on team performance,
as opposed to haptic feedback alone. In general, verbalization is more
flexible than haptic feedback, since it allows for the communication
of more abstract and complex ideas [Eccles and Tenenbaum, 2004],
while it can facilitate a shared understanding of the task [Bowers
et al., 1998].

However, verbal communication is costly in terms of time and
cognitive resources [Eccles and Tenenbaum, 2004]. For example,
according to Clark and Brennan [1991], it costs time and effort to for-
mulate coherent utterances, especially when talking about unfamiliar
objects or ideas. Receivers also experience costs in receiving and un-
derstanding a message; listening and understanding utterances can
be especially costly when contextual cues are missing and the listener
needs to infer the meaning. Thus, after teams have a shared under-
standing of the task, it may be beneficial to switch to a less costly
mode of communication, such as haptic feedback. In fact, Kucuky-
ilmaz et al. [2013] show that haptic feedback increases a perceived
sense of presence and collaboration, making interaction easier. Haptic
communication has been shown to be especially effective in tasks that
involve deictic referencing and guiding physical objects [Moll and

21
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Sallnas, 2009].

We draw upon these insights to propose a formalism ? for com- 2 Stefanos Nikolaidis, Minae Kwon,
Jodi Forlizzi, and Siddhartha Srinivasa.

. . Planning with verbal communication
human teammate towards a better way of doing a task. We inves- for human-robot collaboration. Journal

tigate the effect of different types of verbal communication in team of Human-Robot Interaction (JHRI), 2018.
(under review)

bining verbal communication and task actions, in order to guide a

performance and trust in the robot.

2.3.2  Human-Robot Teams

Verbal communication in human-robot teams has been shown to af-
fect collaboration, as well as people’s perception of the robot [Mavridis,
2015, Thomaz et al., 2016, Grigore et al., 2016]. Robot dialog systems
have mostly supported human-initiated or robot-initiated communi-
cation in the form of requests. An important challenge for generating
legible verbal commands has been symbol grounding [Mavridis,
2015, Tellex et al., 2011], which is described as the ability of the robot
to map a symbol to a physical object in the world. Tellex et al. [2011]
presented a model for inferring plans from natural language com-
mands; inverting the model enables a robot to recover from fail-
ures, by communicating the need for help to a human partner using
natural language [Tellex et al., 2014]. Khan et al. [2009] proposed

a method for generating the minimal sufficient explanation that
explains the policy of a Markov decision process, and Wang et al.
[2016b] proposed generating explanations about the robot’s confi-
dence on its own beliefs. Recent work by Hayes and Shah [2017] has
generalized the generation of explanations of the robot policies to a
variety of robot controllers.

Of particular relevance is previous work in the autonomous driv-
ing domain [Koo et al., 2015]. Messages that conveyed “how” in-
formation, such as “the car is breaking,” led to poor driving perfor-
mance, whereas messages containing “why” information, such as
“There is an obstacle ahead,” were preferred and improved perfor-
mance. Contrary to the driving domain, in our setting the human
cannot verify the truthfulness of the robot “why” action. Addition-
ally, unlike driving, in a physical human-robot collaboration setting
there is not a clearly right action that the robot should take, which
brings the human to a state of uncertainty and disagreement with
the robot. In agreement with Koo et al. [2015], our results show the
importance of finding the right away to explain robot behavior to
human teammates.

Our work is also relevant to the work by Clair and Mataric [2015].
The authors explored communication in a shared-location collabora-
tive task, using three different types of verbal feedback: self-narrative
(e.g., “I'll take care of X”), role-allocative (e.g., “you handle X”) and
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empathetic (e.g., “Oh no” or “Great”). They showed that feedback
improves both objective and subjective metrics of team performance.
In fact, the robot’s verbal commands (“Let’s rotate the table clockwise”)
and state-conveying actions (“I think I know the best way of doing the
task,”) of our work resemble the role-allocative and self-narrative
feedback. Additionally, Oudah et al. [2015] integrated verbal feed-
back about past actions and future plans into a learning algorithm,
resulting in improved human-robot team performance in two game
scenarios.

Contrary to existing work3, our formalism enables the robot to 3In Devin and Alami [2016], the robot
reasons over the human mental state,
. . . which represents the human knowledge
the future actions of different human collaborators, based on their of the world state and of the task goals.

internal state. The human internal state captures inter-individual The human mental state is assumed to
be fully observable by the robot.

reason about the effects of various types of verbal communication on

variability. Integrating it as a latent variable in a partially observable
stochastic process allows the robot to infer online the internal state
of a new human collaborator and decide when it is optimal to give
feedback, as well as which type of feedback to give.






3
Problem Formulation

Human-robot collaboration can be formulated as a two player game
with partial information. We let x}’ be the world state that captures
the information that human and robot use at time ¢ to take actions
af, a}{ in a collaborative task. Over the course of a task of total time

duration T, robot and human receive an accumulated reward:

T
Y. R (57, af)

for the robot and

for the human.

We assume a robot policy 7%, which maps world states to actions.
The human chooses their own actions based on a human policy 7.
If the robot could control both its own and the human actions, it
would simply compute the policies that maximize its own reward.

However, the human is not another actuator that the robot can
control. Instead, the robot can only estimate the human decision
making process from observation and make predictions about future
human behavior, which in turn will affect the reward that the robot
will receive.

Therefore, the optimal policy for the robot is computed by taking

the expectation over human policies 7.

T
%" € arg max E ) RR(xy, aR, af)| 7R, 7t (3-1)
R t=1
Solving this optimization is challenging: First, the human re-
ward RH may be unknown to the robot in advance. Second, even
if the robot knows RY, it may be unable to predict accurately the
human actions, since human behavior is characterized by bounded
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rationality [Kahneman, 2003]. Third, even if the human acts always
rationally, exhaustively searching for the equilibria is computation-
ally intractable in most cases [Papadimitriou, 2007]. Finally, even if
RH = RR, most real-world problems have multiple equilibria, and in
the absence of a signaling mechanism, it is impossible to know which
ones the agents will choose.

Therefore, rather than solving the game for the equilibria strate-
gies, we make different assumptions about the human behavior
within this general formulation. In the next chapters, we articulate
these assumptions, and we explain how these lead to exciting and
diverse robot behaviors in real-time interactions with actual human
subjects, in manufacturing, personal robotics and assistive care set-
tings.



1
Robot Adaptation

! In several manufacturing applications, such as assembly tasks, al-
though important concepts such as tolerances and completion times
are well-defined, many of the details are largely left up to the indi-
vidualized preference of the mechanics. A robotic assistant interact-
ing with a new human worker should be able to learn the preferences
of its human partner in order to be an effective teammate. We assume
a leader-follower teamwork model, where the human leader’s prefer-
ence is captured by the human reward function R and the human
policy 7z, In this model, the goal of the robot is to execute actions
aligned with the human preference. Therefore, in eq. 3.1 of chapter 3
we have:

RR = RH

Learning of a Human Model. Learning jointly 7! and R can be
challenging in settings where human and robot take actions simul-
taneously, and do not have identical action sets. To enable a robot
to learn the human preference in collaborative settings, we looked
at how humans communicate effectively their preferences in human
teams. In previous work [Shah et al., 2011], insights from human
teamwork have informed the design of a robot plan execution sys-
tem which improved human-robot team performance. We focused
on a team training technique known as cross-training, where human
team-members switch roles to develop shared expectations on the
task. This, in turn allows them to anticipate one another’s needs and
coordinate effectively. Using this insight, we proposed human-robot
cross-training [Nikolaidis et al., 2015a, Nikolaidis and Shah, 2013,
Nikolaidis et al., 2013], a framework where the robot learns a model
of its human counter-part through two phases: a forward-phase,
where human and robot follow their pre-defined roles, and a rota-
tion phase, where the roles of human and robot are switched. The
forward phase enables the robot to observe the human actions and
estimate the human policy 7. The rotation phase allows the robot

* This chapter summarizes for com-
pletion the work done in collaboration
with Keren Gu, Premyszlaw Lasota,
Ramya Ramakrishnan and Julie Shah,
presented in [Nikolaidis, 2014].
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Figure 4.1: Cross-training in a
to observe the human inputs on the robot actions and infer the hu- virtual environment leads to
man preference RY from human demonstrations [Argall et al., 2009]. fluent human-robot teaming.
After each training round, which occurs in a virtual environment,
the robot uses the new estimates to compute the optimal policy from
eq. 3.1. Our studies showed that cross-training provides significant
improvements in quantitative metrics of team fluency, as well as
in the perceived robot performance and trust in the robot (fig. 4.1).
These results provide the first indication that effective and fluent
human-robot teaming may be best achieved by modeling effective

training practices for human teamwork.
Inference of a Human Type. Cross-training works by learning an

Figure 4.2: We clustered partici-

individualized model for each human teammate. For more complex pants into types, based on how

tasks, this results in a large number of training rounds, which can be their preference of executing

tedious from a human-robot interaction perspective. However, our a hand-finishing task with the

pilot studies showed that even when there was a very large number robot.
of feasible action sequences towards task completion, people followed
a limited number of “dominant” strategies. Using this insight, we
used unsupervised learning techniques to identify distinct human
types from joint-action demonstrations (fig. 4.2) [Nikolaidis et al.,
2015b]. For each type 6 € ©, we used supervised learning techniques
to learn the human reward RH(x‘t”, a?, atH; 6), as well as the human
policy 7t (x}y'; ), This simplified the problem of learning R, 71 of a
new human worker, to simply inferring their type 6. We enabled this
inference by denoting the human type as a latent variable in a par-
tially observable stochastic process (POMDDP). This allowed the robot
to take information seeking actions in order to infer online the type

a new user, and execute actions aligned with the preference of that
type. This draws upon insights from previous work on cooperative
games [Macindoe et al., 2012] and vehicle navigation [Bandyopad-
hyay et al., 2013], where the human intent was modeled as a latent
variable in a POMDYP, albeit with prespecified models of human
types. In a human subject experiment, participants found that the
robot executing the computed policy anticipated their actions, and

in complex robot configurations they completed the task faster than
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manually annotating robot actions.






5
Human Adaptation

As robotics systems become more advanced, they have access to
information that the human may not have; this suggests that rather
than always following the human, they could use this information
as equal partners to guide their human teammates towards better
ways of doing the task. In that case, it is no longer optimal for the
robot to optimize the human reward function; instead, the robot
should maximize its own reward function, which is different than the
human’s:

R® #£ RY

An improvement upon the leader-follower setting is to recognize that
the human policy can change based on the robot actions. We let a
history of world states, human and robot actions h;:

R _H R H
he = (x, a5, aq, ..., x¢, af, ay')

Given this history, the human policy 7w (x}', hi; 6;) is a function
not only of the current world state x} and human type 6;, but also of
the history ;. Modeling the human policy as a function of the robot
actions and solving the optimization of eq. 3.1, chapter 3, makes the
interaction an underactuated dynamical system, where the robot reasons
over how its own actions affect future human actions, and takes that
into account into its own decision making.

5.1 A Bounded Memory Model.

This history /; can grow arbitrarily large, making optimizing for the
robot actions computationally intractable. In practice, however, peo-
ple do not have perfect recall. Using insights from work on bounded
rationality in behavioral economics, we simplify the optimization,
using a Bounded memory human Adaptation Model (BAM) *.

The Bounded memory human Adaptation Model specifies a pa-
rameterization of the human policy 7. We define a set of modal

Work done in collaboration with David
Hsu.

1 Stefanos Nikolaidis, Anton Kuznetsov,
David Hsu, and Siddhartha Srinivasa.
Formalizing human-robot mutual adap-
tation: A bounded memory model.

In Proceedings of the ACM/IEEE Inter-
national Conference on Human-Robot
Interaction (HRI), 2016; and Stefanos
Nikolaidis, David Hsu, and Siddhartha
Srinivasa. Human-robot mutual adapta-
tion in collaborative tasks: Models and
experiments. The International Journal of
Robotics Research (IJRR), 2017a
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policies or modes M, where m € M is a stochastic policy mapping
states and histories to joint human-robot actions: m : XV x Hy —
IT(AR) x TI(A™).

At each time-step, the human has a mode m" € M and perceives
the robot as following a mode m® € M. Then in the next time-step
the human may switch to m® with some probability «. If m" max-
imizes the expected accumulated reward, the robot optimal policy
would be to follow m~®, expeting the human to adapt.

Specifically, we model the human policy 7t as a probabilistic
finite-state automaton (PFA), with a set of states Q : X* x H;. A joint
human-robot action a", a® triggers an emission of a human and robot
modal policy f: Q — IT(M) x ITI(M), as well as a transition to a new
state P: Q — TI(Q).

5.1.1  Bounded Memory Assumption

Herbert Simon proposed that people often do not have the time and
cognitive capabilities to make perfectly rational decisions, in what

he described as “bounded rationality" [Simon, 1979]. This idea has
been supported by studies in psychology and economics [Kahneman,
2003]. In game theory, bounded rationality has been modeled by as-
suming that players have a “bounded memory” or “bounded recall"
and base their decisions on recent observations [Powers and Shoham,
2005, Monte, 2014, Aumann and Sorin, 1989]. In this work, we intro-
duce the bounded memory assumption in a human-robot collabora-
tion setting. Under this assumption, humans will choose their action
based on a history of k-steps in the past, so that Q : X" x Hj.

5.1.2  Fully Observable Modal Policies

This section proposes a method for inference of m™ and m®, when the
modes are fully observable. The general case of partially observable
modes is examined in chapter 6, section 6.2.1.

If the modes are fully observable, it is sufficient to retain only
the k-length mode history, rather than hy, simplifying the problem.
We define a set of features, so that ¢(q) = {$1(9), $2(9), ..., on(q) }-
We can choose as features the frequency counts ¢}, ¢;; of the modal
policies followed in the interaction history, so that:

k

' =pl ¢ =) Wi =ul YueM (5.1)
1 i=1

on

o=

1

uit and pf is the modal policy of the human and the robot i time-
steps in the past. We note that k defines the history length, with k =1
implying that the human will act based only on the previous inter-
action. Drawing upon insights from previous work which assumes
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1 —« Figure 5.1: The BAM human
adaptation model.

maximum likelihood observations for policy computation in belief-
space [Platt et al., 2010], we used as features the modal policies with
the maximum frequency count:

p = arg max¢p;,, " = arg max¢j, (5-2)
H 14

The proposed model does not require a specific feature representa-
tion. For instance, we could construct features by combining modal
policies u}!, u¥ using an arbitration function [Dragan and Srinivasa,
2012].

5.1.3 Human Adaptability

We define the adaptability as the probability of the human switching
from their mode to the robot mode. It would be unrealistic to assume
that all users are equally likely to adapt to the robot. Instead, we
account for individual differences by parameterizing the transition
function P by the adaptability « of an individual. Then, at state g the
human will transition to a new state by choosing an action specified
by u® with probability &, or an action specified by u" with probability
1 —«a (fig. 5.1).

In order to account for unexpected human behavior, we assign
uniformly a small, non-zero probability € for the human taking a
random action of some mode other than u®, . The parameter €
plays the role of probability smoothing. In the time-step that this
occurs, the robot belief on a will not change. In the next time-step,
the robot will include the previous human action in its inference of
the human mode p".

We note that the Finite State Machine in fig. 5.1 shows the human
mode transition in one time-step only. For instance, if the human
switches from p" to y® and k = 1, in the next time-step the new
human mode u" will be what was previously p®. In that case, oscilla-
tion between p® and p* can occur. We discuss this in section 6.1.3.3.

Throughout this chapter, we assume that the adaptability known
to the robot and fixed throughout the task. We relax the first assump-
tion in chapter 6 and the second assumption in chapter 7.
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Figure 5.2: A human and a
robot collaborate to carry a ta-
ble through a door. (left) The
robot prefers facing the door
(Goal A), as it has a full view of
the door. (right) The robot faces
away from the door (Goal B).

5.1.4 Characterizing Modal Policies

At each time-step, the human and robot modes are not directly ob-
served, but must be inferred from the human and robot actions. This
can be achieved by characterizing a set of modal policies through one
of the following ways:

Manual specification In some cases the modal policies can be easily
specified. For instance, if two agents are crossing a corridor (Sec-
tion 6.1.5), there are two deterministic policies leading to task com-
pletion, one for each side. Therefore, we can infer a mode directly
from the action taken.

Learning from demonstration In previous work, joint-action demon-
strations on a human-robot collaborative task were clustered into
groups and a reward function was learned for each cluster [Niko-
laidis et al., 2015b], which we can then associate with a mode.
Planning-based prediction Previous work assumes that people move
efficiently to reach destinations by optimizing a cost-function, sim-
ilarly to a goal-based planner [Ziebart et al., 2009]. Given a set of
goal-states and a partial trajectory, we can associate modes with pre-
dictive models of future actions towards the most likely goal.
Computation of Nash Equilibria Following a game-theoretic ap-
proach, we solve the stochastic game described in chapter 3 and
restrict the set of modal policies to the equilibrium strategies. For
instance, we can formulate the example of human and robot crossing
a corridor as a coordination game, where strategies of both agents
moving on opposite sides strictly dominate strategies where they
collide.

5.1.5 Application

We show the applicability of the model in an example table-carrying
task (fig. 5.2), A human and HERB [Srinivasa et al., 2010], an au-
tonomous mobile manipulator, work together to carry a table out of
the room. There are two strategies: the robot facing the door (Goal A)
or the robot facing away from the door (Goal B). We assume that the
robot prefers Goal A, as the robot’s forward-facing sensor has a clear
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view of the door, leading to better task performance. Not aware of
this, an inexperienced human partner may prefer Goal B. If human
and robot rotate the table in the same direction, the table orientation
changes at a small amount. Otherwise, the table does not move. We
assume two deterministic and fully observable modal policies, one
for each goal. We will show that the Bounded memory Adaptation

Model allows the robot to reason over the probability of the human

changing its future behavior and to choose its own actions in return.

Robot Policy Computation. We define an infinite-horizon Markov

decision process [Russell and Norvig, 2003] in this setting as a tuple

{X, AR, P,R®, v}, where:

e X : X¥ x O x Hj is the set of observable states. X" is the set of
world states, © is the set of human states and Hj the set of recent
histories. The world states are the different table configurations.
The set of human states is defined as ® : M x A. A human state
is the vector 6 = (m", a), where m' is the human mode and « the
human adaptability.

e AR s a finite set of robot actions. A robot action is a discrete rota-
tion of the table.

e P: X x AR — T1(X) is the state transition function, indicating the
probability of reaching a new state x” from state x and action a®.
Given a table configuration x*, and a table rotation a®, the next ta-
ble configuration depends on the human action. The probability of
the human action is given by the BAM model, and it is a function
of their mode, the current world state, the history of interactions
and their adaptability.

e RR: X" x Hy — R is the reward function, giving the immediate
reward that the human-robot receives. We assume a set of goal
states G, which in the table-carrying example are the two table
configurations of fig. 5.2. We specify the reward function as follows

Rgoal >0 :x"eG
R(x", ) =¢C<0 :x¥ ¢ G and m® # mH (5-3)

0 : otherwise

There is a positive reward R, associated with each goal, and a
negative cost C associated with human-robot mode disagreement.
We assume that the modes m® and m™ are inferred from the history
hy, as explained in section 5.1.2.

e v is a discount factor. The discount factor implicitly penalizes
disagreement, since when human and robot disagree the table does
not move and the expected reward decreases.

The problem of finding the optimal policy of eq. 3.1 is reduced to
solving the above MDP. We can do this using dynamic programming.
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Interestingly, if Rgaa is much larger than R,q,3 and C is negligi-
ble, the robot will always insist towards the optimal goal, ignoring
the user. On the other hand, if the cost of disagreement C is very
high, the robot will always adapt to the user. For some appropriate
values of Ry, Rgoas and C, the robot will choose its actions based
on the user adaptability (fig. 5.3). If the user is adaptable, the robot
will insist towards the optimal goal, expecting that the user will
change their actions in the future. On the other hand, if the user is
non-adaptable, the robot expects them to keep disagreeing and it will
change its own actions instead. This behavior matches our intuition.
In chapter 6 we show that this very capability enables the robot to
guide users towards better ways of completing the task, while retain-
ing their trust in the robot.

