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Abstract In this paper we describe a semantic mapping system for autonomous off-
road driving with an All-Terrain Vehicle (ATVs). The system’s goal is to provide a
richer representation of the environment than a purely geometric map, allowing it to
distinguish, e.g. tall grass from obstacles. The system builds a 2.5D grid map encod-
ing both geometric (terrain height) and semantic information (navigation-relevant
classes such as trail, grass, etc.). The geometric and semantic information are es-
timated online and in real-time from LiDAR and image sensor data, respectively.
Using this semantic map, motion planners can create semantically aware trajecto-
ries. To achieve robust and efficient semantic segmentation, we design a custom
Convolutional Neural Network (CNN) and train it with a novel dataset of labelled
off-road imagery built for this purpose. We evaluate our semantic segmentation of-
fline, showing comparable performance to the state of the art with slighly lower
latency. We also show closed-loop field results with an autonomous ATV driving
over challenging off-road terrain by using the semantic map in conjunction with a
simple path planner. Our models and labelled dataset will be publicly available.

1 Introduction

The last few years have seen enormous progress in the 3D sensing capabilities of
autonomous vehicles. Mature and robust LiDAR and INS technologies give self-
driving vehicles an accurate and real-time sense of the geometric structure around
them, immensely simplifying navigation-related tasks.

However, we have observed that relying primarily on geometric information
leads to disappointing results for autonomous navigation in off-road environments.
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Fig. 1 Our Autonomous All-Terrain Vehicle (ATV). The two main sensors, a spinning 3D LiDAR
and a stereo camera, can be seen on the vehicle roof.

The main reason is that geometric structure, by itself, fails to provide many impor-
tant distinctions for wheeled All-Terrain Vehicles (ATVs) such as ours, shown in 1.
For example, tall grass may be perceived as an obstacle, but our ATV may traverse
it if desired. Similarly, leaf litter may appear as rocky terrain, or puddles may ap-
pear as either holes or smooth surfaces. All of these may lead to suboptimal, even
dangerous, decisions in path planning. Similar observations have been made many
times before in the context of off-road robotics, e.g., [11, 15, 22, 10].

In this paper, we describe a system to counter this problem by building a se-
mantic map, a representation of the vehicle’s surroundings encoding both geometric
(e.g. height, roughness) and semantic information (navigation-relevant classes such
as trail, grass, obstacle, etc.). The map is stored as a 2.5D grid centered on the ve-
hicle frame, and is continuously updated as new sensor data is acquired. Using this
representation, a motion planner can create semantically-aware trajectories.

Our key contribution is a simple yet effective system coupling a custom Convo-
lutional Neural Network architecture, based on Fully Convolutional Networks [14],
and a 2.5D vehicle-centered semantic grid map that fuses the geometric and se-
mantic measurements as the vehicle moves and acquires more data. We show the
effectiveness of the semantic segmentation CNN in offline benchmarks. By using a
simple planner with the semantic map, we show qualitative examples of our system
being successfully used to navigate challenging off-road terrain.

As an additional contribution, the labelled dataset of off-road imagery used to
train our network will be made publicly available.
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2 Related Work

Our system is heavily inspired by the rich literature on semantic approaches to off-
road navigation tasks, going as far back as 1990 [7].

A decade later, various practical systems showed impressive results with this
paradigm, usually with a combination of LiDAR and images [11, 15, 22, 25, 26].

The LAGR program [10] featured various highly relevant systems such as [18,
12, 24, 2], which performed semantic classification with hand-engineered vision
pipelines. An exception is [9], featuring an early deep neural network system for
semantic segmentation.

In more recent work, [21] demonstrate autonomous navigation featuring a lightweight
semantic segmentation system. Unlike our system, they use traditional visual feature
engineering, leading to noisy pixelwise predictions that they smooth with a novel
regularization method. In contrast, our architecture, based on Fully Convolutional
Networks (FCNs) [14], incorporates spatial context that naturally smoothes the out-
put. Another relevant work is [23], which uses an encoder-decoder network archi-
tecture that is similar to FCNs. They explore modalities beyond RGB and achieve
impressive segmentation results. However, they do not build a metric map or demon-
strate closed-loop navigation.

