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Abstract

We consider the problem of robots following nat-
ural language commands through previously un-
known outdoor environments. A robot receives
commands in natural language, such as “Navigate
around the building to the car left of the fire hy-
drant and near the tree”. The robot needs first to
classify its surrounding objects into categories, us-
ing images obtained from its sensors. The result
of this classification is a map of the environment,
where each object is given a list of semantic labels,
such as “tree” and “car”, with varying degrees of
confidence. Then, the robot needs to ground the
nouns in the command, i.e. mapping each noun in
the command into a physical object in the environ-
ment. The robot needs also to ground a specified
navigation mode, such as “navigate quickly” and
“navigate covertly”, as a cost map. In this work, we
show how to ground nouns and navigation modes
by learning from examples provided by humans.

1 Introduction

We consider the problem of commanding mobile robots in
unknown, semi-structured, outdoor environments using nat-
ural language. This problem arises in human-robot teams,
where natural language is a favored communication means.
Therefore, robots need to understand the environment from
the standpoint of their human teammates, and to translate in-
structions received in natural language into plans.

For example, to execute the command “Navigate around
the building to the car that is left of the fire hydrant and near
the tree”, the robot needs to find out which objects in the en-
vironment are meant by “building” and “car”, and to plan a
path accordingly. To accomplish this goal, the robot needs to
ground all the nouns in the command (“building”, “car”, “fire
hydrant” and “tree”) into specific objects in the environment,
and to interpret the spatial relations (“left of” and “near”) and
the navigation mode (‘“around”).

The robot must first recognize the objects in the environ-
ment and to label them. We use the semantic perception
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Figure 1: Clearpath™ Husky robot used in the experiments

method proposed in [Munoz, 2013] which has been proven
effective in outdoor environments [Munoz et al., 2010]. The
semantic perception module receives scene images from a 2D
camera and classifies each object into categories with differ-
ent confidence values.

Grounding is performed by combining the labels obtained
from semantic perception with the spatial relations obtained
from parsing the command. There are three types of uncer-
tainty that make grounding a challenging task. First, objects
are often misclassified because of occlusions and noise in the
sensory input. Classification errors also occur when the envi-
ronment contains objects that are significantly different from
the ones used for training the classifier. Second, the com-
mands can be ambiguous, i.e. multiple objects satisfy the
constraints in a given command. Third, spatial relations are
often subjectively interpreted. People have different views on
what “left of a building” is, for example.

To trade off these uncertainties, we use a Bayesian model
for grounding. Our approach is based on using the confidence
values of the perception as a prior distribution on the true cat-
egory of each object. A posterior joint distribution on the
objects is computed based on how well each object satisfies
the spatial constraints. A key component of this model is a
function that maps two objects and a spatial relation into a
probability. This function is learned from annotated exam-
ples. We also learn a function that maps a navigation mode
into a cost map for path planning, using Inverse Optimal Con-
trol (I0C) [Ratliff et al., 2006]. Learning by imitation enables



the robot to interpret commands according to the subjective
definitions of its human user. Moreover, navigation modes as
“navigate covertly” do not have clear definitions that can be
used for handcrafting a path cost function.

Finally, we compute a joint distribution on goal objects and
on landmark objects used for specifying a navigation mode,
so that results with small path costs have high probabilities.
For path planning, we use the cost map based planner, PMAP
with Field D* [Stentz, 1994; Ferguson and Stentz, 2005;
Gonzalez et al., 2006; Stentz and Naggy, 2007]. The plan of
the grounding result with the highest probability is executed
by the robot. For more technical details on this work, we re-
fer the reader to the longer version of this paper [Boularias
et al., 2015] and the intelligence architecture paper [Oh ef al.,
2015] that describes how symbol grounding is used in seman-
tic navigation.