5.2 A Best-Response Model.

A particular instance of treating interaction as an underactuated
system is modeling people as computing a best-response to the last
robot action using their reward function RH:

m(xy', af;6;) € arg max R (x}', ay, af'; 6r) (5-4)
H

a

This draws upon insights from previous work on a particular
class of Stackelberg games [Conitzer and Sandholm, 2006], the re-
peated Stackelberg security games [Balcan et al., 2015]. In this setting,
the follower observes the leader’s possibly randomized strategy, and
chooses a best-response. We extend this model to a human-robot
collaboration setting, where the leader is the robot and the follower
is the human, and we model human adaptation by having the fol-
lower’s reward stochastically changing over time 2.

The change in the reward occurs, as the human observes the out-
comes of the robot and their own actions and updates its expecta-
tions on the robot’s capabilities. This model allows the robot to reason
over how the human expectations of the robot capabilities will change based

Figure 5.3: Sample runs on the
human-robot table-carrying
task, with two simulated hu-
mans of adaptability level =0
and a=1. A fully adaptable hu-
man has a=1, while a fully non-
adaptable human has #=0. Red
color indicates human (white
dot) and robot (black dot) dis-
agreement in their actions, in
which case the table does not
move. User 1 is non-adaptable,
and the robot complies. User 2
is adaptable, and the robot suc-
cessfully guides them towards a
better strategy.

Work done in collaboration with Ariel
Procaccia and Swaprava Nath.

2 Stefanos Nikolaidis, Swaprava Nath,
Ariel D Procaccia, and Siddhartha
Srinivasa. Game-theoretic modeling
of human adaptation in human-robot
collaboration. In Proceedings of the
ACM/IEEE International Conference on
Human-Robot Interaction (HRI), 2017b
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on its own actions. Computing an optimal policy with this model en-
ables the robot to decide optimally between communicating information
to the human and choosing the best action given the information that the
human currently has.

We prove that, if the robot can observe whether the user has
learned at each round, the computation of the optimal policy is sim-
ple (Lemmas 1 and 2), and can be done in time polynomial in the
number of robot actions and the number of rounds (Theorem 1).

We show through a human subject experiment in a table-clearing
task that the proposed model significantly improves human-robot
team performance, compared to policies that assume complete hu-
man adaptation to the robot. Additionally, we show through simu-
lations that the proposed model performs well for a variety of ran-
domly generated tasks. This is the first step towards modeling the
change of human expectations of the robot capabilities through in-
teraction, and integrating the model into robot decision making in a
principled way.

5.2.1  Formulation

We follow the two-player game formulation of chapter 3. Human
and robot have a finite set of robot and human actions denoted by
AR = {a}, ..., 4} and A" = {a},...,all}. We make the addi-
tional assumption of a repeated game, with only one world state,
ie, |[X¥] =1

The payoff 3 associated with each pair of actions is uniquely iden- 3 We will use the terms ‘reward’ and
tified by the robot reward R* = [r; ], (i,j) € [m] x [n], where the entry ‘payoff” interchangeably.
ri,j denotes the reward for the action pair (a7, a;') chosen by these two
players. We denote the reward vector corresponding to row i by r,
ie,r; = (ri1,...,ti,). Importantly, the same reward is experienced
together by both players. Therefore this is an identical payoff game
where the goal is to maximize the total reward obtained in T (finite)
rounds of playing this repeated game. If the reward matrix was per-
fectly known to both the agents, they would have played the action
pair that gives the maximum reward in each round.

However, we assume that in the beginning of the game, the robot
has perfect information about the reward matrix, whereas the human
has possibly incorrect information (captured by a reward matrix R"
which the human believes to be the true reward matrix). In different
rounds of the game, the human probabilistically learns different en-
tries of this matrix and picks action accordingly. We will assume that
the human is capable of taking the optimal action given their knowl-
edge of the payoffs, e.g., if a specific row of this matrix is completely
known to the human and the robot plays the action corresponding to
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Figure 5.4: Models of human
partial adaptation, described in

section 5.2.2. The human learns
with probability « the entries
of row r; that correspond to

the robot action a® played, and

with probability 1-& none of

the entries. The learning occurs
before her action (learning from
t+1 robot action — My), or after her

o/ \— o w
action (learning from experience

... & — full observability (M) or

partial observability (M3)).

this row 4, the human will pick the action that maximizes the reward 4+ We will refer to this robot action as
in this row. However, if the entries of a row are yet to be learned playing a row.
by the human, the human picks an action according to arg maxr/,
where 7} is the i-th row of R".
The only aspect of this game that may change over time is the state
of the human, which we denote by 6;, t € [T]. Therefore, the state
of the game is simply the state of the human agent. We denote the
state space of the game as ©; it will be instantiated below in different
models of information dissemination.
With these assumptions, we can simplify eq. 3.1 from chapter 3 as
follows:

T
% € argmax E | ) R¥(a}, af;6;)| %, " (5.5)
R t=1
From eq. 5.4, the human policy 7™ is deterministic; the expectation
is taken only with respect to the future human states 6;.

5.2.2  Approach

We consider a setting where, in each round, the robot plays first by
choosing a row. We model the strategy of the human 7 : AR x @ —
A" as maximizing a human reward function R¥. In other words, the
human best responds to the robot action, according to the (possibly er-
roneous) way she currently perceives the payoffs. The human reward
matrix R evolves over time, as the human learns the “true” reward
R® through interaction with the robot. We propose a model of human
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partial adaptation, where the human learns with probability « the en-
tries of row r; that correspond to the robot action aR played, and with
probability (1 — a) none of the entries. We consider the following
models, based on when the human learning occurs, and on whether
the robot directly observes if the human has learned.

M;. The human learns the payoffs immediately after the robot plays
a row, and before she takes her own action. The robot can infer
whether the human has learned the row, by observing the reward
after the human has played in the same round. We call this learning
from robot action, where the robot has full observability of the human
internal state. This model is studied in section 5.2.4.1.

M;. The human learns the payoffs associated with a row after she
plays in response to the robot’s action. The robot can observe whether
the human has learned before the start of the next round, for instance
by directly asking the human, or by interpreting human facial ex-
pressions and head gestures [El Kaliouby and Robinson, 2005]. We
call this model learning from experience, where the robot has full ob-
servability of the human internal state. This model is studied in sec-
tion 5.2.4.2.

M;. Identically to model My, the human learns a row after her action
in response to the robot action. However, the robot does not immedi-
ately observe whether the human has learned, rather infers it through
the observation of human actions in subsequent rounds of the game.
This is a case of learning from experience, partial observability.

We note that we do not define a model for learning from robot ac-
tion, partial observability case, since the robot can always directly ob-
serve whether the human has learned, based on the reward resulting
from the human action in the same round.

Figure 5.4 shows the different models. In Section 5.2.3, we discuss
the general case of partial observability (Model M3) and formulate
the problem as a Markov Decision Process [Russell and Norvig,
2003]. Computing the optimal policy in this case is exponential in
the number of robot actions m. However, when the robot has full
observability of the human state (Models M1, M3), the optimal policy
has a special structure and can be computed in time polynomial in m
and T (Section 5.2.4).

5.2.3 Theory: Partial Observability

In this section we examine the hardest case, where the human learns
the payoffs associated with the row after their choice of actions, and
the robot cannot directly observe whether the human has learned
the payoffs (model M3). Instead, the robot infers whether the human

39
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has learned the row by observing the human response in subsequent
rounds of the game.

While the human state is partially observable, we can exploit the
structure of the problem and reduce it to a Markov Decision Process
based on the following observation: the probability of the human
having learned a row is either o when it is played for the first time; «
after it is played by the robot and the human responds sub-optimally;
and 1 after the the human has played the actual best-response strat-
egy (according to R) for that row (which means she has learned the
true rewards in the previous round).

We define a Markov decision process in this setting as a tuple
{X, AR, P,R, T}, where:

e X € {0,9,1}™ is a finite set of human states (so that X = 0).

A human state x is represented by a vector (x1, X2, ..., X ), where

x; € {0,9,1} and i is the corresponding row in the matrix. The

starting state is x; = 0 for each row i. x; = 1 indicates that the

robot does not know whether human has learned row i or not.

In this state, the human plays the best response in that row with

probability «, or an action defined by the strategy 7™ of the human

with probability (1 — «) 5. If the human plays best-response, then
the robot knows that human has learned row i, thus the entry for

that row is x; = 1.

o AR ={a% ... 4R} is a finite set of robot actions.

e P: X x AR — TI(X) is the state transition function, indicating the
R
e
State x transitions to a new state x’ with all vector entries identical,

probability of reaching a new state x’ from state x and action a

apart from the element x; corresponding to the row played. If the
robot plays i for the first time (x; = 0), the corresponding entry in
the next state x’ deterministically becomes xg = ¢, since the robot
no longer knows whether the human has learned the payoffs for
that row. If x; = 1p, the human may have learned that row in the
past and play the best-response strategy, leading to a transition to
x} = 1 with probability «. If the human does not play the best-
response strategy, the robot still does not know whether they will
have learned the payoffs after the current round, thus x; =
with probability (1 — «). If x; = 1, the corresponding entry in all
subsequent states will be xlf =1, i.e., if the human learns a row, we
assume that they remember the row in the future.

e R: A® x A" — R is the reward function, giving the immediate
reward gained by performing a human and robot action. Note that
if action i is played and the state has x; = 1, the reward will be
based on the best response in row i of R with probability «, and
on row i of R" with probability (1 — «) — we consider the expected
reward. We assume that the robot knows the “true” reward, so that

> We assume that « is a parameter
known to the robot and fixed through-
out the task



MATHEMATICAL MODELS OF ADAPTATION IN HUMAN-ROBOT COLLABORATION

RR =R.
e T is the number of rounds.
The robot’s decision problem is to find the optimal policy 7% =
(¥, ..., %) to maximize the expected payoff, as defined in eq. 5.5.
We observe that in the current formalism, the size of the state-
space is |X\ = 3™, where m is the number of robot actions. Therefore,
the computation of the optimal policy requires time exponential in
m. In Section 5.2.4, we show that for the case where the robot can
observe whether the human has learned the payoffs, the optimal
policy can be computed in time polynomial in m and T.

5.2.4 Theory: Full Observability

In this section, we assume that the robot can observe whether the
human has learned the payoffs. We instantiate state x; as a vec-

tor (x¢1,X¢2,...,Xt,m), Wwhere each x;; is now a binary variable in
{0,1} denoting the robot’s knowledge in round ¢ of whether row i is
learned by the human. In contrast to section 5.2.3, there is no uncer-
tainty about whether the human has learned or not (therefore no ¢
state).

5.2.4.1 LEARNING FROM RoBOT AcCTION

This is the scenario where the human might learn the payoffs imme-
diately after the robot plays a row, and before she takes their own
action (Model Mj in section 5.2.2). Clearly, the robot can figure out if
the human learned the row by observing the reward for that round.
Our algorithmic results in this model strongly rely on the following
lemma.

Lemma 1. In model My, if, under the optimal policy 7*", there exists

T €{2,...,T}andi € [m] such that x;; = 1 and maxr; > maxr; for
all j such that x,; = 1, then nf*(xt) = af forall T < t < T and for all
Xt = Xr.

This lemma says that the optimal policy for the robot is to pick the
action af when i is the row that yields the maximum reward among
the rows already learned by the human. As we will show in detail
later, this directly leads to a computationally efficient algorithm, via
the following insight: if the robot plays a row and this row is successfully
revealed to the human, the optimal policy for the robot is to keep playing that
row until the end of the game.

The main idea behind the proof below is 6. if at round t — 1 the ¢ Informally, one way to understand
why the lemma holds is by thinking

optimal policy plays row 2, and that row is revealed, then it will not
p p y pay that, if the robot chooses between a

explore the unrevealed (higher rewarding) row 1 afterwards. The high-cost high-reward and a low-cost
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reason is that if the optimal policy chose to explore row 1 at some low-reward action, it is better to choose

the high-cost high-reward action as

early as possible, so that it has enough
time to reap the benefits if the human

succeeds in learning.
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time in the future — which is a contradiction to the lemma — then
playing row 1 at round ¢ — 1 would have been optimal, therefore an
optimal policy would not have played row 2 at round ¢ — 1.

Proof of Lemma 1. Assume for contradiction that the lemma does not
hold, and let ¢ be the last round in which the optimal policy violates
the lemma, i.e., the last round in which there are i,j € [m] such that
xt; = 0 and x;; = 1, but the optimal policy plays row i. Without loss
of generality assume that these i and j are rows 1 and 2, respectively.
For all rounds from ¢ + 1 to T, it holds (by the choice of t) that if row
i is revealed to the human, the optimal policy will continue playing
ay (if there are multiple such rows, it plays the one with highest
reward).

Let the maximum rewards corresponding to rows 1 and 2 be R;
and Ry, respectively, i.e., Ry = maxry. We assume w.l.o.g. that row
2 has the highest maximum reward among all revealed rows. We
can also assume that R; > R», since a policy that moves away from
a row that is simultaneously known and more rewarding is clearly
suboptimal.

If a row is not learned, the reward associated with actions 4} and
a5 are C; and Cp, where Cy = ri[argmaxry H] Clearly, C; < Ry and
Cy < R,. We define Uy, so that:

U( R|X1 i 7Tt xt 7Tt (xf) xf))

m] (5-6)

Since the optimal policy chose af in round ¢ over a5, the expected
payoff of choosing af in round # must be larger than that of a3, i.e.,

a(Ry + Uper (7(1,1,...))) + (1 — &) - (Cp + Upa (77](0,1,..)))
> Ry + U1 (7¥'](0,1,...)),
where the first term on the LHS shows the expected payoff if row 1

is learned in round ¢, and the second term shows the payoff when it
is not. It follows that

a(Ri+Ry-(T—t—-1))+(1—a) - (Ci+Ry- (T—t—1))

>Ry +Ry- (T—t—1). 57)

The implication holds because from round ¢ + 1, we assume (by the
choice of t) that the optimal policy continues playing the best action
among the revealed rows. We make the above inequality into an
equality by adding a slack variable € > 0 as follows.

aR1 - (T—t)+(1—a)(C1+Ry- (T—t—-1))
=R+ Ry- (T—t—1)+e. (5.8)

Denote the LHS of the above equality as p;. Note that this is the
assumed optimal value of the objective function at round ¢ when the
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state x; is (0,1,...), i.e., Ut(nR* 1(0,1,...)) = p1. Rearranging the
expressions above, we get,

lXRl'(T—t)+(1—lX)C1:Rz—l-l’éRz'(T—t—l)—l-e. (5.9)

We claim that if the optimal policy chooses the action 4 at round ¢,
then the expected payoff in round ¢ — 1 from choosing the action a}
would have been larger than that of the action a5. If our claim is true,
then the current policy, which chose a5 at t — 1, cannot be optimal,
and we reach a contradiction. To analyze the decision problem in
round t — 1, we need to consider two possible states of the game in
this round.

Case 1: x;—1 = (0,0,...). In this state, playing a} gives an expected
payoff of

w(Ry 4+ U (7 |(1,0,...))) + (1 — a)(Cq + U(7¥[(0,0,...)))

o (5.10)
> Dc(Rl + R1(T — t)) + (1 — a)(Cl + Ut(ﬂ' |(0,0,. . )))

The inequality holds because in state (1,0, ...), playing af yields at
least R; in every subsequent round. Playing a5 in round t — 1 yields,

w(Ry +p1) + (1 — &) (Cy 4 U (7X'1(0,0,...))). (5.11)

This expression is similar to the RHS of Equation (5.10), except that
the expected payoff at x; = (0,1,...) is assumed to be p;. We claim
that the expression on the RHS of eq. (5.10) is larger than the expres-
sion in eq. (5.11), for which we need to show that

a(Ry +Ry(T—1)) + (1 —a)G
>a(Ry+p1)+(1—0a)C
< aR1+Ry+aRy- (T—t—1)+e€
>a(Ry+Ry+Ry- (T—t—1)+e€)+(1—a)C,
< aR1 + Ry +€>aRy +aRy+ (1 —a)Cy + ae.
In the first equivalence, we substitute the expression from eq. (5.9)

on the LHS and the expression of p; from eq. (5.8) on the RHS. The
second equivalence holds by canceling out one term. We see that the
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final inequality is true since Ry > Cp, Ry > Ry, and 0 < < 1.7 71f a = 1, playing the row arg maxR; is
optimal and the lemma holds trivially.
Case 2: x;—1 = (0,1,...), in this state playing the action a} gives an For & = 0, the lemma is vacuously true.

expected payoff of at least So, we assume 0 < & < 1wlo.g.

a(R1+R-(T—1t)+(1—a)(Cy+ Ut(ﬂR*KO, 1,...)))
=a(Ri+Ry-(T—1))+(1—a)(Cy+p1)- (5.12)

This is similar to the RHS of eq. (5.10) except that now we can replace
U;(7*'((0,1,...)) with p;. On the other hand, the expected payoff of
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the action a5 in round t — 1 is given by R, + p; — because at state
(0,1,...) inround f — 1, action a5 gives R, deterministically, since the
human knows row 2. The state remains the same even after reaching
round t. The expected payoff at this round for this state is assumed
to be p1. Now to show that the expression in eq. (5.12) is larger than
Ry + p1, we need to show that

a(Ri+Ry-(T—1)+(1—a)(Ci+p1) > Ra+p1
<= aRy+aR;- (T—t)+ (1 —a)C; > Ry +apy
< aR1+Ry+aRy- (T—t—1)+e
>Ry +aRy+aRy- (T—t—1)+uae
<= aRi{+€>aRy +ae

The first equivalence comes from reorganizing the inequality. The
second equivalence is obtained through substitution using egs. (5.8)
and (5.9). The third equivalence follows by canceling out two terms.
The last inequality is true since Ry > Ry and 0 < a < 1.

To summarize, we have reached a contradiction in both cases,
which are exhaustive. This proves the lemma. O

5.2.4.2 LEARNING FROM EXPERIENCE

Recall that in model M3, the human learns with probability « all pay-
offs associated with a row after they play their action in response to
the robot playing an unrevealed row. They do not learn with proba-
bility 1 — a. This model is the same as model M3 of section 5.2.3, with
an additional assumption: before the robot takes its next action, it can
observe the current state.

We show that in this setting too, the optimal policy has a special
structure similar to that under model M (section 5.2.4.1), which can
be computed in time polynomial in m and T.

Lemma 2. In model My, if, under the optimal policy 7%, there are T €
{2,..., T} and i € [m] such that x,; = 1 and maxr; > maxr; for all j
such that x,; = 1, then nf* (x¢) = af forall T < t < T and for all x; = x+.

The proof is similar to the proof of Lemma 1. However, the ex-
pected payoffs and the corresponding inequalities are different.
Therefore, we provide a proof sketch that identifies the differences
from the previous proof.