3 Approach
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Fig. 2 Overview of our semantic mapping system.

Overview. This system architecture is outlined in Fig. 2. There are two primary
sensor streams, RGB imagery and LiDAR point cloud data. The RGB images are
fed into the semantic segmentation module, which uses a CNN to generate a pix-
elwise labelling. Concurrently, the LiDAR point clouds are used to update a 2.5D
grid map in the semantic mapping module. The semantic mapping module also re-
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ceives the pixelwise prediction images from the semantic segmentation module and
projects them onto the 2.5D grid map, which fuses the semantic predictions over
time. The result is a vehicle-centered 2.5D grid map encoding continuously updated
estimates of relevant geometric and semantic information for off-road navigation.
Finally, the map is used for semantically-aware path planning. For our initial testing
we used a simple receding horizon path planner that assigns a traversal cost to each
semantic class and continuously chooses a path to minimize the cost. The whole
system runs at 10Hz, a rate dictated by the speed at which the semantic mapping
module processes images.

Hardware Platform. Our vehicle is shown in Fig. 1. It is a commercial All-Terrain
Vehicle modified and instrumented for experiments in autonomous off-road driving.
The sensor suite includes an INS/GPS system, a 64-line Velodyne LiDAR and an
RGB stereo camera with a 21 cm baseline manufactured by Carnegie Robotics. Note
that the system in this paper does not currently use the stereo depth information. All
computation is performed onboard with two COTS laptops, connected through high-
speed ethernet. The laptop for semantic mapping includes an NVIDIA GT980M
GPU, used to achieve real-time execution of the CNN classifier.

Software Platform. All computers run Ubuntu Linux. The different system mod-
ules run concurrently as ROS nodes and communicate through ROS messages. The
nodes are implemented in C++ and Python, using CUDA (generated via the Theano
library [3]) to make effective use of the GPU.

3.1 Semantic Segmentation

The goal of 2D semantic segmentation is to assign one of K predefined classes to
each pixel in an image. Like many tasks in computer vision, the state of the art
for this task has been recently revolutionized by Deep Learning, and in particular
Convolutional Neural Networks.

For this task, the most successful neural networks architectures are Fully Convo-
lutional Network (FCNs) [14]. The key idea in these networks is to take advantage
of convolutional structure to label all the pixels simultaneously with a very similar
network to more traditional CNNs. Due to pooling, this results in low-resolution
outputs; to reverse this, so-called “deconvolution” layers are added to upsample the
output. In order to preserve high-frequency detail, skip layers connecting early lay-
ers to upsampled feature maps are added. Encoder-Decoder architectures [17, 1], of
which UpNet [23] is an example, are similar, but omit skip layers.

At the start of the project, we found state of the art architectures to be relatively
slow, as they were optimized for accuracy over speed. Thus we implemented and
trained our own architectures, using the Theano [3] and Lasagne [6] libraries. Cur-
rently, we have found various possible architectures to show very similar accuracy
for our off-road semantic segmentations tasks, differing mostly in time cost, which
in turn is largely driven by details of the architecture and input/output resolution.



Real-time Semantic Mapping for Autonomous Off-Road Navigation 5

We believe this is due to the relatively small datasets used, but merits further inves-
tigation.

To date we have used mostly two architectures. The first, cnns—fcn, is based
on our “convolutionalization” of VGG-CNNs from [4], and has 227 x 227 input size
with 109 x 109 output size. The second, dark—fcn, is based on our own convolu-
tionalization of the Darknet architecture [19], which in turn is similar but more effi-
cient than VGG16 [20]. For dark—£fcn both the input and output are 300 x 300, in
order to facilitate comparison with UpNet. Despite the higher resolution dark—-fcn
is faster than cnns—fcn: 21 ms on a GT980M, compared to 37 ms. The authors of
UpNet [23] describe a 50 ms with Caffe on a GTX Titan X, which in our experi-
ence has similar speeds to the GT980M. This leads us to believe our model should
be faster or at least comparable. Fig. 3 shows both of our architectures. Code and
trained models will also be made available.