2 Related Work

The challenge of building human-robot interfaces using natu-
ral language generated a large body of work [Harnad, 1990;
MacMahon et al., 2006; Matuszek et al., 2012b; Zender
et al., 2009; Dzifcak et al., 2009; Golland et al., 2010;
Tellex et al., 2011; Kollar et al., 2010; Tellex et al., 2012;
Walter et al., 2013; Matuszek et al., 2012a; Guadarrama et
al., 2013]. A full review of the related works is beyond the
scope of this paper, so we highlight here some relevant ex-
amples. Symbol grounding was first formulated in [Harnad,
1990] as the problem of mapping words (symbols) into man-
ifestations in the physical world. The Generalized Ground-
ing Graphs (G?) [Tellex et al., 2011] is a generic framework
that casts symbol grounding as a learning and inference prob-
lem in a Conditional Random Field. The same type of spatial
relation clauses presented in [Kollar e al., 2010] and used
in [Tellex et al., 2011] are used in the current work. The
navigation system described in [Walter et al., 2013], also
based on G3, incorporates odometry and path constraints in
grounding, which is conceptually comparable to our use of
perception confidence and path costs in grounding. Guadar-
rama et al. [Guadarrama er al., 2013] presented a system for
human-robot interaction that also learns both models for spa-
tial prepositions and for object recognition. However, simple
relations were considered and perception uncertainty was not
taken into account.

3 Tactical Behavior Specification Grammar

The Tactical Behavior Specification (TBS) language is de-
fined to instruct a robot to perform tactical behavior including
navigation, searching for an object or observation. The lan-
guage is specifically focused on describing desired behavior
using spatial relationships with objects in an environment. In
this paper, we focus on the navigate action, where the main
components of a command are a goal and a navigation mode.
An object (or a symbol) referenced in a command can be as-
sociated with a spatial constraint relative to another object.
For instance, in a command “Navigate covertly to a fire hy-
drant behind the building,” a goal is to reach a fire hydrant,
“behind the building” is a goal constraint, and “covertly” is
the navigation mode. Often, the navigation mode also refers

to an object. For instance, the navigation mode in “Navigate
around the car to a fire hydrant behind the building” refers to
an object named “car”, which can also have its own spatial
constraints that are independent from the constraints of the
goal named “fire hydrant”.

4 Navigation Mode Grounding

Once the landmarks have been grounded and the position of
the goal has been determined, the robot must plan a path from
its current position to the given goal location that obeys the
path constraints imposed in the command. Path constraints
describe a navigation mode. For example, the user may spec-
ify that the robot should stay “left of the building”, or navi-
gate “covertly”. We return to the object grounding question,
“which building should the robot stay left of7”, in Section 5.

Path constraints are subjective and explicitly writing down
a cost function that encapsulates them would be time con-
suming due to the many trade-offs inherently present in the
planning problem. For example, the robot must trade off path
length with distance from the building. A covert navigation
behavior may look different to different people. We instead
use Imitation Learning to learn how to navigate between a
start and end position using examples of desired behavior.

We treat understanding spatial language as learning a map-
ping from terms (such as “left of”, “around”, or “covertly”)
to a cost function ¢ which can be used to generate a matrix
of costs known as a cost map. A planner can then optimize
to produce the minimum cost path under this cost function.
Given a term o (such as “left of”’) in the command specifying
the navigation mode, the robot solves the planning problem
of finding the minimum cost path £* under cost function ¢, :

£* = argmin ¢, (€) = argminw? ¢ (€) (1)
gex €eE

where the set of valid paths is =, and we assume that the cost
function ¢, takes the form of a linear sum of features ¢ under
weights w,. The features describe the shape of the path, the
geometry of the landmark, and the relationship between the
two [Tellex et al., 2011]. We use imitation learning to learn
the weights w, from a set of demonstrated paths {;}2V.

To learn the weights w,, we minimize the difference be-
tween the cost of the expert’s demonstrated path é and the
minimum cost path under the current cost function:

R A A
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under our regularization parameter A. The first term in Equa-
tion 2 is the cost of the demonstrated path under the current
cost function, and the second term is the cost of the optimal
path (again, under the current cost function). Note that we
are omitting the loss-augmentation term for clarity. Ignoring
regularization, we achieve zero loss when the cost function
produces the expert’s path. This loss is optimized using the
sub-gradient technique [Ratliff ef al., 2006].

Figure 2 shows the learned cost function for the relation
“left of”, and Figure 3 shows the training examples and
learned cost function for “covert” navigation, along with the
minimum cost path for a given start and end. Note that we
learned to avoid being in the center area between the rows of
buildings, and the planner took a sharper path across.



Figure 2: Learned cost function for the navigation mode “left of™.
The landmark is the rectangle in the center (e.g., a building), and the
path (optimized by minimizing the learned costs) correctly stays on
the left side of the landmark.