Proof of Lemma 2 (sketch). As before, the idea of the proof is to show
that if the optimal policy changes its action from playing the revealed
row that yields maximum reward, a5, to playing an unrevealed row
of higher maximum reward, af, for the last time in round £, then
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it must have done so in its previous round, leading to a contradic-
tion. In model M;, the human does not observe the payoffs of the
row played by the robot before they plays their own action. There-
fore, we can assume w.l.o.g. that when an unrevealed row is played,
its reward is no larger than the maximum reward of that row, e.g.,
C1 < Ry if row 1 is played. Hence, if the optimal policy changes its
action from a5 to 4} in round f when x; = (0,1,...), the inequality
equivalent to eq. (5.7) must be
Ci+aR; - (T—t—1)+(1—a)Ry- (T—t—1)
>Ry+Ry- (T—t—1). (5.13)
After adding the slack variable, we get,
p1E2Cr+aRy - (T—t—1)+(1—a)Ry- (T—t—1)
=Ry+Ry-(T—t—1)+e
= Ci+aR;- (T—t—1)=Ry+aRy- (T—t—1) +e.
In Case 1, the expected payoff of playing af is at least: C; + aRy - (T —
t) + (1 — &)U (¥ |(0,0,...)). The expected payoff of playing a5 is:
Co +apy + (1 — &)U (7%7)(0,0,...)). We show that the first expression
is larger than the second, i.e.,
Ci+aRy-(T—t) > Cy + apq
<= aRy + Ry +aR; - (T—t—1)+€
>Cy+aRy+aRy - (T—t—1)+ae
<= aR1+ Ry +e€ > Cy+aRy + we.
The final inequality holds since Ry > Ry > Co and 0 < a < 1.
Similarly for Case 2, the expected payoff of playing af is at least:
Ci+aRy - (T—1t)+ (1 —a)U(7*((0,1,...))
>Ci+aRy - (T—t)+ (1 —a)Ry- (T —t).
On the other hand, the expected payoff of playing a5 is Ry + p1. We
again show that the RHS of the first expression is larger than the
second, i.e.,
C1+0CR1 . (T—i’)—l—(l—ﬂ()Rz-(T—t) > R2+p1
< Ci+aRy - (T—t—1)4+aRi+(1—a)Ry- (T—t—1)
—f—(l—lX)Rz >R2+R2+R2~(T—t—1)+€
< Rp+Ry- (T—t—1)+e+aR;+(1—a)R;
> R2+R2+R2'(Tft*1)+€
< aRy > aR,,

which holds since R; > Ry and 0 < & < 1. O
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Algorithm 1 Optimal Policy: Full Observability

Input: matrix R, time horizon T, parameter «
Output: optimal action 4} in each round ¢
Ut (x¢), a5 (x¢) = OptPolicy(xy, t)
procedure OptPolicy(xy, t)
if t > T then
return (0, None)
else
if x; has at least one 1 then
find a row k* s.t. k* € arg max max ry
kexy =1
return (maxrp X (T —t),k*)
else
find a row

i* € arg max [a(Ry + Upyq(ex)) + (1 —a)(Ck
ke[m)

+ Up11(0))]
and its value u;+ (for model Mq)
OR
find a row
i* € arg max [Cy + alp1(ex) + (1 — a)Ups1(0)]
kelm

and its VEal]ue uj+ (for model Mj)
return (u;,i*)

end if

end if

end procedure

5.2.4.3 DESIGN OF AN EFFICIENT ALGORITHM

As advertised, using Lemmas 1 and 2, we can easily prove the follow-
ing theorem.

Theorem 1. In models My and My, an optimal policy can be computed in
polynomial time.

Indeed, the algorithm is specified as Algorithm 1. Here e; denotes
the m-dimensional standard unit vector in direction k. This algorithm
runs in time polynomial in m and T since the inner else condition
does not branch into two independent computations. This is because
when at least one coordinate of x; is 1, the inner if condition is met
and the expected payoff in that case is computed without recursion.
Therefore, in every round the number of computations is O(m), and
the algorithm has complexity O(mT).

Figure 5.5: User performs a

repeated table-clearing task
with the robot. The robot fails
intentionally in the beginning
of the task, in order to reveal
its capabilities to the human
teammate.
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5.2.5 From Theory to Users

We conduct a human subject experiment to evaluate the proposed
model in a table-clearing task (fig. 5.5). We focus on the case where
the human learns from experience (Models My, M3). We are interested
in showing that the policies computed using the partial adaptation
model will result in better performance than policies that model the
human as learning the best-response to all robot actions, rather than
to only the robot action played.

5.2.6 Manipulated Variables

Observability. We used two settings — one where the robot does R a
not directly observe whether the human has learned (section 5.2.3),
and one where the robot observes directly whether the human has
learned (section 5.2.4.2).

Adaptation. We compared the proposed partial adaptation model
(fig. 5.6) with a model of complete adaptation, where the robot mod-

els the human as learning all rows of the payoff matrix with proba- o l1-«a
bility « after a row is played, instead of learning only the row played

(fig. 5.7).

5.2.6.1 HYPOTHESIS ...

We hypothesize that the robot policies that model the human as partially
adapting to the robot will perform better than the policies that assume com-

plete adaptation of the human to the robot.
Figure 5.6: The robot reveals

5.2.6.2 EXPERIMENT SETTING the row Played (in t.h.is example
row 2) with probability «.
Table-clearing task. We test the hypothesis in the table-clearing task .
of fig. 5.5, where a human and a robot collaborate to clear the table R aMt
from objects. In this task, the human can take any of the following
actions: {pick up any of the blue cups and place them on the blue
bin, change the location of any of the bins, empty any of the bottles
of water}. The robot can either remain idle or pick up any of the
bottles from the table and move them to the red bin. The goal is to
maximize the number of objects placed in the bins. a I-a
The human does not have in advance the following information
about the robot: (1) the robot does not know the location of the green
bin. Therefore, when the robot attempts to grab one of the bottles, it
may push the green bin, dropping the blue bin off the table. (2) The

robot will fail if it picks up the bottle that is farthest away from it, if

that bottle has water in it. This is because of its motor torque limits.

Model parameters. This information is represented in the form of

a payoff matrix R. The entries correspond to the number of objects Figure 5.7: The robot reward
matrix R is in dark shade and
the human reward matrix RY in
light shade. The robot reveals
its whole reward matrix with
probability «.
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in the bins after each human and robot action. Table 5.1 shows part
of R; it includes only the subset of human actions that affect the out-
come. For instance, if the robot starts moving towards the bottle that
is closest to it (action ‘Pick up closest’) and the human does not move
the green or blue bin out of the way, the robot will drop the blue bin
off the table, together with any blue cups that the human has placed.
Therefore, at the end of the task only the bottle will be cleared from
the table, resulting in a reward of 1. If the robot attempts to pick up
both bottles (action “pick up both”) and the human does not empty
the bottle of water before the robot grasps it, the robot will fail, re-
sulting in a reward of o. If the human has emptied the bottle and
moved the blue bin (action “Clear cups & move bin & empty bottle”),
the robot will successfully clear both bottles without dropping the
bin, resulting in a reward of 4 (2 bottles in the red bin and 2 cups in
the blue bin).

Clear cups Clear cups Clear cups

& move bin & move bin

& empty

bottle

Noop 2 2 2
Pick up closest 1 3 3
Pick up both 0 0 4

In the beginning of the task, we assume that the human response
to all robot actions will be “Clear cups”; since the human has not
observed the robot dropping the bin or failing to pick up the bottle,
they have no reason to move the bin or empty the bottle of water. We
also assume that they do not learn any payoffs if the robot remains
idle (“Noop” action). We set the probability of learning « = 0.9, since
we expected most participants to learn the best-response to the robot
actions after observing the outcome of their actions.

Procedure. The experimenter first explained the task to the partici-
pants and informed them about the actions that they could take, as
well as about the robot actions. Participants were told that the goal
was to maximize the number of objects placed in the bins at each
round. They performed the task three times (I' = 3). In the full
observability setting, the experimenter asked the participants after
each round, what would their action be if the robot did the same
action in the next round. The experimenter then inputted their re-
sponse (learned or not learned) into the program that executed the
policy. When the robot failed to pick up the bottle, the experimenter
informed them that the robot had failed. Participants were told that
the error message displayed in the terminal was: “The torque of the
robot motors exceeded their limits.” This is the generic output of our

Table 5.1: Part of payoff matrix
R for table-clearing task. The
table includes only the subset
of human actions that affect
performance.
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ROS-based hardware interface, when the measured torques exceed
the manufacturer limits. We added a short, general explanation about
how torque is related to distance and applied force. At the end, par-
ticipants answered open-ended questions about their experience in
the form of a video-taped interview.

5.2.7 Subject Allocation

We recruited 60 participants from a university campus. We chose
a between-subjects design in order to avoid biasing users towards
policies from previous conditions.

5.2.8 Results and Discussion

Analysis. We evaluate team performance by the accumulated reward
over the three rounds of the task (fig. 5.8-left). We observe that the
mean reward in the partial adaptation policy was 42% higher than
that of the complete adaptation policy in the partial observability
setting, and 52% higher than that of the complete adaptation policy
in the full observability setting. A factorial ANOVA showed no sig-
nificant interaction effects between the observability and adaptation
factors. The test showed a statistically significant main effect of adap-
tation (F(1,56) = 18.58, p < 0.001), and no significant main effect of
observability. These results support our hypothesis.

The difference in performance occurred because in the complete
adaptation model the robot erroneously assumed that the human
had learned the best-response to the “Pick up both” action, after the
robot played the row “Pick up closest.” In this section, we examine
the partial and complete adaptation policies in the partial-observability
setting. The interpretation of the robot actions in the full-observability
setting is similar. The robot chooses the action “Pick up both” for
round T = 1 (as well as for T = 2, 3) in the partial adaptation condi-
tion 8, since the loss of receiving zero reward at T = 1 is outweighed
by the rewards of 4 in subsequent rounds, if the human learns the
best-response to that action, which occurs with high probability

Figure 5.8: (left) Accumulated
reward over 3 trials of the
table-clearing task for all four
conditions. (center) Predicted
and actual reward by the partial
and complete adaptation poli-
cies in the partial observability
setting. (right) Mean reward
over time horizon T for simu-
lated runs of the complete and
partial adaptation policies in
the partial observability setting.
The gain in performance from
the partial adaptation model
decreases for large values of

T. The x-axis is in logarithmic
scale.

8 Unless specified otherwise, for the rest
of this section we refer to the partial
observability level of the observability
factor.
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(« = 0.9). On the other hand, the robot in the complete adaptation
condition takes the action “Pick up closest” at T = 1 and “Pick up
both” at T = 2 and T = 3. This is because the model assumes that the
human will learn the best-response for all robot actions if the robot
plays either “Pick up closest” or “Pick up both”, and the predicted
reward of 1 for the action “Pick up closest” is higher than the reward
of o for “Pick up both” at T = 1.

Fig. 5.8-center shows the expected immediate reward predicted
by the partial and complete adaptation model for each round in the
partial observability setting, and the actual reward that participants
received. We see that the immediate reward in the complete adapta-
tion condition at T = 2 was significantly lower than the predicted
one. The reason is that six participants out of 10 in that condition did
not infer at T = 1 that the robot was unable to pick up the second
bottle and did not empty the bottle at T = 2, which was the best-
response action. From the four participants that emptied the bottle,
two of them justified their action by stating that “there was enough
time to empty the bottle” before the robot would grab it. The same
justification was given by three participants out of eleven in the par-
tial adaptation condition, who emptied the bottle at T = 1 without
knowing that this was required for the robot to be able to pick it up.
This caused the actual reward to be higher than its predicted value
of 0. Additionally, the actual reward at T = 2 was lower than the
predicted value. We attribute this to the fact that 73% of participants
learned the best-response for the robot action (emptying the bottle
that was farthest away) in that round, whereas the predicted value
assumed a probability of learning « = 0.9. In T = 3, the actual re-
ward matched the prediction closely, since all participants eventually
learned that they should empty the bottle.
Generalizability of the results. The results discussed above are com-
pelling in that they arise from an actual human-subject experiment,
but they are limited to one task. We are interested in showing — via
simulations — that the proposed model performs well for a variety
of tasks. We randomly generated instances of the reward matrix R
and « values and simulated runs of the partial and complete adapta-
tion policies for increasing time horizons T. The simulated humans
partially adapted to the robot, and the robot did not observe whether
they learned. For each value of T, we randomly sampled 1000 reward
matrices R and simulated 100 policy runs for each sampled instance
of R. Fig. 5.8-right shows the reward averaged over the number of
rounds T, policy runs and instances of R. For T = 1, the mean re-
ward is the same for both models, since there is no adaptation. The
partial adaptation policies consistently outperform the complete
adaptation ones for a large range of T. For large values of T the per-
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formance difference decreases. This is because the human eventually
learns the true payoffs and the gain from playing the true best re-
sponse outweighs the initial loss caused by the complete adaptation
model.

Selection of x. We note that the « value, which represents the proba-
bility that the human learns the true robot capabilities, is task and
population-dependent. In our experiment, participants were re-
cruited from a university campus, and most of them were able to
infer that they should empty the bottle, after observing the robot
failing and being notified that “the robot exceeded its torque limits.”
Different participant groups may require a different « value. The
value of « could also vary for different robot actions; we conjecture
that our theoretical results hold also when there is a different adapta-
tion probability «; for each row i of the payoff matrix, which we leave
as future work.

5.2.9 Conclusion

We presented a game-theoretic model of human partial adaptation
to the robot. The robot used this model to decide optimally between
taking actions that reveal its capabilities to the human and taking
the best action given the information that the human currently has.
We proved that under certain observability assumptions, the optimal
policy can be computed efficiently. Through a human subject exper-
iment, we demonstrated that policies computed with the proposed
model significantly improved human-robot team performance, com-
pared to policies that assume complete adaptation of the human to
the robot.

While our model assumes that the human may learn only the
entries of the row played by the robot, there are cases where a robot
action may affect entries that are associated with other actions, as
well. For instance, Cha et al. [2015] have shown that conversational
speech can affect human perception of robot capability in physical
tasks. Future work includes exploring the structure of probabilistic
graphical models of human adaptation, and using the theoretical
insights from this work to develop efficient algorithms for the robot.

5.3 Discussion

This chapter described two models of human adaptation, where the
human changes its behavior based on the robot’s actions. The robot
leverages this to communicate information to its human teammate
and guide them towards better ways of doing the task. In these mod-
els, we have assumed the human state § € O to be fully observable. In
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the next chapter, we relax this assumption and show that the robot
can infer the unknown human state of a new human teammate and
build a model of human adaptation online, through interaction.



6
Mutual Adaptation

In our models of human adaptation, we have assumed that the robot
knows the type 0 of the human, which parameterizes the human pol-
icy 7 and the human reward function RY. However, our studies
have shown that there is a large variability among different types

6. Additionally, the type 6 of a new human worker is typically un-
known in advance to the robot and it cannot be fully observed. In
this chapter ' we relax the assumption of a known 6 for the hu-

man. Instead, we treat 6 as a latent variable in a partially observ-
able stochastic process, in particularly a mixed-observability Markov
decision process, which has been shown to achieve significant com-
putational efficiency [Ong et al., 2010]. This allows the robot to take
information seeking actions to infer online the parameter 6, which
specifies how the human policy 71! is affected by the robot’s own ac-
tions. As a result, human and robot mutually adapt to each other; the
robot builds online a model of how the human adapts to the robot by
inferring their type 6, and adapts its own actions in return.

In section 5.1 of chapter 5, we instantiated the type 6 of the human
as the human mode m" and the human adaptability «, so that 6 =
(m", «). In the mutual adaptation formalism of section 6.1, we keep
the full observability assumption for the mode m", and treat the
human adaptability as a latent variable. In section 6.2, we relax the
full observability assumption for the mode m".

In this chapter, we assume that the human adaptability is constant
throughout the task. We break this assumption in the next chapter.

6.1 Collaboration

We use as application the table-carrying task of chapter 5 (fig. 6.1).
We model the human policy using the Bounded memory Adapta-
tion model of section 5.1, chapter 5, and treat the human adaptability
as a latent variable in a partially observable stochastic process. This
enables the robot to infer the human adaptability online through

1 Stefanos Nikolaidis, Anton Kuznetsov,
David Hsu, and Siddhartha Srinivasa.
Formalizing human-robot mutual adap-
tation: A bounded memory model.

In Proceedings of the ACM/IEEE Inter-
national Conference on Human-Robot
Interaction (HRI), 2016; Stefanos Niko-
laidis, Yu Xiang Zhu, David Hsu, and
Siddhartha Srinivasa. Human-robot
mutual adaptation in shared auton-
omy. In Proceedings of the ACM/IEEE
International Conference on Human-Robot
Interaction (HRI), 2017¢; and Stefanos
Nikolaidis, David Hsu, and Siddhartha
Srinivasa. Human-robot mutual adapta-
tion in collaborative tasks: Models and
experiments. The International Journal of
Robotics Research (IJRR), 2017a

Work done in collaboration with David
Hsu and Anton Kuznetsov.
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interaction, and adapt its own actions in return. Fig. 6.2 shows ex-
amples of human and robot behaviors for three simulated humans
in the task. The robot estimates the unknown human adaptability
through interaction. User 1 is fully non-adaptable with & = 0. The
robot infers this after two steps of interaction and switches its action
to comply with the human preference. User 3 is fully adaptable with
« = 1 and switches to accommodate the robot preference after one
step of interaction. User 2 is adaptable with « = 0.75. After several
steps, the robot gets a good estimate on the human adaptability level
and guides the human to the preferred strategy.

We want to emphasize here that the robot executes a single pol-

icy that adapts to different human behaviors. If the human is non-

adaptable, the robot complies to the human’s preferred strategy. Figure 6.1: A human and a
Otherwise, the robot guides the human towards a better strategy. robot collaborate to carry a ta-

We are interested in studying whether a robot, under our pro- ble through a door. (top) The
posed approach, is able to guide human partners towards a better robot prefers facing the door
collaboration strategy, sometimes against their initial preference, (Goal A), as it has a full view of
while still retaining their trust. We conducted a human subject ex- the door. (bottom) The robot
periment online via video playback (1 = 69) on the simulated table faces away from the door
carrying task (fig. 6.1). In the experiment, participants were signifi- (Goal B).

cantly more likely to adapt, when working with the robot utilizing
our mutually adaptive approach, compared with the robot that cross-
trained with the participants. Additionally, the participants found
that the mutually adaptive robot has performance not worse than

the cross-trained robot. Finally, the participants found that the mutu-
ally adaptive robot was more trustworthy than the robot executing a
fixed strategy optimal in task performance, but ignoring the human
preference.

We are also interested in how adaptability and trust change over
time. We hypothesized that trust in the mutually adaptive robot in-
creases over time for non-adaptable participants, as previous work
suggests that robot adaptation significantly improves perceived robot
trustworthiness [Shah et al., 2011], and that the increase in trust re-
sults in subsequent increased likelihood of human adaptation to the
robot. A human subject experiment on repeated table-carrying tasks
(n = 43) did not support this hypothesis.

To study the generality of our model, we hypothesized that non-
adaptable participants in the table-carrying task would be less likely
to adapt in a different collaborative task. A follow-up human subject
experiment with a hallway-crossing task (n = 58) confirmed the
hypothesis.
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6.1.1 Robot Planning

In this section we describe the integration of BAM in the robot de-
cision making process using a MOMDP formulation. A MOMDP
uses proper factorization of the observable and unobservable state
variables S : X x Y with transition functions 7, and 7;, reducing
the computational load [Ong et al., 2010]. The set of observable state
variables is X : X" x M¥ x MK, where X¥ is the finite set of task-
steps that signify progress towards task completion and M is the set
of modal policies followed by the human and the robot in a history
length k. The partially observable variable y is identical to the human
adaptability a. We assume finite sets of human and robot actions A"
and A®, and we denote as 71" the stochastic human policy. The latter
gives the probability of a human action at at state s, based on the
BAM human adaptation model.

The belief update becomes:

V'(y') =nO(s',a%0) Y Y Tx(s,a®a" x)
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Figure 6.2: Sample runs on the
human-robot table-carrying
task, with three simulated hu-
mans of adaptability level a=o,
0.75, and 1. A fully adaptable
human has a=1, while a fully
non-adaptable human has a=o.
In each case, the upper row
shows the probabilistic esti-
mate on & over time. The lower
row shows the robot and hu-
man actions over time. Red
color indicates human (white
dot) and robot (black dot) dis-
agreement in their actions, in
which case the table does not
move. The columns indicate
successive time steps. User 1 is
non-adaptable, and the robot
complies with his preference.
User 2 and 3 are adaptable to
different extent. The robot suc-
cessfully guides them towards a
better strategy.
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Figure 6.3: Different paths on
MOMDP policy tree for human-
robot (white/black dot) table-
carrying task. The circle color
represents the belief on &, with
darker shades indicating higher
probability for smaller values
(less adaptability). The white
circles denote a uniform distri-
bution over a. User 1 is inferred
as non-adaptable, whereas
Users 2 and 3 are adaptable.