| Name  Units Size Stride Input 1| Mame Umits Size Strade Input Name  Units Size Stnde Input
Jeoml 98 7 2 | comtt 32 3 1 convlf 10243 1
norml poalil 2 2 convl? 512
| pooll 2 2 comi2 684 3 | convif 1024 3 ]
| conv2 256 5 1 pocii2 2 2 comv i mn 64
poal2 z 2 comll3 128 31 upl 64 4 2
Jeonvd 512 3 1 comid 64 poolidoin 64 poai(k
Jeomvd  SI2 3 1 comv05 128 3 1 fusel upl + pool4nin
cowd 512031 pol03 2 2 upl oM 4
pools 3 i com(6 256 3 1 pooll3nm 64 pocldl
convich 406 & | comil? 128 fuse? up2 + poold3nin
| convic? 4098 | 1 comvlld 2% 3 1 upd 64 4 2
| ninfc? 6 poulod 45 o3 pocliiZnm 64 poal(i2
upl 6 4 12 com® 512 3 | fused up3 + pool02nin
| convSnin b com's comvil) 256 upd 64 4 2
| fusel upl + comvSnin comll 512 3 1 updnm ¥ upd
up2 6 4 2 comvl2 256
poollnin & poudl comvld 512 3 1
finse2 up2 + poollnin pocllls 7 2
upd b 5 3 conv 14 43 1
| conv [nin 6 comv | covls 512
| fused up3 + convlnin
cnns-fen dark-fen

Fig. 3 Our two network architectures. “conv” denotes a convolutional layer; “pool”, a pooling
layer; layers ending in “nin” are 1 x 1 convolutional layers; “fuse” is an elementwise sum layer;
“norm” is a local response normalization layer. The input is assumed to be the layer above, unless
otherwise specified. For convolutional layers, “size” is the kernel size; for pooling layers, it is the
pooling receptive field. Note that for dark—fcn we split the table due to size constraints.

3.2 Semantic Mapping

The output of the semantic mapping step is in 2D image space, but it is far more
natural for vehicles to plan in a 3D, metric space. In our case, as adopt a 2.5D grid,
or heightmap representation for simplicity. This suffices for most environments, but
would potentially have issues with overhanging trees or tunnels.

To keep an up-to-date heightmap of the vehicle’s surroundings, we use a scrolling
grid data structure, which has been reinvented multiple times in the literature. This
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structure is a generalization of ring-buffers to two dimensions, and its main feature
is that it can be shifted (translated) without copying its data, and instead updating
the variables indicating its limits. This is a speed optimization; logically, the grid be-
haves like a finite 2D array centered around the vehicle, with each grid cell contain-
ing various properties about the terrain. In our paper the grid cells are 0.25m x 0.25m
each, and the map has 400 x 400 cells. Each grid cell maintains a running estimate of
the minimum and maximum height in that grid cell, computed by using occupancy
and free-space constraints derived from LiDAR rays, similar to [8, 28]. For each
point in the point cloud, we raytrace on our grid using Bresenham’s algorithm in
3D; cells that are passed through, and above, are considered empty, and cells where
the beam stops, and below, are considered occupied.

The semantic map also integrates semantic measurements, as its name indicates.
To project the output of the 2D semantic segmentation into a heightmap representa-
tion, we follow a straightforward process depicted in Fig. 4.

R
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Fig. 4 Mapping the semantic segmentation to the 2.5D map.

Given that we know the relative position of the camera and the LiDAR, and the
camera intrinsics, we can project the 2D semantic predictions onto the 2.5D grid
cells using simple geometry. However, for added robustness, we fuse measurements
over time. To this end we adopt a scheme inspired by the sequential filtering process
of occupancy maps [16], but generalized to K classes.

For this we use the probabilistic (softmax) pixelwise output of the classifier. We
maintain a running sum of the log odds of the K classes projected to each grid cell.
While this soft multiclass representation could be used directly, for simplicity when
interfacing with other systems we use the argmax of the K classes as our current
best estimate of the semantic class for each grid cell. Note that this representation
assumes a single class per cell, which may be a limitation in certain environments.

An example cumulative output of the semantic map in a live field run is shown
in Fig. 5.
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Fig. 5 Example output of semantic map in a field run.
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Fig. 6 Path Planning. a) Library of candidate paths, overlaid on top of the semantic map. Red
indicates feasible paths. b) Illustration of how we account for vehicle width. For each trajectory,
we compute the cost (or reward) over seven shifted versions of the trajectory, covering the vehicle
footprint. ¢c) An example chosen trajectory, chosen according to the traversability score of the
semantic classes it covers.

In order to demonstrate autonomous operation we implement an extremely sim-
ple receding horizon path planner. The planner has a library of 30 trajectories cor-
responding to yaw rates of —15°/s to 15°/s, discretized at 1°/s, and at constant
velocity of 9kmh~!; see Fig. 6a).

Each time the map is updated, which happens at 10Hz, a trajectory is chosen
from the library. The choice of trajectory maximizes a reward function derived from
the semantic map as follows. Cells labelled as “smooth” or “rough” trail have a
reward of 1, and cells labelled as “grass” have a reward of 0.1. All other classes
have zero reward. The total reward of a trajectory is the sum of rewards over a 20 m
trajectory length, originating from the vehicle. To account for vehicle width, we
slightly modify this calculation, as shown in Figure 6b).