(a) Demonstrated paths. (b) Learned cost function and a
path generated accordingly.

Figure 3: Demonstrated paths and resulting learned cost function
(along with a validation example) for “covert” navigation. Paths are
in black, the red rectangles are buildings. Each path starts with a
pink cross and ends with a green one.

5 Object Grounding With Spatial Constraints
5.1 Problem

The object grounding algorithm receives as inputs a text com-
mand, a set O = {01,02...,0,} of perceived objects in the
environment, and the position (x,y) of the robot at the time
when the command was given. Each object o in set O is repre-
sented as a two-dimensional polygon, defined by the convex
envelope of the object’s points. Each object o is given a prob-
ability distribution P, over labels [ € L, obtained from the
semantic perception module. For example, label [ is “car” and
P, (1) is the probability that object o is a car. A command con-
tains one or more symbols from the label set £. The symbols
of particular interest for planning a path are the landmark-
objects in goal and path constraints, denoted by v, and 1,
respectively. For example, ¢, = “car” and 1), = “building”
in the command “Navigate near the building to the car that is
behind the fire hydrant”. The object grounding algorithm re-
turns a joint probability distribution P on each pair of objects
(0s,05) € O x O. P(0;,0;) is the probability that objects o;
and o; are what the commander intended by symbols 14 and
1bp, respectively. To compute P(0;,0;), one needs to com-
pute the probability of each object given all the symbols in

the command, such as “behind” and “fire hydrant”, in addi-
tion to symbols 1, and 1,,. But only these two last symbols
are used for planning a path. The other symbols only help
grounding 1, and 1),. There are several ways for planning
the robot’s path based on the resulting distribution P. In this
work, we pick the pair (o;, 0;) that has the highest probabil-
ity, and use it to generate a path according to the grounded
navigation mode (Section 4). We show how P is computed in
the rest of this section.

5.2 Model

Label prior distribution P, is directly obtained from the ob-
ject recognition method proposed in [Munoz, 2013]. A uni-
form distribution on all labels in £ is used for objects that do
not belong to any known class. This happens when the robot
encounters a new type of objects for the first time. Also, the
symbols in a received command that are not in £ are automat-
ically added to L. P, is adjusted such that the probabilities of
the new labels are nonzero. For instance, the user refers to a
“fire hydrant” in our previous example. That means that one
of the objects in the environment has to be grounded as a “fire
hydrant’ even if this term (or label) was never used before.

We use a log-linear model to represent Pr ,, (0;), the prob-
ability that object 0; € O is the one that satisfies spatial rela-
tion R with object 0; € O,

eXp (U)%(b(x, Y, 04, Oj))
Zok €O exp (wgé(b(% Y, 04, Ok)) ’

wherein ¢(z,y, 0;,0;) is a vector of spatial features of the
objects o; and o; from the robot’s perspective at current po-
sition (z,y), and wyg is a vector of weights specific to rela-
tion R. We dropped the robot’s coordinates (x,y) and ob-
jects set O from the notation P ,, because they are constant
during the grounding process. The spatial features used here
are the distance between center(o;) and center(o;), the cen-
ters of objects o; and o;, in addition to the sine and cosine
of the angle between (z,y)-center(o;) axis and center(o;)-
center(o; ) axis. These features are adequate for learning spa-
tial relations between relatively small objects. For large ob-
jects, such as buildings, the spatial relations depend on the
overall shape and orientation of the object. Therefore, we
use Principal Component Analysis (PCA) to find the primary
and secondary axis of o; when o; is most likely a building
(according to the perception module), and replace the (z,y)-
center(o;) axis by the nearest axis to it among the primary
and secondary axis. We also define the distance between a
building o; and the center of another object o; as the smallest
of the distances between o; and each vertex of o;. These ge-
ometric features were sufficient for learning weights wg of
all the spatial relations used in our experiments. The same
general approach can be used for learning other relations by
using additional features.