User 1 User 2 User 3
e > World < Figure 6.4: Integration of BAM
Beliof into MOMDP formulation.
Update | MoMDP
on > . —
sl BAM policy aF
i
T

We use a point-based approximation algorithm to solve the MOMDP
for a robot policy 7t® that takes into account the robot belief on the
human adaptability, while maximizing the agent’s expected total
reward.

The policy execution is performed online in real time and consists
of two steps (fig. 6.4). First, the robot uses the current belief to select
the action a® specified by the policy. Second, it uses the human ac-
tion 4™ to update the belief on « (eq. 6.1). Fig. 6.3 presents the paths
on the MOMDP policy tree that correspond to the simulated user
behaviors presented in fig. 6.2.

6.1.2 Human Subject Experiment

We revisit the table-carrying task of chapter 5. We are interested in
showing that integrating BAM into the robot decision making can
lead to more efficient policies than state-of-the-art human-robot team
training practices, while maintaining human satisfaction and trust.
On one extreme, we can “fix" the robot policy so that the robot
always moves towards the optimal —with respect to some objective
performance metric —goal, ignoring human adaptability. This will
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force all users to adapt, since this is the only way to complete the
task. However, we hypothesize that this will significantly impact hu-
man satisfaction and trust in the robot. On the other extreme, we can
efficiently learn the human preference [Nikolaidis and Shah, 2013].
This can lead to the human-robot team following a sub-optimal pol-
icy, if the human has an inaccurate model of the robot capabilities.
We have, therefore, two control conditions: one where participants
interact with the robot executing a fixed policy, always acting towards
the optimal goal, and one where the robot learns the human pref-
erence. We show that the proposed formalism achieves a trade-off
between the two: When the human is non-adaptable, the robot fol-
lows the human strategy. Otherwise, the robot insists on the optimal
way of completing the task, leading to significantly better policies
compared to learning the human preference.

6.1.2.1 INDEPENDENT VARIABLES

We had three experimental conditions, which we refer to as “Fixed,”
“Mutual-adaptation” and “Cross-training."

Fixed session The robot executes a fixed policy, always acting to-
wards the optimal goal. In the table-carrying scenario, the robot
keeps rotating the table in the clockwise direction towards Goal A,
which we assume to be optimal (fig. 6.1). The only way to finish the
task is for the human to rotate the table in the same direction as the
robot, until it is brought to the horizontal configuration of Goal A.
Mutual-adaptation session The robot executes the MOMDP policy
computed using the proposed formalism. The robot starts by rotating
the table towards the optimal goal (Goal A). Therefore, adapting to
the robot strategy corresponds to rotating the table to the optimal
configuration.

Cross-training session Human and robot train together using the
human-robot cross-training algorithm [Nikolaidis and Shah, 2013].
The algorithm consists of a forward phase and a rotation phase. In
the forward phase, the robot executes an initial policy, which we
choose to be the one that leads to the optimal goal. Therefore, in the
table-carrying scenario, the robot rotates the table in the clockwise
direction towards Goal A. In the rotation phase, human and robot
switch roles, and the human inputs are used to update the robot re-
ward function. After the two phases, the robot policy is recomputed.

6.1.2.2 HYPOTHESES

Hz1 Participants will agree more strongly that HERB is trustworthy, and
will be more satisfied with the team performance in the Mutual-adaptation
condition, compared to working with the robot in the Fixed condition. We
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expected users to trust more the robot with the learned MOMDP pol-
icy, compared with the robot that executes a fixed strategy ignoring
the user’s willingness to adapt. In prior work, a task-level executive
that adapted to the human partner significantly improved perceived
robot trustworthiness [Shah et al., 2011]. Additionally, working with
a human-aware robot that adapted its motions had a significant im-
pact on human satisfaction [Lasota and Shah, 2015].

Hz Participants are more likely to adapt to the robot strateqy towards the
optimal goal in the Mutual-adaptation condition, compared to working with
the robot in the Cross-training condition. The computed MOMDP policy
enables the robot to infer online the adaptability of the human and
guides adaptable users towards more effective strategies. Therefore,
we posited that more subjects would change their strategy when
working with the robot in the Mutual-adaptation condition, com-
pared with cross-training with the robot. We note that in the Fixed
condition all participants ended up changing to the robot strategy, as
this was the only way to complete the task.

H3 The robot performance as a teamnmate, as perceived by the participants
in the Mutual-adaptation condition, will not be worse than in the Cross-
training condition. The learned MOMDP policy enables the robot to
follow the preference of participants that are less adaptable, while
guiding towards the optimal goal participants that are willing to
change their strategy. Therefore, we posited that this behavior would

To of the room
result on a perceived robot performance not inferior to that achieved g e table, the

in the Cross-training condition.

6.1.2.3 EXPERIMENT SETTING: A TABLE-CARRYING TASK Chcklochoose:  Clickia choase
clockwise counterclockwise
rotate action rotate action

We first instructed participants in the task and asked them to choose
one of the two goal configurations (fig. 6.1), as their preferred way Figure 6.5: Ul with instructions
of accomplishing the task. To prompt users to prefer the sub-optimal
goal, we informed them about the starting state of the task, where
the table was slightly rotated in the counter-clockwise direction,
making the sub-optimal Goal B appear closer. Once the task started,
the user chose the rotation actions by clicking on buttons on a user
interface (fig. 6.5). If the robot executed the same action, a video
played showing the table rotation. Otherwise, the table did not move
and a message appeared on the screen notifying the user that they
tried to rotate the table in a different direction than the robot. In the
Mutual-adaptation and Fixed conditions participants executed the
task twice. Each trial ended when the team reached one of the two
goal configurations. In the Cross-training condition, participants ex-
ecuted the forward phase of the algorithm in the first trial and the
rotation phase, where human and robot switched roles, in the second
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trial. We found that in this task one rotation phase was enough for
users to successfully demonstrate their preference to the robot. Fol-
lowing [Nikolaidis and Shah, 2013], the robot executed the updated
policy with the participant in a task-execution phase that succeeded
the rotation phase.

We asked all participants to answer a post-experimental question-
naire that used a five-point Likert scale to assess their responses to
working with the robot (Table 6.1). We used the composite measures
proposed by [Hoffman, 2013]. Questions 1 and 3 are from Hoffman's
measure of “Robot Teammate Traits,” while questions 4-6 are from
Hoffman’s adaptation of the “Working Alliance Index” for human-
robot teams. Items 7-8 were proposed by [Gombolay et al., 2014] as
additional metrics of team-fluency. We added questions 9-10 based
on our intuition. Participants also responded to open-ended ques-
tions about their experience.

Q1: “HERB is trustworthy." Table 6.1: Post-experimental
Q2: “I trusted HERB to do the right thing at the right time." questionnaire.
Q3: “HERSB is intelligent."

Q4: “HERB perceived accurately what my goals are."

Qs5: “HERB did not understand how I wanted to do the task."
Q6: “HERB and I worked towards mutually agreed upon goals."
Qy7: “I was satisfied with HERB and my performance."

Q8: “HERB and I collaborated well together."

Qg: “HERB made me change my mind during the task."

Q1o0: “HERB’s actions were reasonable.”

6.1.2.4 SUBJECT ALLOCATION

We chose a between-subjects design in order to not bias the users
with policies from previous conditions. We recruited participants
through Amazon’s Mechanical Turk service, all from the United
States, aged 18-65 and with approval rates higher than 95%. Each
participant was compensated $0.50. Since we are interested in ex-
ploring human-robot mutual adaptation, we disregarded participants
that had as initial preference the robot goal. To ensure reliability of
the results, we asked all participants a control question that tested
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their attention to the task and eliminated data associated with wrong
answers to this question, as well as incomplete data. To test their at-
tention to the Likert questionnaire, we included a negative statement
with the opposite meaning to its positive counterpart and eliminated
data associated with positive or negative ratings to both statements,
resulting in a total of 69 samples.

6.1.2.5 MOMDP MoDEL

The observable state variables x of the MOMDP formulation were
the discretized table orientation and the human and robot modes for
each of the three previous time-steps. We specified two modal poli-
cies, each deterministically selecting rotation actions towards each
goal. The size of the observable state-space X was 734 states. We set a
history length k = 3 in BAM. We additionally assumed a discrete set
of values of the adaptability « : {0.0,0.25,0.5,0.75,1.0}. Although a
higher resolution in the discretization of a is possible, we empirically
verified that 5 values were enough to capture the different adaptive
behaviors observed in this task. The total size of the MOMDP state-
space was 5 x 734 = 3670 states. The human and robot actions a", a®
were deterministic discrete table rotations. We set the reward func-
tion R to be positive at the two goal configurations based on their
relative cost, and o elsewhere. We computed the robot policy using
the SARSOP solver [Kurniawati et al., 2008], a point-based approxi-
mation algorithm which, combined with the MOMDP formulation,
can scale up to hundreds of thousands of states [Bandyopadhyay

et al., 2013].

6.1.3 Results and Discussion
6.1.3.1 SUBJECTIVE MEASURES

We consider hypothesis Hz1, that participants will agree more strongly
that HERB is trustworthy, and will be more satisfied with the team
performance in the Mutual-adaptation condition, compared to
working with the robot in the Fixed condition. A two-tailed Mann-
Whitney-Wilcoxon test showed that participants indeed agreed more
strongly that the robot utilizing the proposed formalism is trustwor-
thy (U = 180,p = 0.048). No statistically significant differences
were found for responses to statements eliciting human satisfaction:
“I was satisfied with the robot and my performance” and “HERB
and I collaborated well together.” One possible explanation is that
participants interacted with the robot through a user interface for a
short period of time, therefore the impact of the interaction on user
satisfaction was limited.
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We were also interested in observing how the ratings in the first
two conditions varied, depending on the participants” willingness
to change their strategy. Therefore, we conducted a post-hoc experi-
mental analysis of the data, grouping the participants based on their
adaptability. Since the true adaptability of each participant is un-
known, we estimated it by the mode of the belief formed by the robot
at the end of the task on the adaptability a:

& = arg max b(«) (6.2)
44

We considered only users whose mode was larger than a confi-
dence threshold and grouped them as very adaptable if & > 0.75,
moderately adaptable if 0.5 < & < 0.75 and non-adaptable if & < 0.5.
fig. 6.6 shows the participants’ rating of their agreement on the robot
trustworthiness, as a function of the participants’ group for the two
conditions. In the Fixed condition there was a trend towards pos-
itive correlation between the annotated robot trustworthiness and
participants’” inferred adaptability (Pearson’s r = 0.452, p = 0.091),
whereas there was no correlation between the two for participants in
the Mutual-adaptation condition (r = —0.066). We attribute this to
the MOMDP formulation allowing the robot to reason over its esti-
mate on the adaptability of its teammate and change its own strategy
when interacting with non-adaptable participants, therefore main-
taining human trust.

In this work, we elicited trust at the end of the task using partic-
ipants’ rating of their agreement to the statement “HERB is trust-
worthy,” which has been used in previous work in human-robot
collaboration ([Shah et al., 2011, Hoffman, 2013]). We refer the reader
to [Desai, 2012, Kaniarasu et al., 2013, Xu and Dudek, 2015, Yanco
et al., 2016] for approaches on measuring trust in real-time.

We additionally coded participants’ open-ended comments about
their experience with working with HERB, and grouped them based
on the content and the sentiment (positive, negative or neutral). Ta-
ble 6.2 shows the different comments and associated sentiments,
and fig. 6.7 illustrates the participants’ ratio for each comment. We
note that 20% of participants in the Fixed condition had a negative
opinion about the robot behavior, noting that “[HERB] was poorly
designed,” and that probably “robot development had not been
mastered by engineers” (C8 in Table 6.2). On the other hand, 26%
of users in the Mutual-adaptation condition noted that the robot
“attempted to anticipate my moves” and “understood which way I
wanted to go” (C2). Several adaptable participants in both conditions
commented that “[HERB] was programmed to move this way” (Cs),
while some of them attempted to justify HERB’s actions, stating that
it “was probably unable to move backwards” (Cy).

Mutual-adaptation
Fixed

Non-  Moderately  Very
adaptable Adaptable Adaptable

Participant Type

Rating
=N W = Ot

Figure 6.6: Rating of agreement
to statement “HERB is trust-
worthy." Note that the figure
does not include participants,
whose mode of the belief on
their adaptability was below a
confidence threshold.
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Description Sentiment

C1 “The robot followed my instructions.”  Positive
C2 “The robot adapted to my actions.” Positive
C3 “The robot wanted to be efficient.” Positive
C4 “The robot was unable to move.” Neutral
Cs “The robot was programmed this Neutral
Way 7

Co “The robot wanted to face the door.” Neutral
Cy “The robot was stubborn.” Negative
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Recall hypothesis H3: that the robot performance as a teammate
in the Mutual-adaptation condition, as perceived by the participants,
would not be worse than in the Cross-training condition. We define
“not worse than” similarly to [Dragan et al., 2013] using the concept
of “non-inferiority” [Lesaffre, 2008]. An one-tailed unpaired t-test for
a non-inferiority margin A = 0.5 and a level of statistical significance
a = 0.025 showed that participants in the Mutual-adaptation condi-
tion rated their satisfaction on robot performance (p = 0.006), robot
intelligence (p = 0.024), robot trustworthiness (p < 0.001), quality
of robot actions (p < 0.001) and quality of collaboration (p = 0.002)
not worse than participants in the Cross-training condition. With
Bonferroni corrections for multiple comparisons, robot trustworthi-
ness, quality of robot actions and quality of collaboration remain
significant. This supports hypothesis H3 of section 6.1.2.2.

6.1.3.2 QUANTITATIVE MEASURES

To test hypothesis H2, we consider the ratio of participants that
changed their strategy to the robot strategy towards the optimal goal

Table 6.2: Participants’ com-
ments and associated senti-
ments.

Figure 6.7: Ratio of partici-
pants per comment for the
Mutual-adaptation and Fixed
conditions.
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in the Mutual-adaptation and Cross-training conditions. A change
was detected when the participant stated as preferred strategy a ta-
ble rotation towards Goal B (fig. 6.1) , but completed the task in the
configuration of Goal A in the final trial of the Mutual-adaptation
session, or in the task-execution phase of the Cross-training session.
As fig. 6.8 shows, 57% of participants adapted to the robot in the
Mutual-adaptation condition, whereas 26% adapted to the robot in
the Cross-training condition. A Pearson’s chi-square test showed that
the difference is statistically significant (x*(1, N = 46) = 4.39,p =
0.036). Therefore, participants that interacted with the robot of the
proposed formalism were more likely to switch to the robot strategy
towards the optimal goal, than participants that cross-trained with
the robot, which supports our hypothesis.

In section 6.1.3.3, we discuss the robot behavior for different values
of history length k in BAM.

6.1.3.3 SELECTION OF HisTORY LENGTH

The value of k in BAM indicates the number of time-steps in the

past that we assume humans consider in their decision making on a
particular task, ignoring all other history. Increasing k results in an
exponential increase of the state space size, with large values reduc-
ing the robot responsiveness to changes in the human behavior. On
the other hand, very small values result in unrealistic assumptions on
the human decision making process.

To illustrate this, we set k = 1 and ran a pilot study of 30 partici-
pants through Amazon-Turk. Whereas most users rated highly their
agreement to questions assessing their satisfaction and trust in the
robot, some participants expressed their strong dissatisfaction with
the robot behavior. This occurred when human and robot oscillated
back and forth between modes, similarly to when two pedestrians
on a narrow street face each other and switch sides simultaneously
until they reach an agreement. In this case, which occurred in 23%
of the samples, when the human switched back to their initial mode,
which was also the robot mode of the previous time-step, the robot
incorrectly inferred them as adaptable. However, the user in fact re-
sumed their initial mode followed before two time-steps, implying a
tendency for non-adaptation. This is a case where the 1-step bounded
memory assumption did not hold.

In the human subject experiment of section 6.1.2, we used k = 3,
since we found this to describe accurately the human behavior in
this task. Fig. 6.9 shows the belief update and robot behavior for
k = 1and k = 3, in the case of mode oscillation. At T = 1, after
the first disagreement and in the absence of any previous history, the

20 -

Adapted
15 Did not adapt

# of participants
—
o
T

0 1 1
Mutual-adaptation Cross-training

Figure 6.8: Number of partici-
pants that adapted to the robot
for the Mutual-adaptation and
Cross-training conditions.



64 STEFANOS NIKOLAIDIS

1-step —
nlem(“-y “Il o 1 ”Il o 1 I‘ll o 1 “1| [ I ”1) o 1 “II o 1
o . = o - -
| - I r 1 1 1 1
3-step : )
memory “n & 1 % P 1 % a 1 Yo o 1 ”u i 1 “n P 1
o Py o Sy = .
Figure 6.9: Belief update and
belief remains uniform over . The human (white dot) follows their table configurations for the 1-
modal policy from the previous time-step, therefore at T = 2 the step (top) and 3-step (bottom)
belief becomes higher for smaller values of « in both models (lower bounded memory models at
adaptability). At T = 2, The robot (black dot) adapts to the human successive time-steps.

and executes the human modal policy. At the same time, the human
switches to the robot mode, therefore at T = 3 the probability mass
moves to the right. At T = 3, the human switches back to their
initial mode. In the 3-step model the resulting distribution at T = 4
has a positive skewness: the robot estimates the human to be non-
adaptable. In the 1-step model the robot incorrectly infers that the
human adapted to the robot mode of the previous time-step, and the
probability distribution has a negative skewness. At T = 4,5, the
robot in the 3-step trial switches to the human modal policy, whereas
in the 1-step trial it does not adapt to the human, who insists on their
mode.

6.1.3.4 Discussion

This online study in the table-carrying task seems to suggest that
the proposed formalism enables a human-robot team to achieve
more effective policies, compared to state-of-the-art human-robot
team training practices, while achieving subjective ratings on robot
performance and trust that are comparable to those achieved by
these practices. It is important to note that the comparison with
the human-robot cross-training algorithm is done in the context

of human adaptation. Previous work [Nikolaidis and Shah, 2013]
has shown that switching roles can result in significant benefits in
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team fluency metrics, such as human idle time and concurrent mo-
tion [Hoffman and Breazeal, 2007], when a human executes the task
with an actual robot. Additionally, the proposed formalism assumes
as input a set of modal policies, as well as a quality measure associ-
ated with each policy. On the other hand, cross-training requires only
an initialization of a reward function of the state space, which is then
updated in the rotation phase through interaction. It would be very
interesting to explore a hybrid approach between learning the reward
function and guiding the human towards an optimal policy, but we
leave this for future work.

6.1.3.5 INFORMATION-SEEKING BEHAVIOR

We observe that in the experiments, the robot always starts mov-

ing towards the optimal goal, until it is confident that the human is
non-adaptable, in which case it adapts to the human. The MOMDP
chooses whether the robot should adapt or not, based on the estimate
of the human adaptability, the rewards of the optimal and suboptimal
goal and the discount factor.

In the general case, information-seeking actions can occur at any
point during the task. For instance, in a multi-staged task, where
information gathering costs differently in different stages (i.e. moving
a table out of the room / through a narrow corridor), the robot might
choose to disagree with the human in a stage where information-
seeking actions are cheap, even if the human follows an optimal path
in that stage.

6.1.3.6 GENERALIZATION TO COMPLEX TASKS

The presented table-carrying task can be generalized without signifi-
cant modifications in the proposed mathematical model, with the cost
of increasing the size of the state-space and action-space. In particu-
lar, we made the assumptions: (1) discrete time-steps, where human
and robot apply torques causing a fixed table-rotation. (2) binary
human-robot actions. (3) fully observable modal policies. We discuss
how we can relax these assumptions:

1. We can approximate a continuous-time setting by increasing the
resolution of the time discretization. Assuming a constant dis-
placement per unit time v and a time-step dt, the size of the state-
space increases linearly with (1/dt): O(|X*||M|%*) = O((8max —
Omin) * (1/0) * (1/dt) * |M|?), where 6 is the rotation angle of the
table.