The advantage of this planner is that in its extreme simplicity, its performance
depends largely on the output of our semantic mapping, with no interference from
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other factors that will be a present in a more complex, multi-layered system. How-
ever, our system was also used as an additional input to a more deliberative planner,
for which the main representation was a geometric map built with LiDAR. In this
planner, our semantic predictions were used primarily to avoid treating grass as an
obstacle.

4 Experiments

Overview. We evaluate our system in two ways. First, we run offline benchmarks
of the semantic segmenation module in two datasets. Second, we demonstrate the
whole system operating autonomously in live field experiment.

4.1 Offline Benchmarks

In order to evaluate our semantic segmentation module we use two datasets, the
DeepScene dataset from Valada et al. [23] and our own dataset, the Yamaha-CMU
Off-Road Dataset.

DeepScene Dataset. This dataset consists of 233 training images and 139 valida-
tion images of off-road imagery densely labelled with six semantic categories: void,
road, grass, vegetation, tree, sky, and obstacle. While this dataset shows some inter-
esting variety in appearance due to time of day, it is fairly small and seems to lack
diversity in terms of weather and location. A key feature of this dataset is various
modalities (depth, NIR), but we do not currently make use of them.

Yamaha-CMU Off-Road Dataset. In order to train and evaluate our method we
have collected our own dataset, which we call Yamaha-CMU-Off-Road, or YCOR.
It consists of 1076 images collected in four different locations in Western Penn-
sylvania and Ohio (8), spanning three different seasons (Fig. 7). The dataset was
labelled using a polygon-based interface with eight classes: sky, rough trail, smooth
trail, traversable grass, high vegetation, non-traversable low vegetation, obstacle.
The polygon labels were post-processed using a Dense CRF [13] to densify the la-
bels; the output of the CRF was manually inspected, and in some cases corrected, to
ensure no wrong labels were created.

We believe our dataset is more diverse and challenging than DeepScene. In Fig.
8, we show the mean RGB image and pixelwise labelmode of each dataset. The
DeepScene dataset shows a left-right bias and more predictable structure than ours;
if we used the pixelwise mode as a baseline classifier, we would obtain 0.30 pix-
elwise error-rate in DeepScene, but 0.51 in ours. However, we acknowledge that
compared to recent efforts, both datasets are relatively small; cf. CityScapes [5],
with 25000 labelled images.
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Fig. 7 Montage of frames from the YCOR dataset.
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Fig. 8 First two columns: A comparison of dataset statistics. We show the mean RGB frame and
the pixelwise mode for the labelled frames in the training sets of each dataset used. Last column: a
map with locations where YCOR was collected.

Our current split has 931 training images, and 145 validation images. This split
was generated randomly, ensuring there was no overlap in data collection session
between images in the training and validation split. However, there is overlap in
locations used. We will provide location and time of acquisition metadata to enable
further evaluation in terms of generalization across these factors.

Quantitative Results. We evaluated our models on the two datasets. In each case
we train our models from scratch on the predefined training set until convergence
with SGD, dividing by the initial learning rate (0.0001) by a factor of 10 three times.
We use a standard pixelwise cross-entropy loss with a small L, regularization factor
(0.0005). Training takes around two days on a GT980Ti GPU. We use crop, rotation
and color augmentations at training time, and none at test time. We use per-class
intersection over union (IoU) as the evaluation metric, the most common metric for
semantic segmentation.
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Table 1 shows results for DeepScene and Table 2 shows results for YCOR. In
both, we include a variant of the dark—fcn model with 448 x 448 resolution, in
addition to the standard 300 x 300. We report the numbers from their paper [23],
where we denote by frequency-weighted IoU (fw-IoU) what they denote as IoU,
and add mean IoU (mloU), calculated by ourselves. As we can see, both our models
perform comparably, with dark—-fcn having a slight advantage. In the DeepScene
dataset we can also compare the two models with the RGB UpNet. We see that
our models have a slight edge in fw-IoU, though they display dramatically worse
performance for obstacles, which severely skews the mloU metric. We note that the
number of obstacle pixels in the dataset is three orders of magnitude less than for
the other classes, so the network tends to ignore it. Nonetheless, it is an important
class, and we are investigating how to detect it more accurately. Finally, we see that
increasing the input resolution gives a slight boost in performance.