PR, (05) =

3)

5.3 Inference

We show how to compute a joint distribution P on landmarks
named as 1, and 1), in the goal and the path constraints of
a command. Each of the two objects can be subject to one
or more spatial constraints, parsed as a binary tree and de-
noted by 7, and 7, respectively. We start by first computing



a distribution on the objects in O for each label mentioned
in the command. The object distribution, denoted by P; for
label [, is computed from the label distributions P, (available
from semantic perception) using Bayes’ rule and a uniform
prior. The next step consists in computing two distributions
on goal and path landmarks, denoted as P7-g and P7; , from
the spatial constraints in trees 7, and 7,. The trees are tra-
versed in a post-order depth-first search, which corresponds
to reading the constraints in a reverse Polish notation. The
logical operators (‘“and”,““or”,“not”) are in the internal nodes
of the tree, whereas the atomic spatial constraints (“behind

CLINNT3

building”, “near car”, etc.) are in the leaves.

5.4 Learning

Given a weight vector wg, probability Pg ,,(0;) (Equa-
tion 3) indicates how likely a human user would choose o;
among all objects in a set O as the one that satisfies R (0;, 0;).
Because of perception uncertainties, estimating Pr ,, (0;) for
each object o; is more important than simply finding the ob-
ject that most satisfies relation R with o;.

We used twenty examples for learning the spatial rela-
tions R € {“left”, “right”, “front”, “behind”,“near”,“away”}.
Each example ¢ contains a set of objects in a simulated en-
vironment, a position (x;, y;) of the robot, a command with
spatial constraints, in addition to the best answer o] according
to a human teacher. Weight vector wx of each relation R is
obtained by maximizing the log-likelihood of all the training
examples using gradient descent, with the [; regularization
for sparsifying the weights [Bishop, 2006].

6 Experiments

6.1 Simulation experiments

These experiments are a study involving three uninformed
human subjects. We created a world model with eleven ob-
jects: a building, two cars, six traffic cones and two un-
known objects. We used five simple commands and five com-
plex commands. Each command contains a navigation mode
(“quickly” or “covertly”) with a spatial constraint of the path,
in addition to a spatial constraint of the goal. Complex com-
mands contain additional goal constraints. Participants were
separately asked to point to the goal they would choose for ex-
ecuting each command. The best answer, chosen by a major-
ity vote, is compared to the robot’s answer. Table 1 shows that
the robot’s answer matches with the best answer in 80% of the
commands. A robot’s answer is counted as valid if it matches
the answer of at least one participant. All the grounded goals
were valid in this study. We also report the consensus rate
which is the percentage of commands where all the three par-
ticipants agreed on one answer. The low rates of consensus
clearly show the advantage of customized human-robot inter-
faces that can learn from users. For instance, one participant
interpreted “front of a building” as the side where the cars
were located. Similarly, we asked each participant to classify
the robot’s path as conform to the navigation mode (style)
and constraints or as non-conform. The mode was classified
as conform by the majority of the participants in only 60%
of the commands. We noticed that the participants had all
different definitions of what it means to navigate covertly.

Simple  Complex
Best goal 80% 80%
Valid goal 100% 100%
Consensus 40% 20%
Best navigation mode 60% 60%
Valid navigation mode ~ 100% 100%
Consensus 60% 60%

Table 1: Comparing the learned model to human subjects, using
simple and complex commands. Navigation mode refers to style.
Notice how low is the consensus among the subjects on the best
answers, which are chosen by a majority vote.

6.2 Robot experiments

We performed extensive experiments using the robotic plat-
form shown in Figure 1. The robot’s environment contained
mainly buildings, cars, traffic cones, fire hydrants, and a gas
pump. We evaluated the performance of the learned ground-
ing model in five different scenes. In each scene, we used five
simple commands and five complex ones. The total number
of test scenarios is then 50. In each test scenario, we select
a goal and a navigation mode (style), send a command to the
robot, and rate the planned path as a success if it matches the
selected goal and mode, and as a failure otherwise. Over-
all, we notice that complex commands help finding the right
goals because they are less ambiguous than simple commands
(88411 vs. 84=£17 success rate).

7 Conclusion

To become useful team-mates, robots will need to understand
natural language commands given to them. This problem is
highly challenging when the environment is unknown. Spa-
tial navigation and relations are one type of subjective lin-
guistic concepts that robots can learn from human users. Our
approach to solving this problem uses inverse optimal control
for learning navigation modes, and a probabilistic model for
trading off perception uncertainties with spatial constraints.
Empirical evaluations show that the human-robot interface
built using the proposed approach is an efficient tool for com-
manding mobile robots.
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