2. The proposed formalism is not limited to binary actions. For in-
stance, we can allow torque inputs of different magnitudes. The
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action-space of the MOMDP increases linearly with the number of
possible inputs.

3. While we assumed that the modal policies are fully observable, an
assumption that enables the human and the robot to infer a mode
by observing an action, in the general case different modal policies
may share the same action selection in some states, which would
make them undeterminable. In this case, the proposed formalism
can be generalized to include the human modal policy as addi-
tional latent variable in the MOMDP. Similarly, we can model the
human as inferring a probability distribution over modes from the
recent history, instead of inferring the robot mode with the max-
imum frequency count (eq. 5.2 in section 5.1.2). We leave this for
future work.

Finally, we note that the presented formalism assumes that the
world-state, representing the current task-step, is fully observable,
and that human and robot have a known set of actions. This as-
sumption holds for tasks with clearly defined objectives and distinct
task-steps. In section 6.1.5, we apply our formalism in the case where
human and robot cross a hallway and coordinate to avoid collision,
and the robot guides the human towards one side of the corridor.
Applicable scenarios include also a wide range of manufacturing
tasks (e.g. assembly of airplane spars), where the goal and important
concepts, such as tolerances and completion times, are defined in ad-
vance, but the sequencing of subtasks is flexible and can vary based
on the individualized style of the mechanic [Nikolaidis et al., 2015b].
In these scenarios, the robot could lead the human to strategies that
require less time or resources.

6.1.4 Adaptability in Repeated Trials

Previous work by Shah et al. [2011] has shown that robot adaptation
significantly improves perceived robot trustworthiness. Therefore, we
hypothesized that trust in the mutually adaptation condition would
increase over time for non-adaptable participants, and that this in-
crease in trust would result in a subsequent increased likelihood of
human adaptation to the robot. We conducted four repeated trials

of the table-carrying task. Results did not confirm our hypothesis:
even though trust increased for non-adaptable participants, a large
majority of them remained non-adaptable in the second task as well.

6.1.4.1 EXPERIMENT SETTING

The task has two parts, each consisting of two trials of task execution.
At the end of the first part, we reset the robot belief on participants’
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adaptability to a uniform distribution over «. Therefore, in the be-
ginning of the second part, the robot attempted again to guide par-
ticipants towards the optimal goal, identically to the first part of the
task. We recruited participants through Amazon’s Mechanical Turk
service, using the same inclusion criteria as in section 6.1.2.4. Each
participant was compensated $1. Following the data collection pro-
cess described in section 6.1.2.4, we disregarded participants that had
as initial preference the robot goal, resulting in a total of 43 samples.
All participants interacted with the robot following the MOMDP
policy computed using the proposed formalism. After instructing
participants in the task, as well as after each trial, we asked them

to rate on a five-point Likert scale their agreement to the following
statements.

¢ “HERB is trustworthy”
* “I am confident in my ability to complete the task”

We used the ratings as direct measurements of participants” self-
confidence and trust in the robot.

6.1.4.2 HYPOTHESES

Hg The perceived initial robot trustworthiness and the participants’ starting
self-confidence on their ability to complete the task will have a significant
effect on their likelihood to adapt to the robot in the first part of the exper-
iment. We hypothesized that the more participants trust the robot

in the beginning of the task, and the less confident they are on their
ability, the more likely they would be to adapt to the robot. In pre-
vious work, Lee and Moray [1991] found that control allocation in a
supervisory control system is dependent on the difference between
the operator’s trust of the system and their own self-confidence to
control the system under manual control.

Hs The robot trustworthiness, as perceived by non-adaptable participants,
will increase during the first part of the experiment. We hypothesized
that working with a robot that reasons over its estimate on partici-
pants” adaptability and changes its own strategy accordingly would
increase the non-adaptable participants’ trust in the robot. We base
this hypothesis by observing in fig. 6.6 that non-adaptable partic-
ipants in the Mutual-adaptation condition agreed strongly to the
statement “HERB is trustworthy” at the end of the task. We focus on
non-adaptable participants, since they observe the robot changing its
policy to their preference, and previous work has shown that robot
adaptation can significantly improve perceived robot trustworthi-
ness [Shah et al., 2011].
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H6 Participants are more likely to follow the robot optimal policy in the
second part of the experiment, compared to the first part. We hypothesized
that if, according to hypotheses H4 and Hs, trust is associated with
increased likelihood of adapting to the robot in the first part of the
experiment, and non-adaptable participants trust the robot more after
the first part, a significant ratio of these participants would be willing
to change their strategy in the second part. Additionally, we expected
participants that switched to the robot optimal policy in the first part
to continue following that policy in the second part, resulting in an
overall increase in the number of subjects that follow the optimal
goal.

6.1.4.3 RESULTS AND DiscussioN

We consider Hypothesis Hy, that the perceived robot trustworthiness
and the participants’ self-confidence on their ability to complete the
task, as measured in the beginning of the experiment, will have a sig-
nificant effect on their likelihood to adapt to the robot in the first part
of the experiment. We performed a logistic regression to ascertain the
effects of participants’ ratings on these two factors on the likelihood
that they adapt to the robot. The logistic regression model was sta-
tistically significant x?(2) = 13.58, p = 0.001. The model explained
36.2% (Nagelkerke R?) of the variance in participant’s adaptability
and correctly classified 74.4% of the cases. Participants that trusted
the robot more in the beginning of the task (8 = 1.528, p = 0.010) and
were less-confident (8 = —1.610, p = 0.008) were more likely to adapt
to the robot in part 1 of the experiment (fig. 6.10, 6.11). This supports
hypothesis Hg of section 6.1.4.2.

Recall Hypothesis Hs, that the robot trustworthiness, as perceived
by non-adaptable participants, will increase during the first part of
the experiment. We included in the non-adaptable group all partici-
pants that did not change their strategy when working with the robot
in the first part of the experiment. The mean estimated adaptability
for these participants at the end of the first part was & = 0.16 [SD =
0.14]. A Wilcoxon signed-rank test indeed showed that non-adaptable
participants agreed more strongly that HERB is trustworthy after
the first part of the experiment, compared to the beginning of the
task (Z = —3.666,p < 0.001), as shown in fig. 6.10. In the same
figure we see that adaptable participants rated highly their agree-
ment on the robot trustworthiness in the beginning of the task, and
their ratings remained relatively similar through the first part of the
task. The results above confirm our hypothesis that working with the
robot following the MOMDP policy had a significant effect on the
non-adaptable participants” trust in the robot.

HERB Trustworthiness
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Figure 6.10: Rating of agree-
ment to the statement “HERB

is trustworthy." for the first
part of the experiment de-
scribed in section 6.1.4. The two
groups indicate participants
that adapted / did not adapt to
the robot during the first part.
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Figure 6.11: Rating of agree-
ment to the statement “I am
confident in my ability to com-
plete the task."



MATHEMATICAL MODELS OF ADAPTATION IN HUMAN-ROBOT COLLABORATION

To test Hypothesis H6, we consider the ratio of participants that
followed the robot optimal policy in the first part of the experi-
ment, compared to the second part of the experiment. In the sec-
ond part, 53% of the participants followed the robot goal, compared
to 47% in the first part. A Pearson’s chi-square test did not find
the difference between the two ratios to be statistically significant
(x?(1,N = 43) = 0.42,p = 0.518). We observed that all participants
that adapted to the robot in the first part, continued following the
optimal goal in the second part, as expected. However, only 13% of
non-adaptable participants switched strategy in the second part. We
observe that even though trust increased for non-adaptable partici-
pants, a large majority of them remained non-adaptable in the second
task as well. We attribute this to the fact that users, who successfully
completed the task in the first part with the robot adapting to their
preference, were confident that the same action sequence would re-
sult in successful completion in the second part, as well. In fact, a
Wilcoxon signed-rank test showed that non-adaptable participants
rated their self-confidence on their ability to complete the task signif-
icantly higher after the first part, compared to the beginning of the
task (Z = —2.132,p = 0.033, fig. 6.11). It would be interesting to
assess the adaptability of participants after inducing drops in their
self-confidence, for instance by providing limited explanation about
the task or introducing task “failures,” and we leave this for future
work.

This experiment showed that non-adaptable participants remained
unwilling to adapt to the robot in repeated trials of the same task.
Can this result generalize across multiple tasks? This is an impor-
tant question, since in real-world applications such as home en-
vironments, domestic robots are expected to perform a variety of
household chores. We conducted a follow-up experiment, where
we explored whether the adaptability of participants in one task is
informative of their willingness to adapt to the robot at a different
task.

6.1.5 Transfer of Adaptability Across Tasks

The previous experiment showed that non-adaptable participants re-
mained unwilling to adapt to the robot in repeated trials of the same
task. To test whether this result can generalize across multiple tasks,
we conducted an experiment with two different collaborative tasks:
a table-carrying task followed by a hallway-crossing task. Results
showed that non-adaptable participants in the table-carrying task
would be less likely to adapt in the hallway-crossing task.
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6.1.5.1 HALLwAY-CROSSING TASK

We introduced a new hallway-crossing task, where human and robot
cross a hallway (fig. 6.12). As in the table-carrying task, we instructed
participants of the task and asked them for their preferred side of the
hallway. We then set the same side as the optimal goal for the robot,
in order to ensure that the robot optimal policy would conflict with
the human preference. The user chose moving actions by clicking on
buttons on a user interface (left / right). If human and robot ended
up in the same side, a message appeared on the screen notifying

the user that they moved in the same direction as the robot. The
participant could then choose to remain on that side, or switch sides.
The task ended when human and robot ended up in opposite sides of
the corridor.

6.1.5.2 MOMDP MobpEtL oF HALLWAY-CROSSING TASK

The observable state variables x of the MOMDP formulation were
the discretized position of the human and the robot, as well as the
human and robot modes for each of the three previous time-steps.
We specified two modal policies, each deterministically selecting
moving actions towards each side of the corridor. The size of the
observable state-space X was 340 states. As in the table-carrying task,
we set a history length k = 3 and assumed a discrete set of values of
the adaptability « : {0.0,0.25,0.5,0.75,1.0}. Therefore, the total size
of the MOMDP state-space was 5 x 340 = 1700 states. The human
and robot actions a'!, a® were deterministic discrete motions towards
each side of the corridor. We set the reward function R to be positive
at the two goal states based on their relative cost, and o elsewhere.
We computed the robot policy using the SARSOP solver [Kurniawati
et al., 2008].

6.1.5.3 EXPERIMENT SETTING

We first validated the efficacy of the proposed formalism by doing a
user study (n = 65) that included only the hallway-crossing task. We
recruited participants through Amazon’s Mechanical Turk service,
using the same inclusion criteria as in section 6.1.2.4. Each participant
was compensated $0.50. 48% of participants adapted to the robot
by switching sides, a ratio comparable to that of the table-carrying
task experiment (section 6.1.3.2). The mean estimated adaptability
for participants that adapted to the robot, which we call “adaptable,”
was & = 0.85 [SD = 0.25], and for participants that did not adapt
“non-adaptable”) was & = 0.07 [SD = 0.13].
We then conducted a new human subject experiment, having users

Figure 6.12: Hallway-crossing

task. The user faces the robot
and can choose to stay in the
same side or switch sides. Once
the user ends up in the side
opposite to the robot’s, the task
is completed.
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Figure 6.13: Adaptation rate of
participants for two consecu-
tive tasks. The lines illustrate
transitions, with the numbers
indicating transition rates. The
thickness of the lines is pro-

portional to the transition rate,
whereas the area of the circles
is proportional to the number

0.79
pia not at=pt () D ‘
of participants. Whereas 79%

Table-carrying Hallway-crossing of the users that insisted in
their strategy in the first task
. . . . . remained non-adaptable in
do two trials of the table-carrying task described in section 6.1.2.3 o
the second task, only 50% of
the users that adapted to the
robot in the table-carrying task,
adapted to the robot in the

hallway-crossing task.

(part 1), followed by the hallway-crossing task (part 2). Similarly

to the repeated table-carrying task experiment (section 6.1.4), we
reset the robot belief on the human adaptability at the end of the
first part. We recruited participants through Amazon’s Mechanical
Turk service, using the same inclusion criteria as in section 6.1.2.4,
and following the same data collection process, resulting in a total of
n = 58 samples. Each participant was compensated $1.30. We make
the following hypothesis:

Hy Participants that did not adapt to the robot in the table-carrying task are
less likely to adapt to the robot in the hallway task, compared to participants
that changed their strategy in the first task.

6.1.5.4 RESULTS AND DiSCUSSION

In line with our hypothesis, a logistic regression model was sta-
tistically significant (x?>(1) = 5.30,p = 0.021), with participants’
adaptability in the first task being a significant predictor of their
adaptability in the second task (B = 1.335,p = 0.028). The model
explained 11.9% (Nagelkerke R?) of the variance and correctly classi-
fied 62.5% of the cases. The small value of R? indicates a weak effect
size. Interestingly, whereas 79% of the users that did not adapt to
the robot in the first task remained non-adaptable in the second task,
only 50% of the users that adapted to the robot in the table-carrying
task, adapted to the robot in the hallway task (fig. 6.13).

We interpret this result by observing that all participants that were
non-adaptable in the first task saw the robot changing its behavior
to their preferred strategy. A large majority expected the robot to be-
have in the same way in the second task, as well: disagree in the be-
ginning but eventually adapt to their preference, and this encouraged
them to insist on their preference also in the second task. In fact, in
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Justification Example Quote

“I knew that the robot would change if I
stood my ground”

“I thought it would be easier that I
switched”

“I was on the correct side (you should walk

J1  Expectation on
robot behavior
J2 Simplicity

J3  Task-specific fac-

tors on the right hand side)”
J4  Robot behavior “HERB decided to go the same way as I
did”
J5  Task completion “To finish the task in the other end of the
hall”

J6  Other “I tend to stick with my initial choices”
their answers to the open-ended question “Did you complete the
hallway task following your initial preference?,” they mentioned that
“The robot switched in the last [table-carrying] task, and I thought

it would this time too”, and that “I knew from the table-turning task
that HERB would eventually figure it out and move in the opposite
direction, so I stood my ground” (J1 in Table 6.3, fig. 6.14). On the
other hand, adaptable participants did not have enough information
on the robot ability to adapt, since they aligned their own strategy
with the robot policy, and they were evenly divided between adapt-
able and non-adaptable in the second task. 47% of participants that
remained adaptable in both tasks attributed the change in their strat-
egy to the robot behavior (J4). Interestingly, 29% of participants that
adapted to the robot in the table-carrrying task but insisted on their
strategy in the hallway task stated that they did so, “because I was on
the correct side (you should walk on the right hand side) and I knew
eventually he would move" (J3). We see that task-specific factors,
such as social norms, affected the expectation of some participants
on the robot adaptability for the hallway task. We hypothesize that

Figure 6.14: Ratio of partic-
ipants per justification to

the total number of partici-
pants in each condition. We
group the participants based on
whether they adapted in both
tasks (Adapted-both), in the
first [table-carrying] task only
(Adapted-first), in the second
[hallway-crossing] task only
(Adapted-second) and in none
of the tasks (Did not adapt).

Table 6.3: Participants’ response
to question “Did you complete
the hallway task following your
initial preference? Justify your
answer.”
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there is an inverse relationship between participants” adaptability, as
it evolves over time, and their belief on the robot’s own adaptability,
and we leave the testing of this hypothesis for future work.

6.1.6 Conclusion

We presented a formalism for human-robot mutual adaptation,
which enables guiding the human teammate towards more efficient
strategies, while maintaining human trust in the robot. We integrated
BAM, a model of human adaptation based on a bounded memory
assumption (section 5.1, chapter 5), into a MOMDP formulation,
wherein the human adaptability was a partially observable variable.
In a human subject experiment (n = 69), participants were signifi-
cantly more likely to adapt to the robot strategy towards the optimal
goal when working with a robot utilizing our formalism (p = 0.036),
compared to cross-training with the robot. Additionally, participants
found the performance as a teammate of the robot executing the
learned MOMDP policy to be not worse than the performance of the
robot that cross-trained with the participants. Finally, the robot was
found to be more trustworthy with the learned policy, compared with
executing an optimal strategy while ignoring human adaptability
(p = 0.048). These results indicate that the proposed formalism can
significantly improve the effectiveness of human-robot teams, while
achieving subjective ratings on robot performance and trust compara-
ble to those of state-of-the-art human-robot team training strategies.
We have shown that BAM can adequately capture human behavior
in two collaborative tasks with well-defined task-steps on a relatively
fast-paced domain. However, in domains where people typically re-
flect on a long history of interactions, or on the beliefs of the other
agents, such as in a Poker game [Von Neumann and Morgenstern,
2007], people are likely to demonstrate much more complex adap-
tive behavior. Developing sophisticated predictive models for such
domains and integrating them into robot decision making in a princi-
pled way, while maintaining computational tractability, is an exciting
area for future work.

6.2 Shared-Autonomy

73

Work done in collaboration with David

Assistive robot arms show great promise in increasing the indepen- Hsu and Yu Xiang Zhu.
dence of people with upper extremity disabilities [Hillman et al.,

2002, Prior, 1990, Sijs et al., 2007]. However, when a user teleoper-

ates directly a robotic arm via an interface such as a joystick, the

limitation of the interface, combined with the increased capability

and complexity of robot arms, often makes it difficult or tedious to
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k! _—
Figure 6.15: The user guides
the robot towards an unstable

accomplish complex tasks. grasp, resulting in task failure.
Shared autonomy alleviates this issue by combining direct tele-

operation with autonomous assistance [Kofman et al., 2005, Dragan
and Srinivasa, 2013b, Yu et al., 2005, Trautman, 2015, Gopinath et al.,
2017]. In recent work by Javdani et al. [2015], the robot estimates a
distribution of user goals based on the history of user inputs, and as-
sists the user for that distribution. The user is assumed to be always
right about their goal choice. Therefore, if the assistance strategy
knows the user’s goal, it will select actions to minimize the cost-
to-go to that goal. This assumption is often not true, however. For
instance, a user may choose an unstable grasp when picking up

an object (fig. 6.15), or they may arrange items in the wrong order

by stacking a heavy item on top of a fragile one. Fig. 6.16 shows a
shared autonomy scenario, where the user teleoperates the robot
towards the left bottle. We assume that the robot knows the optimal
goal for the task: picking up the right bottle is a better choice, for in-
stance because the left bottle is too heavy, or because the robot has
less uncertainty about the right bottle’s location. Intuitively, if the hu-
man insists on the left bottle, the robot should comply; failing to do
so can have a negative effect on the user’s trust in the robot, which
may lead to disuse of the system [Hancock et al., 2011, Salem et al.,
2015, Lee et al., 2013]. If the human is willing to adapt by aligning
its actions with the robot, which has been observed in adaptation be-
tween humans and artifacts [Xu et al., 2009, Komatsu et al., 2005], the
robot should insist towards the optimal goal. The human-robot team
then exhibits a mutually adaptive behavior, where the robot adapts its own
actions by reasoning over the adaptability of the human teammate.

In section 6.1, we proposed a human-robot mutual adaptation
formalism for a shared location collaboration task. In this section, we
generalize the formalism for the shared-autonomy setting.

We identify that in the shared-autonomy setting (1) tasks may
typically exhibit less structure than in the collaboration domain,
which limits the observability of the user’s intent, and (2) only robot
actions directly affect task progress. We address the first challenge by
including the human mode m" as an additional latent variable in a
mixed-observability Markov decision process (MOMDP) [Ong et al.,
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Figure 6.16: Table clearing task
in a shared autonomy setting.
The user operates the robot
using a joystick interface and
moves the robot towards the
left bottle, which is a subopti-
mal goal. The robot plans its
actions based on its estimate
of the current human goal and
the probability & of the human
switching towards a new goal
indicated by the robot.

aT
- Robot
. ! xr" = T(xr'ar)
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2010]. This allows the robot to maintain a probability distribution
over the user goals based on the history of operator inputs. We also
take into account the uncertainty that the human has on the robot
goal by modeling the human as having a probability distribution over
the robot modes m® (section 6.2.1). We address the second challenge
by treating the human actions as observations that do not affect the
world state. This allows the robot to infer simultaneously the human
mode m" and the human adaptability «, reason over how likely the
human is to switch their goal based on the robot actions, and guide
the human towards the optimal goal while retaining their trust.