Table 1 Per-class, mean IoU and frequency-weighted IoU of UpNet (RGB) and our models in
DeepScene dataset. The first three rows use a 300 x 300 image size, as in UpNet; the last row uses
448 x 448.

road grass veg./tree  sky obstacle mloU fw-IoU

Upnet (RGB) [23] 85.03 86.78  90.90 90.39  45.31 79.68 85.30
cnns—fcn 85.95 8534  87.38 90.53 1.84 58.51 87.47
dark-fcn 88.03 86.65  89.21 93.17 5.03 60.35 89.41

dark-fcn-448 88.80 87.41  89.46 93.35 4.61 60.61 89.85

Table 2 Per-class, mean IoU, and frequency-weighed IoU of our models in the YCOR dataset.

smooth grass rough puddle obstacle low veg. high veg.  sky mloU fw-IoU

cnns—-fcn 46.70 64.03 38.29 0.0 3274 2432 79.15 88.01 46.66 61.31
dark-fcn 46.24 71.25 41.35 00 29.74 28.17 80.15 91.45 48.54 63.62

dark-fcn-448 52.46 72.11 39.61 0.0 3556 2461 82.51 92.69 49.82 65.18

Qualitative Results. We show some qualitative labellings of the cnns—fcn ar-
chitecture for each dataset in Fig. 9. As can be seen, the results are generally quite
accurate. For the YCOR, most of the confusions come from smooth vs. rough trail,
a distinction that is hard for humans to make consistently.

4.2 Field Experiments

We performed various self-driving experiments in March and July 2017, in vari-
ous locations around our testing site near Pittsburgh, PA. Despite the simplicity of
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Fig. 9 Montage of predictions from cnns—fcn in the YCOR dataset (top four rows) and Deep-
Scene (bottom four rows). In each case, we show three images: input, ground truth labels, and
predicted labels.

our planner, the vehicle managed to successfully traverse various trails that were
too challenging for a previous LiDAR-only system. These include locations with
puddles, grass in the middle of the trail, and narrow trails. We will upload video
to the project website at http://dimatura.net/offroad. Fig. 10 shows the vehicle in
autonomous operation.

On the other hand, we observed some limitations of our current system. Many
of the limitations were due to the simplicity of the receding horizon planner, which
often swerved from side-to-side in wider trails.

Some of the failures were also due to our semantic classification system. For
example, it sometimes failed to detect sparse grass alongside the trail, resulting in
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Fig. 10 Action shots of autonomous off-road driving in our testing site. The left-hand side shows
screenshots of the sensor data and map as seen from the vehicle. Videos will be made available on
the project page.

Fig. 11 Aerial action shots of autonomous off-road driving in our testing site. The left-hand side
shows the vehicle, and the right-hand side shows the semantic map as seen by the vehicle. Video
will be made available on the project page.

the vehicle veering off-trail. In one occasion, it also confused a large non-traversable
bush with traversable grass, forcing us to manually intervene.

To address these issues we will use a more deliberative and safe planner, more
training data, and better network architectures.

Timing. We run all computation onboard the vehicle using a i7 laptop with a 6GB
GT980M GPU. The bottleneck of the system is in the semantic mapping, with se-
mantic segmentation taking approximately 35 ms per image and the label projec-
tion taking around 60 ms per image. These steps occur sequentially, leading to the
roughly 10Hz rate operation of the system. This is sufficient for medium-speed op-
eration, and we expect that even without changes to our architecture, GPU advances
will lead to at least 2x faster operation in the near future.
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5 Conclusions

We have introduced an efficient and robust semantic mapping system for off-road
navigation featuring a state-of-the-art CNN classifier. To train the CNN, we have
collected and labelled a new dataset of off-road imagery. We have evaluated it in of-
fline benchmarks with results comparable to the state of the art with lower latencies.
We have also demonstrated closed-loop operation in challenging off-road terrain.

In future work, we are interested in incorporating recent advances from the state
of the art in semantic segmentation, such such as Dilation layers [27] and multiple
input modalities, like [23].

Having verified firsthand the difficulty of accurately labelling large amounts of
data, in future work we are interested in alternatives to manual labelling, such as
self-supervision and inverse reinforcement learning.

Acknowledgements We gratefully acknowledge Yamaha Motor Corporation for their support,
the Yamaha-CMU team for building and maintaining the autonomous ATV, and Mesh Robotics for
providing field test footage.
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