We conducted a human subject experiment (n = 51) with an as-
sistive robotic arm on a table-clearing task. Results show that the
proposed formalism significantly improved human-robot team per-
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Gr, GR. Gy Gr Figure 6.17: (left) Paths cor-
responding to three different
modal policies that lead to
the same goal Gr,. We use a
stochastic modal policy m;, to
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6.2.1  Human and Robot Mode Inference

When the human provides an input through a joystick interface, the
robot makes an inference on the human mode. In the example table-
clearing task of fig. 6.16, if the robot moves to the right, the human
will infer that the robot follows a modal policy towards the right
bottle. Similarly, if the human moves the joystick to the left, the robot
will consider more likely that the human follows a modal policy
towards the left bottle. In this section, we formalize the inference that
human and robot make on each other’s goals.

6.2.1.1 STOCHASTIC MoDAL POLICIES

In the shared autonomy setting, there can be a very large number

of modal policies that lead to the same goal. We use as example the
table-clearing task of fig. 6.16. We let G|, represent the left bottle, G
the right bottle, and S the starting end-effector position of the robot.
fig. 6.17-left shows paths from three different modal policies that lead
to the same goal Gy. Accounting for a large set of modes can increase
the computational cost, in particular if we assume that the human
mode is partially observable (section 6.2.3.1).

In section 5.1, chapter 5, we defined a modal policy as a stochastic
joint-policy over human and robot actions, so that m: X® x H; —
IT(AR) x TI(AM). A stochastic modal policy compactly represents a
probability distribution over paths and allows us to reason proba-
bilistically about the future actions of an agent that does not move
in a perfectly predictable manner. For instance, we can use the prin-
ciple of maximum entropy to create a probability distribution over
all paths from start to the goal [Ziebart et al., 2009, 2008]. While a
stochastic modal policy represents the uncertainty of the observer
over paths, we do not require the agent to actually follow a stochastic

policy.
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6.2.1.2 FuLL OBSERVABILITY ASSUMPTION

While m®, m" can be assumed to be observable for a variety of struc-
tured tasks in the collaboration domain(section 6.1), this is not the
case for the shared autonomy setting because of the following factors:
Different policies invoke the same action. Assume two modal poli-
cies in fig. 6.17, one for the left goal shown in red in fig. 6.17-left, and
a symmetric policy for the right goal (not shown). An agent moving
upwards (fig. 6.17-right) could be following either of the two with
equal probability. In that case, inference of the exact modal policy
without any prior information is impossible, and the observer needs
to maintain a uniform belief over the two policies.
Human inputs are noisy. The user provides its inputs to the sys-
tem through a joystick interface. These inputs are noisy: the user
may “overshoot” an intended path and correct their input, or move
the joystick in the wrong direction. In the fully observable case, this
would result in an incorrect inference of the human mode. Maintain-
ing a belief over modal policies allows robustness to human mistakes.
This leads us to assume that modal policies are partially observable.
We model how the human infers the robot mode, as well as how the
robot infers the human mode, in the following sections.

6.2.1.3 RoBOT MODE INFERENCE

The bounded memory assumption (section 5.1.1, chapter 5) dictates
that the human does not recall the whole history of states and ac-
tions, but only a recent history of the last k time-steps. The human
attributes the robot actions to a robot mode m~.

P(mR|hkf xlf, a?) = P(mR‘xltthrl’a?ka/ s x?/ a?) (6 3)
=17 P(af _jyq,eraf|m®, X5 g, XF)

We consider modal policies that generate actions based only on the
current world state, so that M : X® — TT(A") x TI(A®).

Therefore eq. 6.3 can be simplified as follows, where m® (x}, a})
denotes the probability of the robot taking action a® at time f, if it
follows modal policy m®:

P(m" |l xi, af) = m® (g yq, @F )™ (xf,a5)  (6.4)
P(m®|hy, x}, a}) is the [estimated by the robot] human belief on the
robot mode m~.
6.2.1.4 HuUMAN MODE INFERENCE

To infer the human mode, we need to implement the dynamics
model T, u that describes how the human mode evolves over time.
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Additionally, contrary to the collaboration setting, the human
inputs do not affect directly the world state. Instead, the robot uses
them as observations, based on an observation function O, in order to
update its belief on the human mode.

In section 3 we defined a transition function T, u, that indicates the
probability of the human switching from mode m" to a new mode
m'™, given a history hy and their adaptability «. We simplify the
notation, so that x® = x¥, a® = af and x = (I, x*):

T, (x, 0, m™, a®, m™) = P(m™|x, 0, m", a®)
= ZP(m'H, m®|x, o, m", a®)
mR

= Zp(m/Hlx, o, m", a®, m®) x P(m®|x, a, m, a®) (6.5)
=Y P(m"|a, m",m*) x P(m"|x,a")

The first term gives the probability of the human switching to a new
mode m’Y, if the human mode is m™ and the robot mode is m®. Based
on the BAM model (section 5.1, chapter 5), the human switches to
mR, with probability « and stays at m™ with probability 1 — a, where
« is the human adaptability. If « = 1, the human switches to m® with
certainty. If « = 0, the human insists on their mode m" and does not
adapt. Therefore:

a mt=mR
P(m™|a,m",m®) =1 —a m'™=m" (6.6)
0  otherwise

The second term in eq. 6.5 is computed using eq. 6.4, and it is the
[estimated by the human] robot mode.

Eq. 6.5 describes that the probability of the human switching to a
new robot mode m® depends on the human adaptability «, as well
as on the uncertainty that the human has about the robot following
mR. This allows the robot to compute the probability of the human
switching to the robot mode, given each robot action.

The observation function O: X® x M — IT(A") defines a probabil-
ity distribution over human actions a". This distribution is specified
by the stochastic modal policy m" € M. Given the above, the human
mode m" can be estimated by a Bayes filter, with b(m™) the robot’s
previous belief on m™:

b'(m™) =y O(m™, x'},a™) HZ: T,n(x, a0, m™, a®, m"™)b(m™) 6.7)
mieM

In this section, we assumed that « is known to the robot. In prac-
tice, the robot needs to estimate both m' and a. We formulate this in
section 6.2.3.1.
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6.2.2  Disagreement between Modes

In the previous section we formalized the inference that human and
robot make on each other’s goals. Based on that, the robot can infer
the human goal and it can reason over how likely the human is to
switch goals given a robot action.

Intuitively, if the human insists on their goal, the robot should
follow the human goal, even if it is suboptimal, in order to retain hu-
man trust. If the human is willing to change goals, the robot should
move towards the optimal goal. We enable this behavior by propos-
ing in the robot’s reward function a penalty for disagreement be-
tween human and robot modes. The intuition is that if the human
is non-adaptable, they will insist on their own mode throughout the
task, therefore the expected accumulated cost of disagreeing with the
human will outweigh the reward of the optimal goal. In that case, the
robot will follow the human preference. If the human is adaptable,
the robot will move towards the optimal goal, since it will expect the
human to change modes.

As described in the section 5.1.5 of chapter 5, we formulate the re-
ward function that the robot is maximizing, so that there is a penalty
for following a mode that is perceived to be different than the hu-
man’s mode. We assume a set of goal states G:

Rgoal xR e G

R(x,m",a®) =
Rother : xR Q G

6.8)

If the robot is at a goal state x® € G, a positive reward associated
with that goal is returned, regardless of the human mode m" and
robot mode m®. Otherwise, there is a penalty C < 0 for disagreement
between m' and mR, induced in R, The human does not observe
m® directly, but estimates it from the recent history of robot states
and actions (section 6.2.1.3). Therefore, R, is computed so that
the penalty for disagreement is weighted by the [estimated by the
human] probability of the robot actually following m®:

Rother = ZRm(mH/ mR)P(mR|xl aR) (6.9)
mR

0 :mf=mr
where R, (m", m®) = c L (6.10)
cmt £ m
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6.2.3 Robot Planning
6.2.3.1 MOMDP FoRMULATION

In section 6.2.1.4, we showed how the robot estimates the human
mode, and how it computes the probability of the human switching
to the robot mode based on the human adaptability. In section 6.2.2,
we defined a reward function that the robot is maximizing, which
captures the trade-off between going to the optimal goal and follow-
ing the human mode. Both the human adaptability and the human
mode are not directly observable. Therefore, the robot needs to esti-
mate them through interaction, while performing the task. This leads
us to formulate this problem as a mixed-observability Markov De-
cision Process (MOMDP) [Ong et al., 2010]. This formulation allows
us to compute an optimal policy for the robot that will maximize the
expected reward that the human-robot team will receive, given the
robot’s estimates of the human adaptability and of the human mode.
We define a MOMDP as a tuple {X, Y, A¥, Ty, Ta, T,11, R, Q, O}:

e X : X®R x Hg is the set of observable variables. These are the
current robot configuration x%, as well as the history h. Since x®
transitions deterministically, we only need to register the current
robot state and robot actions af_k L1

of world states X" is identical to the set of robot configurations X*.

ay. We assume that the set

* Y : A X Mis the set of partially observable variables. These are the
human adaptability « € A, and the human mode m" € M.

e AR s a finite set of robot actions. We model actions as transitions
between discrete robot configurations.

e T, : X x A® — X is a deterministic mapping from a robot config-
uration x®, history hj and action a®, to a subsequent configuration
x"* and history h;.

* Tx: Ax AR — TI(A) is the probability of the human adaptability
being a’ at the next time step, if the adaptability of the human at
time ¢ is & and the robot takes action a®. We assume the human
adaptability to be fixed throughout the task.

o T.u:XxAxMxA® — TI(M) is the probability of the human
switching from mode m" to a new mode m™, given a history h,
robot state x®, human adaptability « and robot action a®. It is
computed using eq. 6.5, section 6.2.1.4.

* R:Xx M x A® — R is a reward function that gives an immedi-
ate reward for the robot taking action a® given a history /i, human
mode m" and robot state x®. It is defined in eq. 6.8, section 6.2.2.
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¢ () is the set of observations that the robot receives. An observation
is a human input a" € A" (O = A").

e O: MxX® — II(Q) is the observation function, which gives a
probability distribution over human actions for a mode m" at state
x®. This distribution is specified by the stochastic modal policy
mt € M.

6.2.4 Belief Update

Based on the above, the belief update for the MOMDP is:

V(a,m™) =nO(m™, x,a") Y Y Ti(x,a®x)
aeAmieM (6.11)

Ta(e,a®, /)T, 1 (x, a0, m™, a®, m™)b(a, m™)

We note that since the MOMDP has two partially observable vari-
ables, « and m", the robot maintains a joint probability distribution
over both variables.

6.2.5 Robot Policy

We solve the MOMDP for a robot policy that is optimal with respect
to the robot’s expected total reward.

The stochastic modal policies may assign multiple actions at a
given state. Therefore, even if m™ = m®, a® may not match the human
input a". Such disagreements are unnecessary when human and
robot modes are the same. Therefore, we let the robot actions match
the human inputs, if the robot has enough confidence that robot
and human modes (computed using eq. 6.4, 6.7) are identical in the
current time-step. Otherwise, the robot executes the action specified
by the MOMDP optimal policy. We leave for future work adding a
penalty for disagreement between actions, which we hypothesize it
would result in similar behavior.

6.2.6 Simulations

Fig. 6.18 shows the robot behavior for two simulated users, one with
low adaptability (User 1, « = 0.0), and one with high adaptabil-

ity (User 2, « = 0.75) for a shared autonomy scenario with two
goals, G; and Gg, corresponding to modal policies m] and mp re-
spectively. Both users start with modal policy m (left goal). The hu-
man and robot actions are {move-left, move-right, move-forward}.
The robot uses the human input to estimate both m" and «. For
both users, the upper row plots the robot trajectory (red dots),

the human input (green arrow) and the robot action (gray arrow)
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over time. The middle row plots the estimate of « over time, where

a € {0,0.25,0.5,0.75,1}. Each graph plots a versus the probability

of a. The lower row plots m € {my, mg} versus the probability of m.
Columns indicate successive time-steps. User 1 insists on their initial
strategy throughout the task and the robot complies, whereas User

2 adapts to the robot and ends up following mg. We set a bounded
memory of k = 1 time-step. If human and robot disagree and the
human insists on their modal policy, then the MOMDP belief is up-
dated so that smaller values of adaptability « have higher probability
(lower adaptability). It the human aligns its inputs to the robot mode,
larger values become more likely. If the robot infers the human to be
adaptable, it moves towards the optimasl goal. Otherwise, it complies
with the human, thus retaining their trust.

Fig. 6.19 shows the team-performance over a, averaged over 1000
runs with simulated users. We evaluate performance by the reward
of the goal achieved, where R, is the reward for the optimal and
Rgyp for the sub-optimal goal. We see that the more adaptable the
user, the more often the robot will reach the optimal goal. Addition-
ally, we observe that for &« = 0.0, the performance is higher than Ry,;.
This is because the simulated user may choose to move forward in
the first time-steps; when the robot infers that they are stubborn, it is
already close to the optimal goal and continues moving to that goal.

6.2.7 Human Subject Experiment

We conduct a human subject experiment (n = 51) in a shared auton-
omy setting. We are interested in showing that the human-robot mu-
tual adaptation formalism can improve the performance of human-
robot teams, while retaining high levels of perceived collaboration
and trust in the robot in the shared autonomy domain.

On one extreme, we “fix” the robot policy, so that the robot always
moves towards the optimal goal, ignoring human adaptability. We
hypothesize that this will have a negative effect on human trust and
perceived robot performance as a teammate. On the other extreme,
we have the robot assist the human in achieving their desired goal.

We show that the proposed formalism achieves a trade-off between
the two: when the human is non-adaptable, the robot follows the
human preference. Otherwise, the robot insists on the optimal way of
completing the task, leading to significantly better policies, compared
to following the human preference, while achieving a high level of
trust.



MATHEMATICAL MODELS OF ADAPTATION IN HUMAN-ROBOT COLLABORATION 83

T'=1 =2 T=3 T'=4 =5
Lth o, o, o, L eh o, L&D o, o, L&
« ;s ' « is ' « i,\' * « ’_15 - « z,« -
User 1 Fis lia 1% 10 LgE
a=0.0
m=myp Z z 2 g 2
0 0.2 0. 0.7 Lo 0 0.256 s 075 10 0 0.25 05 0.0 10 o 0.2 D. 0.7 1.0 0 ). 2 0.5 0.75 1.0
1 1 1 1 1
0 1] L 0 0 0
[ % o, o, o, o, o, o, o, L&} o,
User 2 . - - . -
a=0.75
m=mg Z z < z =

P(m)
(n
Pim)
P{m)
1
Pim)

i, mi my mp ey meg mi m mi mp

Figure 6.18: Sample runs on a
6.2.7.1 INDEPENDENT VARIABLES shared autonomy scenario with

two goals Gr,Gg and two sim-
No-adaptation session. The robot executes a fixed policy, always & LR

acting towards the optimal goal.

Mutual-adaptation session. The robot executes the MOMDP policy
of section 6.2.5.

One-way adaptation session. The robot estimates a distribution

over user goals, and adapts to the user following their preference,
assisting them for that distribution [Javdani et al., 2015]. We compute
the robot policy in that condition by fixing the adaptability value to o
in our model and assigning equal reward to both goals.

ulated humans of adaptability
level a=0 and 0.75.

6.2.7.2 HYPOTHESES

H1 The performance of teams in the No-adaptation condition will be better
than of teams in the Mutual-adaptation condition, which will in turn be bet-
ter than of teams in the One-way adaptation condition. We expected teams
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Figure 6.19: Mean performance
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in the No-adaptation condition to outperform the teams in the other
conditions, since the robot will always go to the optimal goal. In the
Mutual-adaptation condition, we expected a significant number of
users to adapt to the robot and switch their strategy towards the op-
timal goal. Therefore, we posited that this would result in an overall
higher reward, compared to the reward resulting from the robot fol-
lowing the participants” preference throughout the task (One-way
adaptation).

Hz Participants that work with the robot in the One-way adaptation con-
dition will rate higher their trust in the robot, as well as their perceived
collaboration with the robot, compared to working with the robot in the
Mutual-adaptation condition,. Additionally, participants in the Mutual-
adaptation condition will give higher ratings, compared to working with
the robot in the No-adaptation condition. We expected users to trust the
robot more in the One-way adaptation condition than in the other
conditions, since in that condition the robot will always follow their
preference. In the Mutual-adaptation condition, we expected users
to trust the robot more and perceive it as a better teammate, com-
pared with the robot that executed a fixed strategy ignoring users’
adaptability (No-adaptation). Previous work in collaborative tasks
has shown a significant improvement in human trust, when the robot
had the ability to adapt to the human parter [Shah et al., 2011, Lasota
and Shah, 2015].

6.2.7.3 EXPERIMENT SETTING: A TABLE CLEARING TASK

Participants were asked to clear a table off two bottles placed sym-
metrically, by providing inputs to a robotic arm through a joystick
interface (fig. 6.16). They controlled the robot in Cartesian space by
moving it in three different directions: left, forward and right. We
first instructed them in the task, and asked them to do two training
sessions, where they practiced controlling the robot with the joystick.
We then asked them to choose which of the two bottles they would
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Figure 6.20: Findings for objec-
like the robot to grab first, and we set the robot policy, so that the tive and subjective measures.
other bottle was the optimal goal. This emulates a scenario where,
for instance, the robot would be unable to grasp one bottle without
dropping the other, or where one bottle would be heavier than the
other and should be placed in the bin first. In the one-way and mu-
tual adaptation conditions, we told them that “the robot has a mind
of its own, and it may choose not to follow your inputs.” Participants
then did the task three times in all conditions, and then answered a
post-experimental questionnaire that used a five-point Likert scale to
assess their responses to working with the robot. Additionally, in a
video-taped interview at the end of the task, we asked participants
that had changed strategy during the task to justify their action.

6.2.7.4 SUBJECT ALLOCATION

We recruited 51 participants from the local community, and chose a
between-subjects design in order to not bias the users with policies
from previous conditions.

6.2.7.5 MOMDP MoDEL

The size of the observable state-space X was 52 states. We empir-
ically found that a history length of k = 1 in BAM was sufficient

for this task, since most of the subjects that changed their prefer-
ence did so reacting to the previous robot action. The human and
robot actions were {move-left, move-right, move-forward}. We spec-
ified two stochastic modal policies {m,mpg}, one for each goal. We
additionally assumed a discrete set of values of the adaptability « :
{0.0,0.25,0.5,0.75,1.0}. Therefore, the total size of the MOMDP state-
space was 5 x 2 x 52 = 520 states. We selected the reward so that
Ropt = 11 for the optimal goal, R,;, = 10 for the suboptimal goal,
and C = —0.32 for the cost of mode disagreement (eq. 6.10). We com-
puted the robot policy using the SARSOP solver [Kurniawati et al.,
2008], a point-based approximation algorithm which, combined with
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the MOMDP formulation, can scale up to hundreds of thousands of
states [Bandyopadhyay et al., 2013].

6.2.8 Analysis
6.2.8.1 OBJECTIVE MEASURES

We consider hypothesis Hz1, that the performance of teams in the
No-adaptation condition will be better than of teams in the Mutual-
adaptation condition, which in turn will be better than of teams in
the One-way adaptation condition.

Nine participants out of 16 (56%) in the Mutual-adaptation condi-
tion guided the robot towards the optimal goal, which was different
than their initial preference, during the final trial of the task, while
12 out of 16 (75%) did so at one or more of the three trials. From the
participants that changed their preference, only one stated that they
did so for reasons irrelevant to the robot policy. On the other hand,
only two participants out of 17 in the One-way adaptation condition
changed goals during the task, while 15 out of 17 guided the robot
towards their preferred, suboptimal goal in all trials. This indicates
that the adaptation observed in the Mutual-adaptation condition was
caused by the robot behavior.

We evaluate team performance by computing the mean reward
over the three trials, with the reward for each trial being R,y if the
robot reached the optimal goal and Ry,; if the robot reached the
suboptimal goal (fig. 6.20-left). As expected, a Kruskal-Wallis H test
showed that there was a statistically significant difference in perfor-
mance among the different conditions (x?(2) = 39.84,p < 0.001).
Pairwise two-tailed Mann-Whitney-Wilcoxon tests with Bonfer-
roni corrections showed the difference to be statistically signif-
icant between the No-adaptation and Mutual-adaptation (U =
28.5,p < 0.001), and Mutual-adaptation and One-way adaptation
(U =49.5,p = 0.001) conditions. This supports our hypothesis.

6.2.8.2 SUBJECTIVE MEASURES

Recall hypothesis Hz, that participants in the Mutual-adaptation con-
dition would rate their trust and perceived collaboration with the
robot higher than in the No-adaptation condition, but lower than in
the One-way adaptation condition. Table I shows the two subjective
scales that we used. The trust scales were used as-is from Hoffman
[2013]. We additionally chose a set of questions related to partici-
pants’ perceived collaboration with the robot.

Both scales had good consistency. Scale items were combined into
a score. Fig. 6.20-center shows that both participants’ trust (M =
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3.94, SE = 0.18) and perceived collaboration (M = 3.91, SE = 0.12)
were high in the Mutual-adaptation condition. One-way ANOVAs
showed a statistically significant difference between the three con-
ditions in both trust (F(2,48) = 8.370,p = 0.001) and perceived
collaboration (F(2,48) = 9.552,p < 0.001). Tukey post-hoc tests re-
vealed that participants of the Mutual-adaptation condition trusted
the robot more, compared to participants that worked with the robot
in the No-adaptation condition (p = 0.010). Additionally, they rated
higher their perceived collaboration with the robot (p = 0.017). How-
ever, there was no significant difference in either measure between
participants in the One-way adaptation and Mutual-adaptation con-
ditions. We attribute these results to the fact that the MOMDP formu-
lation allowed the robot to reason over its estimate of the adaptability
of its teammate; if the teammate insisted towards the suboptimal
goal, the robot responded to the input commands and followed the
user’s preference. If the participant changed their inputs based on
the robot actions, the robot guided them towards the optimal goal,
while retaining a high level of trust. By contrast, the robot in the
No-adaptation condition always moved towards the optimal goal
ignoring participants’ inputs, which in turn had a negative effect on
subjective measures.
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value of the mode disagreement penalty C. We vary the value of C Ropt

and simulate the task execution over &, averaged over 10000 runs
with simulated users. Similarly to section 6.2.6, we evaluate perfor-

Score

mance by the reward of the goal achieved, where R, is the reward
for the optimal and Ry, for the sub-optimal goal.

Fig. 6.21 shows the team performance for different values of C. R [ l :
sub

0.00 0.25 0.50 0.75

[e%

C = —0.32 is the value of the cost that we used for the simulations
in section 6.2.6 and the experiments in section 6.2.7. We observe that
decreasing the magnitude of the cost (C > 0.32) results in the optimal
performance regardless of a. This is because the robot always ignores
the user and goes towards the optimal goal; the robot policy becomes

policies of varying mode dis-
identical to the one in the No-adaptation session. On the other hand,

agreement cost C
increasing the magnitude of cost (C < 0.32) results in lower values

in the y-axis, since the robot becomes more reluctant to disagree

with the human user. Finally, for C < 0.45, the performance does

not change and becomes close to Rs,; for any a. A small increase in

performance for higher values of « for the C < 0.45 curve occurs

because, even though the robot follows the human mode, the human

may misinterpret a robot forward action as an action towards the

for simulated users and robot

1.00

Figure 6.21: Mean performance
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right goal, and adapt to that with probability «.

We observe that the robot policy is particularly sensitive to the val-
ues of C. One solution would be to vary C across the state-space
of the task, rather than assuming a constant penalty for mode-
disagreement. Alternatively, rather than implicitly penalizing dis-
agreement as a way to retain human trust, we could model trust
as an additional latent variable in the MOMDP, and include it as a
reward function parameter. We leave this for future investigation.

6.2.10 Conclusion

In this work, we proposed a human-robot mutual adaptation formal-
ism in a shared autonomy setting. In a human subject experiment,
we compared the policy computed with our formalism, with an as-
sistance policy, where the robot helped participants to achieve their
intended goal, and with a fixed policy where the robot always went
towards the optimal goal.

As fig. 6.20 illustrates, participants in the one-way adaptation
condition had the worst performance, since they guided the robot
towards a suboptimal goal. The fixed policy achieved maximum
performance, as expected. However, this came to the detriment of
human trust in the robot. On the other hand, the assistance policy in
the One-way adaptation condition resulted in the highest trust rat-
ings — albeit not significantly higher than the ratings in the Mutual-
adaptation condition — since the robot always followed the user
preference and there was no goal disagreement between human and
robot. Mutual-adaptation balanced the trade-off between optimiz-
ing performance and retaining trust: users in that condition trusted
the robot more than in the No-adaptation condition, and performed
better than in the One-way adaptation condition.

Fig. 6.20-right shows the three conditions with respect to trust and
performance scores. We can make the MOMDP policy identical to
either of the two policies in the end-points, by changing the MOMDP
model parameters. If we fix in the model the human adaptability to o
and assign equal costs for both goals, the robot would assist the user
in their goal (One-way adaptation). If we fix adaptability to 1 in the
model (or we remove the penalty for mode disagreement), the robot
will always go to the optimal goal (fixed policy).

The presented table-clearing task can be generalized without sig-
nificant modifications to tasks with a large number of goals, human
inputs and robot actions, such as picking good grasps in manipu-
lation tasks (fig. 6.15): The state-space size increases linearly with
(1/dt), where dt a discrete time-step, and with the number of modal
policies. On the other hand, the number of observable states is poly-
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TABLE I: SUBJECTIVE MEASURES

Trust & = .85

1.1 trusted the robot to do the right thing at the right time.
2.The robot was trustworthy.

Perceived Collaboration & = .81

1.1 was satisfied with ADA and my performance.

2.The robot and I worked towards mutually agreed upon goals.
3.The robot and I collaborated well together

4.The robot’s actions were reasonable.

5.The robot was responsive to me.

nomial to the number of robot actions (O(|A®|¥)), since each state
includes history hy: For tasks with large |A®| and memory length k,
we could approximate /. using feature-based representations.

6.3 Discussion

In this chapter, we relaxed the assumption of a known human type
6. Instead, we treated 0 as a latent variable in a partially observable
stochastic process; this allowed the robot to take information seeking
actions to infer online the human type 6. The human type informs
how the human adapts to the robot. This results in human-robot mu-
tual adaptation. The robot adapts its own actions, by building online a
model of human adaptation to the robot.

We are excited to have brought about a better understanding of
the relationships between adaptability performance and trust in
collaboration and shared-autonomy settings. In particular, we have
showed that the mutual adaptation formalism significantly improved
the performance of human-robot teams.

So far, we have considered that the human adaptability is constant
throughout the task. In other words, we have assumed that if a user
is non-adaptable, this does not change as they interact with the robot.
In the next chapter, we relax this assumption by introducing verbal
communication from the robot to the human, and we investigate how
different types of utterances affect team performance and user trust
in the robot.
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Mutual Adaptation with Verbal Communication

This chapter generalizes the mutual-adaptation formalism of chap-
ter 6 to include verbal communication. Our generalized formalism *
enables a robot to combine optimally verbal communication and actions
towards task completion to guide a human teammate towards a better
way of doing a collaborative task.

To demonstrate the applicability of the formalism, we revisit the
table-carrying task of chapter 5 (Fig. 7.1). We focus on the robot ver-
bally communicating two types of information: how the robot wants
them to behave, and why the robot is behaving this way. Therefore,
we identify two types of verbal communication: verbal commands,
where the robot asks the human to take a specific action, i.e., “Let’s
rotate the table clockwise”, and state-conveying actions, i.e., “I think I
know the best way of doing the task,” where the robot informs the
human about its internal state, which captures the information that
the robot uses in its decision making (Fig. 7.2).

We then formulate and learn from data a mixed-observability
Markov decision process (MOMDP) model. The model allows the
robot to reason about the human internal state, in particular about
how willing the human teammate is to follow a robot task action or a
robot verbal command, and to optimally choose to take a task action
or issue a communication action.

Compared to chapter 6, the robot has now the option to commu-
nicate information to the human; we hypothesize that this affects
the human adaptability «, which we no longer assume to be constant
throughout the task.

We conducted an online human subjects experiments featuring a
table carrying task and compared results between three instantiations
of our formalism: one that combines task actions with verbal commu-
nication, one that combines task actions with state-conveying actions,
and the formalism from chapter 6 that considers only non-verbal
task actions, i.e., rotating the table in the table carrying example.
Results show that adding verbal commands to the robot decision

Work done in collaboration with Jodi
Forlizzi and Minae Kwon.

1 Stefanos Nikolaidis, Minae Kwon,
Jodi Forlizzi, and Siddhartha Srinivasa.
Planning with verbal communication
for human-robot collaboration. Journal
of Human-Robot Interaction (JHRI), 2018.
(under review)

Figure 7.1: Human-robot table

carrying task.
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HERB
“| think | know the best way of
doing this task!"

HERB
“Let’s rotate the table
clockwise!”

making is the most effective form of interaction; 100% of participants
changed their strategy towards a new, optimal goal demonstrated

by the robot in the first condition. On the other hand, only 60% of
participants in the non-verbal condition adapted to the robot. Trust
ratings were comparable between the two conditions. Interestingly,
state-conveying actions did not have a similar positive effect, since
participants did not believe that the robot was truthful. These re-
sults are encouraging, but also leave room for further investigation of
different ways that people interpret robot verbal behaviors in collabo-
rative settings.

7.1 Planning with Verbal Communication

We identify two types of verbal communication: verbal commands,
where the robot asks the human to take a specific action, i.e., “Let’s
rotate the table clockwise”, and state-conveying actions, i.e., “I think I
know the best way of doing the task,” where the robot informs the
human about its internal state.

7.1.1  Robot Verbal Commands

We define as verbal command a robot action, where the robot asks
the human partner to follow an action a"' € A" specified by some
mode m® € M. We use the notation a¥, € A for robot task actions
that affect the world state and a¥ € AR for robot actions that cor-
respond to the robot giving a verbal command to the human. We
assume a known bijective function f : A" — AY that specifies an
one-to-one mapping of the set of human actions to the set of robot
commands.

Human Compliance Model. Given a robot command a® € AR, the
human can either ignore the command and insist on their mode
m" € M, or switch to a mode m® € M inferred by af and take an
action a" € A" specified by that mode. We assume that this will

Figure 7.2: (left) The robot

issues a verbal command.
(right) The robot issues a state-
conveying action.
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happen with probability ¢, which indicates the human compliance to
following robot verbal commands. We model human compliance sep-
arately to human adaptability, drawing upon insights from previous
work on verbal and non-verbal communication which shows that
team behaviors can vary in different interaction modalities [Wang

et al., 2016a, Chellali et al., 2012].

MOMDP Formulation. We augment the formulation of section 6.1.1,
chapter 6, to account for robot verbal commands, in addition to task
actions: the set of robot actions AR is now AR : AR x AR

In this chapter, we assume w.l.o.g. that the human and robot
modal policies are fully observable, similarly to section 6.1.1. The
extension to partially observable modes follows exactly as described
in section 6.2.1.

The set of observable variables X includes the modal policies
followed in the last k time-steps, so that X : X" x MKk x Mk x B.
Compared to the formulation of section 6.1.1, we additionally include
a flag B € {0,1}, that indicates whether the last robot action was
a verbal command or a task action. The set of partially observable
variables includes both human adaptability « in A and compliance ¢ €
C,sothat Y : A x C. We assume both « and c to be fixed throughout
the task.

The belief update for the MOMDP in this model is:

Vi, d)y=nY.Y Y Txyar,a,x")m"(x,a%a,c)b(ac) (7.1)

acAceC gHe AH

The human policy 7t (x,a"; «, c) captures the probability of the
human taking an action " based on their adaptability and compli-
ance. In particular, if B = 1, indicating that the robot gave a verbal
command in the last time-step, the human will switch to a mode
m® € M specified by the previous robot command af with probability
¢, or insist on their human mode of the previous time-step m™ with
probability 1 — c. If B = 0, the human will switch to a mode m® € M

specified by the robot action a}, with probability a, or insist on their

R
a,,1—c

human mode of the previous time-step m" with probability 1 — a.

Fig. 7.3 illustrates the model of human decision making that accounts

for verbal commands. Figure 7.3: Human adaptation

As in section 6.1.1, we then solve the MOMDP for a robot policy model that accounts for verbal

7*". This time, the robot optimal policy will take into account both commands. If the robot gave

the robot belief on human adaptability and the robot belief on human compli- a verbal command a¢ in the

ance. It will decide optimally, based on this belief, whether to take a previous time-step, the human
will switch modes with prob-
ability c. Instead, if the robot

took an action af, that changes

task action or issue a verbal command. We show that this improves
the adaptation of human teammates in section. 7.3.

the world state, the human will
switch modes with probability
Q.
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7.1.2  Communication of Robot Internal State

Previous work [Van den Bossche et al., 2011] has shown that commu-
nicating internal states among team members allows participants to
form shared mental models. Empirical evidence suggests that mental
model similarity improves coordination processes which, in turn,
enhance team performance [Mathieu et al., 2000b, Marks et al., 2002].
The literature presents various definitions for the concept of “shared
mental models” [Langan-Fox et al., 2000]. Marks et al. [2002] state
that mental models represent “the content and organization of inter-
role knowledge held by team members within a performance set-
ting.” According to Mathieu et al. [2000a], mental models are “mech-
anisms whereby humans generate descriptions of system purpose
and form, explanations of system functioning and observed system
states and prediction of future system states ... and they help people
to describe, explain and predict events in their environment.” Other
work [Goodrich and Yi, 2013, Kiesler and Goetz, 2002, Nikolaidis and
Shah, 2013] has shown the effect of shared mental models on team
performance for human-robot teams, as well. Using these insights,
we propose a way for the robot to communicate its internal state to
the human.

State Conveying Actions. We define as state-conveying action a
robot action, where the robot provides to the human information
about its decision making mechanism. We define a set of state-
conveying actions a§ € A¥. These actions do not provide informa-
tion about the robot mode, but we expect them to increase the hu-
man adaptability and compliance levels. In autonomous driving, users
showed greater system acceptance, when the system explained the
reason for its actions [Koo et al., 2015].

MOMDP Formulation. We describe the integration of state-conveying
actions in the MOMDP formulation.

The set of robot actions includes task-based actions and state-
conveying actions, so that: A® : AX x A¥. We model an action af as
inducing a stochastic transition from a human adaptability « € A
toa’ € A and ¢ € Ctoc € C. Formally, we define the transition
functions for the partially observable variables «, so that: 7, : A X
AY® - TI(A) and 7; : A x AR — TI(C). We note that the task actions
a® ¢ A do not change a and c.

The belief update now becomes:

vV, dy=n Y, Talaa,a)Tc(c,ar,c’) Y, Ta(x,y,arap,x" )" (x,a% a,c)b(a,c)

€A, ceC aHe AH
(7.2)

We solve the MOMDP for a robot policy 77*". The robot policy will
decide optimally whether to take a task action or a state-conveying
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action. Intuitively, if the inferred human adaptability / compliance
is low, the robot should take a state-conveying action to make the
human teammate more adaptable / compliant. Otherwise, it should
take a task action, expecting the human to adapt / follow a verbal
command. We examine the robot behavior in this case in section 7.3.

7.2 Model Learning

To compute the belief update of eq. 7.1 and 7.2, we need a prior
distribution® over the human adaptability and compliance values.
We additionally need to specify the 7, and 7. that indicate how the
adaptability and compliance will change, when the robot takes a
state-conveying action.

In chapter 6, we assumed a uniform prior on human adaptability.
While we could do the same in this work, this would ignore the fact
that people may in general have different a priori dispositions towards
adapting to the robot when it takes a task action and towards fol-
lowing a robot verbal command. In fact, Albrecht et al. [2015] have
empirically shown that prior beliefs can have a significant impact on
the performance of utility-based algorithms. Therefore, in this sec-
tion we propose a method for learning a prior distribution on human
adaptability and compliance from data.

We additionally propose a method for computing the state tran-
sition function 7, in eq. 7.2. We can use exactly the same process to
compute 7¢, and we leave this for future work.

7.2.1 Learning Prior Distributions on Adaptability and Compliance

When integrating compliance and adaptability, we hypothesize that
users are a priori more likely to change their actions after a robot
issues a verbal command, compared with the robot taking a different
task action. To account for this, we compute a probability distribution
over human adaptability and compliance, which the robot will use as
prior in the belief update of the MOMDP formulation.

Data Collection Setup. To collect data, we used the table carrying
task setting from chapter 6. We summarize the task here for comple-
tion: The task is performed online via video playback. There, human
and HERB [Srinivasa et al., 2010], an autonomous mobile manipula-
tor, must work together to carry a table out of the room. There are
two strategies: the robot facing the door (Goal A) or the robot facing
away from the door (Goal B). We assume that Goal A is the optimal
goal, since the robot’s forward-facing sensor has a clear view of the
door, resulting in better overall task performance. Not aware of this,
an inexperienced human partner may prefer Goal B. In our computa-

Figure 7.4: Rotating the table so
that the robot is facing the door
(top, Goal A) is better than the
other direction (bottom, Goal
B), since the exit is included in
the robot’s field of view and the
robot can avoid collisions.

Click to choose Click to choose
clockwise counterclockwise
rotate action rotate action

Figure 7.5: Ul with instructions.

> We are using the term prior distribu-
tion and prior belief interchangeably.
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tional model, there are two modes; one with rotation actions towards
Goal A, and one with rotation actions towards Goal B. Disagreement
occurs when human and robot attempt to rotate the table towards
opposite directions. We first instructed participants in the task and
asked them to choose one of the two goal configurations (Fig. 7.4),
as their preferred way of accomplishing the task. To prompt users
to prefer the sub-optimal goal, we informed them about the starting
state of the task, where the table was slightly rotated in the counter-
clockwise direction, making the sub-optimal Goal B appear closer.
Once the task started, the user chose the rotation actions by clicking
on buttons on a user interface (Fig. 7.5). All participants executed the
task twice.
Manipulated Variables. We manipulated the way the robot reacted
to the human actions. When the human chose a rotation action to-
wards the sub-optimal goal, the table did not move and in the first
condition a message appeared on the screen notifying the user that
they tried to rotate the table in a different direction then the robot.
In the second condition, the robot was illustrated as speaking to the
user, prompting them to move the table towards the opposite direc-
tion (Figure 7.2-left). In both conditions, when the user moved the
table towards the optimal goal, a video played showing the table
rotating.
Learning Prior Beliefs.

Adaptability: In section 5.1.3, chapter 5 we defined as adaptability
« of an individual, the probability of switching from the human
mode m™ to the robot mode mR. Therefore, we used the data from the
first condition to estimate the adaptability &, for each user u, as the
number of times the user switched modes, divided by the number of
disagreements with the robot.

#times user u switched from m" to mR®

fu = #disagreements 73)

Intuitively, a very adaptable human will switch from m" to m®
after only one disagreement with the robot. On the other hand, a
non-adaptable human will insist and disagree with the robot a large
number of times, before finally following the robot goal.

Compliance: In Sec. 7.1.1, we defined the compliance c as the proba-
bility of following a robot verbal command and switching to a robot
mode m® € M. Therefore, similarly to eq. 7.3, we estimate the compli-
ance for each user u from the second condition ¢ as follows:

6 — #times user u switched from m™ to m®
#verbal commands
We then assume a discrete set of values for & and ¢, so that « €
{0,0.25,0.5,0.75,1.0} and ¢ € {0,0.25,0.5,0.75,1.0}, and we compute

(7.4)
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the histogram of user adaptabilities and compliances (fig. 7.6). We
then normalize the histogram to get a probability distribution over
user adaptabilities and a probability distribution over compliances.
We use these distributions as prior beliefs for the MOMDP model.
Discussion. Fig. 7.6 shows that most of the users adapted to the
robot immediately when the robot issued a verbal command. This
indicates that users are generally more likely to follow a robot verbal
command than adapt to the robot through action disagreement.

7.2.2  Learning Transition Function Parameters

Additionally, in order to compute the belief update of eq. 7.2, we
need to compute the state-transition function 7, that represents how
a state-conveying action affects the human adaptability «. As in sec-
tionx 7.2.1, we assume a € A, where A € {0,0.25,0.5,0.75,1.0}.

Data Collection Setup. We use the same table carrying setup, as in
section 7.2.1. In the first round, participants interact with the robot
executing the MOMDP policy of section 6.1.1, chapter 6, without any
verbal communication. In the second round, we set the robot policy
to move towards a goal different than the goal reached in the end

of the previous round, and we have the robot take a state-conveying
action in the first time-step (Fig. 7.2-right).

Transition Function Estimation. Using the human and robot actions
taken in the first round, we estimate the adaptability &, € A of each
user u using eq. 7.3, rounded to the closest discrete value. We then
similarly estimate the new adaptability for the same user &}, € A
from the human and robot actions in the second round, after the user
has observed the robot state-conveying action. We can compute the
Maximum Likelihood Estimate of the transition function 7T, (a, a%, &)
in eq. 7.2 from the frequency count of users that had «, as estimated
in the first round, and «’ in the second round. Since we had only one
user with &, = 0.75, we included the counts of adjacent entries, so
that:

Yo Lagare) (Bu) Ly (2,)
Tala,a, o) = ’ 1
oc( ’ ) Yu ]1[1x7§,1x+5] (“u)

(7.5)

where 6 = 0.25 and 1 an indicator function.
Discussion. Fig. 7.7 shows that users with intermediate or high
adaptability values (« > 0.5) became very adaptable («’ = 1.0),
after the robot took a state-conveying action. On the other hand,
some users with low adaptability remained non-adaptable, even after
the robot stated that “[it knew] the best way of doing the task”. We
investigate this effect further in section 7.3.
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Figure 7.6: Histograms of user
adaptabilities &, and compli-
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Figure 7.7: Transition matrix
Ta(a,a%,a’) given a robot state-
conveying action af. Darker
colors indicate higher probabili-
ties.
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7.3 Evaluation

We first simulate and comment on the different MOMDP policies
using the table carrying setup of Sec. 7.2.1. We then evaluate these
policies in a human subject experiment.

7.3.1 Simulation

We define the reward function in the MOMDP, so that Rypr = 20

is the reward for the optimal goal (Goal A), Ry, = 15 the reward

of the suboptimal goal (Goal B), and we have R, = 0 for the

rest of the state-space. We additionally assign a discount factor of

v = 0.9. We use the MOMDP formulations of sections 6.1.1, 7.1.1
and 7.1.2, and for each formulation we compute the optimal policy
using the SARSOP algorithm [Kurniawati et al., 2008], which is com-
putationally efficient and has been previously used in various robotic
tasks [Bandyopadhyay et al., 2013]. For the policy computation, we
use as prior beliefs the learned distributions from section 7.2.1, and
as transition function 7, its learned estimate from section 7.2.2.

We call Compliance policy the resulting policy from the MOMDP
model of section 7.1.1, State-Conveying policy the policy from the
model of section 7.1.2, and Baseline policy the policy from section 6.1.1.
Fig. 7.8 shows sample runs of the three different policies with five
simulated users. The plots illustrate the robot estimate of a,c €
{0, 0.25,0.5,0.75, 1.0} over time, after human and robot take the ac-
tions depicted with the arrows (clockwise / counterclockwise) or
letters (S for state-conveying action, C for verbal command) below
each plot. The starting estimate is equal to the prior belief (sec-
tion 7.2.1). Red color indicates human (white dot) and robot (black
dot) disagreement, where the table does not rotate. Columns indi-
cate successive time-steps. Users 1-3 work with a robot executing the
compliance policy, User 4 with the state-conveying policy and User
5 with the baseline policy. User 1 adapts to the robot strategy, and
the robot does not need to issue a verbal command. User 2 insists on
their strategy after disagreeing with the robot, and does not comply
with the robot verbal command, thus the robot adapts to retain hu-
man trust. User 3 insists on their strategy in the first two time-steps
but then adapts to follow the robot command. User 4 starts with be-
ing non-adaptable, but after the robot takes a state-conveying action
their adaptability increases and the user adapts to the robot. User 5
interacts with a robot executing the baseline policy; the robot adapts,
without attempting to issue a verbal communication action, contrary
to Users 3 and 4. We see that while User 5 had the same initial adapt-
ability (¢« = 0.0) with Users 3 and 4, Users 3 and 4 adapted to the

99
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robot when it issued a verbal communication action, whereas User 5
imposed its (suboptimal) preference to the robot.

7.3.2  Human Subject Experiment

In human subjects experiments of chapter 6, a large number of partic-
ipants adapted to a robot executing the Baseline policy. At the same
time, participants rated highly their trust in the robot. In this work,
we hypothesize that adding verbal communication will make partic-
ipants even more likely to adapt. We additionally hypothesize that
this will not be to the detriment of their trust in the system.
Hypotheses.

Hz Participants are more likely to change their strategy towards the
optimal goal when they interact with a robot executing the Compliance
policy, compared to working with a robot executing the Baseline policy. In
section 7.2.1, we saw that users were generally more likely to follow
a verbal command than adapt to the robot through action. There-
fore, we hypothesized that integrating verbal commands into robot
decision making would improve human adaptation.

Hz Human trust in the robot, as elicited by the participants, will be
comparable between participants that interact with a robot executing the
Compliance policy and participants that interact with a robot executing a
Baseline policy. The robot executing the compliance policy reasons
over the latent human state, and adapts to the human team member,
if they have low adaptability and compliance (fig. 7.8, User 2). As
we saw in chapter 6, accounting for human adaptability resulted in
retaining users’ trust in the robot.

H3 Participants are more likely to change their strategy towards the
optimal goal when they interact with a robot executing the State-Conveying
policy, compared to working with a robot executing the Baseline policy. In
simulation, taking a state-conveying action results in an increase in
human adaptability (fig. 7.8, User 4). We hypothesized that the same
would hold for participants in the actual experiment.

Hg4 Human trust in the robot, as elicited by the participants, will be
comparable between participants that interact with a robot executing the
State-Conveying policy and participants that interact with a robot executing
a Baseline policy. We hypothesized that enabling the robot to commu-
nicate its state would improve the transparency in the interaction and
would result in high trust, similarly to the baseline condition.
Dependent Measures. To test hypotheses H1 and H3, we compare
the ratio of users that adapted to the robot in the three conditions.
To test hypotheses H2 and Hg4, we asked the users to rateona 1 to 5
Likert scale their agreement to the statement “The robot is trustwor-
thy” after each task execution, and compare the ratings in the three
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Figure 7.9: Participants” adap-

conditions. tation rate and rating of their
Subject Allocation. We chose a between-subjects design in order agreement to the statement
to avoid biasing the users with policies from previous conditions. “HERB is trustworthy” for the
We recruited 151 participants through Amazon’s Mechanical Turk Compliance, State-Conveying
service. The participants are all from United States, aged 18-65 and and Baseline conditions (left),
with approval rate higher than 95%. To ensure the quality of the and the State-Conveying I and
recorded data, we asked all participants a control question that tested II conditions (right).

their attention to the task and eliminated data associated with wrong
answers to this question, as well as incomplete data.

7.3.3 Results and Discussion

Objective Metrics. We first evaluate the effect of verbal communica-
tion in human adaptation to the robot. Similarly to previous results
from the baseline policy in the same setup (section 6.1.3.2, chapter 6),
60% of participants adapted to the robot in the Baseline condition.

In the State-Conveying condition 79% of participants adapted to the
robot. Interestingly, 100% of participants adapted in the Compliance
condition. A Pearson’s chi-square test showed that the difference
between the ratios in the three conditions was statistically signif-
icant (x2(2,N = 151) = 23.058,p < 0.001). Post-hoc pairwise
chi-square tests with Bonferroni corrections showed that participants
in the Compliance condition were significantly more likely to adapt
to the robot, compared to participants in the Baseline (p < 0.001) and
State-Conveying (p = 0.003) conditions, supporting hypothesis Hi.
However, the difference between the ratios in the State-Conveying
and Baseline conditions was not found to be significant, which does
not support hypothesis H3. Fig. 7.9-left shows the adaptation rate for
each condition.

Subjective Metrics. We additionally compare the trust ratings of par-
ticipants in the three conditions. An extended equivalence test [Wiens
et al., 1996, Wiens and Iglewicz, 2000] with a margin of A = 0.5

did not show any statistical significance, indicating that the ratings
among the three conditions were not equivalent. Pairwise TOST



102 STEFANOS NIKOLAIDIS

equivalence tests with Bonferroni corrections showed that the rat-
ings between the Compliance and Baseline conditions are equiva-
lent, verifying hypothesis Hz. However, the trust ratings between

the State-Conveying and Baseline conditions were not found to be
equivalent. This indicates that, contrary to the Compliance policy, the
State-Conveying policy did not retain human trust. Fig 7.9-left shows
the mean rating of robot trustworthiness for each condition.
Open-Ended Responses. In the end of the experiment, we asked
participants to comment on the robot’s behavior. We focus on the
open-ended responses of participants in the Compliance and State-
Conveying conditions, who saw the robot taking at least one verbal

action3. Several participants that interacted with the robot of the 3 This excludes participants that
adapted to the robot after only one

“ . . . ., disagreement, and thus did not experi-
he eventually said that we should try doing the task differently, ence the robot taking a verbal action.

“HERB wanted to go to the other direction” and that “he wanted
to be in control.” This is in accordance with prior work [Nass and

Compliance condition attributed agency to the robot, stating that

Moon, 2000], which has shown that people may impute motivation
to automation that can communicate verbally. Additionally they
attempted to justify the robot, noting that “it was easier for me to
move than for him,” “it wanted to see the doorway” and “it probably
works more efficiently when it is pushing the table out of the door.”

On the other hand, participants in the State-Conveying condition
did not believe that the robot actually knew the best way of doing
the task. This is illustrated by their comments: “he thinks that he
knows better than me,” “he felt like he knew better than humans”
and “maybe he knew a better way or maybe he was programmed to
oppose me.” This indicates that some users are hesitant to accept the
information that the robot provides about its internal state.

These results show that when the robot issued a verbal command
declaring its intent, this resulted in significant improvements in hu-
man adaptation to the robot. At the same time, the human trust level
was retained to comparable levels to that of the Baseline condition.
On the other hand, when the robot attempted to improve human
adaptability, by saying “I think I know the best way of doing the
task,” this did not have the same positive effect on human adapta-
tion and trust, since some participants did not believe that the robot
actually knew the best way.

7.3.4  Follow-up User Study.

We hypothesized that the loss of trust in the State-Conveying con-
dition may have resulted from the phrasing “I think I know the best
way of doing the task.” We attempted to make the robot sound more
assertive by removing the “I think” part of the phrasing, changing
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the state-conveying action to “I know the best way of doing the task.”
We ran a user study with 52 users using the same setup with this
additional condition, which we call “State-Conveying II.” We name
the initial “State-Conveying” condition as “State-Conveying 1.” For
the “State-Conveying 1” condition, we reused the data from the initial
study.

Hypotheses.

Hs Participants of the State-Conveying II condition are more likely to
change their strategy towards the optimal goal, compared to participants of
the State-Conveying I condition.

H6 Participants in the the State-conveying Il condition will find the
robot more trustworthy, compared to participants of the State-conveying I
condition.

Analysis. 90% of participants adapted to the robot in the State-
Conveying II condition, compared to 79% in the State-Conveying I
condition (fig. 7.9-right), which is indicative of a small improvement.
A Pearson’s chi-square test showed that the difference between the
ratios in the two conditions is not statistically significant. Addition-
ally, the trust ratings between the two conditions were comparable
(fig. 7.9-right). Similarly to the initial study, users appeared not to
believe the robot. When asked to comment on the robot behavior,
several participants stated that “HERB believed he knew the best way
to do the task,” and that “the robot was wrong, which made me not
trust it.” This indicates that these participants did not perceive the
robot as truthful, and warrants further investigation on the right way
for robots to convey their internal state to human collaborators.
Discussion. We find surprising that the why actions did not have
the same effect as the how actions. While this appears to be counter-
intuitive, we offer several explanations for this finding.

First, human teammates were unable to verify whether the robot
actually knew the best way of doing the task. According to Hancock
et al. [2011], performance is one of the key characteristics that influ-
ences user trust, and the absence of evidence about the truthfulness
of the robot statement may have negatively affected users’ evaluation
of the robot performance. This is in contrast to previous work in au-
tonomous driving, where the user could see that the car is breaking
because “there is an obstacle ahead” [Koo et al., 2015]. This finding is
central to considerations in designing legible robot behavior [Knep-
per et al., 2017]. When the cause behind certain robot actions may be
unclear, it will be important for robots to “show” and not “tell” users
why its behavior is optimal.

Second, explaining that the robot knows the best way without
providing more information may have been considered offensive,
even though it is accurate, since the human teammate may find such
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an utterance incomplete and unhelpful. It would be interesting to
explore this setting with other, more informative utterances, such

as the robot explaining that it cannot see the door with its forward
camera. In fact, previous work [Moulin et al., 2002] in multi-agent
systems has shown that providing sound arguments supporting a
proposition are essential in changing a person’s beliefs and goals.
However, translating information that is typically encoded into the
system in the form of a cost-function to a verbal explanation of this
detail is particularly challenging. Additionally, while providing more
information could make humans more adaptable, overloading them
with more information than what is required could overwhelm them,
leading to misunderstanding and confusion [Grice, 1975]. We are
excited about exploring this trade-off in the future in a variety of
human-robot collaboration settings.

An alternative explanation is that the task setting affected peo-
ple’s perception of the robot as an authority figure. Hinds et al. [2004]
show that participants were willing to follow an emergency guide
robot during a simulated fire alarm. Half of these participants were
willing to follow the robot, even though they had observed the robot
perform poorly in a navigation guidance task, just minutes before.
In that study, the robot was clearly labeled as an emergency guide
robot, putting it in a position of authority. People may be more will-
ing to rely on robots labeled as authority figures or experts when
they do not have complete information or confidence in completing
the task. Distilling the factors that enable robots to convey authority
in collaborative settings is a promising research direction.

Finally, it is possible that the robot, as it appeared in the videos,
was not perceived as “human-like” enough for people to be willing
to trust its ability on doing the task in the optimal way. Previous
work has shown that when robots convey human-like characteristics,
they are more effective in communicating participant roles [Mutlu
et al., 2012], and people systematically increase their expectations on
the robot’s ability [Goetz et al., 2003] .

7.4 Discussion

In this chapter, we proposed a formalism for combining verbal com-
munication with actions towards task completion, in order to enable
a human teammate to adapt to its robot counterpart in a collaborative
task. We identified two types of verbal communication: verbal com-
mands, where the robot explained to the human how it wanted to do a
task, and state-conveying actions, where the robot informed the human
why it chose to act in a specific way. In human subjects experiments,
we compared the effectiveness of each communication type with a
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robot policy that considered only non-verbal task actions.

Results showed that verbal commands were the most effective
forms of communication, since 100% of participants adapted to the
robot, compared with 60% of participants in the non-verbal condi-
tion. Both conditions had comparable ratings of robot trustworthi-
ness. Participants understood that the robot is aware of their pres-
ence and they attributed agency to the robot; they thought that there
must be a reason for the robot asking them to act in a specific way
and were eager to comply. On the other hand, state-conveying ac-
tions did not have the same effect; when the robot described that
“it thought it knew the best way of doing the task,” or simply that
“it knew the best way of doing the task,” many participants did not
believe that the robot was truthful.

Speech Limitations Since speech results in a perfect adaptation rate,
should it be the norm in human-robot communication? There are a
number of reasons that this is not the case.

First, when people coordinate their actions, for instance by cross-
ing a street, they do not use speech but coordinate implicitly through
nonverbal actions, minimizing time and effort [Bitgood and Dukes,
2006].

Second, factory environments are frequently much too noisy for
effective verbal/auditory communication.

Additionally, verbal communication comes with an additional
technical requirement; it requires either that the robot has seman-
tic knowledge of the task. or that a designer manually annotates a
verbal utterance for every human action observed by the robot. On
the other hand, our MOMDP model for non-verbal communication
requires only a mapping from human modal policies to observations;
the robot requires no additional information of what these observa-
tions are.

Finally, Cha et al. [2015] has shown that speech affects not only
the perceived robot’s social capability, but also the perceive physical
capability as well, which can lead to unrealistic expecations. In turn,
this can lead to failures and loss of trust, when the robot does not
meet these expectations.

Future Work. We focused on single instances of the table carrying
task, where we assumed that the human strategy may change after
either an action disagreement or a robot utterance. In repetitive tasks,
change may occur also as the human collaborator observes the out-
comes of the robot’s and their own actions, as we saw in section 5.2,
chapter 5. For instance, the human may observe that the robot fails
to detect the exit and they may change their strategy, so that in sub-
sequent trials the robot carries the table facing the door. In this sce-
nario, it may be better for the robot to allow the human to learn from

Figure 7.10: Shibuya crossing,

https://www.youtube.com/
watch?v=0d6EeCWytZo.


https://www.youtube.com/watch?v=Od6EeCWytZo
https://www.youtube.com/watch?v=Od6EeCWytZo
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experience, by observing the robot failing, rather than attempting to
change the human preference during task execution. Future work
includes generalizing our formalism to repeated settings; this will
require adding a more sophisticated dynamics model of the human
internal state, which accounts for human learning.

In summary, we have shown that when designing interactions in
human-robot collaborative tasks, having the robot directly describe
to the human how to do the task appears to be the most effective way
of communicating objectives, while retaining user trust in the robot.
Communicating why information should be done judiciously, partic-
ularly if the truthfulness of the robot statements is not supported by
environmental evidence, by the robot form or by a clear attribution of
its role as an authority figure.



8
Conclusion

We formulated the general problem as a two-player game with in-
complete information, where human and robot know each other’s
goals. We then made a set of different assumptions and approxima-
tions within the scope of this general formulation. Each assumption
resulted in diverse and exciting team coordination behaviors, which
had a strong effect on team performance.

We have shown that representing the human preference as a hu-
man reward function unknown to the robot and computing the robot
policy that maximizes this function results in robot adaptation to
the human. Assuming the human reward function to be known and
treating the interaction as an underactuated dynamical system results
in human adaptation to the robot. Closing the loop between the two
results in mutual adaptation, where the robot builds online a model
of human adaptation, and adapts its own actions in return.

We have applied the mutual adaptation formalism in collabo-
rative manipulation, social navigation and shared autonomy set-
tings. We are excited about generalizing our work in a variety of
domains, robot morphologies and interaction modalities, where an
autonomous system plans its actions by incorporating the human
internal state. The number of applications is vast: an autonomous
car can infer the aggressiveness of a nearby driver and choose to wait
or proceed; a GPS system may infer whether a user is willing to fol-
low its prompts; a personal robot at home can “nudge” a user about
taking breaks and sleeping more.

As these applications become more complex, our work has a num-
ber of limitations. The models of human internal state that robots can
build reliably are restricted and achieving optimal behavior in large,
high-dimensional spaces faces computational intractability. To this
end, flexible, compact representations of the human internal state and
new algorithms for reasoning about these representations give much
promise.

Overall, we believe that we have brought about a better under-
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standing of different ways that probabilistic planning and game-
theoretic algorithms can support principled reasoning in robotic
systems that collaborate with people. We look forward to continue
addressing the exciting scientific challenges in this area.
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